JP2006306639A - Carbon aerogel, and method for producing the same - Google Patents

Carbon aerogel, and method for producing the same Download PDF

Info

Publication number
JP2006306639A
JP2006306639A JP2005128409A JP2005128409A JP2006306639A JP 2006306639 A JP2006306639 A JP 2006306639A JP 2005128409 A JP2005128409 A JP 2005128409A JP 2005128409 A JP2005128409 A JP 2005128409A JP 2006306639 A JP2006306639 A JP 2006306639A
Authority
JP
Japan
Prior art keywords
fine particles
gel
sol
carbon aerogel
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005128409A
Other languages
Japanese (ja)
Other versions
JP4639929B2 (en
Inventor
Toru Joboji
亨 上坊寺
Toshihide Nakada
俊秀 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2005128409A priority Critical patent/JP4639929B2/en
Publication of JP2006306639A publication Critical patent/JP2006306639A/en
Application granted granted Critical
Publication of JP4639929B2 publication Critical patent/JP4639929B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide carbon aerogel maintaining pore characteristics in the production process, and also having a minute particle diameter in a specified range. <P>SOLUTION: The method for producing carbon aerogel includes: a sol preparation stage S1 where resorcinol, a formaldehyde aqueous solution and sodium carbonate are mixed and stirred to obtain an organic wetting sol; a membrane emulsification stage S2 where the organic wetting sol is emulsified by an SPG (Shirasu Porous Glass) membrane emulsification process, so as to form sol particulates; a polymerization stage S3 where the sol particulates are polymerized to form gel particulates; a solvent substitution stage S4 where the gel particulates are brought into contact with a water-soluble organic solvent in order to perform solvent substitution; a supercritical drying stage S5 where the gel particulates subjected to the solvent substitution are subjected to supercritical drying, so as to obtain gel dry powder; and a thermal decomposition stage S6 where the gel dry powder is thermally decomposed to obtain the carbon aerogel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はカーボンエアロゲル及びその製造方法に関する。   The present invention relates to a carbon airgel and a method for producing the same.

従来、ジヒドロキシベンゼンとホルムアルデヒドとの重合物を出発物質として製造されるカーボンエアロゲルが知られている(特許文献1)。   Conventionally, a carbon aerogel produced using a polymer of dihydroxybenzene and formaldehyde as a starting material is known (Patent Document 1).

このカーボンエアロゲルは図8に示す以下の工程によって製造される。   This carbon aerogel is manufactured by the following steps shown in FIG.

(重合工程S91)
すなわち、まず重合工程S91として、レゾルシノールやカテコール等のジヒドロキシベンゼンとホルムアルデヒドとを炭酸ナトリウムの存在下で重合して有機湿潤ゲル化物を得る。
(Polymerization step S91)
That is, as polymerization step S91, dihydroxybenzene such as resorcinol and catechol and formaldehyde are polymerized in the presence of sodium carbonate to obtain an organic wet gelled product.

(溶媒置換工程S92)
次に、溶媒置換工程S92として、ゲル化物をメタノールやアセトン等の水溶性有機溶媒で洗浄し、ゲル化物に含まれている水分を水溶性溶媒と溶媒置換する。
(Solvent replacement step S92)
Next, as a solvent replacement step S92, the gelled product is washed with a water-soluble organic solvent such as methanol or acetone, and the water contained in the gelled product is replaced with a water-soluble solvent.

(超臨界乾燥工程S93)
さらに、超臨界乾燥工程S93として、溶媒置換されたゲル化物をステンレス製の圧力容器に入れ、CO2を導入し、超臨界状態となるよう圧力と温度を調節し、その後ゆっくりとCO2を排出させることによって、CO2を気相条件へ移行させて超臨界乾燥を行う。
(Supercritical drying step S93)
Furthermore, in the supercritical drying step S93, the solvent-substituted gelled product is put into a stainless steel pressure vessel, CO 2 is introduced, the pressure and temperature are adjusted so as to be in a supercritical state, and then CO 2 is slowly discharged. Thus, CO 2 is transferred to gas phase conditions to perform supercritical drying.

こうして乾燥したゲル化物は、網目構造を形成している一次粒子の粒子径が0.1ミクロン以下の粒子からなり、嵩密度も100mg/mlと極めて小さくなっている。これは、超臨界乾燥では、通常の乾燥と異なり、毛管力による収縮を伴わずに乾燥するため、重合工程S91におけるホルムアルデヒドによる架橋によって形成された細孔構造が破壊されることなくそのままの状態で残るからと考えられる。   The gelled product thus dried is composed of primary particles forming a network structure having a particle size of 0.1 microns or less, and the bulk density is extremely small at 100 mg / ml. This is because in supercritical drying, unlike normal drying, drying is performed without shrinkage due to capillary force, so that the pore structure formed by crosslinking with formaldehyde in the polymerization step S91 remains intact. It is thought that it remains.

(熱分解工程S94)
そして、熱分解工程S94として、上記の乾燥されたゲル化物を窒素雰囲気下で高温にして炭化物の塊を得る。こうして得られた炭化物は、炭化する前の細孔構造が保たれている。
(Pyrolysis step S94)
Then, as the pyrolysis step S94, the dried gelled product is heated to a high temperature under a nitrogen atmosphere to obtain a carbide lump. The carbide thus obtained maintains the pore structure before carbonization.

(粉砕工程S95)
最後に、粉砕工程S95として、上記炭化物の塊を粉砕装置で粉砕し、粉末状のカーボンエアロゲルを得る。
(Crushing step S95)
Finally, as the pulverization step S95, the carbide mass is pulverized by a pulverizer to obtain a powdered carbon aerogel.

こうして得られたカーボンエアロゲルは、高分子電解質型燃料電池の電極として用いることが提案されている(特許文献2)。この場合、乾燥したゲル化物の熱分解によって得られた炭化物は細孔構造を有しているため、これを粉砕して得られた粉末状のカーボンエアロゲルも優れたガス透過性を有し、これによって燃料電池が優れた発電効率を発揮することが期待される。また、カーボンエアロゲルの粒子径を極めて小さくすることができるため、カソード極やアノード極の触媒層の厚さを薄くすることができることから、カソード極やアノード極ひいては燃料電池の厚さを薄くすることもできる。   It has been proposed that the carbon airgel thus obtained is used as an electrode of a polymer electrolyte fuel cell (Patent Document 2). In this case, since the carbide obtained by pyrolysis of the dried gelled product has a pore structure, the powdered carbon aerogel obtained by pulverizing this also has excellent gas permeability. Therefore, it is expected that the fuel cell will exhibit excellent power generation efficiency. In addition, since the particle size of the carbon airgel can be made extremely small, the thickness of the cathode and anode catalyst layers can be reduced. Therefore, the cathode and anode electrodes and thus the thickness of the fuel cell must be reduced. You can also.

米国特許第4873218号明細書U.S. Pat. No. 4,873,218 特表平11−503267号公報Japanese National Patent Publication No. 11-503267

しかし、発明者らが上記特許文献1記載のカーボンエアロゲルについて、詳細な試験を行ったところ、図8における熱分解工程S94によって得られた炭化物は細孔構造を有しているものの、これを機械式粉砕装置を用いて粉砕して得られたカーボンエアロゲルはその細孔構造がほとんど破壊されていることが判明した。   However, when the inventors conducted a detailed test on the carbon aerogel described in Patent Document 1, the carbide obtained by the pyrolysis step S94 in FIG. 8 has a pore structure. It turned out that the pore structure of the carbon aerogel obtained by pulverization using a pulverizer is almost destroyed.

また、こうして粉砕したカーボンエアロゲルはサブミクロン程度までしか細かくできていない。特に、粉砕後のカーボンエアロゲルは、粒子径がある程度広い分布を有してしまう。このため、粒子径が揃っていないカーボンエアロゲルから特定の範囲内の粒子径のものを分級しようとすれば、収率が非常に悪くならざるを得ない。   Moreover, the carbon airgel thus pulverized is only fine to the submicron level. In particular, the carbon airgel after pulverization has a distribution in which the particle diameter is wide to some extent. For this reason, if it is going to classify the thing of the particle diameter in a specific range from the carbon airgel with which the particle diameter is not uniform, a yield will be very bad.

一方、粉砕以外の方法として、超音波等のせん断力による「エマルジョン合成法」により、カーボンエアロゲルの粒子径を小さくしようとすれば、乳化重合させるためにある程度の量の界面活性剤を用いなければならない。そして、この界面活性剤の使用量が多くなれば、その影響によりカーボンエアロゲルの細孔特性が変化してしまう。   On the other hand, as a method other than pulverization, if an attempt is made to reduce the particle size of carbon aerogel by “emulsion synthesis method” by shearing force such as ultrasonic waves, a certain amount of surfactant must be used for emulsion polymerization. Don't be. And if the usage-amount of this surfactant increases, the pore characteristic of carbon airgel will change by the influence.

本発明は、上記従来の実情に鑑みてなされたものであって、製造過程の細孔特性を維持し、かつ微小な特定範囲内の粒子径をもつカーボンエアロゲルを提供することを解決すべき課題としている。   The present invention has been made in view of the above-described conventional situation, and it is a problem to be solved to provide a carbon aerogel that maintains the pore characteristics of the manufacturing process and has a particle size within a minute specific range. It is said.

本発明のカーボンエアロゲルの製造方法は、有機湿潤ゾル化物を得る第1工程と、
該有機湿潤ゾル化物を膜乳化法によって乳化させてゾル微粒子とする第2工程と、
該ゾル微粒子を重合させてゲル微粒子とする第3工程と、
該ゲル微粒子を水溶性有機溶媒と接触させて溶媒置換を行う第4工程と、
溶媒置換された該ゲル微粒子を超臨界乾燥してゲル乾燥粉末を得る第5工程と、
該ゲル乾燥粉末を熱分解してカーボンエアロゲルとする第6工程とを備えることを特徴とする。
The method for producing a carbon airgel of the present invention includes a first step of obtaining an organic wet solubilized product,
A second step of emulsifying the organic wet solubilized product by a membrane emulsification method into sol fine particles;
A third step of polymerizing the sol fine particles to form gel fine particles;
A fourth step in which the gel fine particles are contacted with a water-soluble organic solvent to perform solvent substitution;
A fifth step of supercritical drying the solvent-substituted gel fine particles to obtain a gel dry powder;
And a sixth step of thermally decomposing the gel dry powder into a carbon aerogel.

かかるカーボンエアロゲルの製造方法では、有機湿潤ゾル化合物を膜乳化法によって乳化させてゾル微粒子とし、このゾル微粒子を重合させてゲル微粒子とし、このゲル微粒子を溶媒置換する。そして、溶媒置換されたゲル微粒子を超臨界乾燥してゲル乾燥粉末を得た後、このゲル乾燥粉末を熱分解してカーボンエアロゲルを得る。   In such a method for producing a carbon aerogel, an organic wet sol compound is emulsified by a membrane emulsification method to form sol fine particles, the sol fine particles are polymerized to form gel fine particles, and the gel fine particles are replaced with a solvent. Then, after the solvent-substituted gel fine particles are supercritically dried to obtain a gel dry powder, the gel dry powder is pyrolyzed to obtain a carbon aerogel.

ここで、膜乳化法とは、細孔を有する膜を介して、分散相液を連続相液中へ圧入することによって、エマルジョンを作製する乳化技術である。   Here, the membrane emulsification method is an emulsification technique for producing an emulsion by press-fitting a dispersed phase liquid into a continuous phase liquid through a membrane having pores.

このように、本発明のカーボンエアロゲルの製造方法は、従来の熱分解後の粉砕工程を有していないことから、膜乳化法によって得られるゲル微粒子の細孔構造が破壊されることなく、そのまま維持されたカーボンエアロゲルを得ることができる。   Thus, since the method for producing a carbon aerogel of the present invention does not have a conventional pulverization step after pyrolysis, the pore structure of the gel fine particles obtained by the membrane emulsification method is not destroyed, and it remains as it is. A maintained carbon aerogel can be obtained.

また、膜乳化法によって得られるゾル微粒子は、膜が有する細孔を通過して微粒子とされるので、膜が有する細孔を選択、制御することによって、粒子径を微細にすることができるとともに、粒子径のばらつきも小さくできる。特に、膜の細孔径が均一であれば、得られるゾル微粒子も粒子径が均一な単分散粒子となる。このため、このゾル微粒子を重合、溶媒置換、超臨界乾燥及び熱分解して得られるカーボンエアロゲルも、同様に、微細な特定範囲内の粒子径をもつものとなる。このため、得られるカーボンエアロゲルを分級する必要もなくなり、収率を大幅に向上させることができる。   In addition, since the sol fine particles obtained by the membrane emulsification method pass through the pores of the membrane and become fine particles, the particle diameter can be made fine by selecting and controlling the pores of the membrane. Further, variation in particle diameter can be reduced. In particular, if the pore diameter of the film is uniform, the obtained sol fine particles are also monodispersed particles having a uniform particle diameter. For this reason, the carbon airgel obtained by polymerizing, solvent substitution, supercritical drying and thermal decomposition of the sol fine particles also has a fine particle diameter within a specific range. For this reason, it is not necessary to classify the obtained carbon airgel, and the yield can be greatly improved.

また、このカーボンエアロゲルの製造方法は、膜乳化法を採用することにより、界面活性剤の使用量を大幅に減らしたり、全く使用しないようにすることが可能となる。このため、界面活性剤の使用量が多いことによりカーボンエアロゲルの細孔特性が変化してしまうという不具合も生じなくすることができる。   In addition, this carbon aerogel production method employs a membrane emulsification method, so that the amount of the surfactant used can be greatly reduced or not used at all. For this reason, the problem that the pore characteristics of the carbon airgel change due to the large amount of the surfactant used can be prevented.

したがって、本発明のカーボンエアロゲルの製造方法は、製造過程の細孔特性を維持し、かつ微小な特定範囲内の粒子径をもつカーボンエアロゲルを提供することができる。   Therefore, the method for producing a carbon aerogel of the present invention can provide a carbon aerogel that maintains the pore characteristics in the production process and has a particle diameter within a minute specific range.

本発明のカーボンエアロゲルの製造方法において、膜乳化法はSPG(Shirasu Porous Glass)膜乳化法であることが好ましい。   In the carbon airgel production method of the present invention, the membrane emulsification method is preferably an SPG (Shirasu Porous Glass) membrane emulsification method.

SPG膜は、シラス、石灰及びホウ酸から生成されるシラス多孔質ガラス(Al23SiO2系ガラス多孔体)の膜であり、膜中に多数の均一な径の細孔が形成されている。SPG膜は、50nm〜20μm程度の範囲で特定範囲で均一な径の細孔を選択して形成することが可能である。また、このSPG膜は、多孔質であるにもかかわらず、機械的強度が非常に高く、耐熱性、断熱性に優れる。さらに、このSPG膜は、強アルカリやフッ酸を除く大部分の薬品に対する耐薬品性も優れている。 The SPG film is a film of shirasu porous glass (Al 2 O 3 SiO 2 -based glass porous body) generated from shirasu, lime and boric acid, and a large number of pores having a uniform diameter are formed in the film. Yes. The SPG film can be formed by selecting pores having a uniform diameter in a specific range within a range of about 50 nm to 20 μm. Moreover, although this SPG film is porous, it has very high mechanical strength and is excellent in heat resistance and heat insulation. Furthermore, this SPG film has excellent chemical resistance against most chemicals except strong alkali and hydrofluoric acid.

このSPG膜を介して、有機湿潤ゾル化物を連続相液中へ圧入することにより、微小な特定範囲内の粒子径をもつゾル微粒子が確実に得られる。そして、このゾル微粒子を重合させれば、微小な特定範囲内の粒子径をもつゲル微粒子になる。このため、この場合には、本発明の効果を確実に奏することができる。   By pressing the organic wet solubilized product into the continuous phase liquid through this SPG film, sol fine particles having a particle size within a minute specific range can be obtained with certainty. And if this sol fine particle is polymerized, it will become a gel fine particle with the particle diameter in the minute specific range. For this reason, in this case, the effects of the present invention can be reliably achieved.

本発明のカーボンエアロゲルの製造方法において、ゲル微粒子はポリヒドロキシベンゼンとホルムアルデヒドとを塩基触媒存在下で重合させて得られるものであることが好ましい。   In the method for producing a carbon airgel of the present invention, the gel fine particles are preferably obtained by polymerizing polyhydroxybenzene and formaldehyde in the presence of a base catalyst.

ここで、ポリヒドロキシベンゼンとは、ベンゼン環に2個以上の水酸基を有する化合物を意味する。発明者らの試験結果によれば、このような化合物は、ホルムアルデヒドと容易に重合して編目状の構造をとり、細孔構造をもつことができる。   Here, polyhydroxybenzene means a compound having two or more hydroxyl groups in the benzene ring. According to the test results of the inventors, such a compound can be easily polymerized with formaldehyde to form a stitch-like structure and have a pore structure.

本発明のカーボンエアロゲルの製造方法において、ポリヒドロキシベンゼンはジヒドロキシベンゼン及び/又はジヒドロキシベンゼン誘導体であることが好ましい。   In the method for producing a carbon airgel of the present invention, the polyhydroxybenzene is preferably dihydroxybenzene and / or a dihydroxybenzene derivative.

ポリヒドロキシベンゼンの中でも、ジヒドロキシベンゼンやジヒドロキシベンゼン誘導体は、比較的安定的な化合物であるため、取り扱い易く、好適である。   Among polyhydroxybenzenes, dihydroxybenzene and dihydroxybenzene derivatives are relatively stable compounds and are therefore easy to handle and are preferable.

本発明のカーボンエアロゲルの製造方法において、ジヒドロキシベンゼンはレゾルシノールであることが好ましい。発明者らは、レゾルシノールにおいて、効果を確認した。   In the method for producing a carbon airgel of the present invention, the dihydroxybenzene is preferably resorcinol. The inventors confirmed the effect on resorcinol.

本発明のカーボンエアロゲルの製造方法において、水溶性有機溶媒は、メタノール、アセトン及び酢酸アミルの1種又は2種以上の混合溶媒であることが好ましい。こうであれば、ゲル微粒子に含まれている水と溶媒とを容易に置換することができる。   In the method for producing carbon airgel of the present invention, the water-soluble organic solvent is preferably a mixed solvent of one or more of methanol, acetone and amyl acetate. In this way, water and solvent contained in the gel fine particles can be easily replaced.

本発明のカーボンエアロゲルは、有機湿潤ゾル化物を膜乳化法によって乳化させてゾル微粒子とし、該ゾル微粒子を重合させてゲル微粒子とし、該ゲル微粒子を水溶性有機溶媒と接触させて溶媒置換を行った後、溶媒置換された該ゲル微粒子を超臨界乾燥してゲル乾燥粉末とし、該ゲル乾燥粉末を熱分解して得たことを特徴とする。   The carbon aerogel of the present invention is obtained by emulsifying an organic wet solated product by a membrane emulsification method to form sol fine particles, polymerizing the sol fine particles to form gel fine particles, and contacting the gel fine particles with a water-soluble organic solvent to perform solvent substitution. Thereafter, the gel fine particles after solvent substitution are supercritically dried to obtain a gel dry powder, and the gel dry powder is obtained by thermal decomposition.

こうして得られたカーボンエアロゲルを高分子電解質型燃料電池における電極として使用した場合、カーボンエアロゲルが製造過程の細孔特性を維持していることから、優れたガス透過性を有し、これによって燃料電池が優れた発電効率を真に発揮する。また、カーボンエアロゲルが微小な特定範囲内の粒子径をもつことから、電極の厚さを薄くすることができ、ひいては燃料電池の厚さを薄くすることもできる。   When the carbon airgel thus obtained is used as an electrode in a polymer electrolyte fuel cell, the carbon airgel maintains the pore characteristics of the manufacturing process, and thus has excellent gas permeability. Truly demonstrates excellent power generation efficiency. Moreover, since the carbon airgel has a particle diameter in a minute specific range, the thickness of the electrode can be reduced, and the thickness of the fuel cell can also be reduced.

以下、図面を参照しつつ、試験例1を説明する。   Hereinafter, Test Example 1 will be described with reference to the drawings.

(試験例1)
下記の通り、実施例1〜3の製造方法を用いて、カーボンエアロゲルを製造した。
(Test Example 1)
Carbon airgel was manufactured using the manufacturing method of Examples 1-3 as follows.

実施例1〜3の製造方法は、有機湿潤ゾル化合物を膜乳化法によって乳化させてゾル微粒子とし、このゾル微粒子を重合させてゲル微粒子とし、このゲル微粒子を溶媒置換した後、溶媒置換されたゲル微粒子を超臨界乾燥してゲル乾燥粉末とし、このゲル乾燥粉末を熱分解してカーボンエアロゲルを得るものである。具体的には、図1に示す以下の工程によって製造される。なお、実施例1〜3のカーボンエアロゲルの製造方法の主要な試験条件を表1にまとめて示す。   In the production methods of Examples 1 to 3, the organic wet sol compound was emulsified by a film emulsification method to form sol fine particles, and the sol fine particles were polymerized to form gel fine particles. Gel fine particles are supercritically dried to obtain a gel dry powder, and the gel dry powder is thermally decomposed to obtain a carbon aerogel. Specifically, it is manufactured by the following steps shown in FIG. In addition, the main test conditions of the manufacturing method of the carbon airgel of Examples 1-3 are put together in Table 1, and are shown.

Figure 2006306639
Figure 2006306639

(ゾル調整工程Sl)
まず、ゾル調整工程Slとして、レゾルシノール4gと、ホルムアルデヒド37%水溶液5.5mlと、炭酸ナトリウム99.5%粉末0.019gと、分散媒体:イオン交換水16mlとを混合し、3時間攪拌を行った後、所定の温度(室温)下で所定の膜乳化前重合時間を経過させることにより、有機湿潤ゲル化物を得た。なお、膜乳化前重合時間は、実施例1〜3で異なっており、表1にまとめて示す。
(Sol adjustment step S1)
First, as a sol adjustment step Sl, 4 g of resorcinol, 5.5 ml of 37% formaldehyde aqueous solution, 0.019 g of 99.5% sodium carbonate powder, and 16 ml of dispersion medium: ion-exchanged water are mixed and stirred for 3 hours. Then, an organic wet gelled product was obtained by allowing a predetermined pre-emulsion polymerization time to elapse at a predetermined temperature (room temperature). In addition, the polymerization time before membrane emulsification differs in Examples 1 to 3, and is shown in Table 1.

(膜乳化工程S2)
膜乳化工程S2では、図2に示すSPG膜乳化装置10を使用する。このSPG膜乳化装置10は、分散相液貯留槽11と、分散相液貯留槽11の底部から下方に伸びる分散相液供給管12と、分散相液供給管12の下端側を中芯に位置させるように、分散相液貯留槽11の下方に配置される連続相液貯留槽15と、分散相液供給管12の下端側が挿通され、分散相液貯留槽11の中芯に位置する円筒状のSPG膜13とを備える。
(Membrane emulsification step S2)
In the film emulsification step S2, the SPG film emulsification apparatus 10 shown in FIG. 2 is used. The SPG membrane emulsification device 10 is positioned with the dispersed phase liquid storage tank 11, the dispersed phase liquid supply pipe 12 extending downward from the bottom of the dispersed phase liquid storage tank 11, and the lower end side of the dispersed phase liquid supply pipe 12 as the center. As shown in the figure, a continuous phase liquid storage tank 15 disposed below the dispersed phase liquid storage tank 11 and a lower end side of the dispersed phase liquid supply pipe 12 are inserted, and a cylindrical shape located at the center of the dispersed phase liquid storage tank 11. The SPG film 13 is provided.

分散相液貯留槽11は、分散相液20を貯留するものである。分散相液貯留槽11の上方は大気開放されておらず、窒素ガス等の高圧ガスを供給する配管18が接続されている。配管18は、圧力調整弁18a及び圧力計18bを有しており、加圧ガスの供給圧力を所定の圧力に調整して、分散相液貯留槽11内の分散相液20を加圧することが可能とされている。   The dispersed phase liquid storage tank 11 stores the dispersed phase liquid 20. The upper part of the dispersed phase liquid storage tank 11 is not open to the atmosphere, and a pipe 18 for supplying a high-pressure gas such as nitrogen gas is connected thereto. The pipe 18 has a pressure adjusting valve 18a and a pressure gauge 18b, and adjusts the supply pressure of the pressurized gas to a predetermined pressure to pressurize the dispersed phase liquid 20 in the dispersed phase liquid storage tank 11. It is possible.

分散相液供給管12は、下端が封止されており、下端側の管壁には、SPG膜13の円筒内部13aに分散相液20を供給するための排出孔12aが多数形成されている。   The lower end of the dispersed phase liquid supply pipe 12 is sealed, and a plurality of discharge holes 12 a for supplying the dispersed phase liquid 20 to the cylindrical interior 13 a of the SPG film 13 are formed on the lower end side of the pipe wall. .

図3に拡大して示すSPG膜13は、シラス多孔質ガラスの膜であり、膜中に多数の均一な径の細孔13bが形成されている。SPG膜の細孔特性の一例を図4に示す。試験例1のSPG膜13は、約1μmの均一な径の細孔が多数形成されたものを使用する。   The SPG film 13 shown enlarged in FIG. 3 is a shirasu porous glass film, and a large number of pores 13b having a uniform diameter are formed in the film. An example of the pore characteristics of the SPG membrane is shown in FIG. As the SPG film 13 of Test Example 1, one having a large number of pores having a uniform diameter of about 1 μm is used.

SPG膜13の上縁及び下縁には、図2に示すように、Oリング14が配置されており、分散相液供給管12の下端側とSPG膜13の円筒上縁及び円筒下縁との間をシールするようになっている。   As shown in FIG. 2, O-rings 14 are arranged on the upper and lower edges of the SPG film 13, and the lower end side of the dispersed phase liquid supply pipe 12, the upper and lower cylindrical edges of the SPG film 13, It is designed to seal between.

連続相液貯留槽15は、連続相液30を貯留するものである。連続相液貯留槽15は、スターラ16の上に載置されており、分散相液貯留槽11の底部に配置された回転子16aがスターラ16に駆動されて回転することにより連続相液30を攪拌することが可能とされている。   The continuous phase liquid storage tank 15 stores the continuous phase liquid 30. The continuous phase liquid storage tank 15 is placed on the stirrer 16, and the rotor 16 a disposed at the bottom of the dispersed phase liquid storage tank 11 is driven by the stirrer 16 and rotates to rotate the continuous phase liquid 30. It is possible to stir.

このような構成であるSPG膜乳化装置10では、分散相液貯留槽11内の分散相液20が高圧ガスにより加圧されて、分散相液供給管12及び排出孔12aを介して、SPG膜13の円筒内部13aに供給される。そして、図3に示すように、分散相液20がSPG膜13の細孔13bを通過して、連続相液30に圧入することによって、均一な粒子径のゾル微粒子21が形成されることとなる。   In the SPG membrane emulsification apparatus 10 having such a configuration, the dispersed phase liquid 20 in the dispersed phase liquid storage tank 11 is pressurized by a high pressure gas, and the SPG film is passed through the dispersed phase liquid supply pipe 12 and the discharge hole 12a. 13 cylinder interiors 13a. Then, as shown in FIG. 3, when the dispersed phase liquid 20 passes through the pores 13b of the SPG film 13 and is pressed into the continuous phase liquid 30, sol fine particles 21 having a uniform particle diameter are formed. Become.

この際、分散相液貯留槽11内に供給される高圧ガスの供給圧力を適当な圧力範囲内で調整することにより、同一のSPG膜13を使用して得られるゾル微粒子21の粒子径をある程度の範囲内で調整することが可能である。経験側としては、細孔径DeであるSPG膜13を使用して得られるゾル微粒子21の粒子径Dpは、細孔径Deの約3倍(Dp≒De×3)になることが知られている。   At this time, by adjusting the supply pressure of the high-pressure gas supplied into the dispersed phase liquid storage tank 11 within an appropriate pressure range, the particle diameter of the sol fine particles 21 obtained using the same SPG film 13 is adjusted to some extent. It is possible to adjust within the range. From the experience side, it is known that the particle diameter Dp of the sol fine particles 21 obtained by using the SPG film 13 having the pore diameter De is about three times the pore diameter De (Dp≈De × 3). .

試験例1では、分散相液20として、上記有機湿潤ゾル化物を使用した。また、連続相液30として、シクロヘキサン50mlと、界面活性剤(モノオレイン酸ソルビタン)との混合液を使用した。界面活性剤の量については、実施例1〜3で異なっており、表1にまとめて示す。   In Test Example 1, the organic wet sol-form was used as the dispersed phase liquid 20. Further, as the continuous phase liquid 30, a mixed liquid of 50 ml of cyclohexane and a surfactant (sorbitan monooleate) was used. About the quantity of surfactant, it differs in Examples 1-3, and it shows in Table 1 collectively.

こうして、膜乳化工程S2では、SPG膜乳化装置10を用いることにより、ゾル調整工程Slで調整したゾル化物を膜乳化法によって乳化させ、ゾル微粒子21とした。   In this way, in the film emulsification step S2, the sol particles adjusted in the sol adjustment step S1 are emulsified by the film emulsification method by using the SPG film emulsification apparatus 10 to obtain the sol fine particles 21.

(重合工程S3)
重合工程S3として、そのままの状態で24時間程度放置し、ゾル微粒子を重合させてゲル微粒子21とした。
(Polymerization step S3)
In the polymerization step S3, the sol fine particles were left to stand for about 24 hours as they were, and the sol fine particles were polymerized to form gel fine particles 21.

(溶媒置換工程S4)
そして、溶媒置換工程S4として、ゲル微粒子21を吸引濾過法によりアセトンで5回洗浄し、溶媒置換されたゲル微粒子21を得た。
(Solvent replacement step S4)
And as solvent substitution process S4, the gel fine particle 21 was wash | cleaned 5 times with acetone by the suction filtration method, and the gel fine particle 21 by which the solvent substitution was carried out was obtained.

(超臨界乾燥工程S5)
さらに、超臨界乾燥工程S5として、溶媒置換されたゲル微粒子21をステンレス製の圧力容器に入れ、CO2を導入し、超臨界状態となるように圧力と温度とを調節し、その後ゆっくりとCO2を排出させることによって、CO2を気相条件へ移行させて超臨界乾燥を行い、ゲル乾燥粉末を得た。
(Supercritical drying step S5)
Further, in the supercritical drying step S5, the solvent-substituted gel fine particles 21 are placed in a stainless steel pressure vessel, CO 2 is introduced, the pressure and temperature are adjusted so as to be in a supercritical state, and then the CO 2 is slowly added. By discharging 2 , CO 2 was transferred to gas phase conditions and supercritical drying was performed to obtain a gel dry powder.

(熱分解工程S6)
最後に、熱分解工程S6として、上記ゲル乾燥粉末を電気炉内に入れ、窒素雰囲気下、1000°Cにて4時間の加熱を行った後、冷却した。こうして粉末状のカーボンエアロゲルを得た。
(Pyrolysis step S6)
Finally, as the pyrolysis step S6, the gel dry powder was put in an electric furnace, heated at 1000 ° C. for 4 hours in a nitrogen atmosphere, and then cooled. Thus, a powdery carbon aerogel was obtained.

このような手順である実施例1〜3の製造方法について、本発明の効果を発揮できているかどうかの評価を行った。具体的には、上述した膜乳化工程S2において得られた実施例1〜3のゲル微粒子21について、レーザー回折法により、粒度分布を測定した。   About the manufacturing method of Examples 1-3 which is such a procedure, it was evaluated whether the effect of this invention could be exhibited. Specifically, the particle size distribution of the gel fine particles 21 of Examples 1 to 3 obtained in the above-described film emulsification step S2 was measured by a laser diffraction method.

図5〜7は、実施例1〜3のゲル微粒子21の粒度分布を示すグラフである。   FIGS. 5-7 is a graph which shows the particle size distribution of the gel fine particle 21 of Examples 1-3.

図5に示すように、実施例1のゲル微粒子21は、平均粒子径が約3μmと非常に微小であり、かつ粒子径が非常に狭い特定範囲内に収まっている(標準偏差値:0.148)。特に、平均粒子径については、SPG膜13の細孔径1μmの約3倍となっており、経験則通りの好ましい結果となっている。   As shown in FIG. 5, the gel fine particles 21 of Example 1 have a very small average particle diameter of about 3 μm and a particle diameter within a very narrow specific range (standard deviation value: 0. 0). 148). In particular, the average particle diameter is about three times the pore diameter of 1 μm of the SPG film 13, which is a favorable result according to empirical rules.

また、図6に示すように、実施例2のゲル微粒子21は、平均粒子径が約7μmと微小であり、かつ粒子径がある程度狭い特定範囲内に収まっている。   Further, as shown in FIG. 6, the gel fine particles 21 of Example 2 have an average particle diameter as small as about 7 μm, and the particle diameter is within a specific range narrow to some extent.

ここで、表1に示すように、実施例1は、実施例2と比較して膜乳化前重合時間が長いだけである。このことから、膜乳化工程S2において、ある程度の膜乳化前重合時間を経過させることにより、ホルムアルデヒドによる架橋が好ましい程度に進行し、分散液が良好な膜乳化を実現し易い特性になっていると考えられる。   Here, as shown in Table 1, Example 1 only has a longer polymerization time before membrane emulsification than Example 2. From this, in the membrane emulsification step S2, by allowing a certain amount of pre-emulsification polymerization time to pass, crosslinking with formaldehyde proceeds to a desirable degree, and the dispersion has a characteristic that facilitates good membrane emulsification. Conceivable.

また、実施例1及び実施例2は、ともに界面活性剤の使用量が0.5vol%と非常に少ないことから、界面活性剤の影響により、カーボンエアロゲルの細孔特性が変化してしまうという不具合も生じていないと推測される。   Moreover, since both Example 1 and Example 2 use the amount of surfactant as very small as 0.5 vol%, the problem that the pore characteristic of carbon airgel will change under the influence of surfactant. It is speculated that this has not occurred.

次に、図7に示すように、実施例3のゲル微粒子21は、粒子径が4μm近辺の範囲と、70μm近辺の範囲とに二極化した粒度分布を呈している。   Next, as shown in FIG. 7, the gel fine particles 21 of Example 3 exhibit a particle size distribution in which the particle diameter is bipolar in a range around 4 μm and a range around 70 μm.

このことから、界面活性剤の使用量を減らしていけば、膜乳化法により得られるゲル微粒子21の粒子径がより微小となり、かつ粒子径がある程度狭い特定範囲内に収まる傾向を示すようになると考えられる。   For this reason, if the amount of the surfactant used is reduced, the particle size of the gel fine particles 21 obtained by the membrane emulsification method becomes smaller and the particle size tends to fall within a narrow range to some extent. Conceivable.

上記の結果により、実施例1〜3の製造方法は、下記の通り、作用効果を奏することができることが明らかである。   From the above results, it is clear that the manufacturing methods of Examples 1 to 3 can achieve the effects as follows.

すなわち、実施例1〜3の製造方法は、有機湿潤ゾル化物を膜乳化法によって乳化させてゾル微粒子とし、このゾル微粒子を重合させてゲル微粒子とするものであり、従来の熱分解後の粉砕工程を有していない。このため、実施例1〜3の製造方法では、膜乳化法によって得られるゲル微粒子21の細孔構造が破壊されることなく、そのまま維持されたカーボンエアロゲルを得ることができている。   That is, in the production methods of Examples 1 to 3, organic wet sols are emulsified by membrane emulsification to form sol fine particles, and the sol fine particles are polymerized to form gel fine particles. Conventional pulverization after pyrolysis It does not have a process. For this reason, in the manufacturing method of Examples 1-3, the carbon airgel maintained as it is can be obtained, without destroying the pore structure of the gel microparticles 21 obtained by the membrane emulsification method.

また、実施例1〜3の製造方法により得られるゲル微粒子21は、SPG膜13が有する細孔を通過しているので、SPG膜13が有する細孔13bを選択、制御することによって、粒子径を微細にすることができているとともに、粒子径のばらつきも小さくできている。   Moreover, since the gel fine particles 21 obtained by the production methods of Examples 1 to 3 pass through the pores of the SPG film 13, the particle diameter can be selected by selecting and controlling the pores 13b of the SPG film 13. Can be made fine, and the variation in particle diameter can also be reduced.

特に、実施例1〜3では、SPG膜13の細孔径が約1μmと均一であるので、得られるゲル微粒子21も粒子径が約3μmと均一な単分散粒子となっている。このため、このゾル微粒子21が重合工程S3、溶媒置換工程S4、超臨界乾燥工程S5及び熱分解工程S6を経ることにより得られる粉末状のカーボンエアロゲルも、同様に、微細な特定範囲内の粒子径をもつ。このため、得られるカーボンエアロゲルを分級する必要もなくなっており、収率を大幅に向上させることが可能となっている。   In particular, in Examples 1 to 3, since the pore diameter of the SPG film 13 is uniform at about 1 μm, the obtained gel fine particles 21 are also monodisperse particles having a uniform particle diameter of about 3 μm. For this reason, the pulverized carbon airgel obtained by the sol fine particles 21 undergoing the polymerization step S3, the solvent replacement step S4, the supercritical drying step S5, and the thermal decomposition step S6 is similarly fine particles within a specific range. It has a diameter. For this reason, it is not necessary to classify the obtained carbon aerogel, and the yield can be greatly improved.

また、実施例1〜3の製造方法は、膜乳化法を採用することにより、界面活性剤の使用量を大幅に減らしたり、全く使用しないようにすることが可能となっている。このため、界面活性剤の使用量が多いことによりカーボンエアロゲルの細孔特性が変化してしまうという不具合も生じなくすることができている。   Moreover, the manufacturing method of Examples 1-3 can reduce the usage-amount of surfactant significantly, or it can be made not to use at all by adopting a membrane emulsification method. For this reason, the problem that the pore characteristics of the carbon airgel change due to the large amount of the surfactant used can be prevented.

したがって、実施例1〜3の製造方法は、製造過程の細孔特性を維持し、かつ微小な特定範囲内の粒子径をもつカーボンエアロゲルを提供できる。
Therefore, the production methods of Examples 1 to 3 can provide carbon airgel having the fine pore diameter in a specific range while maintaining the pore characteristics in the production process.
.

以上において、本発明を実施例1〜3に即して説明したが、本発明は上記実施例1〜3に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。   In the above, the present invention has been described with reference to the first to third embodiments. However, the present invention is not limited to the first to third embodiments, and can be appropriately modified and applied without departing from the spirit of the present invention. Needless to say.

本発明に係るカーボンエアロゲルは、燃料電池等の触媒担体、キャパシタ等の電極材料、吸着材、カラム充填材等に利用可能である。   The carbon aerogel according to the present invention can be used for catalyst carriers such as fuel cells, electrode materials such as capacitors, adsorbents, column packing materials, and the like.

実施例1のカーボンエアロゲルの製造方法を示す工程図である。2 is a process diagram illustrating a method for producing a carbon airgel of Example 1. FIG. SPG膜乳化装置の模式図である。It is a schematic diagram of an SPG membrane emulsification device. SPG膜の要部拡大断面図である。It is a principal part expanded sectional view of a SPG film | membrane. SPG膜の細孔分布の一例を示すグラフである。It is a graph which shows an example of the pore distribution of a SPG membrane. 実施例1のゲル微粒子の粒度分布を示すグラフである。3 is a graph showing the particle size distribution of gel fine particles of Example 1. 実施例2のゲル微粒子の粒度分布を示すグラフである。6 is a graph showing the particle size distribution of gel fine particles of Example 2. 実施例3のゲル微粒子の粒度分布を示すグラフである。6 is a graph showing the particle size distribution of gel fine particles of Example 3. 従来のカーボンエアロゲルの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the conventional carbon airgel.

符号の説明Explanation of symbols

10…SPG膜乳化装置
13…SPG膜
20…分散相液
21…微粒子
30…連続相液
S1…ゾル調整工程
S2…膜乳化工程
S3…重合工程
S4…溶媒置換工程
S5…超臨界乾燥工程
S6…熱分解工程
DESCRIPTION OF SYMBOLS 10 ... SPG membrane emulsification apparatus 13 ... SPG membrane 20 ... Dispersed phase liquid 21 ... Fine particle 30 ... Continuous phase liquid S1 ... Sol adjustment process S2 ... Membrane emulsification process S3 ... Polymerization process S4 ... Solvent substitution process S5 ... Supercritical drying process S6 ... Thermal decomposition process

Claims (7)

有機湿潤ゾル化物を得る第1工程と、
該有機湿潤ゾル化物を膜乳化法によって乳化させてゾル微粒子とする第2工程と、
該ゾル微粒子を重合させてゲル微粒子とする第3工程と、
該ゲル微粒子を水溶性有機溶媒と接触させて溶媒置換を行う第4工程と、
溶媒置換された該ゲル微粒子を超臨界乾燥してゲル乾燥粉末を得る第5工程と、
該ゲル乾燥粉末を熱分解してカーボンエアロゲルとする第6工程とを備えることを特徴とするカーボンエアロゲルの製造方法。
A first step of obtaining an organic wet solubilized product,
A second step of emulsifying the organic wet solubilized product by a membrane emulsification method into sol fine particles;
A third step of polymerizing the sol fine particles to form gel fine particles;
A fourth step in which the gel fine particles are contacted with a water-soluble organic solvent to perform solvent substitution;
A fifth step of supercritical drying the solvent-substituted gel fine particles to obtain a gel dry powder;
And a sixth step of pyrolyzing the gel dry powder to form a carbon aerogel.
前記膜乳化法はSPG膜乳化法であることを特徴とする請求項1記載のカーボンエアロゲルの製造方法。   The method for producing a carbon aerogel according to claim 1, wherein the membrane emulsification method is an SPG membrane emulsification method. 前記ゲル微粒子はポリヒドロキシベンゼンとホルムアルデヒドとを塩基触媒存在下で重合させて得られるものであることを特徴とする請求項1又は2記載のカーボンエアロゲルの製造方法。   The method for producing a carbon aerogel according to claim 1 or 2, wherein the gel fine particles are obtained by polymerizing polyhydroxybenzene and formaldehyde in the presence of a base catalyst. 前記ポリヒドロキシベンゼンはジヒドロキシベンゼン及び/又はジヒドロキシベンゼン誘導体であることを特徴とする請求項3記載のカーボンエアロゲルの製造方法。   The method for producing a carbon airgel according to claim 3, wherein the polyhydroxybenzene is dihydroxybenzene and / or a dihydroxybenzene derivative. 前記ジヒドロキシベンゼンはレゾルシノールであることを特徴とする請求項4記載のカーボンエアロゲルの製造方法。   The method for producing a carbon aerogel according to claim 4, wherein the dihydroxybenzene is resorcinol. 前記水溶性有機溶媒は、メタノール、アセトン及び酢酸アミルの1種又は2種以上の混合溶媒であることを特徴とする請求項1乃至5のいずれか1項記載のカーボンエアロゲルの製造方法。   The method for producing a carbon aerogel according to any one of claims 1 to 5, wherein the water-soluble organic solvent is one or a mixed solvent of methanol, acetone and amyl acetate. 有機湿潤ゾル化物を膜乳化法によって乳化させてゾル微粒子とし、該ゾル微粒子を重合させてゲル微粒子とし、該ゲル微粒子を水溶性有機溶媒と接触させて溶媒置換を行った後、溶媒置換された該ゲル微粒子を超臨界乾燥してゲル乾燥粉末とし、該ゲル乾燥粉末を熱分解して得たことを特徴とするカーボンエアロゲル。   The organic wet solubilized product was emulsified by a membrane emulsification method to form sol fine particles, the sol fine particles were polymerized to form gel fine particles, and the gel fine particles were contacted with a water-soluble organic solvent to perform solvent replacement, and then the solvent was replaced. A carbon aerogel obtained by supercritically drying the gel fine particles to obtain a gel dry powder and thermally decomposing the gel dry powder.
JP2005128409A 2005-04-26 2005-04-26 Carbon airgel and method for producing the same Expired - Fee Related JP4639929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005128409A JP4639929B2 (en) 2005-04-26 2005-04-26 Carbon airgel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005128409A JP4639929B2 (en) 2005-04-26 2005-04-26 Carbon airgel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006306639A true JP2006306639A (en) 2006-11-09
JP4639929B2 JP4639929B2 (en) 2011-02-23

Family

ID=37473961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005128409A Expired - Fee Related JP4639929B2 (en) 2005-04-26 2005-04-26 Carbon airgel and method for producing the same

Country Status (1)

Country Link
JP (1) JP4639929B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057902A1 (en) * 2007-10-30 2009-05-07 Korea Institute Of Science And Technology Carbon aerogels for supercapacitors and method for manufacturing the same
CN101774210A (en) * 2010-03-31 2010-07-14 黑龙江科技学院 Self-consolidation forming method of natural graphite
CN104157883A (en) * 2014-07-14 2014-11-19 浙江大学 Preparation method of anode of direct methanol fuel cell
CN104577146A (en) * 2015-01-20 2015-04-29 浙江大学 Method for modifying direct methanol fuel cell anode catalyst
CN112021483A (en) * 2020-09-11 2020-12-04 宁波聚焦生物医药科技股份有限公司 Effervescent gel dry powder preparation and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143476A (en) * 1995-11-24 1997-06-03 Maruzen Petrochem Co Ltd Production of porous carbon material having uniform micropore
JPH09202610A (en) * 1996-01-24 1997-08-05 Mitsubishi Chem Corp Activated carbon and its production
JPH09255320A (en) * 1996-03-19 1997-09-30 Maruzen Petrochem Co Ltd Production of porous carbon material having fine pore
JPH1160615A (en) * 1997-08-15 1999-03-02 Showa Highpolymer Co Ltd Production of truly spherical fine polymer particle having uniform particle diameter distribution
JP2003001080A (en) * 2001-06-19 2003-01-07 Kiyomoto Iron & Machinery Works Co Ltd Method of manufacturing emulsified composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143476A (en) * 1995-11-24 1997-06-03 Maruzen Petrochem Co Ltd Production of porous carbon material having uniform micropore
JPH09202610A (en) * 1996-01-24 1997-08-05 Mitsubishi Chem Corp Activated carbon and its production
JPH09255320A (en) * 1996-03-19 1997-09-30 Maruzen Petrochem Co Ltd Production of porous carbon material having fine pore
JPH1160615A (en) * 1997-08-15 1999-03-02 Showa Highpolymer Co Ltd Production of truly spherical fine polymer particle having uniform particle diameter distribution
JP2003001080A (en) * 2001-06-19 2003-01-07 Kiyomoto Iron & Machinery Works Co Ltd Method of manufacturing emulsified composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057902A1 (en) * 2007-10-30 2009-05-07 Korea Institute Of Science And Technology Carbon aerogels for supercapacitors and method for manufacturing the same
US20100310847A1 (en) * 2007-10-30 2010-12-09 Korea Institute Of Science And Technology Carbon Aerogels for Supercapacitors and Method of Manufacturing the Same
US8480930B2 (en) 2007-10-30 2013-07-09 Korea Institute Of Science And Technology Carbon aerogels for supercapacitors and method of manufacturing the same
CN101774210A (en) * 2010-03-31 2010-07-14 黑龙江科技学院 Self-consolidation forming method of natural graphite
CN101774210B (en) * 2010-03-31 2011-10-19 黑龙江科技学院 Self-consolidation forming method of natural graphite
CN104157883A (en) * 2014-07-14 2014-11-19 浙江大学 Preparation method of anode of direct methanol fuel cell
CN104577146A (en) * 2015-01-20 2015-04-29 浙江大学 Method for modifying direct methanol fuel cell anode catalyst
CN112021483A (en) * 2020-09-11 2020-12-04 宁波聚焦生物医药科技股份有限公司 Effervescent gel dry powder preparation and preparation method thereof
CN112021483B (en) * 2020-09-11 2022-07-15 宁波聚焦生物医药科技股份有限公司 Effervescent gel dry powder preparation and preparation method thereof

Also Published As

Publication number Publication date
JP4639929B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4639929B2 (en) Carbon airgel and method for producing the same
Zhou et al. One-pot synthesis of B-doped three-dimensional reduced graphene oxide via supercritical fluid for oxygen reduction reaction
US10414896B2 (en) Composite resin material, slurry, shaped composite resin material product, and slurry production process
EP1876665B1 (en) Electrode for fuel cell and membrane electrode assembly
JP2006193858A (en) Microporous cellulose sheet and method for producing the same
US3676222A (en) Conductive carbon membrane electrode
TW201000397A (en) Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
CN109803996B (en) Method for producing composite resin material and method for producing molded article
JP5403211B2 (en) Manufacturing method for forming catalyst layer for fuel cell using catalyst ink
Zhang et al. Synthesis of carbon hollow particles by a simple inverse-emulsion method
US3385736A (en) Method of making electrode from viscoelastic dough
TWI607967B (en) Method of producing graphene
Nongwe et al. Pt supported nitrogen doped hollow carbon spheres for the catalysed reduction of cinnamaldehyde
Zhou et al. Scalable preparation of hollow polymer and carbon microspheres by spray drying and their application in low-density syntactic foam
JP2008277094A (en) Diffusion layer for fuel cell and method of manufacturing the same, membrane electrode assembly, and fuel cell
CN113145031B (en) Cellulose/graphene oxide composite aerogel and preparation method thereof
Zhang et al. Low-temperature organic solvent-based synthesis of amorphous porous carbon nanoparticles with high specific surface area at ambient atmosphere
Han et al. Direct methane cracking using a mixed conducting ceramic membrane for production of hydrogen and carbon
JP2017031323A (en) Method for producing slurry and method for producing composite resin material
Jacobs Influence of catalyst ink mixing procedures on catalyst layer properties and in-situ PEMFC performance
JP2014005408A (en) Rubber composition including carbon nanohorn and its use
JP2011044299A (en) Method of manufacturing electrode material for fuel cell
JPS62122068A (en) Manufacture of catalizer layer for fuel cell electrode
US20090011319A1 (en) Electrode and Membrane Electrode Assembly of Fuel Cell
Zhang et al. Ni Single Atoms Embedded in Graphene Nanoribbon Sieves for High‐Performance CO2 Reduction to CO

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Ref document number: 4639929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees