JP2006306902A - Heat-resistant styrenic resin composition - Google Patents

Heat-resistant styrenic resin composition Download PDF

Info

Publication number
JP2006306902A
JP2006306902A JP2005127467A JP2005127467A JP2006306902A JP 2006306902 A JP2006306902 A JP 2006306902A JP 2005127467 A JP2005127467 A JP 2005127467A JP 2005127467 A JP2005127467 A JP 2005127467A JP 2006306902 A JP2006306902 A JP 2006306902A
Authority
JP
Japan
Prior art keywords
styrene
copolymer
heat
resistant
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005127467A
Other languages
Japanese (ja)
Inventor
Kenji Ebara
賢司 江原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2005127467A priority Critical patent/JP2006306902A/en
Publication of JP2006306902A publication Critical patent/JP2006306902A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a styrenic resin excellent in heat resistance, melt stability and recyclability. <P>SOLUTION: The heat-resistant styrenic resin composition consists of (I) a styrenic copolymer, which is a copolymer containing an isopropenyl aromatic unit represented by formula (1) and a vinyl aromatic unit represented by formula (2), in which the content (A) of the isopropenyl aromatic unit is 5-70 (wt.%) and in which the ratio (Mz/Mw) of the Z average mol.wt. (Mz) to the weight average mol.wt. (Mw) of the copolymer is 1.4-3.0, and (II) an impact-resistant styrenic resin comprising a styrenic monomer unit and containing gel-like rubber particles. The weight ratio (I/II) of the component (I) to the component (II) satisfies: I/II=99/1-1/99. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、耐熱性、溶融安定性、リサイクル性、成形性、強度、剛性に優れたスチレン系樹脂組成物に関する。   The present invention relates to a styrenic resin composition excellent in heat resistance, melt stability, recyclability, moldability, strength, and rigidity.

スチレン系樹脂は、透明性、剛性、寸法安定性等の材料性能に優れるだけでなく、射出成形、延伸シート、フィルム、発泡シート、発泡ボード、ブロー成形等の様々な成形加工が可能であること、更にスチレン系樹脂の多くは、ラジカル重合法による塊状重合、高い単量体濃度による溶液重合、懸濁重合、乳化重合により大量に安価に製造ができることから非常に多種多様な用途に利用されている。
スチレン系樹脂の代表的なものとしては、ポリスチレン(GPPS)、スチレン/アクリロニトリル(AS)、スチレン/メタクリル酸メチル(MS)、スチレンメタクリル酸(SMAA)、スチレン/無水マレイン酸(SMA)等があるが、この中でもスチレンの単独重合体(ポリスチレン、GPPS)が最も多く汎用的に利用されている樹脂である。
Styrenic resin not only excels in material performance such as transparency, rigidity, and dimensional stability, but also enables various molding processes such as injection molding, stretched sheet, film, foamed sheet, foamed board, and blow molding. In addition, many styrene resins are used in a wide variety of applications because they can be manufactured in large quantities at low cost by bulk polymerization by radical polymerization, solution polymerization by high monomer concentration, suspension polymerization, and emulsion polymerization. Yes.
Typical examples of the styrene resin include polystyrene (GPPS), styrene / acrylonitrile (AS), styrene / methyl methacrylate (MS), styrene methacrylic acid (SMAA), styrene / maleic anhydride (SMA), and the like. However, among these, styrene homopolymer (polystyrene, GPPS) is the most widely used resin.

ポリスチレンは、多くの優れた性能を有しており、また安価なため利用価値は高く、さまざまな用途に用いられているが、その主な用途を具体的に述べると次の通りである。
(包装用途)
弁当容器(発泡シート:PSP)、カップ麺容器(発泡シート:PSP)、透明コップ、スプーン、フォーク、野菜包装シート(2軸延伸シート)、封筒窓
(家電OA用途)
テレビ、エアコン、OA機器のハウジング、電気冷蔵庫のトレー、カセット・MD・MOのシェル
(日用雑貨品)
玩具、文房具用品
(建材用途)
断熱材(発泡ボード)、畳(発泡ボード)
Polystyrene has many excellent performances and has a high utility value because it is inexpensive, and is used in various applications. The main applications are specifically described as follows.
(Packaging applications)
Lunch box (foamed sheet: PSP), cup noodle container (foamed sheet: PSP), transparent cup, spoon, fork, vegetable packaging sheet (biaxially stretched sheet), envelope window (for home appliance OA use)
TV, air conditioner, OA equipment housing, electric refrigerator tray, cassette / MD / MO shell (daily goods)
Toys, stationery supplies (building materials)
Thermal insulation material (foam board), tatami mat (foam board)

しかしながら、この樹脂の性能でも満足できない用途、例えば、耐熱性が不足して利用できない用途があった。具体的には、GPPSの耐熱性は約100℃(ガラス転移温度)であるため、煮沸消毒のため加熱した水蒸気に接する用途、電子レンジ加熱を要する食品包装用途、夏場高温雰囲気下に曝されやすい車搭載用の成形品用途等においては、いずれも成形品の変形を起こす危険が伴うため安心して利用することができなかった。   However, there are uses that cannot be satisfied even with the performance of this resin, for example, uses that lack heat resistance and cannot be used. Specifically, since GPPS has a heat resistance of about 100 ° C. (glass transition temperature), it is easy to be exposed to high-temperature atmospheres in summer, for use in contact with water vapor for boiling disinfection, for food packaging that requires microwave heating. In the case of molded products for mounting on vehicles, it was impossible to use them with peace of mind because there was a risk of deformation of the molded products.

ポリスチレンの耐熱性を高める手法の一つに、極性官能基を含有する単量体をスチレンと共重合する方法がある。例えば、スチレンとメタアクリル酸の共重合体(SMAA)、スチレンと無水マレイン酸との共重合体(SMA)、スチレンと無水マレイミドとの共重合体等があり、極性官能基含有の単量体の共重合組成量を制御することによって耐熱性を任意に変えることができる。   One technique for increasing the heat resistance of polystyrene is to copolymerize a monomer containing a polar functional group with styrene. For example, there are copolymers of styrene and methacrylic acid (SMAA), copolymers of styrene and maleic anhydride (SMA), copolymers of styrene and maleimide, etc., and monomers having polar functional groups The heat resistance can be arbitrarily changed by controlling the amount of copolymerization.

例えば、耐熱スチレン系樹脂として代表的なSMAAはビカット温度が105〜125℃である。しかしながら、極性官能基を含有する共重合体は、高温下に曝されると極性基の副反応により高分子鎖の架橋反応が起こり、その結果ゲル様物質の生成、高粘度化による成形加工性の低下を伴い、品質及び生産性の観点から充分ユーザーに受け入れられていなかった。   For example, a typical SMAA as a heat-resistant styrene resin has a Vicat temperature of 105 to 125 ° C. However, when a copolymer containing a polar functional group is exposed to a high temperature, a cross-linking reaction of the polymer chain occurs due to a side reaction of the polar group, resulting in the formation of a gel-like substance and the molding processability by increasing the viscosity In view of quality and productivity, it was not well received by users from the viewpoint of quality and productivity.

また、高温溶融滞留下で架橋反応が起こりやすいということは、成形加工時に高分子量体が変性しやすいことであり、このことは樹脂のリサイクル化、リユース化が難しいことを意味する。例えば、射出成形品を得る際には、スプルーやランナー部が発生し、また、二軸延伸シートや発泡シートから成形品を得る際には成形品以外の端材(スケルトン)が発生する。これらは通常、粉砕又は裁断した後にバージンのペレットに部分的に混ぜて再利用するか、ポリスチレン等の汎用樹脂に部分的に混ぜて再利用することが一般的に行われている。   In addition, the fact that the crosslinking reaction is likely to occur under high-temperature melt residence means that the high molecular weight substance is easily denatured during the molding process, which means that it is difficult to recycle and reuse the resin. For example, when an injection molded product is obtained, sprue and runner portions are generated, and when a molded product is obtained from a biaxially stretched sheet or a foamed sheet, an end material (skeleton) other than the molded product is generated. Generally, these are generally pulverized or cut and then partially mixed with virgin pellets for reuse, or partially mixed with general-purpose resins such as polystyrene for reuse.

しかしながら、溶融加工時に高分子量体の架橋等により樹脂の流動特性が変わると再利用化が困難となり、バージンペレットへのリサイクル材として利用するには制限があるという問題があった。また、バージンペレットにブレンドするとゲル様物質が混入することとなり、成形品の外観性や機械物性が低下し品質が低下する。
また、極性官能基含有の共重合体は、一般にポリスチレンとは相溶性が悪く、溶融混合したとしてもゲル様物質が混入することとなり機械物性の低下を招くだけでなく屈折率の違いにより透明性も失われるために汎用PS(ポリスチレン)や汎用HIPS(耐衝撃性ポリスチレン)へのブレンドによるリサイクル材としても利用できていなかった。そしてリサイクル材として利用できないため、産業廃棄物として処理せざるを得ず、資源が有効利用できない、処理負担が増えるという問題点があった。
However, if the flow characteristics of the resin change due to cross-linking of the high molecular weight during the melt processing, it becomes difficult to reuse the resin, and there is a problem that there is a limit to use as a recycled material for virgin pellets. Further, when blended with virgin pellets, a gel-like substance is mixed, and the appearance and mechanical properties of the molded product are deteriorated and the quality is deteriorated.
In addition, polar functional group-containing copolymers generally have poor compatibility with polystyrene, and even when melt-mixed, gel-like substances are mixed in, resulting in deterioration in mechanical properties and transparency due to differences in refractive index. Since it is also lost, it could not be used as a recycled material by blending with general-purpose PS (polystyrene) or general-purpose HIPS (impact-resistant polystyrene). And since it cannot be used as a recycled material, it has to be treated as industrial waste, and there is a problem in that resources cannot be effectively used and a processing load increases.

近年、樹脂の有効利用化が重要視され、各種のリサイクル法が成立し施行されてきた。
樹脂がリサイクル、リワーク、リユースできるということは、今後の樹脂市場では必要不可欠なニーズとなってくる。今後開発される樹脂材料は、数回の溶融加工を経ても高分子鎖の切断による分子量の低下や単量体の発生がほとんど起こらず、有効に再利用できる樹脂であることが必要である。従って、これまでのスチレン系共重合体よりも溶融安定性の高い樹脂材料の開発が望まれていた。
これまでの耐熱性スチレン系樹脂のもう一つの問題点として、成形時の加工条件範囲が狭いという点があった。
In recent years, emphasis has been placed on the effective use of resins, and various recycling laws have been enacted and implemented.
The fact that resin can be recycled, reworked and reused will become an indispensable need in the future resin market. Resin materials that will be developed in the future need to be resins that can be effectively reused, with little molecular weight reduction or monomer generation due to polymer chain scission even after several melt processings. Accordingly, it has been desired to develop a resin material having a higher melt stability than conventional styrene copolymers.
Another problem with the conventional heat-resistant styrenic resins is that the processing condition range during molding is narrow.

共重合体の耐熱性が向上することは、即ち、高分子鎖の流動開始する温度が向上することと同義である。従って、成形加工時にポリスチレンと同じ流動特性を得ようとするならば、耐熱性が向上した分、加工温度を高める必要がある。しかし、極性官能基含有のスチレン系共重合体はその分解開始温度が耐熱性に見合う分の温度は向上しない。このため成形加工温度範囲が狭くなり、その結果生産性、品質の低下を招くという問題があった。   Improving the heat resistance of the copolymer is synonymous with improving the temperature at which the polymer chain starts to flow. Therefore, if it is intended to obtain the same flow characteristics as polystyrene during molding, it is necessary to increase the processing temperature by the amount of improved heat resistance. However, the styrenic copolymer containing a polar functional group does not improve the temperature at which the decomposition start temperature is suitable for the heat resistance. For this reason, there has been a problem that the molding temperature range is narrowed, resulting in a decrease in productivity and quality.

極性官能基を含有しない単量体を使ってスチレン系樹脂の耐熱性を向上させる方法もある。例えば、スチレンとα−メチルスチレンとの共重合体は、α−メチルスチレンの含有量に従ってガラス転移温度が上昇することが知られている(例えば、非特許文献1参照)。しかし、α−メチルスチレンは、天井温度が約60℃と低く、工業的製法の代表例であるラジカル溶液重合法を使ってスチレンとα−メチルスチレンの共重合を試みると、1)高分子量化が困難である、2)α−メチルスチレンの共重合体中への含有量に限界があり目的の耐熱性を得ることができない、3)溶融時の熱安定性が悪く成形加工条件によっては共重合体の熱分解が起こり、単量体成分の発生、分子量の低下を引き起こしやすい、4)樹脂ペレットが黄色化しやすいため用途によっては着色剤の添加を要する、等多くの問題点があって未だに工業的に利用された例はなかった。   There is also a method for improving the heat resistance of a styrene resin using a monomer that does not contain a polar functional group. For example, it is known that a copolymer of styrene and α-methylstyrene increases in glass transition temperature according to the content of α-methylstyrene (for example, see Non-Patent Document 1). However, α-methylstyrene has a low ceiling temperature of about 60 ° C., and when attempting to copolymerize styrene and α-methylstyrene using the radical solution polymerization method, which is a typical example of an industrial process, 1) high molecular weight 2) The content of α-methylstyrene in the copolymer is limited and the desired heat resistance cannot be obtained. 3) The thermal stability at the time of melting is poor, and depending on the molding process conditions, Thermal decomposition of the polymer occurs, easily causing monomer components and molecular weight reduction. 4) Since resin pellets are easily yellowed, there are still many problems such as requiring the addition of a colorant depending on the application. There were no examples of industrial use.

一方、α−メチルスチレンは、ブチルリチウム開始剤を使ってリビングアニオン重合をすることが可能なため、スチレンとα−メチルスチレンの共重合体をリビングアニオン重合によって製造することもできる(例えば、特許文献1参照)。
しかし、これまでに知られているリビングアニオン重合の製造法に基づいて得られる共重合体は、次の様な問題点があったため樹脂製品として充分な利用価値が見出せず、これまでに工業的に全く利用されていなかった。
On the other hand, since α-methylstyrene can be subjected to living anionic polymerization using a butyllithium initiator, a copolymer of styrene and α-methylstyrene can also be produced by living anionic polymerization (for example, patents). Reference 1).
However, the copolymer obtained based on the known production method of living anionic polymerization has the following problems, and thus has not found sufficient utility value as a resin product. It was not used at all.

即ちその問題点とは、次のものである。
1)製造されたポリマーが黄色化する。その黄色度は、Liの含有量と相関がある。従って、目的の分子量と黄色性のバランスをとれない領域があった。特に、黄色化を好まない用途、例えば、食品包装用途、光学製品用途等には利用することが困難であった。
2)ポリマーの溶融時の熱安定性が悪く、溶融滞留時にポリマーが分解しスチレンとα−メチルスチレンが生成する。その生成量は、一般的に広く利用されているラジカル重合法によって製造されたポリスチレンと対比して、同一条件下でより多く分解生成する。この事実は、スチレンとα−メチルスチレンの共重合体が、ポリスチレンに比べて耐熱性が高くなる分成形加工温度を上げた場合にラジカル重合法で得られたポリスチレンよりも更に多くのスチレン、α−メチルスチレンを成形時に発生することを意味する。従って、分解生成したスチレンやα―メチルスチレン等の揮発成分により、成形条件によってはシルバーが発生しやすいこと、また、共重合体の分子量低下が起こり機械物性の低下を招きやすいこと、特に、成形品を再度リサイクル材料として使用しにくいこと等の問題が起こることが容易に予想される。成形加工が極めて限られた範囲でしか利用できないことは、当然、利用される用途に制限があることであり、そのため広く工業的に受け入れられなかったと予想できる。
That is, the problem is as follows.
1) The produced polymer turns yellow. The yellowness is correlated with the Li content. Therefore, there was a region where the target molecular weight and yellowness could not be balanced. In particular, it has been difficult to use in applications where yellowing is not preferred, such as food packaging applications and optical product applications.
2) The thermal stability at the time of melting of the polymer is poor, and the polymer is decomposed at the time of melting and residence to produce styrene and α-methylstyrene. The amount of the product is more decomposed and produced under the same conditions as compared with polystyrene produced by a widely used radical polymerization method. This fact indicates that the copolymer of styrene and α-methylstyrene has more styrene, α than polystyrene obtained by the radical polymerization method when the molding processing temperature is increased by the amount of heat resistance higher than that of polystyrene. -Means that methylstyrene is generated during molding. Therefore, volatile components such as decomposed styrene and α-methylstyrene are likely to generate silver depending on the molding conditions, and the molecular weight of the copolymer is decreased, and mechanical properties are likely to decrease. Problems such as difficulty in using the product again as a recycled material are easily expected. The fact that the molding process can only be used in a very limited range is of course limited in the applications used, and therefore can be expected to have not been widely accepted industrially.

ポリスチレンのもう一つの弱点としては、耐候性が悪く太陽光に曝される用途にはほとんど利用されていないことが挙げられる。耐候性が悪い原因は、高分子量体の構造に起因するところが大きいため、まずは耐候剤、UV吸収剤の添加剤に頼ることなく高分子量体そのものの耐候性を向上したスチレン系共重合体の開発が望まれていた。   Another weakness of polystyrene is that it is poorly weather resistant and is rarely used in applications exposed to sunlight. The cause of poor weather resistance is largely due to the structure of the high molecular weight polymer, so first of all, the development of a styrene copolymer that improved the weather resistance of the high molecular weight polymer itself without relying on weathering agents and UV absorber additives. Was desired.

特公平6−10219号公報Japanese Examined Patent Publication No. 6-10219 Journal of Applied Polymer Science, Vol.41, p383 (1990)Journal of Applied Polymer Science, Vol.41, p383 (1990)

本発明は、従来のスチレン系樹脂の持つ優れた特性、寸法安定性、成形加工性を保持しつつ、SMAA、SMAの弱点であった耐熱性、耐候性を向上させ更に溶融安定性、リサイクル性、成形性、強度、剛性、に優れたスチレン系共重合体を含む樹脂組成物を提供することを目的とする。   The present invention improves the heat resistance and weather resistance, which were the weak points of SMAA and SMA, while maintaining the excellent properties, dimensional stability and molding processability of conventional styrene resins, and further melt stability and recyclability. Another object of the present invention is to provide a resin composition containing a styrenic copolymer excellent in moldability, strength, and rigidity.

本発明者は、前記課題を解決するため鋭意努力を重ねた結果、特定の物性値を有する、イソプロペニル芳香族単量体とビニル芳香族単量体とからなる共重合体とスチレン系重合体を含有する樹脂組成物が本発明の課題を解決しうることを見出し、この知見に基づいて本発明をなすに至った。
すなわち、本発明は次の通りである。
As a result of intensive efforts to solve the above-mentioned problems, the present inventor has obtained a copolymer having a specific physical property value, an isopropenyl aromatic monomer and a vinyl aromatic monomer, and a styrenic polymer. The present inventors have found that a resin composition containing an organic acid can solve the problems of the present invention, and have reached the present invention based on this finding.
That is, the present invention is as follows.

(1)(I)下記式(1)で表されるイソプロペニル芳香族単位と、下記式(2)で表されるビニル芳香族単位とを含有する共重合体であって、イソプロペニル芳香族単位の含有量(A)が5〜70(wt%)であり、共重合体のZ平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が1.4〜3.0であるスチレン系共重合体と、(II)ゲル状のゴム粒子を含む、スチレン系単量体単位を含有する耐衝撃性スチレン系樹脂とからなり、成分(I)と成分(II)の重量比(I/II)がI/II=99/1〜1/99を満足する耐熱スチレン系樹脂組成物。 (1) (I) A copolymer containing an isopropenyl aromatic unit represented by the following formula (1) and a vinyl aromatic unit represented by the following formula (2), the isopropenyl aromatic The unit content (A) is 5 to 70 (wt%), and the ratio (Mz / Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) of the copolymer is 1.4 to 3. A styrene copolymer of 0 and (II) an impact-resistant styrene resin containing a styrene monomer unit containing gel-like rubber particles, and comprising component (I) and component (II) A heat-resistant styrenic resin composition having a weight ratio (I / II) satisfying I / II = 99/1 to 1/99.

Figure 2006306902
Figure 2006306902

Figure 2006306902
Figure 2006306902

(2)前記成分(I)のスチレン系共重合体がリビング重合法によって得られたものであることを特徴とする上記(1)の耐熱スチレン系樹脂組成物。
(3)
前記成分(I)のスチレン系共重合体中のイソプロペニル芳香族単位の含有量(A)が5〜95重量%であり、スチレン系共重合体の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.6〜4.0の範囲にあり、且つスチレン系共重合体中のイソプロペニル芳香族単位の含有量(重量%)(A)とスチレン系共重合体中のガラス転移温度(℃)(Tg)とが下記の式(a)の関係を満足することを特徴とする上記(1)、(2)の耐熱スチレン系樹脂組成物。
式(a);
[5≦A≦20の場合]
0.12A+102≦Tg≦0.62A+102
[20<A≦60の場合]
−5.25×10−5+1.09×10−2+1.72×10−1A+97≦Tg≦−5.25×10−5+1.09×10−2+1.72×10−1A+107
[60<A≦95の場合]
1.04A+73≦Tg≦0.79A+98
(2) The heat-resistant styrene resin composition according to (1) above, wherein the styrene copolymer of the component (I) is obtained by a living polymerization method.
(3)
The content (A) of the isopropenyl aromatic unit in the styrene copolymer of the component (I) is 5 to 95% by weight, and the weight average molecular weight (Mw) and number average molecular weight of the styrene copolymer ( Mn) ratio (Mw / Mn) is in the range of 1.6 to 4.0, and the content (% by weight) of isopropenyl aromatic unit in the styrene copolymer (A) and the styrene copolymer The heat-resistant styrene-based resin composition according to the above (1) or (2), wherein the glass transition temperature (° C.) (Tg) in the coalescence satisfies the relationship of the following formula (a).
Formula (a);
[When 5 ≦ A ≦ 20]
0.12A + 102 ≦ Tg ≦ 0.62A + 102
[When 20 <A ≦ 60]
−5.25 × 10 −5 A 3 + 1.09 × 10 −2 A 2 + 1.72 × 10 −1 A + 97 ≦ Tg ≦ −5.25 × 10 −5 A 3 + 1.09 × 10 −2 A 2 +1 .72 × 10 −1 A + 107
[In the case of 60 <A ≦ 95]
1.04A + 73 ≦ Tg ≦ 0.79A + 98

(4)前記スチレン系重合体が、下記式(3)で表されるイソプロペニル芳香族単量体と下記式(4)で表されるビニル芳香族単量体とを含む原料溶液を連続的に重合反応器内に供給して得られる共重合体であることを特徴とする上記(1)〜(3)の耐熱スチレン系樹脂組成物。 (4) The raw material solution in which the styrenic polymer contains an isopropenyl aromatic monomer represented by the following formula (3) and a vinyl aromatic monomer represented by the following formula (4) is continuously added. A heat-resistant styrenic resin composition as described in any one of (1) to (3) above, which is a copolymer obtained by supplying the polymer into a polymerization reactor.

Figure 2006306902
Figure 2006306902

Figure 2006306902
Figure 2006306902

(5)上記(1)〜(4)の耐熱スチレン系樹脂組成物から得られる耐熱発泡シート。
(6)上記(1)〜(4)の耐熱スチレン系樹脂組成物から得られる耐熱延伸シート。
(7)上記(1)〜(4)の耐熱スチレン系樹脂組成物から得られる耐熱容器。
(5) A heat-resistant foamed sheet obtained from the heat-resistant styrene-based resin composition of (1) to (4) above.
(6) A heat-resistant stretched sheet obtained from the heat-resistant styrene-based resin composition of (1) to (4) above.
(7) A heat-resistant container obtained from the heat-resistant styrene-based resin composition of (1) to (4) above.

本発明の耐熱スチレン系樹脂組成物は、従来のポリスチレンの持つ優れた特性である寸法安定性、成形加工性を保持しつつ、ポリスチレンの弱点であった耐熱性、耐候性に優れ、特に溶融安定性、リサイクル性、強度、剛性、にも優れた特性を有する。   The heat-resistant styrene-based resin composition of the present invention is excellent in heat resistance and weather resistance, which are weak points of polystyrene, while maintaining the dimensional stability and molding processability, which are excellent properties of conventional polystyrene, and particularly melt stable. It has excellent properties in terms of properties, recyclability, strength and rigidity.

以下、本発明に関わるスチレン系樹脂組成物について詳細に説明する。
まず、本発明の耐熱スチレン系樹脂組成物を構成する成分(I)のスチレン系共重合体について述べる。
本発明におけるスチレン系共重合体は、前記式(1)で表されるイソプロペニル芳香族単位と前記式(2)で表されるビニル芳香族単位とをする。
本発明でいうイソプロペニル芳香族単位とビニル芳香族単位とを含有する共重合体とは、前記式(3)で表されるイソプロペニル芳香族単量体と、前記式(4)で表されるビニル芳香族単量体とを原料として重合して得られる共重合体である。芳香環に置換基として結合している炭化水素化合物とは、C2n+1−で示される飽和型炭化水素化合物のことを指す。
Hereinafter, the styrene resin composition according to the present invention will be described in detail.
First, the styrene copolymer of component (I) constituting the heat-resistant styrene resin composition of the present invention will be described.
The styrene copolymer in the present invention comprises an isopropenyl aromatic unit represented by the formula (1) and a vinyl aromatic unit represented by the formula (2).
The copolymer containing an isopropenyl aromatic unit and a vinyl aromatic unit in the present invention is represented by the isopropenyl aromatic monomer represented by the above formula (3) and the above formula (4). A copolymer obtained by polymerizing a vinyl aromatic monomer as a raw material. The hydrocarbon compounds bonded as substituents to the aromatic ring, C n H 2n + 1 - refers to a saturated hydrocarbon compound represented by.

具体的に化合物の例を挙げると、イソプロペニル芳香族単量体とは、例えば、イソプロペニルベンゼン(α―メチルスチレン)、イソプロペニルトルエン、イソプロペニルエチルベンゼン、イソプロペニルプロピルベンゼン、イソプロペニルブチルベンゼン、イソプロペニルペンチルベンゼン、イソプロペニルヘキシルベンゼン、イソプロペニルオクチルベンゼン等のアルキル置換イソプロペニルベンゼン類がある。好ましい単量体は、イソプロペニルベンゼンである。   Specific examples of the compound include isopropenyl aromatic monomer such as isopropenylbenzene (α-methylstyrene), isopropenyltoluene, isopropenylethylbenzene, isopropenylpropylbenzene, isopropenylbutylbenzene, There are alkyl-substituted isopropenylbenzenes such as isopropenylpentylbenzene, isopropenylhexylbenzene, and isopropenyloctylbenzene. A preferred monomer is isopropenylbenzene.

ビニル芳香族単量体とは、例えば、スチレン、p−メチルスチレン、m−メチルスチレン、o−メチルスチレン、2,4−ジメチルスチレン、2,5−ジメチルスチレン、3,4−ジメチルスチレン、3,5−ジメチルスチレン、p−エチルスチレン、m−エチルスチレン、o−エチルスチレン等のアルキル置換スチレン類、1,1−ジフェニルエチレン等が挙げられる。好ましい単量体は、スチレンである。これらのイソプロペニル芳香族単量体とビニル芳香族単量体は、各1種類ずつ用いても良いし2種以上を混合して用いても良い。最も好ましい組み合わせは、イソプロペニルベンゼンとスチレンの組み合わせである。   Examples of the vinyl aromatic monomer include styrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,4-dimethylstyrene, 3 Alkyl substituted styrenes such as 1,5-dimethylstyrene, p-ethylstyrene, m-ethylstyrene, o-ethylstyrene, 1,1-diphenylethylene, and the like. A preferred monomer is styrene. These isopropenyl aromatic monomers and vinyl aromatic monomers may be used singly or in combination of two or more. The most preferred combination is a combination of isopropenylbenzene and styrene.

スチレン系共重合体中に含有するイソプロペニル芳香族単位の含有量は、5〜70wt%である。好ましくは、7〜68wt%、更に好ましくは10〜65wt%である。イソプロペニル芳香族単位が5wt%より少ないと実使用上耐熱性向上の効果がほとんど見られない。逆に、70wt%より多いと溶融成形加工時に熱分解を起こしやすくなり、成形時にガスが多く発生したり、黄色化が起こりやすくなったりする。また、樹脂中には分解に伴う単量体成分量が多くなり、成形品表面上へのブリードアウトなどを引き起こしやすくなる。   The content of isopropenyl aromatic units contained in the styrenic copolymer is 5 to 70 wt%. Preferably, it is 7-68 wt%, More preferably, it is 10-65 wt%. When the amount of the isopropenyl aromatic unit is less than 5 wt%, the effect of improving the heat resistance is hardly seen in actual use. On the other hand, if it is more than 70 wt%, thermal decomposition is likely to occur during melt molding, and a large amount of gas is generated during molding or yellowing is likely to occur. In addition, the amount of monomer components accompanying the decomposition increases in the resin, which tends to cause bleeding out on the surface of the molded product.

上記の単量体以外に本発明の目的を損なわない範囲において他の重合可能な単量体を一緒に用いることができる。共重合可能な単量体類としては、ブタジエン、イソプレン等の共役ジエン系単量体、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート等のメタクリル酸アルキルエステル類、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート等のアクリル酸エステル類などが挙げられる。これらの単量体は、樹脂の衝撃強度、伸び、耐薬品性などを改良あるいは調整する場合に有用である。   In addition to the above monomers, other polymerizable monomers can be used together as long as the object of the present invention is not impaired. Copolymerizable monomers include conjugated diene monomers such as butadiene and isoprene, methacrylic acid alkyl esters such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate, methyl acrylate, ethyl acrylate, and propyl acrylate. And acrylic acid esters such as butyl acrylate. These monomers are useful for improving or adjusting the impact strength, elongation, chemical resistance, etc. of the resin.

本発明におけるスチレン系共重合体は、好ましくはリビング重合法により製造することができる。リビング重合法には、リビングアニオン重合、リビングラジカル重合、リビングカチオン重合があり特に限定されず、いずれの方法においても製造することができる。この中でも特にリビングアニオン重合法が好ましい。   The styrenic copolymer in the present invention can be preferably produced by a living polymerization method. The living polymerization method includes living anion polymerization, living radical polymerization, and living cationic polymerization, and is not particularly limited, and can be produced by any method. Of these, the living anionic polymerization method is particularly preferable.

リビングアニオン重合法としては、公知の方法を用いることができる。例えば、開始剤として有機リチウム化合物が用いられ、具体的には、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム、エチルリチウム、ベンジルリチウム、1,6−ジリチオヘキサン、スチリルリチウム、ブタジエニリルリチウム等が用いられる。この中で好ましくはn−ブチルリチウム、sec−ブチルリチウムが挙げられる。   A known method can be used as the living anion polymerization method. For example, an organic lithium compound is used as an initiator, and specifically, n-butyl lithium, sec-butyl lithium, t-butyl lithium, ethyl lithium, benzyl lithium, 1,6-dilithiohexane, styryl lithium, butane Dienylyllithium or the like is used. Of these, n-butyllithium and sec-butyllithium are preferable.

重合溶媒としては、ヘテロ原子を含有しない炭化水素系化合物がよい。具体的には、n−ヘキサン、シクロヘキサン、ヘプタン等の脂肪族炭化水素化合物、ベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素化合物が挙げられる。これらの炭化水素化合物は、1種類又は2種類以上用いてもよい。特に、好ましい化合物はシクロヘキサンである。   The polymerization solvent is preferably a hydrocarbon compound that does not contain a heteroatom. Specific examples include aliphatic hydrocarbon compounds such as n-hexane, cyclohexane and heptane, and aromatic hydrocarbon compounds such as benzene, toluene, ethylbenzene and xylene. These hydrocarbon compounds may be used alone or in combination of two or more. A particularly preferred compound is cyclohexane.

重合温度は、40℃〜110℃の範囲が好ましい。より好ましくは、50℃〜100℃の範囲、更に好ましくは55℃〜95℃の範囲である。重合温度が40℃より低いと反応速度が低下し工業的生産の実用性がない。また、重合温度が110℃より高いと、共重合体の黄色化が激しくなり、耐候性の低下、更には溶融時の共重合体の熱安定性も低下する。   The polymerization temperature is preferably in the range of 40 ° C to 110 ° C. More preferably, it is the range of 50 to 100 degreeC, More preferably, it is the range of 55 to 95 degreeC. When the polymerization temperature is lower than 40 ° C., the reaction rate decreases and there is no practical utility for industrial production. On the other hand, when the polymerization temperature is higher than 110 ° C., the yellowing of the copolymer becomes severe, the weather resistance is lowered, and the thermal stability of the copolymer at the time of melting is also lowered.

本発明におけるスチレン系共重合体は、例えば、完全混合型の重合反応器を使って連続リビング重合法によって製造することができる。または、完全混合型の重合反応器と非完全混合型の重合反応器との組み合わせでもよい。特に、ランダム共重合体を得るためには、完全混合型の重合反応器が好ましい。完全混合型の重合とは、リビング重合の反応系内に存在するイソプロペニル芳香族単量体、ビニル芳香族単量体、リビング共重合体の濃度が常に一定となる様な連続式の完全混合型反応器を使って重合する方法等をいう。   The styrenic copolymer in the present invention can be produced, for example, by a continuous living polymerization method using a completely mixed polymerization reactor. Alternatively, a combination of a completely mixed polymerization reactor and a non-completely mixed polymerization reactor may be used. In particular, in order to obtain a random copolymer, a complete mixing type polymerization reactor is preferable. Complete mixing type polymerization is continuous complete mixing in which the concentration of isopropenyl aromatic monomer, vinyl aromatic monomer, and living copolymer in the living polymerization reaction system is always constant. This refers to a method of polymerization using a type reactor.

原料溶液中の単量体濃度を上げて生産性を高めたい場合は、重合反応の除熱を効率的に行うために重合反応器にコンデンサーを付けて、溶媒の蒸発潜熱で重合熱を除熱することが望ましい。特に、重合溶媒に主としてシクロヘキサン(n−ヘキサンが混入していても構わない)を用いると、沸点が82℃なので重合温度を80℃から90℃付近で制御しやすい。   If you want to increase productivity by increasing the monomer concentration in the raw material solution, attach a condenser to the polymerization reactor to efficiently remove the heat of the polymerization reaction, and remove the heat of polymerization by the latent heat of evaporation of the solvent. It is desirable to do. In particular, when cyclohexane (n-hexane may be mixed) is mainly used as a polymerization solvent, since the boiling point is 82 ° C., the polymerization temperature can be easily controlled in the vicinity of 80 ° C. to 90 ° C.

非完全混合型のチューブ型重合反応器を用いる場合は、例えば、反応器の長さ(L)と内径(D)の比L/Dが1以上の場合、又は攪拌効率が悪い場合等、重合反応器内で完全混合状態をとりにくい場合は、反応器の途中からビニル芳香族単量体の溶液を添加することによって本発明のスチレン系共重合体を製造することができる。   When using a non-completely mixed tube polymerization reactor, for example, when the ratio L / D of the reactor length (L) to the inner diameter (D) is 1 or more, or when the stirring efficiency is poor, etc. When it is difficult to take a completely mixed state in the reactor, the styrene copolymer of the present invention can be produced by adding a solution of the vinyl aromatic monomer from the middle of the reactor.

または、非完全混合型重合器を2基以上直列に連結し、1基目の重合後2基目の重合反応器にビニル芳香族単量体の溶液を添加することによって本発明の共重合体を得ることもできる。   Alternatively, the copolymer of the present invention may be prepared by connecting two or more incompletely mixed polymerizers in series and adding a solution of a vinyl aromatic monomer to the second polymerization reactor after the first polymerization. You can also get

更に、1基目の重合反応器でビニル芳香族単量体のみを重合し、続いて2基目の重合反応器内でイソプロペニル芳香族単量体とビニル芳香族単量体の共重合を行って、ビニル芳香族単位の単独重合体と共重合体とのブロック共重合体を得ることも可能である。   Furthermore, only the vinyl aromatic monomer is polymerized in the first polymerization reactor, and then the copolymerization of the isopropenyl aromatic monomer and the vinyl aromatic monomer is performed in the second polymerization reactor. It is possible to obtain a block copolymer of a homopolymer and a copolymer of vinyl aromatic units.

スチレン系共重合体のZ平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)は、1.4〜3.0の範囲にあることが必要である。好ましくは、1.42〜2.9、更に好ましくは1.45〜2.8の範囲である。Mz/Mw値が1.4より小さいと樹脂の流動性と機械強度のバランスが悪く、2軸延伸時の延伸倍率のアップが困難となる等の問題が起こる。また、3.0より大きくなると流動性と熱分解性のバランスが悪くなり、大型成形品、薄肉成形品などを成形することが困難となる。   The ratio (Mz / Mw) of the Z-average molecular weight (Mz) to the weight-average molecular weight (Mw) of the styrene copolymer needs to be in the range of 1.4 to 3.0. The range is preferably 1.42 to 2.9, more preferably 1.45 to 2.8. If the Mz / Mw value is less than 1.4, the balance between resin fluidity and mechanical strength is poor, and problems such as difficulty in increasing the draw ratio during biaxial stretching occur. On the other hand, if it exceeds 3.0, the balance between fluidity and thermal decomposability is deteriorated, and it becomes difficult to mold large molded products, thin molded products, and the like.

Mz/Mw値の制御方法としては、例えば、重合時間分布を有する反応器内で重合し、分子量分布を広げる方法、または、分子量の異なる2種以上の共重合体を溶融又は溶液ブレンドして多分散化する方法などがある。
Z平均分子量(Mz)と重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレン換算によって求めることができる。
The Mz / Mw value can be controlled by, for example, polymerizing in a reactor having a polymerization time distribution to broaden the molecular weight distribution, or by melting or solution blending two or more copolymers having different molecular weights. There is a method of decentralization.
The Z average molecular weight (Mz) and the weight average molecular weight (Mw) can be determined by gel conversion using gel permeation chromatography (GPC).

本発明のスチレン系共重合体は、イソプロペニル芳香族単位の含有量(以下、スチレン共重合体の重量に対する重量%を意味する。)の範囲によって、下記式(a’)の関係を満足することが必要である。
ここで、C=0.12,D=0.62,E=0.97,F=107,G=1.04,H=73,I=0.79,J=98であることが必要であり、この場合式(a’)は上記式(a)と一致する。
The styrene copolymer of the present invention satisfies the relationship of the following formula (a ′) depending on the range of the content of isopropenyl aromatic units (hereinafter referred to as “% by weight relative to the weight of the styrene copolymer”). It is necessary.
Here, it is necessary that C = 0.12, D = 0.62, E = 0.97, F = 107, G = 1.04, H = 73, I = 0.79, and J = 98. In this case, the formula (a ′) coincides with the above formula (a).

式(a’);
[5≦A≦20の場合]
C×A+102≦Tg≦D×A+102
[20<A≦60の場合]
−5.25×10−5+1.09×10−2+1.72×10−1A+E≦Tg≦−5.25×10−5+1.09×10−2+1.72×10−1A+F
[60<A≦95の場合]
G×A+H≦Tg≦I×A+J
A:スチレン系共重合体中のイソプロペニル芳香族単位の含有量(重量%)
B:スチレン系共重合体のガラス転移温度(℃)
Formula (a ′);
[When 5 ≦ A ≦ 20]
C × A + 102 ≦ Tg ≦ D × A + 102
[When 20 <A ≦ 60]
−5.25 × 10 −5 A 3 + 1.09 × 10 −2 A 2 + 1.72 × 10 −1 A + E ≦ Tg ≦ −5.25 × 10 −5 A 3 + 1.09 × 10 −2 A 2 +1 .72 × 10 −1 A + F
[In the case of 60 <A ≦ 95]
G × A + H ≦ Tg ≦ I × A + J
A: Content (% by weight) of isopropenyl aromatic units in the styrene copolymer
B: Glass transition temperature of styrene copolymer (° C)

式(a’)において、好ましくは、C=0.15、D=0.58、E=98、F=106、G=1.03、H=74、I=0.80、J=97、更に好ましくは、C=0.20、D=0.52、E=99、F=105、G=1.02、H=75、I=0.81、J=96である。イソプロペニル単位の含有量が、式(a’)を満足する範囲の上限値より大きい値であると溶融時の熱安定性が悪くなる、黄色化しやすい、耐熱性と耐候性のバランスが悪くなるなどの問題が生じる。また下限値より小さい値だと耐熱性が十分でなくなる。   In the formula (a ′), preferably C = 0.15, D = 0.58, E = 98, F = 106, G = 1.03, H = 74, I = 0.80, J = 97, More preferably, C = 0.20, D = 0.52, E = 99, F = 105, G = 1.02, H = 75, I = 0.81, and J = 96. When the content of the isopropenyl unit is larger than the upper limit of the range satisfying the formula (a ′), the thermal stability at the time of melting deteriorates, yellowing tends to occur, and the balance between heat resistance and weather resistance deteriorates. Problems arise. On the other hand, if the value is smaller than the lower limit, the heat resistance is not sufficient.

本発明におけるガラス転移温度は、DSCによって求めることができ、JIS−K7121に示されている方法で求めた温度をガラス転移温度とする。
本発明におけるスチレン系共重合体を利用する用途において、特に黄色化を抑えることが必要な場合、又は樹脂を溶融成形する際に分解発生する単量体の量を極力抑えたい場合などは、更に、下記式(b)のD=0.52を満足するスチレン系共重合体であることが必要である。
式(b)
A≦0.0002X2−0.0017X+D
X:イソプロペニル芳香族単位の含有量(wt%)
A:305nmにおけるスチレン系共重合体成形品の吸光度
The glass transition temperature in this invention can be calculated | required by DSC, and let the temperature calculated | required by the method shown by JIS-K7121 be a glass transition temperature.
In the application using the styrene copolymer in the present invention, particularly when it is necessary to suppress yellowing, or when it is desired to suppress the amount of the monomer that decomposes when the resin is melt-molded, It is necessary that the styrene copolymer satisfies D = 0.52 in the following formula (b).
Formula (b)
A ≦ 0.0002X 2 −0.0017X + D
X: Content of isopropenyl aromatic unit (wt%)
A: Absorbance of styrene copolymer molded product at 305 nm

好ましくは、D=0.51、更に好ましくはD=0.50である。D=0.52より大きくなるとペレット又は成形品の黄色化が目視ではっきり確認できるレベルとなる。また、溶融時に高分子量体から分解生成する単量体の発生速度が極めて速くなり、成形体中に残存する単量体量が増大する。特に、食品包装分野において利用される2軸延伸シート(OPS)や発泡シート(PSP)の製造時は、シートを巻き取り回収するため樹脂の黄色化は顕著に目立ち品質上の問題を起こす場合がある。従って、この様な用途のユーザーは樹脂の黄色化に対しては特に敏感であり重要な要求性能の一つとしている。   Preferably, D = 0.51, more preferably D = 0.50. When it becomes larger than D = 0.52, it becomes a level at which the yellowing of the pellet or the molded product can be clearly confirmed visually. In addition, the generation rate of the monomer decomposed from the high molecular weight body at the time of melting becomes extremely fast, and the amount of monomer remaining in the molded body increases. In particular, during the production of biaxially stretched sheets (OPS) and foamed sheets (PSP) used in the food packaging field, the yellowing of the resin is noticeable and may cause quality problems because the sheet is wound up and collected. is there. Therefore, the user of such an application is particularly sensitive to yellowing of the resin and is regarded as one of important performance requirements.

本発明の樹脂組成物を樹脂成形品として利用する場合は、更に下記式(c)のF、G、H、Jの値が、F=−1.92、G=2.95、H=98.2、J=6.37を満足する重量平均分子量(Mw)を有するスチレン系共重合体を用いることが好ましい。
式(c)
F×10−2+G×10−1A+H≦Mw×10−3≦exp(J−2.77×10−2A)
A:スチレン共重合体中のイソプロペニル芳香族単位の含有量(wt%)
Mw:共重合体の重量平均分子量
When the resin composition of the present invention is used as a resin molded product, the values of F, G, H, and J in the following formula (c) are F = -1.92, G = 2.95, and H = 98. It is preferable to use a styrene copolymer having a weight average molecular weight (Mw) satisfying .2 and J = 6.37.
Formula (c)
F × 10 −2 A 2 + G × 10 −1 A + H ≦ Mw × 10 −3 ≦ exp (J-2.77 × 10 −2 A)
A: Content of isopropenyl aromatic unit in styrene copolymer (wt%)
Mw: weight average molecular weight of the copolymer

好ましくは、F=−2.29、G=2.77、H=112及び/又はJ=6.23、更に好ましくは、F=−2.75、G=2.20、H=131及び/又はJ=6.13である。重量平均分子量が上記式(c’)のF=−1.92、G=2.95、H=98.2を満たす値より小さい場合は、機械強度が低くなり樹脂成形体として充分な性能を発現せず、その結果、例えば成形加工によって成形体を得る場合の金型からの型離れ時に折れ割れの問題を引き起こしやすくなる。また、上記式(c’)のJ=6.37を満足する重量平均分子量より大きいと流動性が非常に悪くなり大型成形品を射出成形できなくなる。   Preferably F = 2.29, G = 2.77, H = 112 and / or J = 6.23, more preferably F = -2.75, G = 2.20, H = 131 and / or. Or, J = 6.13. When the weight average molecular weight is smaller than the values satisfying F = −1.92, G = 2.95, and H = 98.2 in the above formula (c ′), the mechanical strength becomes low and the resin molded body has sufficient performance. As a result, for example, when a molded body is obtained by molding, a problem of cracking tends to occur when the mold is separated from the mold. On the other hand, if it is larger than the weight average molecular weight satisfying J = 6.37 of the above formula (c ′), the fluidity becomes very bad and a large molded product cannot be injection molded.

本発明におけるスチレン系共重合体のイソプロペニル芳香族単位とビニル芳香族単位の結合様式は、特に制限はされないが、最も好ましい結合様式はランダム結合からなる共重合体である。一般にイソプロペニル芳香族単位の連鎖が多く存在すると熱分解しやすくなる傾向にある。従って、用途によってはイソプロペニル芳香族単位の連鎖は2乃至4連鎖以下に制御することが好ましい。
ビニル芳香族単位は、連鎖になっていても特に熱安定性を損なう恐れがないので、長鎖の連鎖構造をとっても構わない。
The bonding mode of the isopropenyl aromatic unit and the vinyl aromatic unit of the styrene copolymer in the present invention is not particularly limited, but the most preferable bonding mode is a copolymer composed of random bonds. Generally, when there are many chains of isopropenyl aromatic units, thermal decomposition tends to occur. Therefore, depending on the application, it is preferable to control the chain of isopropenyl aromatic units to 2 to 4 chains or less.
Even if the vinyl aromatic unit is a chain, there is no fear of particularly impairing the thermal stability. Therefore, the vinyl aromatic unit may have a long chain structure.

本発明者は、ビニル芳香族単位の長鎖の連鎖が、共重合体の分子鎖の末端に存在するAB型、又はABA型のブロック共重合体(Aは、主としてビニル芳香族単位成分より成る単独重合体成分。Bは、イソプロペニル芳香族単位とビニル芳香族単位を含有するランダム共重合体成分)が、耐熱性、熱安定性、機械物性、流動性を含むその他の性能がランダム共重合体と同等であり、なお且つ、ブロックの一成分であるビニル芳香族単位と同じ構造からなる単独重合体と相溶性が極めて良好であるという特性を見出した。この特性を活かして本発明のスチレン系共重合体をリサイクル材として再利用したい場合、例えばポリスチレンと溶融混練して再利用したい場合は、共重合体の高分子鎖末端にポリスチレン鎖をブロックした共重合体を利用することができる。   The present inventor has proposed that an AB-type or ABA-type block copolymer in which a long chain of vinyl aromatic units is present at the end of the copolymer molecular chain (A is mainly composed of a vinyl aromatic unit component). Homopolymer component B is a random copolymer component containing isopropenyl aromatic units and vinyl aromatic units), but other properties including heat resistance, thermal stability, mechanical properties and fluidity are random The inventors have found that the homopolymer is very good in compatibility with the homopolymer having the same structure as the vinyl aromatic unit, which is one component of the block, which is equivalent to the coalescence. Taking advantage of this characteristic, when it is desired to reuse the styrene copolymer of the present invention as a recycled material, for example, when it is desired to reuse it by melting and kneading with polystyrene, a copolymer having a polystyrene chain blocked at the polymer chain end of the copolymer is used. Polymers can be used.

ビニル芳香族単位のブロック連鎖長は、特に制限はなく、好ましくは、ブロック連鎖部分の数平均分子量が1000から30万の範囲にあればよい。また、ビニル芳香族単位より成るブロック成分のMw/Mnは、1.0から3.5の範囲にあることが好ましい。   The block chain length of the vinyl aromatic unit is not particularly limited, and preferably, the number average molecular weight of the block chain portion may be in the range of 1000 to 300,000. Moreover, it is preferable that Mw / Mn of the block component which consists of a vinyl aromatic unit exists in the range of 1.0-3.5.

ビニル芳香族単位をブロック成分にもつ共重合体のZ平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)は、1.4〜3.0の範囲にあることが必要である。好ましくは、1.42〜2.9、更に好ましくは1.45〜2.8の範囲である。Mz/Mw値が1.4より小さいと樹脂の流動性と機械物性のバランスが悪くなり、樹脂成形体として充分な性能を出すことが難しくなる。また、3.0より大きくなると流動性が悪くなり大型成形品、薄肉成形品などを成形することが困難となる。   The ratio (Mz / Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) of the copolymer having vinyl aromatic units as a block component must be in the range of 1.4 to 3.0. is there. The range is preferably 1.42 to 2.9, more preferably 1.45 to 2.8. When the Mz / Mw value is less than 1.4, the balance between the resin fluidity and the mechanical properties is deteriorated, and it becomes difficult to obtain sufficient performance as a resin molded body. On the other hand, when it exceeds 3.0, the fluidity is deteriorated and it becomes difficult to mold a large molded product, a thin molded product or the like.

ビニル芳香族単位をブロック成分とする共重合体の製造方法は、例えば、バッチ型反応器、連続のチューブ型反応器、連続のスタティックミキサー型反応器、連続の攪拌羽根付きの槽型反応器、連続のコイル型反応器等でビニル芳香族単位からなる単独重合体を製造し、引き続き連続の完全混合型反応器内にイソプロペニル芳香族単量体とビニル芳香族単量体及びリビングのビニル芳香族単位からなる単独重合体をフィードして共重合することにより、AB型のブロック共重合体を得ることができる。ABA型のブロック共重合体を得る場合には、AB型のブロック共重合体を製造した後に、別の反応器内でビニル芳香族単位をリビング重合することにより製造することができる。又は、AB型のリビング共重合体を製造した後に、別の反応器内でリビング成長種と反応する2官能性化合物を添加する等してABA型ブロック共重合体を得ることができる。   Examples of the method for producing a copolymer having a vinyl aromatic unit as a block component include a batch reactor, a continuous tube reactor, a continuous static mixer reactor, a tank reactor with continuous stirring blades, A homopolymer consisting of vinyl aromatic units is produced in a continuous coil reactor, etc., and then isopropenyl aromatic monomer and vinyl aromatic monomer and living vinyl aroma are placed in a continuous fully mixed reactor. An AB type block copolymer can be obtained by feeding and copolymerizing a homopolymer comprising a group unit. When an ABA type block copolymer is obtained, it can be produced by producing an AB type block copolymer and then living polymerizing vinyl aromatic units in a separate reactor. Or after manufacturing an AB type | mold living copolymer, an ABA type | mold block copolymer can be obtained by adding the bifunctional compound which reacts with a living growth seed | species in another reactor.

本発明者は、更に鋭意研究を重ねた結果、連続のリビング重合法によって得られる前記式(1)で表されるイソプロペニル芳香族単位と前記式(2)で表されるビニル芳香族単位とを含有する共重合体であり、原料中の前記式(3)で表されるイソプロペニル芳香族単量体と前記式(4)で表されるビニル芳香族単量体の組成比率を連続的又は断続的に変化させて重合反応器内に供給して得られる共重合体中の構成組成比が少なくとも2種以上の異なる共重合体からなるスチレン系共重合体が、耐熱性、熱安定性、機械物性、流動性を含むその他の性能がランダム共重合体と同等であり、なお且つ、ビニル芳香族単位を主成分とする重合体と相溶性が極めて良好であるという特性を見出した。   As a result of further earnest studies, the inventor has obtained an isopropenyl aromatic unit represented by the above formula (1) and a vinyl aromatic unit represented by the above formula (2) obtained by a continuous living polymerization method. The composition ratio of the isopropenyl aromatic monomer represented by the formula (3) and the vinyl aromatic monomer represented by the formula (4) in the raw material is continuously determined. Alternatively, a styrene-based copolymer composed of at least two different types of copolymers in the copolymer obtained by intermittently changing the copolymer and supplying it to the polymerization reactor has heat resistance and thermal stability. In addition, the inventors have found that the other properties including mechanical properties and fluidity are equivalent to those of the random copolymer, and that the compatibility with the polymer having a vinyl aromatic unit as a main component is extremely good.

これは、該共重合体の成形品をリサイクルで使用する場合、ビニル芳香族単位を主成分とする重合体、例えばポリスチレンへもリサイクル材としてブレンドして再利用が可能であることを示唆している。ここで言う異なる共重合体とは、ガラス転移温度が少なくとも3℃以上異なる共重合体を指す。   This suggests that when the molded article of the copolymer is recycled, it can be reused by blending it with a polymer containing vinyl aromatic units as a main component, such as polystyrene, as a recycled material. Yes. The term “different copolymer” as used herein refers to a copolymer having a glass transition temperature different by at least 3 ° C. or more.

単量体中のイソプロペニル芳香族単量体とビニル芳香族単量体の組成比率を連続的又は断続的に変化させて重合反応器内に供給するということは、即ち重合反応系へ導入される各単量体の濃度が連続的に又は断続的に変化することであり、その結果、得られる共重合体の各芳香族単位の組成比が連続的に変化し、少なくとも2種以上の異なる構成組成比からなる共重合体が順次得られる。   The composition ratio of the isopropenyl aromatic monomer and the vinyl aromatic monomer in the monomer is continuously or intermittently changed and supplied into the polymerization reactor, that is, introduced into the polymerization reaction system. As a result, the composition ratio of each aromatic unit of the resulting copolymer continuously changes, and at least two or more different types are obtained. A copolymer having a constituent composition ratio is obtained in sequence.

2種以上の異なる構成組成比を有する共重合体は、バッチ型の槽内で溶液状態で混合し、その後真空下に加熱したタンク内にフラッシングさせて溶媒を除去しても良いし、または、押出機やニーダ−を使って溶媒を除去してペレット状態で回収することができる。または、バッチ型の槽内に溜めずにそのままペレット状態で回収し、バッチ型または連続型の混合容器でペレットを混合し、均一化することも可能である。または、混合容器でペレットを均一状態にした後に更に押出機を使って溶融混合することも可能である。   Copolymers having two or more different compositional ratios may be mixed in a solution state in a batch-type tank and then flushed into a tank heated under vacuum to remove the solvent, or The solvent can be removed using an extruder or a kneader and recovered in a pellet state. Alternatively, it is possible to collect the pellets as they are without collecting them in a batch type tank, and to mix and homogenize the pellets in a batch type or continuous type mixing container. Alternatively, the pellets can be made uniform in a mixing container and then melt mixed using an extruder.

具体的な製造例を挙げると、イソプロペニル芳香族単量体(M1)とビニル芳香族単量体(M2)の成分組成比がM1/M2=50/50(wt%)の原料を反応器内にフィードし重合させた後、異なる組成比、例えばM1/M2=40/60(wt%)の原料に切り替えて引き続き反応器に導入し重合を行う。この場合を断続的に原料組成を変化させたという。この様にして重合するとM1/M2=50/50(wt%)で重合して得られる共重合体の組成からM1/M2=40/60(wt%)で得られる共重合体の組成まで連続的に変化した組成を有する共重合体が順次得られてくる。得られた共重合体をバッチ型の槽内で溶液混合又はペレット状態で攪拌混合しその後溶融混練してある一定の組成の共重合体を得る。   As a specific production example, a reactor in which the component composition ratio of the isopropenyl aromatic monomer (M1) and the vinyl aromatic monomer (M2) is M1 / M2 = 50/50 (wt%) is used as a reactor. After being fed and polymerized, it is switched to a raw material having a different composition ratio, for example, M1 / M2 = 40/60 (wt%), and then introduced into the reactor for polymerization. In this case, the raw material composition was changed intermittently. When polymerized in this way, continuous from the composition of the copolymer obtained by polymerization at M1 / M2 = 50/50 (wt%) to the composition of the copolymer obtained at M1 / M2 = 40/60 (wt%). Copolymers having different composition are obtained in sequence. The obtained copolymer is stirred and mixed in a batch type tank in a solution mixture or in a pellet state, and then melt-kneaded to obtain a copolymer having a certain composition.

この様な方法によって得られた共重合体は、イソプロペニル芳香族単位成分とビニル芳香族単位成分の組成比が異なる共重合体の組成物であると考えることができる。これによって得られた共重合体は、ビニル芳香族単量体の単独重合体と極めて相溶性がよく、機械物性の低下を招くことなく且つ透明性を保持できるためリサイクル材として極めて利用価値の高い共重合体であることが分かった。   The copolymer obtained by such a method can be considered to be a copolymer composition in which the composition ratio of the isopropenyl aromatic unit component and the vinyl aromatic unit component is different. The copolymer thus obtained is extremely compatible with a homopolymer of vinyl aromatic monomer, and is highly useful as a recycled material because it can maintain transparency without deteriorating mechanical properties. It was found to be a copolymer.

本発明の共重合体の製造方法の代表例であるリビングアニオン重合法では、重合反応の完結はビニル芳香族単量体の反応率が99%以上達した場合に行うことが好ましく、イソプロペニル芳香族単量体が反応系に残っていてもよい。重合反応の停止は、停止剤として水、アルコール、フェノール、カルボン酸等の酸素−水素結合を有する化合物の添加、エポキシ化合物、エステル化合物、ケトン化合物、カルボン酸無水物、炭素−ハロゲン結合を有する化合物等も同様な効果を期待できる。これらの添加物の使用量は成長種の当量から10倍当量程度が好ましい。余りに多いとコスト的に不利なだけでなく、残存する添加物の混入が障害になる場合も多い。   In the living anion polymerization method, which is a representative example of the method for producing the copolymer of the present invention, the completion of the polymerization reaction is preferably performed when the reaction rate of the vinyl aromatic monomer reaches 99% or more. Group monomers may remain in the reaction system. Termination of the polymerization reaction includes addition of a compound having an oxygen-hydrogen bond such as water, alcohol, phenol or carboxylic acid as a terminator, an epoxy compound, an ester compound, a ketone compound, a carboxylic acid anhydride, or a compound having a carbon-halogen bond. The same effect can be expected. The amount of these additives used is preferably about 10 times the equivalent of the growth species. If the amount is too large, it is not only disadvantageous in terms of cost, but also often mixed with remaining additives.

リビング成長種を利用して多官能化合物でカップリング反応させ、ポリマー分子量を増
大、さらにはポリマー鎖を分岐構造化させることもできる。この様なカップリング反応に
用いる多官能化合物は公知のものから選ぶことができる。多官能化合物とはポリハロゲン化合物、ポリエポキシ化合物、モノまたはポリカルボン酸エステル、ポリケトン化合物、モノまたはポリカルボン酸無水物等を挙げることができる。具体例としてはシリコンテトラクロライド、ジ(トリクロルシリル)エタン、1,3,5−トリブロモベンゼン、エポキシ化大豆油、テトラグリシジル1,3−ビスアミノメチルシクロヘキサン、シュウ酸ジメチル、トリメリット酸トリ−2−エチルヘキシル、ピロメリット酸二無水物、ジエチルカーボネート等が挙げられる。
A living growth species can be used to perform a coupling reaction with a polyfunctional compound to increase the molecular weight of the polymer, and further to make the polymer chain into a branched structure. The polyfunctional compound used for such a coupling reaction can be selected from known ones. Examples of the polyfunctional compound include polyhalogen compounds, polyepoxy compounds, mono- or polycarboxylic acid esters, polyketone compounds, mono- or polycarboxylic acid anhydrides, and the like. Specific examples include silicon tetrachloride, di (trichlorosilyl) ethane, 1,3,5-tribromobenzene, epoxidized soybean oil, tetraglycidyl 1,3-bisaminomethylcyclohexane, dimethyl oxalate, trimellitic acid tri- Examples include 2-ethylhexyl, pyromellitic dianhydride, diethyl carbonate and the like.

重合開始剤の有機リチウム化合物由来のアルカリ成分、例えば酸化リチウムや水酸化リチウムを酸性化合物の添加によって中和安定化させることもできる。この様な酸性化合物の例として炭酸ガスと水の混合物、ホウ酸、各種カルボン酸化合物等があり、これらを重合溶媒と同じ溶剤に溶かして重合停止後のポリマー溶液に添加することができる。これらの添加により、特に耐着色性が改善できる場合がある。   An alkali component derived from an organic lithium compound as a polymerization initiator, for example, lithium oxide or lithium hydroxide can be neutralized and stabilized by adding an acidic compound. Examples of such acidic compounds include a mixture of carbon dioxide gas and water, boric acid, various carboxylic acid compounds, and the like, which can be dissolved in the same solvent as the polymerization solvent and added to the polymer solution after termination of polymerization. In particular, the coloration resistance may be improved by the addition of these.

重合終了後、未反応モノマーや溶媒は回収し再生使用するためにポリマーから揮発除去される。揮発除去には公知の方法が利用できる。揮発除去装置としては、例えば真空タンクにフラッシュさせる方法及び/又は押出機やニーダ−を用いて真空下加熱蒸発させる方法等が好ましく利用できる。溶媒の揮発性にもよるが、一般には温度を180〜300℃、真空度100Pa〜50KPaにて溶媒や残存モノマー等の揮発性成分を揮発除去させる。   After the polymerization is complete, unreacted monomers and solvent are recovered and volatilized and removed from the polymer for reuse. A known method can be used for the volatilization removal. As the devolatilization apparatus, for example, a method of flushing in a vacuum tank and / or a method of heating and evaporating under vacuum using an extruder or a kneader can be preferably used. Although depending on the volatility of the solvent, in general, volatile components such as the solvent and residual monomer are volatilized and removed at a temperature of 180 to 300 ° C. and a degree of vacuum of 100 Pa to 50 KPa.

揮発除去装置を直列に接続し、2段以上に並べる方法も効果的である。また、1段目と2段目の間に水を添加して2段目のモノマーの揮発能力を高める方法も利用できる。フラッシングタンクで揮発成分の除去後、残余の揮発成分を除去するため、さらにベント付き押出機を用いることもできる。溶媒を除去されたスチレン系共重合体は公知の方法でペレット状に仕上げることができる。   It is also effective to connect the devolatilizers in series and arrange them in two or more stages. A method of increasing the volatilization ability of the second-stage monomer by adding water between the first and second stages can also be used. In order to remove the remaining volatile components after removing the volatile components in the flushing tank, an extruder with a vent can be used. The styrenic copolymer from which the solvent has been removed can be finished into pellets by a known method.

本発明のスチレン系共重合体には、必要により熱的、機械的安定性、流動性、着色性を改良する目的でスチレン系樹脂で用いられている公知の化合物を添加することができる。その例として、一次酸化防止剤として、例えば、2,6−ジ−t−ブチル−4−メチルフェノール、トリエチレングリコール−ビス−[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスト−ルテトラキス[−(3,5−ジt−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、n−オクタデシル3−(3,5−ジ−t−ブチル−4−ヒドキシフェニル)プロピオネート、2−t−ブチル−6−(3−t−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、2[1−(2−ヒドロキシ3,5−ジ−t−ペンチルフェニル)]−4,6−ジ−t−ペンチルフェニルアクリレート、テトラキス[メチレン3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、3,9ビス[2−{3−(t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキザ[5,5]ウンデカン、1,3,5−トリス(3’,5’−ジ−t−ブチル−4’−ヒドロキシベンジル)−s−トリアジン−2,4,6(1H,2H,3H)−トリオン、1,1,4−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)等の2,4,6−3置換フェノール類が挙げられる。   If necessary, the styrene copolymer of the present invention may be added with known compounds used in styrene resins for the purpose of improving thermal, mechanical stability, fluidity and colorability. Examples thereof include primary antioxidants such as 2,6-di-tert-butyl-4-methylphenol, triethylene glycol-bis- [3- (3-tert-butyl-5-methyl-4-hydroxy). Phenyl) propionate], pentaerythritol tetrakis [-(3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) Propionate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, n-octadecyl 3- (3,5-di-t-butyl) -4-Hydroxyphenyl) propionate, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenylacryl 2 [1- (2-hydroxy3,5-di-t-pentylphenyl)]-4,6-di-t-pentylphenyl acrylate, tetrakis [methylene 3- (3,5-di-t- Butyl-4-hydroxyphenyl) propionate] methane, 3,9bis [2- {3- (t-butyl-4-hydroxy-5-methylphenyl) propynyloxy} -1,1-dimethylethyl] -2,4 , 8,10-Tetraoxa [5,5] undecane, 1,3,5-tris (3 ′, 5′-di-t-butyl-4′-hydroxybenzyl) -s-triazine-2,4,6 ( 1H, 2H, 3H) -trione, 1,1,4-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 4,4′-butylidenebis (3-methyl-6-tert-butylphenol) Etc.) Include 4,6-3-substituted phenols.

また、2次酸化防止剤としてリン系酸化防止剤、イオウ系酸化防止剤、耐候剤としてヒ
ンダードアミンの安定剤、UV吸収剤を添加することも可能である。その他、ミネラルオイル等の可塑剤、長鎖脂肪族カルボン酸及び/又はその金属塩等の滑剤、着色性改良として有機染料、有機顔料を添加することも可能である。
It is also possible to add a phosphorus-based antioxidant, a sulfur-based antioxidant as a secondary antioxidant, a hindered amine stabilizer, and a UV absorber as a weathering agent. In addition, it is also possible to add plasticizers such as mineral oil, lubricants such as long chain aliphatic carboxylic acids and / or metal salts thereof, and organic dyes and organic pigments for improving colorability.

着色性改良用のアンスラキノン系の有機染料は、共重合体の熱安定性を損なうことが少ないため特に好ましい。
シリコーン系、フッ素系の離型剤、帯電防止剤などもスチレン系樹脂で利用されている
公知の技術をそのまま応用することができる
これらの安定剤は、重合が完結した後のポリマー溶液の中に添加して混合するか又はポリマー回収後押出機を使って溶融混合することができる。
An anthraquinone organic dye for improving the colorability is particularly preferred because it hardly reduces the thermal stability of the copolymer.
Silicone-based, fluorine-based release agents, antistatic agents, etc. can be applied as they are with known techniques used in styrene-based resins. These stabilizers can be used in polymer solutions after polymerization is complete. It can be added and mixed, or it can be melt mixed using an extruder after polymer recovery.

次に、本発明の耐熱スチレン系樹脂組成物を構成する成分(II)の耐衝撃性スチレン系樹脂について説明する。
本件発明における耐衝撃性スチレン系樹脂とは、ゲル状のゴム粒子を含有するスチレン系樹脂をいい、その種類は特に限定されない。ゲル状のゴム粒子は、ポリブタジエン、ポリイソプレン、EPDMなど主鎖中に2重結合を有し、一部架橋反応によりゲル状対を形成しているゴム弾性体の粒子であればよい。
本発明でいうスチレン系樹脂とはスチレン系単量体を含有する単独重合体及び/または共重合体をいう。
スチレン系単量体とは、例えば、スチレン、p−メチルスチレン、m−メチルスチレン、o−メチルスチレン、2,4−ジメチルスチレン、2,5−ジメチルスチレン、3,4−ジメチルスチレン、3,5−ジメチルスチレン、p−エチルスチレン、m−エチルスチレン、o−エチルスチレン等のアルキル置換スチレン類、1,1−ジフェニルエチレン等が挙げられる。好ましい単量体は、スチレンである。
Next, the impact-resistant styrene resin as the component (II) constituting the heat-resistant styrene resin composition of the present invention will be described.
The impact-resistant styrenic resin in the present invention refers to a styrenic resin containing gel rubber particles, and the kind thereof is not particularly limited. The gel rubber particles may be rubber elastic particles such as polybutadiene, polyisoprene, EPDM, etc., having a double bond in the main chain and partially forming a gel-like pair by a crosslinking reaction.
The styrenic resin referred to in the present invention means a homopolymer and / or copolymer containing a styrenic monomer.
Examples of the styrene monomer include styrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,4-dimethylstyrene, 3, Examples include alkyl-substituted styrenes such as 5-dimethylstyrene, p-ethylstyrene, m-ethylstyrene, o-ethylstyrene, and 1,1-diphenylethylene. A preferred monomer is styrene.

スチレン系単量体を含有する単独重合体とは、スチレン系単量体の1種または2種以上を重合して得られた重合体をいう。
また、スチレン系単量体を含有する共重合体とは、前記のスチレン系単量体と、アクリロニトリル、メタクリロニトリル等のニトリル系単量体、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート等のアルキルアクリレート単量体、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、シクロヘキシルメタクリレート等のアルキルメタクリレート単量体、メタクリル酸、アクリル酸、無水マレイン酸、N−アルキル置換マレイミドなどの単量体の組み合わせからなる共重合体のことをいう。例えば、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−メチルメタクリレート共重合体、スチレン−アクリレート共重合体、スチレン−メタクリル酸共重合体、スチレン−無水マレイン酸共重合体等が挙げられる。
A homopolymer containing a styrene monomer refers to a polymer obtained by polymerizing one or more styrene monomers.
Moreover, the copolymer containing a styrene monomer is the styrene monomer described above and a nitrile monomer such as acrylonitrile and methacrylonitrile, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, etc. Of alkyl methacrylate monomers, such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, monomers such as methacrylic acid, acrylic acid, maleic anhydride, N-alkyl substituted maleimide It refers to a copolymer consisting of a combination. Examples thereof include polystyrene, styrene-acrylonitrile copolymer, styrene-methyl methacrylate copolymer, styrene-acrylate copolymer, styrene-methacrylic acid copolymer, styrene-maleic anhydride copolymer, and the like.

また、本発明におけるゲル状ゴム粒子を含有するスチレン系樹脂の製造方法としては、例えば、ブタジエン単量体をアニオン重合または配位アニオン重合して得られるポリブタジエンをスチレン系単量体を含有する溶液の中に溶解させ、in-situラジカル重合法によって得る方法や、ブタジエン単量体を乳化重合法によってゲル状のゴム粒子としてあらかじめ製造し、その後スチレン系単量体を含有させてラジカル乳化重合法によって得る方法などが挙げられる。   Further, as a method for producing a styrene resin containing gel rubber particles in the present invention, for example, a solution containing a polybutadiene obtained by anionic polymerization or coordination anion polymerization of a butadiene monomer and a styrene monomer In-situ radical polymerization method, or butadiene monomer is pre-manufactured as gel rubber particles by emulsion polymerization method, and then styrene monomer is added and radical emulsion polymerization method And the like.

スチレン系共重合体(I)と耐衝撃性スチレン系樹脂(II)の各成分の重量比は、I/II=99/1〜1/99である。好ましくはI/II=98/2〜2/98、更に好ましくはI/II=96/4〜4/96である。スチレン系共重合体(I)が1wt%より少ないと耐熱性向上の効果が期待できない。また、スチレン系共重合体(I)が99wt%より多いとスチレン系樹脂(II)の特性が発現しない。   The weight ratio of each component of the styrene copolymer (I) and the impact resistant styrene resin (II) is I / II = 99/1 to 1/99. Preferably I / II = 98/2 to 2/98, more preferably I / II = 96/4 to 4/96. When the styrene copolymer (I) is less than 1 wt%, the effect of improving heat resistance cannot be expected. Moreover, when there are more styrene-type copolymers (I) than 99 wt%, the characteristic of styrene-type resin (II) will not express.

本発明の樹脂組成物の混合方法は特に制限されない。各種加工機器、例えばニーダー、バンバリーミキサー、押出し機を用いた機械的混合、あるいは溶媒に溶かしての溶液混合が利用できる。
本発明の耐熱スチレン系樹脂組成物は、射出成形体に好適である。特に、耐熱、高剛性が要求される構造材や容器、耐候性が要求される成形体、電気照明カバー類に用いることができる。
The mixing method of the resin composition of the present invention is not particularly limited. Various processing devices such as kneaders, Banbury mixers, mechanical mixing using an extruder, or solution mixing in a solvent can be used.
The heat-resistant styrene resin composition of the present invention is suitable for an injection molded article. In particular, it can be used for structural materials and containers that require heat resistance and high rigidity, molded articles that require weather resistance, and electric lighting covers.

以下実施例、比較例を挙げて本発明の態様を具体的に説明する。しかし、これらは例で
あって、本発明の技術範囲を何ら限定するものではない。
実施例、比較例で用いた分析方法、評価方法、条件は以下のとおりである。
Examples of the present invention will be specifically described below with reference to Examples and Comparative Examples. However, these are examples and do not limit the technical scope of the present invention.
The analysis methods, evaluation methods, and conditions used in the examples and comparative examples are as follows.

[分析方法] [Analysis method]

(1)分子量(Mz、Mw、Mz/Mw)
東ソー社製のHLC−8220にカラム(TSKgel SuperHZM−H、40℃)を2本接続し、RI検出器が取り付けてあるGPC装置で測定した。移動相はTHFを用いた。分子量の計算は、ポリスチレンスタンダード(東ソー社製)を使って検量線を作成し、ポリスチレン換算にて行った。
(1) Molecular weight (Mz, Mw, Mz / Mw)
Two columns (TSKgel SuperHZM-H, 40 ° C.) were connected to HLC-8220 manufactured by Tosoh Corporation, and measurement was performed with a GPC apparatus equipped with an RI detector. The mobile phase was THF. The molecular weight was calculated in terms of polystyrene by creating a calibration curve using polystyrene standard (manufactured by Tosoh Corporation).

(2)ガラス転移温度(Tg)
パーキンエルマー社製のDSC−7を使って、JIS−K−7121に準拠して求めた。具体的には、窒素下、10℃/minで室温から250℃まで昇温し、その後10℃/minで室温まで戻し、再び10℃/minで250℃まで昇温した。2度目の昇温過程で測定されるガラス転移温度をTgとした。
(2) Glass transition temperature (Tg)
It calculated | required based on JIS-K-7121 using DSC-7 made from Perkin Elmer. Specifically, the temperature was raised from room temperature to 250 ° C. at 10 ° C./min under nitrogen, then returned to room temperature at 10 ° C./min, and again raised to 250 ° C. at 10 ° C./min. The glass transition temperature measured in the second temperature raising process was defined as Tg.

(3)共重合体中のα−メチルスチレンの組成量
BRUKER社製のNMR(DPX−400)を使って求めた。共重合体のH−NMRを測定し、メチル、メチレン、メチンのピーク面積比をから計算で求めた。詳細な計算法を図1に示す。
(3) Composition amount of α-methylstyrene in the copolymer It was determined using NMR (DPX-400) manufactured by BRUKER. 1 H-NMR of the copolymer was measured, and the peak area ratio of methyl, methylene, and methine was determined from the calculation. A detailed calculation method is shown in FIG.

[射出成形方法]
FUNAC社製の射出成形機(AUTO SHOT 15A)を使って次の条件で成形した。シリンダー温度は、ホッパー側から215℃、225℃、230℃、230℃に設定した。金型温度は、60℃、射出時間を10秒、冷却時間を20秒に設定した。溶融樹脂は、樹脂が金型に丁度充填する射出圧力に更に5MPa高い圧力を加えて充填した。
ASTM4号の3mmtのダンベル片と短冊片をそれぞれ成形し、引張試験、曲げ試験、吸光度測定、黄色度測定、ビカット温度測定、耐候性試験用サンプルとして用いた。
[Injection molding method]
Molding was performed under the following conditions using an injection molding machine (AUTO SHOT 15A) manufactured by FUNAC. The cylinder temperature was set to 215 ° C., 225 ° C., 230 ° C., and 230 ° C. from the hopper side. The mold temperature was set to 60 ° C., the injection time was 10 seconds, and the cooling time was 20 seconds. The molten resin was filled by applying a pressure 5 MPa higher than the injection pressure at which the resin just fills the mold.
ASTM No. 4 3 mmt dumbbell pieces and strip pieces were respectively molded and used as samples for tensile test, bending test, absorbance measurement, yellowness measurement, Vicat temperature measurement, and weather resistance test.

[押出方法](スチレン系共重合体とスチレン系−ジエン系ブロック共重合体とのブレンド方法)
15mm径の2軸押出機(テクノベル社製)を使って、樹脂組成物を作製した。シリンダー温度は220℃(ホッパー下110℃)、スクリュー回転数200rpm、吐出量1.9kg/Hrで行った。
[Extrusion method] (Blend method of styrene copolymer and styrene-diene block copolymer)
A resin composition was prepared using a 15-mm diameter twin-screw extruder (manufactured by Technobel). The cylinder temperature was 220 ° C. (110 ° C. under the hopper), the screw rotation speed was 200 rpm, and the discharge amount was 1.9 kg / Hr.

[延伸シートの作製]
10cm×10cm×2mmtの平板を圧縮成形で得た。成形温度は240℃とした。その後、ガラス転移温度より30℃高い温度雰囲気下で、2軸方向にテンターで引張延伸した。
[Production of stretched sheet]
A flat plate of 10 cm × 10 cm × 2 mmt was obtained by compression molding. The molding temperature was 240 ° C. Then, it was stretched by a tenter in a biaxial direction in a temperature atmosphere 30 ° C. higher than the glass transition temperature.

[発泡シートの作製]
スチレン系樹脂100重量部に、タルク0.1重量部を添加し、一段目押出機に導入し、約220℃で熱可塑した後、ブタンを約4重量%圧入し、含浸させた。次いで二段目押出機に送り込み、発泡に適した粘度まで温調したものを約130℃のダイスより押し出してスチレン系樹脂発泡シートを作製した。シートは充分に養生させた後、その厚みを測定し、性能を評価した。スチレン系樹脂発泡シートの平均厚みは2.5mmであった。
[Production of foam sheet]
0.1 part by weight of talc was added to 100 parts by weight of a styrenic resin, introduced into a first stage extruder, thermoplasticized at about 220 ° C., and then injected with about 4% by weight of butane for impregnation. Next, the styrene-based resin foamed sheet was prepared by feeding into a second-stage extruder and extruding a temperature-adjusted viscosity suitable for foaming from a die at about 130 ° C. After fully curing the sheet, its thickness was measured and its performance was evaluated. The average thickness of the styrene resin foam sheet was 2.5 mm.

[評価方法]
(1)溶融時の熱安定性の評価。
島津製作所製、TGA・60装置使用、サンプル量約10mg、窒素雰囲気下、50℃の温度から10℃/minで昇温し、重量が初期重量に対して0.1wt%、0.2wt%、0.5wt%減少する温度を求めた。
(2)耐熱性(ビカット温度)
ISO法306に準拠して求めた。
(3)引張・曲げ試験
島津製作所社製のAUTO GRAPH(AG−5000D)を使って、次の条件で測定した。
引張試験:チャック間距離64mm、引張速度5mm/分
曲げ試験:スパン間距離50mm、曲げ速度1.3mm/分
[Evaluation methods]
(1) Evaluation of thermal stability during melting.
Made by Shimadzu Corporation, using TGA-60 device, sample amount of about 10 mg, nitrogen atmosphere, temperature increased from 50 ° C. at 10 ° C./min, weight is 0.1 wt%, 0.2 wt% relative to initial weight, The temperature at which 0.5 wt% decrease was determined.
(2) Heat resistance (Vicat temperature)
It was determined in accordance with ISO method 306.
(3) Tensile / Bending Test Using an AUTO GRAPH (AG-5000D) manufactured by Shimadzu Corporation, measurement was performed under the following conditions.
Tensile test: Chuck distance 64 mm, Tensile speed 5 mm / min Bending test: Span distance 50 mm, Bending speed 1.3 mm / min

[製造例1] スチレン系共重合体(I)の製造
〈原料〉
スチレン(St:住友化学社製)とα−メチルスチレン(αMeSt:三井化学社製)とシクロヘキサン(CH:出光石油化学社製)をSt/αMeSt/CH=27/18/55(wt%)の比率で混合した溶液を貯蔵タンクに溜め窒素バブリングした後に、溶液を活性アルミナ(住友化学社製KHD−24)を充填した5L容積の精製塔内を通過させて重合禁止剤であるt−ブチルカテコールを除去した。
〈開始剤〉
n−ブチルリチウム(15wt%のn−ヘキサン溶液、和光純薬社製)を1/51倍にシクロヘキサンで希釈した。
〈停止剤〉
メタノール(特級、和光純薬社製)を3wt%の濃度になる様にシクロヘキサンで希釈した。
[Production Example 1] Production of Styrene Copolymer (I 1 ) <Raw Material>
Styrene (St: manufactured by Sumitomo Chemical Co., Ltd.), α-methylstyrene (αMeSt: manufactured by Mitsui Chemicals Co., Ltd.) and cyclohexane (CH: manufactured by Idemitsu Petrochemical Co., Ltd.) of St / αMeSt / CH = 27/18/55 (wt%) After the solution mixed at a ratio is stored in a storage tank and nitrogen bubbling is performed, the solution is passed through a 5 L volume purification tower filled with activated alumina (KHD-24 manufactured by Sumitomo Chemical Co., Ltd.), and t-butylcatechol which is a polymerization inhibitor. Was removed.
<Initiator>
n-Butyllithium (15 wt% n-hexane solution, manufactured by Wako Pure Chemical Industries, Ltd.) was diluted 1/51 times with cyclohexane.
<Stopper>
Methanol (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) was diluted with cyclohexane to a concentration of 3 wt%.

〈製造方法〉 スチレン系共重合体(I)の製造
重合反応器は、攪拌翼(住友重機製マックスブレンド翼)とコンデンサーが取り付けられ、更に原料導入ノズル、開始剤導入ノズルと重合溶液排出ノズルが付いたジャケット付3.4Lの反応器(R1)を用いた。コンデンサーの出口は、窒素ガスでシールし、外部から空気が混入しないようにした。重合反応器内の重合溶液の容量は、常に2.1Lとなる様に制御した。重合溶液からは常に溶液の一部が沸騰している状態にし、内温を82℃〜84℃の間に制御した。攪拌翼の回転数は175rpmとした。重合反応器の原料入口と出口にはそれぞれギアポンプが取り付けられており原料及び重合溶液が2.1L/Hrの一定流量の液を流せる様に制御した。また、開始剤溶液は、0.25L/Hrで重合反応器内へ導入した。重合条件を表1に示す。
<Production Method> Production of Styrene Copolymer (I 1 ) The polymerization reactor is equipped with a stirring blade (Max Blend blade manufactured by Sumitomo Heavy Industries) and a condenser, and further, a raw material introduction nozzle, an initiator introduction nozzle and a polymerization solution discharge nozzle. A jacketed 3.4 L reactor (R1) with was used. The outlet of the condenser was sealed with nitrogen gas to prevent air from entering from the outside. The volume of the polymerization solution in the polymerization reactor was controlled to always be 2.1 L. A part of the solution was constantly boiling from the polymerization solution, and the internal temperature was controlled between 82 ° C and 84 ° C. The rotation speed of the stirring blade was 175 rpm. Gear pumps were attached to the raw material inlet and outlet of the polymerization reactor, respectively, and the raw material and the polymerization solution were controlled so that a constant flow rate of 2.1 L / Hr could flow. The initiator solution was introduced into the polymerization reactor at 0.25 L / Hr. The polymerization conditions are shown in Table 1.

重合反応器から排出されたリビングポリマーの溶液は、更にギアポンプで10mm径の配管を通じて重合停止剤溶液の導入口まで導いた。反応器から停止剤混合点までの配管の長さは約2m、配管は65〜70℃で保温した。停止剤溶液は、0.1kg/Hrでの流速で重合反応液内に導入し、その後は、1.2L容量の静的ミキサー(Sulzer社製、SMX型)を経て完全に重合反応を停止させた。更に、ポリマー溶液は予熱器で260℃まで加熱し、その後2MPaの減圧下、設定260℃に加温された約50Lの容器内へフラッシングし、溶媒と未反応モノマーをポリマーから分離、回収した。フラッシング容器内のポリマー温度は、約240〜250℃、ポリマーのタンク内の滞留時間は、約20〜30分であった。充分に揮発成分が除去されたポリマーは、その後、ロープ状に排出され水中下で冷却後カッターでペレタイズ化しポリマーを回収した。
重合反応器から重合溶液が排出される箇所と停止剤が添加される箇所の途中の配管よりリビングポリマー溶液を窒素雰囲気の密閉容器へ抜き取り、それを用いて単量体の反応率を求めた。スチレンの反応率は99.9%以上、α−メチルスチレンの反応率は63%であった。この結果から重合停止時の未反応のスチレン濃度は、ポリマーに対して0.07wt%以下であった。得られたペレットの共重合体の組成比、分子量を表2に示す。
The living polymer solution discharged from the polymerization reactor was further led to a polymerization terminator solution inlet through a 10 mm diameter pipe by a gear pump. The length of the pipe from the reactor to the stopper mixing point was about 2 m, and the pipe was kept at 65 to 70 ° C. The stopper solution was introduced into the polymerization reaction solution at a flow rate of 0.1 kg / Hr, and then the polymerization reaction was completely stopped via a 1.2 L capacity static mixer (Sulzer, SMX type). It was. Further, the polymer solution was heated to 260 ° C. with a preheater, and then flushed into a container of about 50 L heated to a setting of 260 ° C. under a reduced pressure of 2 MPa to separate and recover the solvent and unreacted monomers from the polymer. The polymer temperature in the flushing vessel was about 240-250 ° C., and the residence time in the polymer tank was about 20-30 minutes. The polymer from which volatile components were sufficiently removed was then discharged in a rope shape, cooled in water and pelletized with a cutter to recover the polymer.
The living polymer solution was extracted from a pipe in the middle of the place where the polymerization solution was discharged from the polymerization reactor and the place where the stopper was added, and the monomer reaction rate was determined using the living polymer solution. The reaction rate of styrene was 99.9% or more, and the reaction rate of α-methylstyrene was 63%. From this result, the unreacted styrene concentration when the polymerization was stopped was 0.07 wt% or less based on the polymer. Table 2 shows the composition ratio and molecular weight of the obtained pellet copolymer.

[製造例2] スチレン系共重合体(I)の製造
スチレンとα−メチルスチレンとシクロヘキサン(CH)の原料の組成、原料溶液の重合反応器内への流量、開始剤溶液の重合反応器内への流量を表1に示した条件としたい以外は、実施例1と同じ条件・方法で重合してスチレン系共重合体(I)を得た。
得られたスチレン系共重合体(I)の組成、分子量等を表2に示す。
[Production Example 2] styrene copolymer (I 2) of the composition of the raw material for manufacturing styrene and α- methylstyrene and cyclohexane (CH), the flow rate to the polymerization reactor of the raw material solution, the polymerization reactor of the initiator solution A styrene copolymer (I 2 ) was obtained by polymerization under the same conditions and method as in Example 1 except that the flow rate into the interior was set to the conditions shown in Table 1.
Table 2 shows the composition, molecular weight, and the like of the obtained styrene copolymer (I 2 ).

[製造例3] スチレン系共重合体(I)の製造
製造例1,2で製造したスチレン系共重合体(I)50部とスチレン系共重合体(I)50部を押出機で溶融ブレンドし、スチレン系共重合体(I)を製造した。
得られたスチレン系共重合体(I)の組成、分子量等を表2に示す。
[製造例4]
耐衝撃性スチレン系樹脂(II)として、PSジャパンのH8117を使用した。
[Production Example 3] Production of styrene copolymer (I 3 ) 50 parts of styrene copolymer (I 1 ) produced in Production Examples 1 and 2 and 50 parts of styrene copolymer (I 2 ) were extruded. And styrene copolymer (I 3 ) was produced.
Table 2 shows the composition, molecular weight, and the like of the obtained styrene copolymer (I 3 ).
[Production Example 4]
As impact-resistant styrene resin (II), PS Japan H8117 was used.

[比較製造例1]
ラジカル重合によって得られたポリスチレン(GPPS、#685、PSジャパン社製)を用いた。Tgは101℃であった。
[Comparative Production Example 1]
Polystyrene (GPPS, # 685, manufactured by PS Japan) obtained by radical polymerization was used. Tg was 101 ° C.

[比較製造例2]
ラジカル重合によって得られたポリスチレン(GPPS、G8102、PSジャパン社製)を用いた。Tgは103℃であった。
[Comparative Production Example 2]
Polystyrene (GPPS, G8102, manufactured by PS Japan) obtained by radical polymerization was used. Tg was 103 ° C.

[比較製造例3]
ラジカル重合によって得られたスチレンとメタクリル酸共重合体(SMAA、G9001、PSジャパン社製)を用いた。Tgは117℃であった。
[Comparative Production Example 3]
Styrene and methacrylic acid copolymer (SMAA, G9001, manufactured by PS Japan) obtained by radical polymerization was used. Tg was 117 ° C.

[実施例1〜5]
製造例1のスチレン系重合体(I)と製造例4記載の耐衝撃性スチレン系樹脂(II)を表3に記載の重量比率でペレット状態でブレンドし、2軸押出機を使って樹脂組成物を得た。
[Examples 1 to 5]
The styrene polymer (I 1 ) of Production Example 1 and the impact-resistant styrenic resin (II) described in Production Example 4 are blended in pellets at the weight ratios shown in Table 3, and the resin is obtained using a twin screw extruder. A composition was obtained.

[実施例6〜8]
製造例2のスチレン系重合体(I)と製造例4記載の耐衝撃性スチレン系樹脂(II)を表3に記載の重量比率でペレット状態でブレンドし、2軸押出機を使って樹脂組成物を得た。
[Examples 6 to 8]
The styrene polymer (I 2 ) of Production Example 2 and the impact-resistant styrenic resin (II) described in Production Example 4 are blended in pellets at the weight ratios shown in Table 3, and the resin is obtained using a twin screw extruder. A composition was obtained.

[実施例9〜11]
製造例3のスチレン系重合体(I)と製造例4記載の耐衝撃性スチレン系樹脂(II)を表3に記載の重量比率でペレット状態でブレンドし、2軸押出機を使って樹脂組成物を得た。
実施例1〜9で得られたペレットを使い評価した、ペレットの熱安定性についてTGAを用い0.2wt%、0.5wt%、1.0wt%の熱重量減少率時の温度を求めた。
また、ペレットを射出成型して得られたテストピースについて耐熱性(ビカット温度)、引張物性、曲げ物性を評価した。結果を表3に示す。
[Examples 9 to 11]
The styrene polymer (I 3 ) of Production Example 3 and the impact-resistant styrene resin (II) described in Production Example 4 are blended in the pellet state at the weight ratio shown in Table 3, and the resin is obtained using a twin-screw extruder. A composition was obtained.
Regarding the thermal stability of the pellets evaluated using the pellets obtained in Examples 1 to 9, temperatures at 0.2 wt%, 0.5 wt%, and 1.0 wt% thermal weight reduction rates were determined using TGA.
Moreover, the heat resistance (Vicat temperature), the tensile physical property, and the bending physical property were evaluated about the test piece obtained by injection-molding a pellet. The results are shown in Table 3.

[比較例1]
比較製造例1のスチレン系樹脂(I)と製造例4記載の耐衝撃性スチレン系樹脂(II)を表3に記載の重量比率でペレット状態でブレンドし、2軸押出機を使って樹脂組成物を得た。
ペレットの熱安定性についてTGAを用い0.2wt%、0.5wt%、1.0wt%の熱重量減少率時の温度を求めた。
また、ペレットを射出成型して得られたテストピースについて耐熱性(ビカット温度)、引張物性、曲げ物性を評価した。結果を表3に示す。
[Comparative Example 1]
The styrene resin (I) of Comparative Production Example 1 and the impact-resistant styrene resin (II) described in Production Example 4 are blended in pellets at the weight ratios shown in Table 3, and the resin composition is obtained using a twin screw extruder. I got a thing.
Regarding the thermal stability of the pellets, temperatures at 0.2 wt%, 0.5 wt%, and 1.0 wt% thermal weight reduction rates were determined using TGA.
Moreover, the heat resistance (Vicat temperature), the tensile physical property, and the bending physical property were evaluated about the test piece obtained by injection-molding a pellet. The results are shown in Table 3.

[比較例2〜4]
比較製造例2のスチレン系樹脂(I)と製造例4記載の耐衝撃性スチレン系樹脂(II)を表3に記載の重量比率でペレット状態でブレンドし、2軸押出機を使って樹脂組成物を得た。
ペレットの熱安定性についてTGAを用い0.2wt%、0.5wt%、1.0wt%の熱重量減少率時の温度を求めた。
また、ペレットを射出成型して得られたテストピースについて耐熱性(ビカット温度)、引張物性、曲げ物性を評価した。結果を表3に示す。
[Comparative Examples 2 to 4]
The styrene resin (I) of Comparative Production Example 2 and the impact-resistant styrene resin (II) of Production Example 4 are blended in the pellet state at the weight ratios shown in Table 3, and the resin composition is obtained using a twin screw extruder. I got a thing.
Regarding the thermal stability of the pellets, temperatures at 0.2 wt%, 0.5 wt%, and 1.0 wt% thermal weight reduction rates were determined using TGA.
Moreover, the heat resistance (Vicat temperature), the tensile physical property, and the bending physical property were evaluated about the test piece obtained by injection-molding a pellet. The results are shown in Table 3.

[比較例5]
比較製造例2のスチレン系樹脂(I)と製造例4記載の耐衝撃性スチレン系樹脂(II)を表3に記載の重量比率でペレット状態でブレンドし、2軸押出機を使って樹脂組成物を得た。
ペレットの熱安定性についてTGAを用い0.2wt%、0.5wt%、1.0wt%の熱重量減少率時の温度を求めた。
また、ペレットを射出成型して得られたテストピースについて耐熱性(ビカット温度)、引張物性、曲げ物性を評価した。結果を表3に示す。
[Comparative Example 5]
The styrene resin (I) of Comparative Production Example 2 and the impact-resistant styrene resin (II) of Production Example 4 are blended in the pellet state at the weight ratios shown in Table 3, and the resin composition is obtained using a twin screw extruder. I got a thing.
Regarding the thermal stability of the pellets, temperatures at 0.2 wt%, 0.5 wt%, and 1.0 wt% thermal weight reduction rates were determined using TGA.
Moreover, the heat resistance (Vicat temperature), the tensile physical property, and the bending physical property were evaluated about the test piece obtained by injection-molding a pellet. The results are shown in Table 3.

以上より、本発明のスチレン系樹脂組成物は、従来のポリスチレンと比べて、耐熱性、溶融安定性の両方に優れていることが分かる。このことから、本発明の樹脂組成物は、リサイクルしやすい材料であると言える。   As mentioned above, it turns out that the styrene resin composition of this invention is excellent in both heat resistance and melt stability compared with the conventional polystyrene. From this, it can be said that the resin composition of the present invention is a material that can be easily recycled.

Figure 2006306902
Figure 2006306902

Figure 2006306902
Figure 2006306902

Figure 2006306902
Figure 2006306902

本発明の耐熱スチレン系樹脂組成物は、従来のポリスチレンの持つ優れた特性を保持しつつ、更に耐熱性、成形時の溶融安定性、リサイクル性の性能において優れているので、射出成形体、延伸シート、発泡シートに好適であり、特に、耐熱性、高剛性、リサイクル性が要求される構造材や容器、電気照明カバー類に好適に用いることができる。   The heat-resistant styrene-based resin composition of the present invention is superior in heat resistance, melt stability during molding, and recyclability while maintaining the excellent properties of conventional polystyrene, so that the injection molded article, stretched It is suitable for a sheet and a foamed sheet, and in particular, it can be suitably used for a structural material, a container, and electric lighting covers that require heat resistance, high rigidity, and recyclability.

本発明のスチレン系共重合体中に含有するα−メチルスチレンの組成量を求めるためのポリマーのH−NMRスペクトル図と計算方法を示す図である。It is a diagram illustrating a way it calculates 1 H-NMR spectrum of a polymer for obtaining a styrene copolymer composition of α- methyl styrene containing in the present invention.

Claims (7)

(I)下記式(1)で表されるイソプロペニル芳香族単位と、下記式(2)で表されるビニル芳香族単位を含有する共重合体であって、イソプロペニル芳香族単位の含有量(A)が5〜70(wt%)であり、共重合体のZ平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が1.4〜3.0であるスチレン系共重合体と、(II)ゲル状のゴム粒子を含む、スチレン系単量体単位を含有する耐衝撃性スチレン系樹脂とからなり、成分(I)と成分(II)の重量比(I/II)がI/II=99/1〜1/99を満足する耐熱スチレン系樹脂組成物。
Figure 2006306902
Figure 2006306902
(I) A copolymer containing an isopropenyl aromatic unit represented by the following formula (1) and a vinyl aromatic unit represented by the following formula (2), the content of the isopropenyl aromatic unit Styrene in which (A) is 5 to 70 (wt%) and the ratio (Mz / Mw) of the copolymer's Z average molecular weight (Mz) to weight average molecular weight (Mw) is 1.4 to 3.0 And (II) an impact-resistant styrene resin containing a styrene monomer unit containing gel rubber particles, and the weight ratio (I) of component (I) to component (II) / II) is a heat-resistant styrenic resin composition satisfying I / II = 99/1 to 1/99.
Figure 2006306902
Figure 2006306902
前記成分(I)のスチレン系共重合体がリビング重合法によって得られたものであることを特徴とする請求項1記載の耐熱スチレン系樹脂組成物。   2. The heat-resistant styrene resin composition according to claim 1, wherein the styrene copolymer of component (I) is obtained by a living polymerization method. 前記成分(I)のスチレン系共重合体中のイソプロペニル芳香族単位の含有量(A)が5〜95重量%であり、スチレン系共重合体の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.6〜4.0の範囲にあり、且つスチレン系共重合体中のイソプロペニル芳香族単位の含有量(重量%)(A)とスチレン系共重合体中のガラス転移温度(℃)(Tg)とが下記の式(a)の関係を満足することを特徴とする請求項1又は2記載の耐熱スチレン系樹脂組成物。
式(a);
[5≦A≦20の場合]
0.12A+102≦Tg≦0.62A+102
[20<A≦60の場合]
−5.25×10−5+1.09×10−2+1.72×10−1A+97≦Tg≦−5.25×10−5+1.09×10−2+1.72×10−1A+107
[60<A≦95の場合]
1.04A+73≦Tg≦0.79A+98
The content (A) of the isopropenyl aromatic unit in the styrene copolymer of the component (I) is 5 to 95% by weight, and the weight average molecular weight (Mw) and number average molecular weight of the styrene copolymer ( Mn) ratio (Mw / Mn) is in the range of 1.6 to 4.0, and the content (% by weight) of isopropenyl aromatic unit in the styrene copolymer (A) and the styrene copolymer The heat-resistant styrenic resin composition according to claim 1 or 2, wherein the glass transition temperature (° C) (Tg) in the coalescence satisfies the relationship of the following formula (a).
Formula (a);
[When 5 ≦ A ≦ 20]
0.12A + 102 ≦ Tg ≦ 0.62A + 102
[When 20 <A ≦ 60]
−5.25 × 10 −5 A 3 + 1.09 × 10 −2 A 2 + 1.72 × 10 −1 A + 97 ≦ Tg ≦ −5.25 × 10 −5 A 3 + 1.09 × 10 −2 A 2 +1 .72 × 10 −1 A + 107
[In the case of 60 <A ≦ 95]
1.04A + 73 ≦ Tg ≦ 0.79A + 98
前記スチレン系重合体が、下記式(3)で表されるイソプロペニル芳香族単量体と下記式(4)で表されるビニル芳香族単量体とを含む原料溶液を連続的に重合反応器内に供給して得られる共重合体であることを特徴とする請求項1〜3のいずれかに記載の耐熱スチレン系樹脂組成物。
Figure 2006306902
Figure 2006306902
The styrenic polymer continuously polymerizes a raw material solution containing an isopropenyl aromatic monomer represented by the following formula (3) and a vinyl aromatic monomer represented by the following formula (4). The heat-resistant styrenic resin composition according to any one of claims 1 to 3, wherein the heat-resistant styrenic resin composition is a copolymer obtained by being supplied into a vessel.
Figure 2006306902
Figure 2006306902
請求項1〜4のいずれかに記載の耐熱スチレン系樹脂組成物から得られる耐熱発泡シート。   A heat-resistant foam sheet obtained from the heat-resistant styrene-based resin composition according to claim 1. 請求項1〜4のいずれかに記載の耐熱スチレン系樹脂組成物から得られる耐熱延伸シート。   A heat-resistant stretched sheet obtained from the heat-resistant styrene-based resin composition according to any one of claims 1 to 4. 請求項1〜4のいずれかに記載の耐熱スチレン系樹脂組成物から得られる耐熱容器。   A heat-resistant container obtained from the heat-resistant styrene-based resin composition according to claim 1.
JP2005127467A 2005-04-26 2005-04-26 Heat-resistant styrenic resin composition Pending JP2006306902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005127467A JP2006306902A (en) 2005-04-26 2005-04-26 Heat-resistant styrenic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005127467A JP2006306902A (en) 2005-04-26 2005-04-26 Heat-resistant styrenic resin composition

Publications (1)

Publication Number Publication Date
JP2006306902A true JP2006306902A (en) 2006-11-09

Family

ID=37474168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005127467A Pending JP2006306902A (en) 2005-04-26 2005-04-26 Heat-resistant styrenic resin composition

Country Status (1)

Country Link
JP (1) JP2006306902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179669A (en) * 2008-01-29 2009-08-13 Asahi Kasei Chemicals Corp Weather-resistant and heat-resistant styrenic resin composition and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234746A (en) * 1990-02-02 1991-10-18 Dow Chem Co:The Heat and high impact resisting polystyrene blend
JPH0544864A (en) * 1991-08-09 1993-02-23 Benkan Corp Metal diaphragm valve
JPH0610219B2 (en) * 1982-02-22 1994-02-09 ザ・ダウ・ケミカル・カンパニ− Process for producing alpha methyl styrene copolymer
JPH1149822A (en) * 1997-08-01 1999-02-23 Denki Kagaku Kogyo Kk Styrene-based resin and its foam
JPH1180410A (en) * 1997-09-10 1999-03-26 Asahi Chem Ind Co Ltd Polystyrene resin extruded foam
JP2006052346A (en) * 2004-08-13 2006-02-23 Asahi Kasei Chemicals Corp Heat-resistant styrene-based resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610219B2 (en) * 1982-02-22 1994-02-09 ザ・ダウ・ケミカル・カンパニ− Process for producing alpha methyl styrene copolymer
JPH03234746A (en) * 1990-02-02 1991-10-18 Dow Chem Co:The Heat and high impact resisting polystyrene blend
JPH0544864A (en) * 1991-08-09 1993-02-23 Benkan Corp Metal diaphragm valve
JPH1149822A (en) * 1997-08-01 1999-02-23 Denki Kagaku Kogyo Kk Styrene-based resin and its foam
JPH1180410A (en) * 1997-09-10 1999-03-26 Asahi Chem Ind Co Ltd Polystyrene resin extruded foam
JP2006052346A (en) * 2004-08-13 2006-02-23 Asahi Kasei Chemicals Corp Heat-resistant styrene-based resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179669A (en) * 2008-01-29 2009-08-13 Asahi Kasei Chemicals Corp Weather-resistant and heat-resistant styrenic resin composition and method for producing the same

Similar Documents

Publication Publication Date Title
JP4306682B2 (en) Styrene copolymer and process for producing the same
TWI638847B (en) Block copolymer composition, molding material, resin composition, and molded body
JP4925391B2 (en) Heat resistant styrenic resin composition
JPH03162407A (en) Production of styrenic resin composition
JP2006282962A (en) Aromatic vinyl compound-methacrylic acid-based copolymer and method for producing the same
JP3923359B2 (en) Thermoplastic styrene resin composition
JP2004189805A (en) Polycarbonate resin composition
JP2005239951A (en) Method for producing aromatic vinyl compound-based polymer
JP2006306902A (en) Heat-resistant styrenic resin composition
JP2006306901A (en) Styrenic resin composition excellent in heat resistance
JP4327239B2 (en) Method for producing α-methylstyrene, and method for producing heat-resistant styrene copolymer using the α-methylstyrene
JP2006299191A (en) Styrene-based resin composition containing acrylic resin particle
JP5170944B2 (en) Heat resistant resin composition
JP2006299192A (en) Styrene-based resin composition containing silicone-based particle
JP4458931B2 (en) Transparent rubber-modified copolymer resin composition, molded product obtained therefrom, and method for producing the composition
JP3669780B2 (en) Foam using styrene- (meth) acrylic acid copolymer
JP5170943B2 (en) Good flowable resin composition
JP5848061B2 (en) Rubber-modified styrenic resin composition
JP7336840B2 (en) Styrene-based copolymer resin, resin composition, its sheet and molded article
JP5170942B2 (en) Impact resistant resin composition
JP6634812B2 (en) Styrene-based resin composition, sheet, molded article and method for producing the same
JP3947419B2 (en) Aromatic vinyl compound resin composition
TW202413459A (en) Styrenic copolymer, feeding liquid and method for producing styrenic copolymer
JP2006312687A (en) Resin composition
JP2023115374A (en) Styrene-based resin composition and molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A131 Notification of reasons for refusal

Effective date: 20111201

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120509

Free format text: JAPANESE INTERMEDIATE CODE: A02