JP2006306784A - Highly fluorinated alcohol derivative and method for easily re-using the same - Google Patents

Highly fluorinated alcohol derivative and method for easily re-using the same Download PDF

Info

Publication number
JP2006306784A
JP2006306784A JP2005131806A JP2005131806A JP2006306784A JP 2006306784 A JP2006306784 A JP 2006306784A JP 2005131806 A JP2005131806 A JP 2005131806A JP 2005131806 A JP2005131806 A JP 2005131806A JP 2006306784 A JP2006306784 A JP 2006306784A
Authority
JP
Japan
Prior art keywords
group
highly fluorinated
compound
formula
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005131806A
Other languages
Japanese (ja)
Other versions
JP4950436B2 (en
Inventor
Koutaro Goto
浩太朗 後藤
Masamori Mizuno
真盛 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Institute
Original Assignee
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Institute filed Critical Noguchi Institute
Priority to JP2005131806A priority Critical patent/JP4950436B2/en
Publication of JP2006306784A publication Critical patent/JP2006306784A/en
Application granted granted Critical
Publication of JP4950436B2 publication Critical patent/JP4950436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly fluorinated compound easy to re-use by cutting off a highly fluorinated group attached to the objective compound after the synthesis thereof in a fluorous synthesis method and then regenerating. <P>SOLUTION: This compound is a highly fluorinated alcohol derivative represented by formula [I]: HO-(CH<SB>2</SB>)<SB>m</SB>-CH<SB>n</SB>-[-(CH<SB>2</SB>)<SB>p</SB>-N(-R<SP>f</SP>)ä-(CH<SB>2</SB>)<SB>q</SB>-N(-R<SP>f</SP>)-}<SB>s</SB>-R]<SB>3-n</SB>(wherein R<SP>f</SP>is a highly fluorinated acyl group having one or a plurality of perfluoroalkyl groups; R is H, alkyl, aralkyl, aryl or 3-16C perfluoroalkyl; m is an integer of 0 to 6; n is 0 to 2; p is 0 to 6; q is 1 to 6; s is 0 to 2; and R<SP>f</SP>, R, p, q and s need not be the same in each displayed site). The derivative can be used as an experimental agent for synthesis by binding a linker thereto to enhance versatility. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は高度にフッ素化されたアルコール誘導体に関する。医薬や食品添加物、化粧品、液晶、電子材料、高分子材料モノマー、機能性材料、医療材料などのファインケミカルズの製造には有機合成化学の果たす役割が極めて高い。従来の有機合成の概念を越える技術としてフルオラス合成が提案され、その発展が望まれている。これはパーフルオロカーボンが有機溶媒や水に溶解せず、三者が互いに分液できることに着目し、高度にフッ素化した誘導体のみをパーフルオロカーボン層に抽出させ、化合物の精製を容易にかつ安全に行うという方法である。この手法を用いて種々の化合物を合成するためには、目的の化合物の構造に適した高度にフッ素化された基を導入する必要があるが、本発明の高度にフッ素化されたアルコール誘導体は、この合成用試剤として使用できる。   The present invention relates to highly fluorinated alcohol derivatives. Synthetic organic chemistry plays an extremely high role in the production of fine chemicals such as pharmaceuticals, food additives, cosmetics, liquid crystals, electronic materials, polymer material monomers, functional materials, and medical materials. Fluorous synthesis has been proposed as a technology that goes beyond the concept of conventional organic synthesis, and its development is desired. This is because perfluorocarbons do not dissolve in organic solvents and water, and the three parties can separate each other, and only highly fluorinated derivatives can be extracted into the perfluorocarbon layer to easily and safely purify compounds. It is a method. In order to synthesize various compounds using this technique, it is necessary to introduce a highly fluorinated group suitable for the structure of the target compound, but the highly fluorinated alcohol derivative of the present invention Can be used as a reagent for this synthesis.

これまでに種々の高度にフッ素化された合成用試剤が報告されている(例えば、特許文献1、特許文献2、特許文献3、特許文献4、非特許文献1、非特許文献2、非特許文献3参照。)が、その大部分は、目的物合成後、高度にフッ素化された基を目的化合物から切り離した際に再生が困難あるいは不可能な構造へと変化してしまうために廃棄せざるを得なく、再利用はほとんどされなかった。例えば末端構造がベンジル型のものはパラジウム黒を用いた接触還元によりトルエン型に、またp−アルコキシベンジル型のものはトリフルオロ酢酸やトリフルオロメタンスルホン酸などの酸性条件下における反応により複雑な化合物へと構造が変化してしまう。これらの構造に変化してしまった高度にフッ素化された誘導体は再生再利用が非常に困難であるかもしくは不可能である。
また、結合する化合物に適した、高度にフッ素化された合成用試剤を化合物、反応に合わせて設計する必要があり、種々の反応を行うには何種類もの高度にフッ素化された合成用試剤を用意しなければならない。
Various highly fluorinated synthesis reagents have been reported so far (for example, Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, Non-Patent Document 1, Non-Patent Document 2, Non-patent) However, most of them are discarded after synthesizing the target product, because when the highly fluorinated group is separated from the target compound, the structure becomes difficult or impossible to regenerate. There was no choice but to reuse. For example, the terminal structure of the benzyl type is converted to a toluene type by catalytic reduction using palladium black, and the p-alkoxybenzyl type is converted to a complex compound by a reaction under acidic conditions such as trifluoroacetic acid and trifluoromethanesulfonic acid. And the structure will change. Highly fluorinated derivatives that have changed to these structures are very difficult or impossible to recycle.
In addition, it is necessary to design highly fluorinated synthesis reagents suitable for the compounds to be bound to the compounds and reactions, and many kinds of highly fluorinated synthesis reagents are required to carry out various reactions. Must be prepared.

フルオラス合成法により効率的に種々の化合物を合成するためには、再生再利用ができ、種々の反応に繰り返し使用できる高度にフッ素化された基の開発は、環境面や経済性を考慮するならば必要不可欠である。
特願2002−063985号 特願2002−338534号 特願2003−261523号 特願2004−131452号 Zhiyong Kuo, John Williams, Roger W. Read and Dennis P. Curran著,「Fluorous Boc(FBoc)Carbamates: New Amine Protecting Groups for Use in Fluorous Synthesis」, The Journal of Organic Chemistry誌, 2001年, 第66巻, p.4261−4266. Dennis P. Curran, Rafael Ferritto and Ye Hua著,「Preparation of a Fluorous Benzyl Protecting Group and Its Use in a Fluorous Synthesis Approach to a Disaccharide」, Tetrahedron Letters誌, 1998年, 第39巻, p.4937−4940. Kohtaro Goto, Tsuyoshi Miura, Mamoru Mizuno, Hiromi Takaki, Nobuyuki Imai, Yasuoki Murakami, Toshiyuki Inazu 著,「Rapid Oligosaccharide Synthesis on a Novel Benzyl-Type Fluorous Support」, Synlett誌,2004年,p.2221−2223.
In order to synthesize various compounds efficiently by the fluorous synthesis method, the development of highly fluorinated groups that can be reused and reused in various reactions can be carried out if environmental and economic considerations are taken into consideration. Is indispensable.
Japanese Patent Application No. 2002-063985 Japanese Patent Application No. 2002-338534 Japanese Patent Application No. 2003-261523 Japanese Patent Application No. 2004-131458 Zhiyong Kuo, John Williams, Roger W. Read and Dennis P. Curran, “Fluorous Boc (FBoc) Carbamates: New Amine Protecting Groups for Use in Fluorous Synthesis”, The Journal of Organic Chemistry, 2001, Vol. 66, p.4261-4266. Dennis P. Curran, Rafael Ferritto and Ye Hua, `` Preparation of a Fluorous Benzyl Protecting Group and Its Use in a Fluorous Synthesis Approach to a Disaccharide '', Tetrahedron Letters, 1998, Vol. 39, p.4937-4940. Kohtaro Goto, Tsuyoshi Miura, Mamoru Mizuno, Hiromi Takaki, Nobuyuki Imai, Yasuoki Murakami, Toshiyuki Inazu, “Rapid Oligosaccharide Synthesis on a Novel Benzyl-Type Fluorous Support”, Synlett, 2004, p.2212-1223.

本発明の課題は、フルオラス合成法において目的化合物の合成終了後、目的物に付加した高度にフッ素化された基を切り離し、これを再生して再利用することが容易な高度にフッ素化された化合物を提供することである。   The object of the present invention is to remove a highly fluorinated group added to the target product after completion of the synthesis of the target compound in the fluorosynthetic method, and to recycle and recycle this highly fluorinated group. It is to provide a compound.

本発明者らは鋭意検討した結果、高度にフッ素化された基を効率良く再生再利用するために、目的化合物との間に切り離しの容易なリンカーを挟むことで従来再利用が困難あるいは不可能であった高度にフッ素化された基の再利用を容易にし、本発明を完成させた。
またリンカーの構造をそれぞれの反応に合わせることにより、本発明の再生再利用が容易な高度にフッ素化されたアルコール誘導体は多種類の反応の合成用試剤となり得る。例えば糖鎖およびペプチド等の合成用試剤として用いることができ、糖鎖およびペプチド、糖ペプチド等の合成が容易になる。
As a result of intensive studies, the present inventors have found that it is difficult or impossible to reuse a highly fluorinated group by inserting a linker that can be easily separated from the target compound in order to efficiently recycle and reuse the group. The highly fluorinated group that was previously was facilitated and the present invention was completed.
Further, by adapting the structure of the linker to each reaction, the highly fluorinated alcohol derivative of the present invention that can be easily recycled and reused can be a reagent for the synthesis of many kinds of reactions. For example, it can be used as a reagent for synthesizing sugar chains and peptides, and the synthesis of sugar chains, peptides, glycopeptides and the like is facilitated.

すなわち、本発明は、式[I]

Figure 2006306784
(式中、Rfは、パーフルオロアルキル基を1つまたは複数箇所有する、高度にフッ素化されたアシル基を、Rは水素、アルキル基、アラルキル基、アリール基、炭素数3〜16のパーフルオロアルキル基のいずれかを、mは0〜6の整数を、nは0〜2の整数を、pは0〜6の整数を、qは1〜6の整数を、sは0〜2の整数を表し、Rf、R、p、q、sはその表示各位において同一である必要はない。)
で表される高度にフッ素化されたアルコール誘導体と、その合成用試剤としての使用である。 That is, the present invention provides a compound of the formula [I]
Figure 2006306784
(Wherein Rf is a highly fluorinated acyl group having one or more perfluoroalkyl groups, R is hydrogen, an alkyl group, an aralkyl group, an aryl group, or a perfluorocarbon having 3 to 16 carbon atoms. Any one of the alkyl groups, m is an integer of 0 to 6, n is an integer of 0 to 2, p is an integer of 0 to 6, q is an integer of 1 to 6, and s is an integer of 0 to 2. Rf, R, p, q, and s need not be the same in each display position.
A highly fluorinated alcohol derivative represented by the formula (1) and its use as a synthesis reagent.

再生再利用が容易であることから、環境に優しく、経済性に優れたフルオラス合成用試剤を提供できる。またリンカーを挟むことによって種々の反応に適用できる。   Since it is easy to recycle and reuse, it is possible to provide a fluorous synthesis agent that is environmentally friendly and economical. It can also be applied to various reactions by sandwiching a linker.

以下、本発明を詳細に説明する。
式[I]において、Rfはパーフルオロアルキル基を1つまたは複数箇所有する、高度にフッ素化されたアシル基である。パーフルオロアルキル基としては、周知のパーフルオロアルキル基を用いることができる。たとえば、パーフルオロヘキシル基、パーフルオロヘプチル基、パーフルオロオクチル基、パーフルオロデシル基、パーフルオロテトラデシル基などを挙げることができる。さらに、分岐構造や立体異性体の有無などを問わないことは言うまでもない。フッ素原子の導入率を高めるにはパーフルオロアルキル基は長鎖の方が有効である。しかし、通常取り扱いや入手の容易さを考慮し、炭素数3〜16が、好ましく、さらに炭素数4〜10が好ましい。パーフルオロアルキル基の数は多いほどフッ素含有率が高くなるので合成用試剤としては好ましいが、導入する化合物に合わせて選択すれば良い。一般には1〜12本であり、好ましくは1〜6本であり、例えば、下式[II]または[III]等を挙げることができる。

Figure 2006306784
Figure 2006306784
Hereinafter, the present invention will be described in detail.
In the formula [I], Rf is a highly fluorinated acyl group having one or more perfluoroalkyl groups. As the perfluoroalkyl group, a known perfluoroalkyl group can be used. For example, a perfluorohexyl group, a perfluoroheptyl group, a perfluorooctyl group, a perfluorodecyl group, a perfluorotetradecyl group, and the like can be given. Furthermore, it goes without saying that it does not matter whether there is a branched structure or a stereoisomer. Longer chains of perfluoroalkyl groups are more effective for increasing the introduction rate of fluorine atoms. However, in view of normal handling and availability, the number of carbon atoms is preferably 3 to 16, and more preferably 4 to 10 carbon atoms. Since the fluorine content increases as the number of perfluoroalkyl groups increases, it is preferable as a reagent for synthesis, but may be selected according to the compound to be introduced. In general, the number is 1 to 12, preferably 1 to 6, and examples thereof include the following formula [II] or [III].
Figure 2006306784
Figure 2006306784

Rは、水素、アルキル基、アラルキル基、アリール基、炭素数3〜16のパーフルオロアルキル基のいずれかであり、例えばアルキル基としては、メチル基、エチル基、n‐プロピル基、イソプロピル基、n‐ブチル基等が挙げられる。好ましくは、メチル基、エチル基、n‐プロピル基である。アラルキル基としては、例えば、ベンジル基、フェネチル基、9‐フルオレニルメチル基、ナフチルメチル等が挙げられる。好ましくは、ベンジル基、フェネチル基である。アリール基としては例えば、フェニル基、ナフチル基、アントラセニル基、ピレニル基等が挙げられる。好ましくは、フェニル基、ナフチル基である。炭素数3〜16のパーフルオロアルキル基としては例えばパーフルオロブチル基、パーフルオロヘキシル基、パーフルオロヘプチル基、パーフルオロオクチル基、パーフルオロデシル基、パーフルオロテトラデシル基等が挙げられる。好ましくはパーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基である。   R is any one of hydrogen, an alkyl group, an aralkyl group, an aryl group, and a C 3-16 perfluoroalkyl group. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, Examples include n-butyl group. A methyl group, an ethyl group, and an n-propyl group are preferable. Examples of the aralkyl group include benzyl group, phenethyl group, 9-fluorenylmethyl group, naphthylmethyl and the like. Preferably, they are a benzyl group and a phenethyl group. Examples of the aryl group include a phenyl group, a naphthyl group, an anthracenyl group, and a pyrenyl group. Preferably, they are a phenyl group and a naphthyl group. Examples of the C 3-16 perfluoroalkyl group include a perfluorobutyl group, a perfluorohexyl group, a perfluoroheptyl group, a perfluorooctyl group, a perfluorodecyl group, and a perfluorotetradecyl group. A perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group are preferable.

mは0〜6、nは0〜2、pは0〜6、qは1〜6、sは0〜2の整数であるが、好ましくは、mは0または1、nは0または2、pは1、qは1または2、sは0または1の整数である。
式[I]の化合物としては、例えば、式[IV]、[V](式中、Rfは式[II]または[III]を表す。)等が挙げられる。

Figure 2006306784
m is 0-6, n is 0-2, p is 0-6, q is 1-6, s is an integer of 0-2, preferably m is 0 or 1, n is 0 or 2, p is 1, q is 1 or 2, and s is an integer of 0 or 1.
Examples of the compound of the formula [I] include the formula [IV], [V] (wherein Rf represents the formula [II] or [III]).
Figure 2006306784

式[I]で表わされる本発明の化合物は、例えばポリアミノアルコール誘導体のアミノ基と、パーフルオロアルキル基を1つまたは複数箇所有する、高度にフッ素化されたカルボン酸のカルボキシル基を反応させることにより合成できる。例えば、高度にフッ素化されたカルボン酸を予め、酸ハロゲン化物、混合酸無水物、対称酸無水物、活性エステルに変換させて反応させる方法や、N,N‐ジシクロヘキシルカルボジイミド(DCC)などの縮合試薬と直接反応させる方法が挙げられる。いずれの誘導体も周知の誘導体を利用できる。具体的には、酸塩化物、酸臭化物、ピバル酸混合酸無水物、ペンタフルオロフェニルエステル、p‐ニトロフェニルエステル、コハク酸イミドエステルなど周知の誘導体を例示できる。   The compound of the present invention represented by the formula [I] is obtained by reacting, for example, an amino group of a polyaminoalcohol derivative with a carboxyl group of a highly fluorinated carboxylic acid having one or more perfluoroalkyl groups. Can be synthesized. For example, highly fluorinated carboxylic acids are converted into acid halides, mixed acid anhydrides, symmetric acid anhydrides, active esters and reacted in advance, or condensation such as N, N-dicyclohexylcarbodiimide (DCC) The method of making it react with a reagent directly is mentioned. Any derivative may be a known derivative. Specific examples include known derivatives such as acid chlorides, acid bromides, pivalic acid mixed acid anhydrides, pentafluorophenyl esters, p-nitrophenyl esters, and succinimide esters.

縮合試薬としては前述のDCC、PyBOPTM(ベンゾトリアゾール‐1‐イル‐オキシ‐トリス‐ピロリジノ‐ホスホニウム ヘキサフルオロホスフェート)、BOP(ベンゾトリアゾール‐1‐イル‐オキシ‐トリス(ジメチルアミノ)ホスホニウム ヘキサフルオロホスフェート)、DMTMM(4‐(4,6‐ジメトキシ‐1,3,5‐トリアジン‐2‐イル)‐4‐メチルモルホリンクロリド)等を挙げることができる。 Condensation reagents include the aforementioned DCC, PyBOP (benzotriazol-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate), BOP (benzotriazol-1-yl-oxy-tris (dimethylamino) phosphonium hexafluorophosphate ), DMTMM (4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholine chloride) and the like.

原料となるポリアミノアルコールは式[I']で表され、例えば式[VI]、[VII]等が挙げられる。

Figure 2006306784
(式中、Rは水素、アルキル基、アラルキル基、アリール基、炭素数3〜16のパーフルオロアルキル基のいずれかを、mは0〜6の整数を、nは0〜2の整数を、pは0〜6の整数を、qは1〜6の整数を、sは0〜2の整数を表し、Rf、R、p、q、sはその表示各位において同一である必要はない。)
Figure 2006306784
The polyamino alcohol used as a raw material is represented by the formula [I ′], and examples thereof include formulas [VI] and [VII].
Figure 2006306784
(In the formula, R represents hydrogen, an alkyl group, an aralkyl group, an aryl group, or a C 3-16 perfluoroalkyl group, m represents an integer of 0-6, n represents an integer of 0-2, p represents an integer of 0 to 6, q represents an integer of 1 to 6, s represents an integer of 0 to 2, and Rf, R, p, q, and s need not be the same in each display position.
Figure 2006306784

もう1つの原料であるパーフルオロアルキル基を1つまたは複数箇所有する、高度にフッ素化されたカルボン酸としては特に限定はされないが、パーフルオロアルキル基を一つ以上置換基として有するカルボン酸である。例えば式[II]、式[III]等のアシル基を有するカルボン酸等が挙げられる。より簡単な具体例としては下式[[VIII]、[IX]等が挙げられる。

Figure 2006306784
Figure 2006306784
Although it does not specifically limit as a highly fluorinated carboxylic acid which has one or more perfluoroalkyl groups which are another raw material, It is a carboxylic acid which has one or more perfluoroalkyl groups as a substituent. . Examples thereof include carboxylic acids having an acyl group such as formula [II] and formula [III]. More specific examples include the following formulas [[VIII], [IX] and the like.
Figure 2006306784
Figure 2006306784

反応溶媒としては、周知の溶媒を使用できる。ジクロロメタン、クロロホルム、ヘキサン、ベンゼン、トルエン、テトラヒドロフラン、エーテル、N,N‐ジメチルホルムアミド、N,N‐ジメチルアセトアミド、アセトニトリル、プロピオニトリル、酢酸エチル、ジメチルスルホキシド、メチルエチルケトン、フルオロカーボン(例えばノベックTMHFE‐7200)、パーフルオロカーボン(例えば、フロリナートTMFC‐72)などを挙げることができる。また、これらの混合物や含水物、あるいは、不均一系での反応ができることは言うまでもない。 As the reaction solvent, a known solvent can be used. Dichloromethane, chloroform, hexane, benzene, toluene, tetrahydrofuran, ether, N, N-dimethylformamide, N, N-dimethylacetamide, acetonitrile, propionitrile, ethyl acetate, dimethyl sulfoxide, methyl ethyl ketone, fluorocarbon (eg Novec HFE-7200) ), Perfluorocarbon (for example, Fluorinert FC-72) and the like. Needless to say, the reaction can be carried out in a mixture, hydrated product, or heterogeneous system.

通常これらの縮合工程は、反応を促進させるために塩基の存在下で行われる。塩基としては何ら制限はない。たとえば、トリエチルアミン、トリブチルアミン、N,N‐ジイソプロピルエチルアミン、ピリジン、DBUなどの有機塩基、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウムなどの無機塩基あるいは、ブチルリチウム、フェニルリチウムなどの有機金属化合物を挙げることができる。   Usually these condensation steps are carried out in the presence of a base in order to accelerate the reaction. There is no restriction as a base. For example, organic bases such as triethylamine, tributylamine, N, N-diisopropylethylamine, pyridine and DBU, inorganic bases such as potassium carbonate, cesium carbonate, sodium hydroxide and potassium hydroxide, or organic metals such as butyllithium and phenyllithium A compound can be mentioned.

用いる両原料、塩基の当量数にも何ら制限はない。いずれか1成分か2成分を過剰に用いることもできる。
反応時間、反応温度にも何ら制限はない。いずれも個々の誘導体によって異なり、また塩基や溶媒によっても異なるが、通常、室温から溶媒の沸点までの範囲で、1時間から7日間の範囲である。
There are no restrictions on the number of equivalents of both raw materials and base used. Either one component or two components can be used in excess.
There is no limitation on reaction time and reaction temperature. Each of them varies depending on individual derivatives and also varies depending on the base and the solvent, but is usually in the range of 1 hour to 7 days in the range from room temperature to the boiling point of the solvent.

以上のようにして得られる本発明化合物である式[I]で示される高度にフッ素化されたアルコール誘導体はそれ自体フルオラス合成用試剤として使用できるが、リンカーを結合しリンカーを介して目的化合物と結合すれば、図1に示すように目的物を合成したのち、リンカー部分で切り出すことができる。その後、高度にフッ素化されたアルコール誘導体とリンカーを切断する手順を経ることにより、リンカーの構造に関わらず高度にフッ素化されたアルコール誘導体を効率よく回収し、再生再利用することができる。リンカーの構造を目的物に合わせて設計すれば、種々の反応に使用することができる。
例えば、カルボキシル基ともう一つの官能基を含有するリンカーと、高度にフッ素化されたアルコール誘導体をエステル結合し、リンカーのもう1つの官能基を使用して合成反応化合物に結合する方法を挙げることができる。
The highly fluorinated alcohol derivative represented by the formula [I], which is the compound of the present invention obtained as described above, can be used as a reagent for fluorous synthesis per se, but is bonded to the target compound via a linker. If they are bonded, after synthesizing the target product as shown in FIG. 1, it can be cut out at the linker portion. Thereafter, through a procedure for cleaving the highly fluorinated alcohol derivative and the linker, the highly fluorinated alcohol derivative can be efficiently recovered regardless of the structure of the linker, and can be recycled and reused. If the structure of the linker is designed according to the object, it can be used for various reactions.
For example, mention may be made of a method in which a linker containing a carboxyl group and another functional group is esterified with a highly fluorinated alcohol derivative and the other functional group of the linker is used to bind to a synthetic reaction compound. Can do.

リンカーの構造には特に制限は無く、アルコールと結合可能な官能基と、さらに合成反応化合物と結合できる官能基を有していれば良いが、フルオラス合成に必要なフッ素含有率を考慮すると分子量の大きなものは避けたほうが良い。
具体的には式[X]、式[XI]、式[XII]等で示される構造が挙げられる。

Figure 2006306784
Figure 2006306784
Figure 2006306784
リンカーと本発明のアルコール誘導体との結合方法には制限は無く、既知の方法を用いることができる。リンカーとフルオラス合成原料化合物との結合も、合成反応に耐え、合成後の切り出しが容易なものであれば良い。 There is no particular limitation on the structure of the linker, as long as it has a functional group capable of binding to alcohol and a functional group capable of binding to a synthetic reaction compound, but considering the fluorine content necessary for fluorous synthesis, the molecular weight Avoid large ones.
Specific examples include structures represented by formula [X], formula [XI], formula [XII], and the like.
Figure 2006306784
Figure 2006306784
Figure 2006306784
There is no restriction | limiting in the coupling | bonding method of a linker and the alcohol derivative of this invention, A known method can be used. The bond between the linker and the fluorous synthesis raw material compound may be any one that can withstand the synthesis reaction and can be easily cut out after the synthesis.

フルオラス合成は各工程において、反応終了後、表面が高度にフッ素化されたシリカゲルを用いる固相抽出法あるいは反応液をパーフルオロカーボン溶媒と有機溶媒または水、または酸性の水溶液、または塩基性の水溶液により分配抽出を行い、目的物をパーフルオロカーボン層に抽出する方法のいずれかを用いるが、パーフルオロカーボンを用いる分配抽出が好ましい。
抽出に用いるパーフルオロカーボンとしては、周知のパーフルオロカーボン溶媒を使用できる。具体的には、パーフルオロヘキンサン、パーフルオロヘプタン、パーフルオロオクタン、フロリナートTMFC72、フロリナートTMFC77、フロリナートTMFC84、フロリナートTMFC87、パーフルオロメチルヘキサン等を挙げることができる。特にフロリナートTMFC72とパーフルオロメチルヘキサンが好ましい。
Fluorous synthesis is performed in each step after the completion of the reaction by solid phase extraction method using silica gel with highly fluorinated surface or reaction solution using perfluorocarbon solvent and organic solvent or water, acidic aqueous solution, or basic aqueous solution. Any method of performing partition extraction and extracting the target product into the perfluorocarbon layer is used, but partition extraction using perfluorocarbon is preferred.
As the perfluorocarbon used for extraction, a known perfluorocarbon solvent can be used. Specific examples include perfluorohexyne, perfluoroheptane, perfluorooctane, Fluorinert FC72, Fluorinert FC77, Fluorinert FC84, Fluorinert FC87, perfluoromethylhexane, and the like. Particularly preferred are Fluorinert FC72 and perfluoromethylhexane.

有機溶媒としては周知の有機溶媒を使用できる。具体的にはジクロロメタン、クロロホルム、ベンゼン、トルエン、テトラヒドロフラン、ジエチルエーテル、DMF、アセトニトリル、酢酸エチル、ジメチルホルムアミド、アセトン、メチルエチルケトン、メタノール、エタノール、プロパノール等を挙げることができる。特に、メタノール、DMF、トルエン、アセトニトリルが好ましい。   As the organic solvent, a known organic solvent can be used. Specific examples include dichloromethane, chloroform, benzene, toluene, tetrahydrofuran, diethyl ether, DMF, acetonitrile, ethyl acetate, dimethylformamide, acetone, methyl ethyl ketone, methanol, ethanol, propanol, and the like. In particular, methanol, DMF, toluene, and acetonitrile are preferable.

本発明化合物が導入された化合物はパーフルオロカーボン層へ抽出されやすくなり、精製操作が容易になる。そのため、天然物およびその誘導体の合成における、脱保護、及び縮合の各反応段階においての精製操作を簡略化することができる。また、目的化合物合成後、本発明化合物はそれぞれ適切な方法で目的化合物から容易に除去できる。例えば、リンカーとして式[X]、式[XI]で示される化合物を用いる場合はトリフルオロ酢酸やトリフルオロメタンスルホン酸などの酸性条件下における反応により、目的化合物をリンカー部位を有する高度にフッ素化された基から切除できる。その後、水酸化ナトリウムやナトリウムメトキシド等の塩基性条件下おける反応によりリンカーからの切り出しを行うことで、式[I](式中、Rfは、パーフルオロアルキル基を1つまたは複数箇所有する、高度にフッ素化されたアシル基を、Rは水素、アルキル基、アラルキル基、アリール基、炭素数3〜16のパーフルオロアルキル基のいずれかを、mは0〜6の整数を、nは0〜2の整数を、pは0〜6の整数を、qは1〜6の整数を、sは0〜2の整数を表し、Rf、R、p、q、sはその表示各位において同一である必要はない。)に示す高度にフッ素化されたアルコール誘導体が再生される。再生された本発明化合物もしくはその誘導体はパーフルオロカーボン層へ容易に抽出されるため、回収、再利用ができる循環型のフルオラス合成システムを確立できる。   The compound in which the compound of the present invention is introduced is easily extracted into the perfluorocarbon layer, and the purification operation is facilitated. Therefore, purification operations at the deprotection and condensation reaction steps in the synthesis of natural products and derivatives thereof can be simplified. In addition, after synthesis of the target compound, the compound of the present invention can be easily removed from the target compound by an appropriate method. For example, when a compound represented by the formula [X] or [XI] is used as the linker, the target compound is highly fluorinated having a linker moiety by a reaction under acidic conditions such as trifluoroacetic acid and trifluoromethanesulfonic acid. Can be excised from the base. Then, by cutting out from the linker by a reaction under basic conditions such as sodium hydroxide and sodium methoxide, the formula [I] (wherein Rf has one or more perfluoroalkyl groups, A highly fluorinated acyl group, R is hydrogen, an alkyl group, an aralkyl group, an aryl group, or a perfluoroalkyl group having 3 to 16 carbon atoms, m is an integer of 0 to 6, and n is 0 An integer of ˜2, p is an integer of 0-6, q is an integer of 1-6, s is an integer of 0-2, and Rf, R, p, q, s are the same in each display position. The highly fluorinated alcohol derivative shown below is regenerated. Since the regenerated compound of the present invention or a derivative thereof is easily extracted into the perfluorocarbon layer, a circulation type fluorous synthesis system that can be recovered and reused can be established.

以下に実施例を挙げて本発明をさらに具体的に説明するが、その要旨を超えない限り、何ら制限を受けるものではない。また、Fmocは9‐フルオレニルメトキシカルボニル基、Glyはグリシン残基、Alaはアラニン残基、Pheはフェニルアラニン残基、Thrはスレオニン残基の略号である。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited at all unless it exceeds the gist. Fmoc is an abbreviation for 9-fluorenylmethoxycarbonyl group, Gly is a glycine residue, Ala is an alanine residue, Phe is a phenylalanine residue, and Thr is an abbreviation for threonine residue.

[実施例1]
式[VI]で表されるN‐(2‐アミノエチル)エタノールアミン(127mg,1.22mmol)と式[VIII]で表される高度にフッ素化されたカルボン酸(3.79g,2.44mmol)をフルオロカーボン(ノベックTMHFE‐7200)(30mL)とジクロロメタン(30mL)の混合溶媒に溶解させ、この溶液にN,N‐ジイソプロピルエチルアミン(0.85mL,4.88mmol)とPyBOP(1.52g,2.93mmol)を加え、室温で2時間攪拌した。反応液を三分の一まで濃縮した後、メタノール(100mL)とパーフルオロカーボン(フロリナートTMFC‐72)(100mL)で分配抽出し、FC‐72層を減圧濃縮した。粗生成物を全量、フルオロカーボン(ノベックTMHFE‐7200)(30mL)とメタノール(60mL)の混合溶媒に溶解させ、この溶液に触媒量のナトリウムメトキシドを加え、室温で60分攪拌した。イオン交換樹脂(アンバーライトIR‐120H+型)を加えて反応を停止させ、ろ過後、濾液を濃縮し、メタノール(100mL)とパーフルオロカーボン(フロリナートTMFC‐72)(100mL)で分配抽出し、FC‐72層を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1)にて精製し、式[I](式中、Rfは式[II]、RがH、mが0、nが2、pが1、qが2、sが1を表す)で示される下式の化合物1を3.29g(85%)得た。
MALDI-TOF MASS:Calcd for C82H59F102N6O7 (M+H+):3177.3、Found:3176.4.

Figure 2006306784
[Example 1]
N- (2-aminoethyl) ethanolamine represented by formula [VI] (127 mg, 1.22 mmol) and highly fluorinated carboxylic acid represented by formula [VIII] (3.79 g, 2.44 mmol) ) Was dissolved in a mixed solvent of fluorocarbon (Novec HFE-7200) (30 mL) and dichloromethane (30 mL), and N, N-diisopropylethylamine (0.85 mL, 4.88 mmol) and PyBOP (1.52 g, 1.5 mL, 2.93 mmol) was added and stirred at room temperature for 2 hours. The reaction solution was concentrated to one third, then partitioned and extracted with methanol (100 mL) and perfluorocarbon (Fluorinert FC-72) (100 mL), and the FC-72 layer was concentrated under reduced pressure. The entire amount of the crude product was dissolved in a mixed solvent of fluorocarbon (Novec HFE-7200) (30 mL) and methanol (60 mL), a catalytic amount of sodium methoxide was added to this solution, and the mixture was stirred at room temperature for 60 minutes. Ion exchange resin (Amberlite IR-120H + type) was added to stop the reaction, and after filtration, the filtrate was concentrated, partitioned and extracted with methanol (100 mL) and perfluorocarbon (Fluorinert FC-72) (100 mL). The FC-72 layer was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform: methanol = 20: 1), and the formula [I] (wherein Rf was the formula [II], R was H, m was 0, n was 2, 3.29 g (85%) of the compound of the following formula represented by p = 1, q = 2 and s represents 1) was obtained.
MALDI-TOF MASS: Calcd for C 82 H 59 F 102 N 6 O 7 (M + H + ): 3177.3, Found: 3176.4.
Figure 2006306784

[実施例2]
式[X]のアミノ基がFmoc基で保護されたカルボン酸誘導体(199mg,0.37mmol)と実施例1で合成した化合物1(390mg,0.12mmol)をフルオロカーボン(ノベックTMHFE‐7200)(2mL)とジクロロメタン(4mL)の混合溶媒に溶解させ、この溶液にN,N‐ジイソプロピルエチルアミン(77μL,0.44mmol)とPyBOP(223mg,0.44mmol)とN,N‐ジメチルアミノピリジン(1.5mg,12μmol)を加え、室温で4時間攪拌した。反応液を三分の一まで濃縮した後、メタノール(20mL)と パーフルオロカーボン(フロリナートTMFC‐72)(20mL)で分配抽出し、FC‐72層を減圧濃縮して、アミノ基がFmoc基で保護された下式の化合物2(式中、Rfは式[II]を表す)(462mg)を得た。

Figure 2006306784
[Example 2]
A carboxylic acid derivative (199 mg, 0.37 mmol) in which the amino group of the formula [X] is protected with an Fmoc group and the compound 1 (390 mg, 0.12 mmol) synthesized in Example 1 were combined with a fluorocarbon (Novec HFE-7200) ( 2 mL) and dichloromethane (4 mL), and this solution was dissolved in N, N-diisopropylethylamine (77 μL, 0.44 mmol), PyBOP (223 mg, 0.44 mmol) and N, N-dimethylaminopyridine (1. 5 mg, 12 μmol) was added, and the mixture was stirred at room temperature for 4 hours. After concentrating the reaction solution to one third, it was partitioned and extracted with methanol (20 mL) and perfluorocarbon (Fluorinert FC-72) (20 mL), the FC-72 layer was concentrated under reduced pressure, and the amino group was converted to Fmoc group. The protected compound 2 of the following formula (wherein Rf represents formula [II]) (462 mg) was obtained.
Figure 2006306784

化合物2(式中、Rfは式[II]を表す)(420mg)をパーフルオロカーボン(フロリナートTMFC‐72)(4mL)とN,N‐ジメチルホルムアミド(4mL)の混合溶媒に溶解させ、この溶液にピペリジン(0.4mL)を加え、室温で20分間攪拌した。反応液をアセトニトリル(20mL)とパーフルオロカーボン(フロリナートTMFC‐72)(20mL)で分配抽出し、FC‐72層を減圧濃縮し、下式のアミノ化合物3(式中、Rfは式[II]を表す)(390mg)を得た。

Figure 2006306784
Compound 2 (wherein Rf represents formula [II]) (420 mg) was dissolved in a mixed solvent of perfluorocarbon (Fluorinert FC-72) (4 mL) and N, N-dimethylformamide (4 mL), and this solution Piperidine (0.4 mL) was added to and stirred at room temperature for 20 minutes. The reaction solution was partitioned and extracted with acetonitrile (20 mL) and perfluorocarbon (Fluorinert FC-72) (20 mL), the FC-72 layer was concentrated under reduced pressure, and amino compound 3 (wherein Rf represents the formula [II]) (390 mg) was obtained.
Figure 2006306784

[実施例3]
Fmoc‐Gly‐OH(162mg,0.54mmol)と実施例1の化合物1(576mg,0.18mmol)をフルオロカーボン(ノベックTMHFE‐7200)(2.5mL)とジクロロメタン(5mL)とN,N‐ジメチルホルムアミド(2mL)の混合溶媒に溶解させ、この溶液にN,N‐ジイソプロピルカルボジイミド(76mg,0.60mmol)とN,N‐ジメチルアミノピリジン(6.6mg,54μmol)を加え、室温で3時間攪拌した。反応液を三分の一まで濃縮した後、アセトニトリル(40mL)とパーフルオロカーボン(フロリナートTMFC‐72)(40mL)で分配抽出し、FC‐72層を減圧濃縮して、アミノ基がFmoc基で保護された化合物4(式中、Rfは式[II]を表す)(626mg)を得た。

Figure 2006306784
[Example 3]
Fmoc-Gly-OH (162 mg, 0.54 mmol) and compound 1 of Example 1 (576 mg, 0.18 mmol) were combined with fluorocarbon (Novec HFE-7200) (2.5 mL), dichloromethane (5 mL) and N, N- It was dissolved in a mixed solvent of dimethylformamide (2 mL), and N, N-diisopropylcarbodiimide (76 mg, 0.60 mmol) and N, N-dimethylaminopyridine (6.6 mg, 54 μmol) were added to this solution, and the mixture was stirred at room temperature for 3 hours. Stir. After the reaction solution was concentrated to one third, it was partitioned and extracted with acetonitrile (40 mL) and perfluorocarbon (Fluorinert FC-72) (40 mL), the FC-72 layer was concentrated under reduced pressure, and the amino group became an Fmoc group. Protected compound 4 (wherein Rf represents formula [II]) (626 mg) was obtained.
Figure 2006306784

化合物4(式中、Rfは式[II]を表す)(626mg)をパーフルオロカーボン(フロリナートTMFC‐72)(6mL)とN,N‐ジメチルホルムアミド(6mL)の混合溶媒に溶解させ、この溶液にピペリジン(0.6mL)を加え、室温で60分間攪拌した。反応液をアセトニトリル(40mL)とパーフルオロカーボン(フロリナートTMFC‐72)(40mL)で分配抽出し、FC‐72層を減圧濃縮し、アミノ化合物5(Rfは式[II]を表す)(596mg)を得た。

Figure 2006306784
Compound 4 (wherein Rf represents formula [II]) (626 mg) was dissolved in a mixed solvent of perfluorocarbon (Fluorinert FC-72) (6 mL) and N, N-dimethylformamide (6 mL). Piperidine (0.6 mL) was added to and stirred at room temperature for 60 minutes. The reaction solution was partitioned and extracted with acetonitrile (40 mL) and perfluorocarbon (Fluorinert FC-72) (40 mL), the FC-72 layer was concentrated under reduced pressure, and amino compound 5 (Rf represents formula [II]) (596 mg) Got.
Figure 2006306784

[実施例4]
式[XI]で示されるカルボン酸誘導体(87mg,0.36mmol)をN‐メチルピロリドン(2mL)に溶解させ、2Mに調整したN,N‐ジイソプロピルエチルアミンのN‐メチルピロリドン溶液(0.18mL,0.36mmol)と1Mに調整した塩化ジメチルホスフィノチオイルのN‐メチルピロリドン溶液(0.36mL,0.36mmol)を加え、0℃で30分時間攪拌し、ジメチルチオホスフィン酸混合酸無水物を調製した。さらに化合物5(Rfは式[II]を表す)(596mg)をフルオロカーボン(ノベックTMHFE‐7200)(3mL)とジクロロメタン(6mL)および2Mに調整したN,N‐ジイソプロピルエチルアミンのN‐メチルピロリドン溶液(0.18mL,0.36mmol)の混合溶媒に溶解させたものに、上記のジメチルチオホスフィン酸混合酸無水物溶液を加え、室温で30分攪拌した。反応液を三分の一まで濃縮した後、アセトニトリル(40mL)とパーフルオロカーボン(フロリナートTMFC‐72)(40mL)で分配抽出し、FC‐72層を減圧濃縮して、化合物6(式中、Rfは式[II]を表す)(640mg)を得た。

Figure 2006306784
[Example 4]
A carboxylic acid derivative represented by the formula [XI] (87 mg, 0.36 mmol) was dissolved in N-methylpyrrolidone (2 mL), and a 2 M solution of N, N-diisopropylethylamine in N-methylpyrrolidone (0.18 mL, 0.36 mmol) and N-methylpyrrolidone solution (0.36 mL, 0.36 mmol) of dimethylphosphinothioyl chloride adjusted to 1M was added, and the mixture was stirred at 0 ° C. for 30 minutes, and mixed with dimethylthiophosphinic acid anhydride Was prepared. Further, N-methylpyrrolidone solution of N, N-diisopropylethylamine prepared by adjusting Compound 5 (Rf represents Formula [II]) (596 mg) to fluorocarbon (Novec HFE-7200) (3 mL), dichloromethane (6 mL) and 2M The above dimethylthiophosphinic acid mixed acid anhydride solution was added to a solution dissolved in (0.18 mL, 0.36 mmol) of mixed solvent, and the mixture was stirred at room temperature for 30 minutes. After the reaction solution was concentrated to one third, it was partitioned and extracted with acetonitrile (40 mL) and perfluorocarbon (Fluorinert FC-72) (40 mL), and the FC-72 layer was concentrated under reduced pressure to give compound 6 (wherein Rf represents formula [II]) (640 mg).
Figure 2006306784

[実施例5]
無水グルタル酸(140mg,1.23mmol)と実施例1の化合物1(1.30g,0.41mmol)をフルオロカーボン(ノベックTMHFE‐7200)(13mL)とジクロロメタン(13mL)の混合溶媒に溶解させ、この溶液にトリエチルアミン(0.34mL,2.45mmol)を加え、室温で20時間攪拌した。反応液に蒸留水5mLを加えた後、2N塩酸水溶液(100mL)と フルオロカーボン(ノベックTMHFE‐7200)と酢酸エチルの混合溶液(100mL)で分配抽出し、有機層を減圧濃縮して、化合物7(式中、Rfは式[II]を表す)(1.38g)を定量的に得た。
MALDI-TOF MASS:Calcd for C87H64F102N6NaO10 (M+Na+):3113.3、Found:3113.2.

Figure 2006306784
[Example 5]
Glutaric anhydride (140 mg, 1.23 mmol) and compound 1 of Example 1 (1.30 g, 0.41 mmol) were dissolved in a mixed solvent of fluorocarbon (Novec HFE-7200) (13 mL) and dichloromethane (13 mL). Triethylamine (0.34 mL, 2.45 mmol) was added to this solution, and the mixture was stirred at room temperature for 20 hours. Distilled water (5 mL) was added to the reaction mixture, and the mixture was partitioned and extracted with a 2N aqueous hydrochloric acid solution (100 mL), a mixed solution of fluorocarbon (Novec HFE-7200) and ethyl acetate (100 mL). (Wherein Rf represents formula [II]) (1.38 g) was obtained quantitatively.
MALDI-TOF MASS: Calcd for C 87 H 64 F 102 N 6 NaO 10 (M + Na + ): 3113.3, Found: 3113.2.
Figure 2006306784

[実施例6]
式[VII]で表されるペンタエリスリトールトリアミンの塩酸塩(74.8mg,0.31mmol)と式[IX]で表される高度にフッ素化されたカルボン酸(1.09g,1.01mmol)をフルオロカーボン(ノベックTMHFE‐7200)(10mL)とメタノール(10mL)の混合溶媒に溶解させ、この溶液にN,N‐ジイソプロピルエチルアミン(0.16mL,0.92mmol)と4‐(4,6‐ジメトキシ‐1,3,5‐トリアジン‐2‐イル)‐4‐メチルモルホリンクロリド(301mg,1.05mmol)を加え、室温で3時間攪拌した。反応液を三分の一まで濃縮した後、アセトニトリル(100mL)と パーフルオロカーボン(フロリナートTMFC‐72)(100mL)で分配抽出し、FC‐72層を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=6:1)にて精製し、式[I](式中、Rfは式[III]、RがH、mが1、nが0、pが1、qが0、sが0を表す)で示される下式の化合物8を816mg(84%)得た。
1H-NMR (CDCl3-CD3OD): δ 1.82―2.01 (6H, m), 2.06―2.29 (6H, m), 2.46―2.88 (18H, m), 2.91―3.06 (6H, m), 3.10―3.20 (2H, m), 3.43―3.56 (6H, m),3.61―4.08 (6H, m).

Figure 2006306784
[Example 6]
Pentaerythritol triamine hydrochloride represented by formula [VII] (74.8 mg, 0.31 mmol) and highly fluorinated carboxylic acid represented by formula [IX] (1.09 g, 1.01 mmol) Dissolve in a mixed solvent of fluorocarbon (Novec HFE-7200) (10 mL) and methanol (10 mL), and add N, N-diisopropylethylamine (0.16 mL, 0.92 mmol) and 4- (4,6-dimethoxy) to this solution. -1,3,5-triazin-2-yl) -4-methylmorpholine chloride (301 mg, 1.05 mmol) was added, and the mixture was stirred at room temperature for 3 hours. The reaction solution was concentrated to one third, then partitioned and extracted with acetonitrile (100 mL) and perfluorocarbon (Fluorinert FC-72) (100 mL), and the FC-72 layer was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform: methanol = 6: 1), and the formula [I] (wherein Rf was formula [III], R was H, m was 1, n was 0, 816 mg (84%) of the compound of the following formula represented by p = 1, q = 0, and s = 0 were obtained.
1 H-NMR (CDCl 3 -CD 3 OD): δ 1.82-2.01 (6H, m), 2.06-2.29 (6H, m), 2.46-2.88 (18H, m), 2.91-3.06 (6H, m), 3.10-3.20 (2H, m), 3.43-3.56 (6H, m), 3.61-4.08 (6H, m).
Figure 2006306784

[実施例7]
実施例2で得られた化合物3(式中、Rfは式[II]を表す)(390mg)に対して、次に示すスケジュールに従い、Fmoc‐Ala‐OH、Fmoc‐Phe‐OH、ナフチル酢酸を順次反応させた。なお、各アミノ酸誘導体はそれぞれ1.5当量使用し、縮合試薬としてPyBOPを1.8当量、塩基としてN,N‐ジイソプロピルエチルアミンを1.8当量使用した。
[Example 7]
For compound 3 obtained in Example 2 (wherein Rf represents formula [II]) (390 mg), Fmoc-Ala-OH, Fmoc-Phe-OH, and naphthylacetic acid were added according to the schedule shown below. The reaction was carried out sequentially. Each amino acid derivative was used in an amount of 1.5 equivalents, 1.8 equivalents of PyBOP as a condensation reagent, and 1.8 equivalents of N, N-diisopropylethylamine as a base.

以下にペプチド合成のスケジュールを示す。
縮合反応:アミノ酸と本発明の高度にフッ素化された誘導体をフルオロカーボン(ノベックTMHFE‐7200)(2mL)とジクロロメタン(4mL)の混合溶媒に溶解させ、この溶液にN,N‐ジイソプロピルエチルアミンとPyBOPを加え、室温で1時間攪拌した。反応液を三分の一まで濃縮した後、アセトニトリル(20mL)とパーフルオロカーボン(フロリナートTMFC‐72)(20mL)で分配抽出し、FC‐72層を減圧濃縮する。
脱保護反応:基質をパーフルオロカーボン(フロリナートTMFC‐72)(4mL)とN,N‐ジメチルホルムアミド(4mL)の混合溶媒に溶解させ、この溶液にピペリジン(0.4mL)を加え、室温で30分間攪拌した。反応液をアセトニトリル(20mL)とパーフルオロカーボン(フロリナートTMFC‐72)(20mL)で分配抽出し、FC‐72層を減圧濃縮する。
得られた、本発明の高度にフッ素化された誘導体に結合した保護ペプチド(429mg)に95%トリフルオロ酢酸水溶液(10mL)を加え、室温で2時間攪拌した。溶液を減圧濃縮し、残渣をアセトニトリル、エーテル、メタノールからなる混合溶媒(50mL)とパーフルオロカーボン(フロリナートTMFC‐72)(50mL)で分配抽出し、有機層を減圧濃縮した。得られた残渣をN,N‐ジメチルホルムアミドとジエチルエーテルの混合溶媒で再結晶して目的とするジペプチド誘導体9を38mg(8工程、83%)得た。
化合物9;ESI-TOF MASS:Calcd for C40H46NaO11 (M+K+):442.1528、Found:442.1516.

Figure 2006306784
The peptide synthesis schedule is shown below.
Condensation reaction: Amino acid and the highly fluorinated derivative of the present invention are dissolved in a mixed solvent of fluorocarbon (Novec HFE-7200) (2 mL) and dichloromethane (4 mL), and N, N-diisopropylethylamine and PyBOP are added to this solution. And stirred at room temperature for 1 hour. After concentrating the reaction solution to one third, it is partitioned and extracted with acetonitrile (20 mL) and perfluorocarbon (Fluorinert FC-72) (20 mL), and the FC-72 layer is concentrated under reduced pressure.
Deprotection reaction: The substrate was dissolved in a mixed solvent of perfluorocarbon (Fluorinert FC-72) (4 mL) and N, N-dimethylformamide (4 mL), piperidine (0.4 mL) was added to this solution, and the mixture was stirred at room temperature for 30 minutes. Stir for minutes. The reaction solution is partitioned and extracted with acetonitrile (20 mL) and perfluorocarbon (Fluorinert FC-72) (20 mL), and the FC-72 layer is concentrated under reduced pressure.
To the obtained protected peptide (429 mg) bound to the highly fluorinated derivative of the present invention was added 95% aqueous trifluoroacetic acid (10 mL), and the mixture was stirred at room temperature for 2 hours. The solution was concentrated under reduced pressure, the residue was partitioned and extracted with a mixed solvent (50 mL) consisting of acetonitrile, ether and methanol and perfluorocarbon (Fluorinert FC-72) (50 mL), and the organic layer was concentrated under reduced pressure. The obtained residue was recrystallized with a mixed solvent of N, N-dimethylformamide and diethyl ether to obtain 38 mg (8 steps, 83%) of the desired dipeptide derivative 9.
Compound 9; ESI-TOF MASS: Calcd for C 40 H 46 NaO 11 (M + K + ): 442.1528, Found: 442.1516.
Figure 2006306784

一方、パーフルオロカーボン(フロリナートTMFC‐72)層は減圧濃縮後、残渣を全量、フルオロカーボン(ノベックTMHFE‐7200)(8mL)とメタノール(4mL)の混合溶媒に溶解させ、この溶液に触媒量のナトリウムメトキシドを加え、室温で5分攪拌した。イオン交換樹脂(アンバーライトIR‐120H+型)を加えて反応を停止させ、ろ過後、濾液を濃縮し、メタノール(20mL)とパーフルオロカーボン(フロリナートTMFC‐72)(20mL)で分配抽出し、FC‐72層を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1)にて精製し、式[I](式中、Rfは式[II]、mが0、nが2、pが1、qが2、sが1表す)で示される化合物1を322mg(9工程、90%)回収した。 On the other hand, the perfluorocarbon (Fluorinert FC-72) layer was concentrated under reduced pressure, and the residue was dissolved in a mixed solvent of fluorocarbon (Novec HFE-7200) (8 mL) and methanol (4 mL). Sodium methoxide was added and stirred at room temperature for 5 minutes. Ion exchange resin (Amberlite IR-120H + type) was added to stop the reaction, and after filtration, the filtrate was concentrated, partitioned and extracted with methanol (20 mL) and perfluorocarbon (Fluorinert FC-72) (20 mL), The FC-72 layer was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform: methanol = 20: 1), and the formula [I] (wherein Rf was the formula [II], m was 0, n was 2, p was 1, 322 mg (9 steps, 90%) of the compound 1 represented by q is 2 and s is 1) was recovered.

[実施例8]
実施例4で得られた化合物6(式中、Rfは式[II]を表す)(634mg)に対して、次に示すスケジュールに従い、Fmoc‐Ala‐OH、Fmoc‐Thr(tBu)‐OH、ナフチル酢酸を順次反応させた。なお、各アミノ酸誘導体はそれぞれ1.5当量使用し、縮合試薬としてPyBOPを1.8当量、塩基としてN,N‐ジイソプロピルエチルアミンを1.8当量使用した。
[Example 8]
For compound 6 obtained in Example 4 (wherein Rf represents formula [II]) (634 mg), Fmoc-Ala-OH, Fmoc-Thr (tBu) -OH, Naphthyl acetic acid was reacted sequentially. Each amino acid derivative was used in an amount of 1.5 equivalents, 1.8 equivalents of PyBOP as a condensation reagent, and 1.8 equivalents of N, N-diisopropylethylamine as a base.

以下にペプチド合成のスケジュールを示す。
縮合反応:アミノ酸と本発明の高度にフッ素化された誘導体をフルオロカーボン(ノベックTMHFE‐7200)(3mL)とジクロロメタン(6mL)の混合溶媒に溶解させ、この溶液にN,N‐ジイソプロピルエチルアミンとPyBOPを加え、室温で1時間攪拌した。反応液を三分の一まで濃縮した後、アセトニトリル(20mL)とパーフルオロカーボン(フロリナートTMFC‐72)(20mL)で分配抽出し、FC‐72層を減圧濃縮する。
脱保護反応:基質をパーフルオロカーボン(フロリナートTMFC‐72)(6mL)とN,N‐ジメチルホルムアミド(6mL)の混合溶媒に溶解させ、この溶液にピペリジン(0.4mL)を加え、室温で30分間攪拌した。反応液をアセトニトリル(20mL)とパーフルオロカーボン(フロリナートTMFC‐72)(20mL)で分配抽出し、FC‐72層を減圧濃縮する。
得られた、本発明の高度にフッ素化された誘導体に結合した保護ペプチド(660mg)に95%トリフルオロ酢酸水溶液(14mL)を加え、室温で2時間攪拌した。溶液を減圧濃縮し、残渣をアセトニトリル(50mL)とパーフルオロカーボン(フロリナートTMFC‐72)(50mL)で分配抽出し、アセトニトリル層を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール:酢酸=9:1:0.5)にて精製し、目的とするジペプチド誘導体10を56mg(9工程、87%)得た。
化合物10;ESI-TOF MASS:Calcd for C40H46NaO11 (M+Na+):381.1421、Found:384.1379.

Figure 2006306784
The peptide synthesis schedule is shown below.
Condensation reaction: Amino acid and the highly fluorinated derivative of the present invention are dissolved in a mixed solvent of fluorocarbon (Novec HFE-7200) (3 mL) and dichloromethane (6 mL), and N, N-diisopropylethylamine and PyBOP are added to this solution. And stirred at room temperature for 1 hour. After concentrating the reaction solution to one third, it is partitioned and extracted with acetonitrile (20 mL) and perfluorocarbon (Fluorinert FC-72) (20 mL), and the FC-72 layer is concentrated under reduced pressure.
Deprotection reaction: The substrate was dissolved in a mixed solvent of perfluorocarbon (Fluorinert FC-72) (6 mL) and N, N-dimethylformamide (6 mL), piperidine (0.4 mL) was added to this solution, and the mixture was stirred at room temperature for 30 minutes. Stir for minutes. The reaction solution is partitioned and extracted with acetonitrile (20 mL) and perfluorocarbon (Fluorinert FC-72) (20 mL), and the FC-72 layer is concentrated under reduced pressure.
A 95% aqueous trifluoroacetic acid solution (14 mL) was added to the obtained protected peptide (660 mg) bound to the highly fluorinated derivative of the present invention, and the mixture was stirred at room temperature for 2 hours. The solution was concentrated under reduced pressure, the residue was partitioned and extracted with acetonitrile (50 mL) and perfluorocarbon (Fluorinert FC-72) (50 mL), and the acetonitrile layer was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform: methanol: acetic acid = 9: 1: 0.5) to obtain 56 mg (9 steps, 87%) of the desired dipeptide derivative 10.
Compound 10; ESI-TOF MASS: Calcd for C 40 H 46 NaO 11 (M + Na + ): 381.1421, Found: 384.1379.
Figure 2006306784

一方、パーフルオロカーボン(フロリナートTMFC‐72)層は減圧濃縮後、残渣を全量、フルオロカーボン(ノベックTMHFE‐7200)(6mL)とメタノール(6mL)の混合溶媒に溶解させ、この溶液に触媒量のナトリウムメトキシドを加え、室温で10分攪拌した。イオン交換樹脂(アンバーライトIR‐120H+型)を加えて反応を停止させ、ろ過後、濾液を濃縮し、メタノール(20mL)とパーフルオロカーボン(フロリナートTMFC‐72)(20mL)で分配抽出し、FC‐72層を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1)にて精製し、式[I](式中、Rfは式[II]、mが0、nが2、pが1、qが2、sが1表す)で示される化合物1を515mg(10工程、91%)回収した。 On the other hand, the perfluorocarbon (Fluorinert FC-72) layer was concentrated under reduced pressure, and the entire residue was dissolved in a mixed solvent of fluorocarbon (Novec HFE-7200) (6 mL) and methanol (6 mL). Sodium methoxide was added and stirred at room temperature for 10 minutes. Ion exchange resin (Amberlite IR-120H + type) was added to stop the reaction, and after filtration, the filtrate was concentrated, partitioned and extracted with methanol (20 mL) and perfluorocarbon (Fluorinert FC-72) (20 mL), The FC-72 layer was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform: methanol = 20: 1), and the formula [I] (wherein Rf was the formula [II], m was 0, n was 2, p was 1, 515 mg (10 steps, 91%) of the compound 1 represented by q is 2 and s is 1 was recovered.

[実施例9]
本発明化合物を使用して糖鎖合成を行った。
下式[XIII]の化合物11(212mg,0.39mmol)と実施例5で得られた化合物7(式中、Rfは式[II]を表す)(427mg,0.13mmol)をフルオロカーボン(ノベックTMHFE‐7200)(2mL)とジクロロメタン(10mL)の混合溶媒に溶解させ、この溶液にPyBOP(203mg,0.39mmol)とN,N‐ジメチルアミノピリジン(47mg,0.39mmol)を加え、室温で2時間攪拌した。反応液を三分の一まで濃縮した後、メタノール(20mL)と パーフルオロカーボン(フロリナートTMFC‐72)(20mL)で分配抽出し、FC‐72層を減圧濃縮して、式[XIII]の化合物12(式中、Rfは式[II]を表す)(510mg)を得た。

Figure 2006306784
[Example 9]
A sugar chain was synthesized using the compound of the present invention.
Compound 11 (212 mg, 0.39 mmol) of the following formula [XIII] and compound 7 obtained in Example 5 (wherein Rf represents formula [II]) (427 mg, 0.13 mmol) were converted to fluorocarbon (Novec HFE-7200) (2 mL) and dichloromethane (10 mL) were dissolved in a mixed solvent, and PyBOP (203 mg, 0.39 mmol) and N, N-dimethylaminopyridine (47 mg, 0.39 mmol) were added to this solution. Stir for 2 hours. After concentrating the reaction solution to one third, it was partitioned and extracted with methanol (20 mL) and perfluorocarbon (Fluorinert FC-72) (20 mL), and the FC-72 layer was concentrated under reduced pressure to give a compound of the formula [XIII] 12 (wherein Rf represents formula [II]) (510 mg) was obtained.
Figure 2006306784

化合物12(式中、Rfは式[II]を表す)(510mg)をTHF(7.5mL)に溶解させ、この溶液にフッ化水素ピリジン溶液(0.75mL)を加え、室温で19時間攪拌した。反応液をトルエン(60mL)と飽和炭酸水素ナトリウム溶液(60mL)とパーフルオロカーボン(フロリナートTMFC‐72)(60mL)で分配抽出した。FC‐72層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧濃縮して、化合物13(式中、Rfは式[II]を表す)を457mg得た。

Figure 2006306784
Compound 12 (wherein Rf represents formula [II]) (510 mg) was dissolved in THF (7.5 mL), hydrogen fluoride pyridine solution (0.75 mL) was added to this solution, and the mixture was stirred at room temperature for 19 hours. did. The reaction solution was partitioned and extracted with toluene (60 mL), saturated sodium hydrogen carbonate solution (60 mL), and perfluorocarbon (Fluorinert FC-72) (60 mL). The FC-72 layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was concentrated under reduced pressure to obtain 457 mg of compound 13 (wherein Rf represents formula [II]).
Figure 2006306784

化合物13(式中、Rfは式[II]を表す)(457mg)とフェニル=2,3,4,6‐テトラ‐O‐ベンジル‐1‐チオ‐β‐D‐グルコピラノシド(165mg, 0.26mmolをアルゴン雰囲気下、フルオロカーボン(ノベックTMHFE‐7200)(2.5mL)とジクロロメタン(5mL)の混合溶媒に溶解させ、モレキュラシーブス4A(1.0g)を加え、室温にて2時間攪拌した。その後N‐ヨードスクシンイミド(117mg, 0.52mmol)、およびトリフルオロメタンスルホン酸(5.0μL, 52μmol)を順次加え、0℃にて1時間攪拌した。固形物を濾別し酢酸エチルで洗浄した。濾液は洗液と合わせて飽和炭酸水素ナトリウム水溶液、飽和チオ硫酸ナトリウム水溶液、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥させた。乾燥剤を濾別後、溶媒を減圧留去した。残渣にメタノールを加え、パーフルオロカーボン(フロリナートTMFC‐72)(20mL)で分配抽出した。FC‐72層を減圧濃縮して、化合物14(式中、Rfは式[II]を表す)513mgを得た。

Figure 2006306784
Compound 13 (wherein Rf represents formula [II]) (457 mg) and phenyl = 2,3,4,6-tetra-O-benzyl-1-thio-β-D-glucopyranoside (165 mg, 0.26 mmol) Was dissolved in a mixed solvent of fluorocarbon (Novec HFE-7200) (2.5 mL) and dichloromethane (5 mL) under an argon atmosphere, molecular sieves 4A (1.0 g) was added, and the mixture was stirred at room temperature for 2 hours. N-iodosuccinimide (117 mg, 0.52 mmol) and trifluoromethanesulfonic acid (5.0 μL, 52 μmol) were sequentially added, and the mixture was stirred for 1 hour at 0 ° C. The solid was filtered off and washed with ethyl acetate. Is washed with a saturated aqueous solution of sodium bicarbonate, a saturated aqueous solution of sodium thiosulfate, and a saturated saline solution in this order. After the desiccant was filtered off, the solvent was distilled off under reduced pressure, methanol was added to the residue, and the mixture was partitioned and extracted with perfluorocarbon (Fluorinert FC-72) (20 mL) The FC-72 layer was concentrated under reduced pressure. Thus, 513 mg of compound 14 (wherein Rf represents formula [II]) was obtained.
Figure 2006306784

化合物14をフルオロカーボン(ノベックTMHFE‐7200)(10mL)とメタノール(5mL)の混合溶媒に溶解させ、この溶液に触媒量のナトリウムメトキシドを加え、室温で1時間攪拌した。イオン交換樹脂(アンバーライトIR‐120H+型)を加えて反応を停止させ、ろ過後、濾液を濃縮し、メタノール(20mL)とパーフルオロカーボン(フロリナートTMFC‐72)(20mL)で分配抽出しメタノール層を減圧濃縮したのち、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1)にて精製し、式[XIV]の化合物15を71mg(4工程、78%)得た。
一方、FC‐72層は減圧濃縮後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1)にて精製し、式[I](式中、Rfは式[II]、RがH、mが0、nが2、pが1、qが2、sが1を表す)で示される式[XIV]の化合物1を386mg(4工程、93%)回収した。
化合物15;ESI-TOF MASS:Calcd for C40H46NaO11 (M+Na+):725.2932、Found:723.2916.

Figure 2006306784
Compound 14 was dissolved in a mixed solvent of fluorocarbon (Novec HFE-7200) (10 mL) and methanol (5 mL), a catalytic amount of sodium methoxide was added to this solution, and the mixture was stirred at room temperature for 1 hour. Ion exchange resin (Amberlite IR-120H + type) was added to stop the reaction, and after filtration, the filtrate was concentrated, partitioned and extracted with methanol (20 mL) and perfluorocarbon (Fluorinert FC-72) (20 mL). The layer was concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (chloroform: methanol = 20: 1) to obtain 71 mg (4 steps, 78%) of the compound 15 of the formula [XIV].
On the other hand, the FC-72 layer was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (chloroform: methanol = 20: 1) to obtain the formula [I] (wherein Rf represents the formula [II], R 386 mg (4 steps, 93%) of the compound of the formula [XIV] represented by the formula (XI) is H, m is 0, n is 2, p is 1, q is 2, and s is 1.
Compound 15; ESI-TOF MASS: Calcd for C 40 H 46 NaO 11 (M + Na + ): 725.2932, Found: 723.2916.
Figure 2006306784

本発明化合物を用いるフルオラス合成が、医薬品や食品添加物、化粧品、液晶、電子材料、高分子モノマー機能性材料、医療材料等のファインケミカルズの製造を容易にすることは確実である。とりわけ本発明化合物を用いるフルオラス合成は、従来は困難であった高度にフッ素化された誘導体の効率的な再生再利用を可能にすることから、フルオラス合成法を効率化させることは確実であり、工業的価値やその波及効果は極めて大である。   It is certain that fluorous synthesis using the compounds of the present invention facilitates the production of fine chemicals such as pharmaceuticals, food additives, cosmetics, liquid crystals, electronic materials, polymer monomer functional materials, and medical materials. In particular, the fluorous synthesis using the compounds of the present invention enables efficient regeneration and reuse of highly fluorinated derivatives, which has been difficult in the past, and it is certain that the fluorous synthesis method is made more efficient, Industrial value and its ripple effect are extremely large.

本発明の化合物を利用したフルオラス合成法の概念図である。It is a conceptual diagram of the fluorosynthetic method using the compound of this invention.

Claims (6)

下記式[I]
Figure 2006306784
(式中、Rfは、パーフルオロアルキル基を1つまたは複数箇所有する高度にフッ素化されたアシル基を、Rは水素、アルキル基、アラルキル基、アリール基、炭素数3〜16のパーフルオロアルキル基のいずれかを、mは0〜6の整数を、nは0〜2の整数を、pは0〜6の整数を、qは1〜6の整数を、sは0〜2の整数を表し、Rf、R、p、q、sはその表示各位において同一である必要はない。)
で表される高度にフッ素化されたアルコール誘導体。
The following formula [I]
Figure 2006306784
Wherein Rf is a highly fluorinated acyl group having one or more perfluoroalkyl groups, R is hydrogen, an alkyl group, an aralkyl group, an aryl group, or a C 3-16 perfluoroalkyl group. Any one of the groups, m is an integer of 0-6, n is an integer of 0-2, p is an integer of 0-6, q is an integer of 1-6, s is an integer of 0-2. And Rf, R, p, q, and s need not be the same in each display position.)
A highly fluorinated alcohol derivative represented by:
mが0、nが2、pが1、qが2、sが1である請求項1記載の高度にフッ素化されたアルコール誘導体。   The highly fluorinated alcohol derivative according to claim 1, wherein m is 0, n is 2, p is 1, q is 2, and s is 1. mが1、nが0、pが1、sが0である請求項1記載の高度にフッ素化されたアルコール誘導体。   The highly fluorinated alcohol derivative according to claim 1, wherein m is 1, n is 0, p is 1 and s is 0. Rfが式[II]または[III]で表される請求項2または請求項3記載の高度にフッ素化されたアルコール誘導体。
Figure 2006306784
The highly fluorinated alcohol derivative according to claim 2 or 3, wherein Rf is represented by the formula [II] or [III].
Figure 2006306784
請求項1〜4のいずれか1項に記載された高度にフッ素化されたアルコール誘導体の合成用試剤としての使用。   Use of the highly fluorinated alcohol derivative according to any one of claims 1 to 4 as a synthesis reagent. 請求項1〜4のいずれか1項に記載された高度にフッ素化されたアルコール誘導体を用いたペプチド、糖鎖または糖ペプチドの製造法。   A method for producing a peptide, sugar chain or glycopeptide using the highly fluorinated alcohol derivative according to any one of claims 1 to 4.
JP2005131806A 2005-04-28 2005-04-28 Highly fluorinated alcohol derivatives and easy to reuse Expired - Fee Related JP4950436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005131806A JP4950436B2 (en) 2005-04-28 2005-04-28 Highly fluorinated alcohol derivatives and easy to reuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005131806A JP4950436B2 (en) 2005-04-28 2005-04-28 Highly fluorinated alcohol derivatives and easy to reuse

Publications (2)

Publication Number Publication Date
JP2006306784A true JP2006306784A (en) 2006-11-09
JP4950436B2 JP4950436B2 (en) 2012-06-13

Family

ID=37474084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131806A Expired - Fee Related JP4950436B2 (en) 2005-04-28 2005-04-28 Highly fluorinated alcohol derivatives and easy to reuse

Country Status (1)

Country Link
JP (1) JP4950436B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108505A1 (en) 2007-03-07 2008-09-12 Japan As Represented By President Of International Medical Center Of Japan Novel nuclear translocation peptide
JP5768712B2 (en) * 2009-03-30 2015-08-26 味の素株式会社 Diphenylmethane compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264563A (en) * 1987-03-30 1988-11-01 Fujisawa Pharmaceut Co Ltd Amino acid derivatives and their production
JPH08196627A (en) * 1995-01-25 1996-08-06 Asahi Medical Co Ltd Cell selective filter fixing group
WO2000061561A1 (en) * 1999-04-09 2000-10-19 Shionogi Bioresearch Corp. Cyanoguanidine compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264563A (en) * 1987-03-30 1988-11-01 Fujisawa Pharmaceut Co Ltd Amino acid derivatives and their production
JPH08196627A (en) * 1995-01-25 1996-08-06 Asahi Medical Co Ltd Cell selective filter fixing group
WO2000061561A1 (en) * 1999-04-09 2000-10-19 Shionogi Bioresearch Corp. Cyanoguanidine compounds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108505A1 (en) 2007-03-07 2008-09-12 Japan As Represented By President Of International Medical Center Of Japan Novel nuclear translocation peptide
JP5768712B2 (en) * 2009-03-30 2015-08-26 味の素株式会社 Diphenylmethane compounds
US9169187B2 (en) 2009-03-30 2015-10-27 Ajinomoto Co., Inc. Method of making peptides using diphenylmethane compound
US9670121B2 (en) 2009-03-30 2017-06-06 Ajinomoto Co., Inc. Diphenylmethane compound

Also Published As

Publication number Publication date
JP4950436B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP6350632B2 (en) Method for producing peptide
JP6283775B1 (en) New xanthene protective agent
AU2006293180A1 (en) Carrier for separation, method for separation of compound, and method for synthesis of peptide using the carrier
CN112236436B (en) Method for synthesizing solution phase peptide and protection strategy thereof
WO2006104166A1 (en) Support for crystallization separation and method of separating compound
JP6011528B2 (en) Method for producing peptide
RU2280641C2 (en) Method for preparing phenylalanine derivatives and their semi-finished products
JP4283469B2 (en) Compatibility-Liquid Phase Peptide Synthesis Method with Sequential Addition of Amino Acids by Multiphase Organic Solvent System
JP4950436B2 (en) Highly fluorinated alcohol derivatives and easy to reuse
EP4251632A1 (en) Compositions and methods for chemical synthesis
JP2778103B2 (en) Method for producing optically active threodihydroxyphenylserine derivative
JP5068960B2 (en) Optically active ligand
KR20230175279A (en) Compositions for chemical synthesis of peptides
JP5014148B2 (en) Method for producing peptide thioester
WO2020228097A1 (en) Cyclic peptide compound simulating natural product structure, and method for preparation thereof
CA2596419A1 (en) Use of functionalized onium salts for peptide synthesis
JP2003081976A (en) Chiral phase transfer catalyst and method for manufacturing asymmetric peptide using the same
JP2011173822A (en) Metal complex array, method for producing the same and material
JP2004131452A (en) Highly fluorinated derivative capable of binding carboxyl group and method for producing peptide by using the same
CN101778815B (en) Method of producing optically active n-(halopropyl)amino acid derivative
JP4019125B2 (en) Highly fluorinated carboxylic acids and processes and intermediates therefor
JP2023130120A (en) Peptide synthesis method
JP4485459B2 (en) Highly fluorinated alcohols and their production and intermediates
JP3888914B2 (en) Highly fluorinated carboxylic acid derivatives and processes and intermediates thereof
WO2013001120A1 (en) Chemical process for the selective modification of peptides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees