JP2006304029A - Measuring method of strength or frequency of ultra sonic wave - Google Patents

Measuring method of strength or frequency of ultra sonic wave Download PDF

Info

Publication number
JP2006304029A
JP2006304029A JP2005124513A JP2005124513A JP2006304029A JP 2006304029 A JP2006304029 A JP 2006304029A JP 2005124513 A JP2005124513 A JP 2005124513A JP 2005124513 A JP2005124513 A JP 2005124513A JP 2006304029 A JP2006304029 A JP 2006304029A
Authority
JP
Japan
Prior art keywords
sensor
frequency
liquid
article
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005124513A
Other languages
Japanese (ja)
Inventor
Hiroshi Iida
浩 飯田
Akira Arai
明 荒井
Hiroshi Kondo
宏 近藤
Hiroyuki Nakamura
弘幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005124513A priority Critical patent/JP2006304029A/en
Publication of JP2006304029A publication Critical patent/JP2006304029A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method of strength or frequency of an ultra sonic wave capable of accurately measuring the strength or the frequency of the ultra sonic wave. <P>SOLUTION: The method is configured to have the steps of immersing articles 4 having some shapes into liquid 2 which is radiated by an ultra sonic wave, sticking a sensor 5 for detecting an impulse force on the articles 4, converting the impulse force applied to the articles 4 into a voltage through the sensor, and measuring the strength of the ultra sonic wave propagating through the liquid 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は超音波の強度又は周波数の測定方法に関し、更に詳しくはこれら強度又は周波数を正確に測定する方法に関する。   The present invention relates to a method for measuring the intensity or frequency of an ultrasonic wave, and more particularly to a method for accurately measuring the intensity or frequency.

近年、IT(情報技術)産業の発展は日進月歩であり、これら産業を支える機器を構成する部材は非常に高い洗浄度を要求されている。これを達成するためには、超音波を使用した部材の洗浄や、部材の洗浄度を超音波により評価することが必要であり、これら超音波の強度や周波数を正確に測定することや管理することが必須である。   In recent years, the development of IT (information technology) industry is steadily progressing, and members constituting the equipment supporting these industries are required to have a very high degree of cleaning. In order to achieve this, it is necessary to clean the components using ultrasonic waves and evaluate the cleanliness of the components using ultrasonic waves, and accurately measure and manage the intensity and frequency of these ultrasonic waves. It is essential.

従来のこの種の技術としては、例えば圧電セラミック材料をシート化し、該シートを金型を用いて打ち抜き、さらに焼成することによって表裏面を有する圧電セラミクス片を作成する技術が知られている(例えば特許文献1参照)。また、ケーシング内に収容された圧電型マイクエレメントの振動板が外部に露出するように形成されたケーシング開口と振動板との間の凹所に、所定厚さ盛り上げてシリコンゴムを充填したゴム感圧層を形成したものが知られている(例えば特許文献2参照)。
特開2001−50808号公報(段落0020〜0021、図1、図2) 特開2003−348695号公報(段落0005〜0011、図1、図2)
As this type of conventional technology, for example, a technology is known in which a piezoelectric ceramic material is formed into a sheet, the sheet is punched out using a mold, and further fired to create a piezoelectric ceramic piece having front and back surfaces (for example, Patent Document 1). In addition, the rubber feeling of the diaphragm between the casing opening formed so that the diaphragm of the piezoelectric microphone element housed in the casing is exposed to the outside and the diaphragm is raised to a predetermined thickness and filled with silicon rubber. What formed the pressure layer is known (for example, refer patent document 2).
JP 2001-50808 (paragraphs 0020 to 0021, FIGS. 1 and 2) Japanese Patent Laying-Open No. 2003-348695 (paragraphs 0005 to 0011, FIGS. 1 and 2)

現在の超音波強度を測定する方法は、圧電素子をガラス或いは金属棒に貼り付け、この棒の先端部に加わる振動を電圧計に表示している。この方法では、振動を感知する棒が超音波が伝播している液体内の浸漬位置や場所(超音波の波長により強部と弱部)によって大きく変化され、正確な超音波強度が測定できない。また、液体を伝播する超音波の強度を正確に測定する具体的な装置は存在しない。   In the current method for measuring the ultrasonic intensity, a piezoelectric element is attached to a glass or metal bar, and vibration applied to the tip of the bar is displayed on a voltmeter. In this method, the vibration sensing rod is greatly changed depending on the immersion position and location (strong part and weak part depending on the wavelength of the ultrasonic wave) in the liquid in which the ultrasonic wave is propagating, and accurate ultrasonic intensity cannot be measured. In addition, there is no specific apparatus for accurately measuring the intensity of the ultrasonic wave propagating through the liquid.

また、既存の超音波強度を測定する方法には、圧電素子をガラス或いは金属棒に貼り付け、この棒の先端に加わる振動を電圧計に表示している。この方法では、振動を感知する棒が固定されているため、棒で浸漬位置や超音波の周波数或いは媒体となる液体の状態(温度,純度,溶存酸素濃度等)で大きく左右されるため、正確な強度の測定ができない。また、現在液体中を伝播する超音波の周波数を測定する具体的な装置は存在しない。   In addition, in an existing method for measuring the ultrasonic intensity, a piezoelectric element is attached to a glass or metal bar, and vibration applied to the tip of the bar is displayed on a voltmeter. In this method, since the rod that detects vibration is fixed, it depends greatly on the immersion position, the frequency of ultrasonic waves, or the state of the liquid medium (temperature, purity, dissolved oxygen concentration, etc.). Unable to measure the strength. In addition, there is no specific apparatus for measuring the frequency of ultrasonic waves propagating in a liquid at present.

本発明はこのような課題に鑑みてなされたものであって、超音波強度又は周波数を正確に測定することができる超音波の強度又は周波数の測定方法を提供することを目的としている。   The present invention has been made in view of such problems, and an object of the present invention is to provide an ultrasonic intensity or frequency measuring method capable of accurately measuring ultrasonic intensity or frequency.

(1)請求項1記載の発明は、超音波が照射されている液体中にある形状の物品を浸漬させ、更にこの物品に衝撃力を感知するセンサを貼り付け、この物品に加わる衝撃力をセンサを通して電圧に変換させ、液体中に伝播する超音波の強度を測定する、ことを特徴とする。
(2)請求項2記載の発明は、超音波が照射されている液体中にある形状の物品を浸漬させ、更にこの物品に波長を感知するセンサを貼り付け、この物品に加わる振動波長をセンサを通して変換させ、液体中に伝播する超音波の周波数を測定する、ことを特徴とする。
(3)請求項3記載の発明は、衝撃力を感知するセンサをある形状の物品に貼り付け、この物品を超音波が照射されている液体中に入れ、更にこれを上下左右に動かしながら、この物品に加わる衝撃力をセンサを通して電圧に変換させ、液体中のどの場所でも伝播する超音波の強度を測定する、ことを特徴とする。
(4)請求項4記載の発明は、振動波長を感知するセンサをある形状の物品に貼り付け、
この物品を超音波が照射されている液体中に入れ、更にこれを上下左右に動かしながら、この物品に加わる衝撃力をセンサを通して電圧に変換させ、液体中のどの場所でも伝播する超音波の周波数を測定する、ことを特徴とする。
(1) In the invention described in claim 1, an article having a shape is immersed in a liquid irradiated with ultrasonic waves, and a sensor for detecting an impact force is attached to the article, and the impact force applied to the article is measured. It is characterized in that it converts the voltage into a voltage through a sensor and measures the intensity of the ultrasonic wave propagating in the liquid.
(2) In the invention according to claim 2, an article having a shape is immersed in a liquid irradiated with ultrasonic waves, a sensor for detecting a wavelength is attached to the article, and a vibration wavelength applied to the article is detected. And measuring the frequency of the ultrasonic wave that is transmitted through the liquid and propagated in the liquid.
(3) In the invention of claim 3, a sensor for detecting an impact force is attached to an article of a certain shape, the article is placed in a liquid irradiated with ultrasonic waves, and further moved up, down, left and right, The impact force applied to the article is converted into a voltage through a sensor, and the intensity of the ultrasonic wave propagating anywhere in the liquid is measured.
(4) In the invention according to claim 4, a sensor for detecting a vibration wavelength is attached to an article having a certain shape,
This article is placed in a liquid that is irradiated with ultrasonic waves, and further, moving it up, down, left, and right, the impact force applied to this article is converted into voltage through the sensor, and the frequency of the ultrasonic wave that propagates anywhere in the liquid Is measured.

(1)請求項1記載の発明によれば、衝撃力を感知するセンサ(具体的には加速度センサやAEセンサ等)を超音波の衝撃力を受ける物品に貼り付けて超音波の強度を測定することにより、超音波の衝撃力を受ける面積を増やすことが可能となり、より正確に超音波の強度を測定することができる。また、液体中に直にセンサを入れることで、より正確に超音波の強度の測定ができる。
(2)請求項2記載の発明によれば、衝撃力を感知するセンサ(具体的には加速度センサやAEセンサ等)を超音波の衝撃力を受ける物品に貼り付けて超音波の周波数を測定することにより、超音波の衝撃力を面積を増やすことが可能となり、より正確に超音波の周波数を測定することができる。
(3)請求項3記載の発明によれば、衝撃力を感知するセンサ(具体的には加速度センサやAEセンサ)を超音波の衝撃力を受ける物品に貼り付けてこれを上下左右に動かしながら超音波の強度を測定することにより、超音波の衝撃力を受ける面積を増やすことが可能となり、より正確に超音波の強度が測定できる。また、液体中に直にセンサを入れて更にこれを上下左右に動かしながら測定するので、より正確に超音波の強度を測定することができる。特に、超音波の周波数が低い場合に有効である。
(4)請求項4記載の発明によれば、衝撃力を感知するセンサ(具体的には加速度センサやAEセンサ等)を超音波の衝撃力を受ける物品に貼り付けて、これを上下左右に動かしながら超音波の周波数を測定することにより、超音波の衝撃力を受ける面積を増やすことが可能となり、より正確に超音波の周波数が測定できる。また、液体中に直にセンサを入れて更にこれを上下左右に動かしながら測定するので、より正確に超音波の周波数を測定することができる。特に、超音波の周波数が低い場合に有効である。
(1) According to the first aspect of the present invention, a sensor for detecting an impact force (specifically, an acceleration sensor, an AE sensor, etc.) is attached to an article that receives the impact force of an ultrasonic wave, and the intensity of the ultrasonic wave is measured. By doing so, it is possible to increase the area that receives the impact force of ultrasonic waves, and it is possible to measure the intensity of ultrasonic waves more accurately. In addition, the ultrasonic intensity can be measured more accurately by placing the sensor directly in the liquid.
(2) According to the invention described in claim 2, a sensor for detecting an impact force (specifically, an acceleration sensor, an AE sensor, etc.) is attached to an article that receives the impact force of an ultrasonic wave, and the frequency of the ultrasonic wave is measured. By doing so, it becomes possible to increase the area of the impact force of ultrasonic waves, and the frequency of ultrasonic waves can be measured more accurately.
(3) According to the third aspect of the invention, a sensor (specifically, an acceleration sensor or an AE sensor) that senses an impact force is attached to an article that receives an ultrasonic impact force and is moved up, down, left, or right. By measuring the intensity of the ultrasonic wave, it is possible to increase the area receiving the impact force of the ultrasonic wave, and the ultrasonic intensity can be measured more accurately. In addition, since the sensor is directly placed in the liquid and the measurement is performed while moving the sensor vertically and horizontally, the ultrasonic intensity can be measured more accurately. This is particularly effective when the ultrasonic frequency is low.
(4) According to the invention described in claim 4, a sensor (specifically, an acceleration sensor, an AE sensor, or the like) that senses an impact force is attached to an article that receives an ultrasonic impact force, and is vertically and horizontally By measuring the frequency of the ultrasonic wave while moving, it is possible to increase the area that receives the impact force of the ultrasonic wave, and the frequency of the ultrasonic wave can be measured more accurately. In addition, since the sensor is directly placed in the liquid and the measurement is performed while moving the sensor vertically and horizontally, the ultrasonic frequency can be measured more accurately. This is particularly effective when the ultrasonic frequency is low.

以下、図面を参照して本発明の実施の形態例を詳細に説明する。図1は本発明の一実施の形態例を示す構成図である。図において、1は容器、2は該容器1内に貯溜された液体、3は容器1の底部に設けられた超音波発振子である。超音波発振子3の発振周波数は、例えば数10kHz〜数100kHz程度のものが用いられる。4は例えばステンレス製の板(プレート)、5は該板4の所定の位置に貼り付けられたセンサである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 1 is a container, 2 is a liquid stored in the container 1, and 3 is an ultrasonic oscillator provided at the bottom of the container 1. The oscillation frequency of the ultrasonic oscillator 3 is, for example, about several tens kHz to several hundreds kHz. Reference numeral 4 denotes, for example, a stainless steel plate, and 5 denotes a sensor attached to a predetermined position of the plate 4.

該センサ5としては、例えば超音波の周波数や超音波の衝撃力を感知することができるものが用いられ、具体的には加速度センサやAEセンサ等が用いられる。センサ自体は、既存のもの、例えばピエゾ素子等を用いることができる。6は超音波発振子と接続されている操作部、7は該操作部6に取り付けられたつまみである。該つまみ7を回すことにより、超音波発振子3の衝撃力を可変することができるようになっている。13は超音波を発信させるスタートボタンである。周波数は固定であるので、周波数を変更する手段は付属していない。   As the sensor 5, for example, a sensor capable of detecting an ultrasonic frequency or an ultrasonic impact force is used, and specifically, an acceleration sensor, an AE sensor, or the like is used. As the sensor itself, an existing sensor such as a piezo element can be used. Reference numeral 6 denotes an operation unit connected to the ultrasonic oscillator, and 7 denotes a knob attached to the operation unit 6. By turning the knob 7, the impact force of the ultrasonic oscillator 3 can be varied. Reference numeral 13 denotes a start button for transmitting ultrasonic waves. Since the frequency is fixed, no means for changing the frequency is attached.

8はセンサ5からの信号を取り出す信号線でその先は増幅器9に入っている。増幅器9は、センサ5の信号を増幅するものである。増幅器9の出力は、信号線10を介してオシロスコープ11に入り、画面11aに検出信号が表示されるようになっている。このように構成された装置の動作を説明すれば、以下の通りである。   Reference numeral 8 denotes a signal line for taking out a signal from the sensor 5, and the tip of the signal line enters an amplifier 9. The amplifier 9 amplifies the signal from the sensor 5. The output of the amplifier 9 enters the oscilloscope 11 through the signal line 10, and the detection signal is displayed on the screen 11a. The operation of the apparatus configured as described above will be described as follows.

先ず、所定の大きさの板(プレート)4にセンサ5を貼り付ける。センサの種類としては、前述したように、加速度センサやAEセンサが用いられる。そして、板4にセンサ5を貼り付けた状態で液体が入っている液体2中にこの板を漬ける。そして、操作部6のスタートボタン13を押す。この結果、超音波発振子3は発振を開始する。板4は広い面積のものであるので、超音波の衝撃力を受ける面積を増やすことが可能になる。このため、センサ5には大きな衝撃力が加わることになり、衝撃力を感度よく感知することが可能となり、より正確に超音波の強度を測定することが可能になる。ここで、センサ5を液体2中に直に入れることで、より正確に超音波の強度の測定ができる。   First, the sensor 5 is attached to a plate (plate) 4 having a predetermined size. As described above, an acceleration sensor or an AE sensor is used as the sensor type. Then, the plate is immersed in the liquid 2 containing the liquid with the sensor 5 attached to the plate 4. Then, the start button 13 of the operation unit 6 is pressed. As a result, the ultrasonic oscillator 3 starts to oscillate. Since the plate 4 has a large area, it is possible to increase the area that receives the impact force of ultrasonic waves. For this reason, a large impact force is applied to the sensor 5, the impact force can be sensed with high sensitivity, and the ultrasonic intensity can be measured more accurately. Here, by placing the sensor 5 directly in the liquid 2, the ultrasonic intensity can be measured more accurately.

このようにしてセンサ5で感知した信号は、信号線8を介して増幅器9に入り、この増幅器9で所定の大きさに増幅され、信号線10を介してオシロスコープ11に入力される。該オシロスコープ11の画面11aには、センサ5で感知した衝撃力の波形が表示される。操作者は、この波形を見て衝撃力の大きさを知ることができる。ここで、衝撃力が小さい場合には、操作部6のつまみ7を回して超音波発振子3の大きさを増加させることができる。この結果、センサ5は衝撃力が大きくなるので、感度よく衝撃力を感知することができる。   The signal thus sensed by the sensor 5 enters the amplifier 9 through the signal line 8, is amplified to a predetermined magnitude by the amplifier 9, and is input to the oscilloscope 11 through the signal line 10. On the screen 11a of the oscilloscope 11, the waveform of the impact force detected by the sensor 5 is displayed. The operator can know the magnitude of the impact force by viewing this waveform. Here, when the impact force is small, the size of the ultrasonic oscillator 3 can be increased by turning the knob 7 of the operation unit 6. As a result, since the impact force of the sensor 5 is increased, the impact force can be sensed with high sensitivity.

また、本発明によれば、センサ5として超音波の周波数を測定することができるものを板に貼り付けることで周波数を検出する面積を大きくすることができ、より正確に超音波の周波数を測定することができる。そして、センサ5を直に液体2中に入れることにより、周波数をより正確に感知することが可能となる。   Further, according to the present invention, the area for detecting the frequency can be increased by sticking the sensor 5 capable of measuring the ultrasonic frequency to the plate, and the ultrasonic frequency can be measured more accurately. can do. Then, by directly putting the sensor 5 in the liquid 2, it becomes possible to sense the frequency more accurately.

本発明によれば、センサ5を板に貼り付けて、これを上下左右に動かしながら超音波の強度を測定することにより、超音波の衝撃力を受ける面積を増やすことが可能となり、より正確に超音波の強度が測定できる。また、液体中に直にセンサ5を入れて更にこれを上下左右に動かしながら測定を行なうので、より正確に超音波の強度を測定することができる。特に、超音波の周波数が低い場合に有効である。   According to the present invention, by attaching the sensor 5 to a plate and measuring the intensity of the ultrasonic wave while moving the sensor 5 up and down, left and right, it is possible to increase the area that receives the impact force of the ultrasonic wave. Ultrasonic intensity can be measured. In addition, since the sensor 5 is placed directly in the liquid and the measurement is performed while moving the sensor 5 up and down, left and right, the intensity of the ultrasonic wave can be measured more accurately. This is particularly effective when the ultrasonic frequency is low.

また、本発明によれば、衝撃力を感知するセンサ(具体的には加速度センサやAEセンサ等)を超音波の衝撃力を受ける物品に貼り付けて、これを上下左右に動かしながら超音波の周波数を測定することにより、超音波の衝撃力を受ける面積を増やすことが可能となり、より正確に超音波の周波数が測定できる。また、液体中に直にセンサを入れて更にこれを上下左右に動かしながら測定するので、より正確に超音波の周波数を測定することができる。特に、超音波の周波数が低い場合に有効である。   In addition, according to the present invention, a sensor that senses an impact force (specifically, an acceleration sensor, an AE sensor, or the like) is attached to an article that receives the impact force of an ultrasonic wave, By measuring the frequency, it is possible to increase the area that receives the impact force of the ultrasonic wave, and the ultrasonic frequency can be measured more accurately. In addition, since the sensor is directly placed in the liquid and the measurement is performed while moving the sensor vertically and horizontally, the ultrasonic frequency can be measured more accurately. This is particularly effective when the ultrasonic frequency is low.

図2は周波数の観測波形例を示す図である。縦軸は強度、横軸は時間である。振幅は5V程度あることが分かる。図のλは波長である。図3は衝撃力の波形例を示す図である。縦軸は強度、横軸は周波数である。   FIG. 2 is a diagram showing an example of a frequency observation waveform. The vertical axis is intensity, and the horizontal axis is time. It can be seen that the amplitude is about 5V. In the figure, λ is a wavelength. FIG. 3 is a diagram showing a waveform example of the impact force. The vertical axis is intensity, and the horizontal axis is frequency.

このように、本発明によれば、超音波振動している液体中の様子を把握することができるので、例えば物品の洗浄に用いられる液体の洗浄能力を測定するのに用いて好適である。   Thus, according to the present invention, it is possible to grasp the state in the ultrasonically vibrating liquid, which is suitable for measuring, for example, the cleaning ability of the liquid used for cleaning the article.

上述の実施の形態例では、板(プレート)にセンサを貼り付けた場合を例にとったが、本発明はこれに限るものではなく、例えばビーカーに液体を入れて、洗浄する場合には、ビーカーの内面にセンサを貼り付けるようにすることもできる。なお、センサは、金属や樹脂等の液体を入れる材質に貼り付けるようにすることができる。また、容器に入れる液体の種類として、水や溶媒等の各種の液体を用いることが可能となる。   In the above-described embodiment, the case where a sensor is attached to a plate (plate) is taken as an example, but the present invention is not limited to this. For example, when a liquid is put into a beaker and washed, A sensor can be attached to the inner surface of the beaker. The sensor can be attached to a material into which a liquid such as metal or resin is placed. In addition, various types of liquid such as water and solvent can be used as the type of liquid to be placed in the container.

本発明の一実施の形態例を示す構成図である。It is a block diagram which shows one embodiment of this invention. 周波数の観測波形例を示す図である。It is a figure which shows the example of an observation waveform of a frequency. 衝撃力の観測波形例を示す図である。It is a figure which shows the example of an observation waveform of an impact force.

符号の説明Explanation of symbols

1 容器
2 液体
3 超音波発振子
4 板
5 センサ
6 操作部
7 つまみ
8 信号線
9 増幅器
10 信号線
11 オシロスコープ
11a画面
13 スタートボタン
DESCRIPTION OF SYMBOLS 1 Container 2 Liquid 3 Ultrasonic oscillator 4 Board 5 Sensor 6 Operation part 7 Knob 8 Signal line 9 Amplifier 10 Signal line 11 Oscilloscope 11a screen 13 Start button

Claims (4)

超音波が照射されている液体中にある形状の物品を浸漬させ、
更にこの物品に衝撃力を感知するセンサを貼り付け、
この物品に加わる衝撃力をセンサを通して電圧に変換させ、
液体中に伝播する超音波の強度を測定する、
ことを特徴とする超音波の強度測定方法。
Immerse an article of a certain shape in the liquid irradiated with ultrasonic waves,
Furthermore, a sensor for detecting the impact force is attached to this article,
The impact force applied to this article is converted into voltage through the sensor,
Measuring the intensity of ultrasonic waves propagating in liquids,
A method for measuring the intensity of ultrasonic waves.
超音波が照射されている液体中にある形状の物品を浸漬させ、
更にこの物品に波長を感知するセンサを貼り付け、
この物品に加わる振動波長をセンサを通して変換させ、
液体中に伝播する超音波の周波数を測定する、
ことを特徴とする超音波の周波数測定方法。
Immerse an article of a certain shape in the liquid irradiated with ultrasonic waves,
In addition, a sensor for detecting the wavelength is attached to this article.
The vibration wavelength applied to this article is converted through a sensor,
Measuring the frequency of ultrasonic waves propagating in a liquid,
A method for measuring the frequency of ultrasonic waves.
衝撃力を感知するセンサをある形状の物品に貼り付け、
この物品を超音波が照射されている液体中に入れ、
更にこれを上下左右に動かしながら、この物品に加わる衝撃力をセンサを通して電圧に変換させ、
液体中のどの場所でも伝播する超音波の強度を測定する、
ことを特徴とする超音波の強度測定方法。
A sensor that detects impact force is attached to an article of a certain shape,
Put this article in a liquid that has been irradiated with ultrasonic waves,
While moving this up and down, left and right, the impact force applied to this article is converted into voltage through the sensor,
Measure the intensity of ultrasonic waves that propagate anywhere in the liquid,
A method for measuring the intensity of ultrasonic waves.
振動波長を感知するセンサをある形状の物品に貼り付け、
この物品を超音波が照射されている液体中に入れ、
更にこれを上下左右に動かしながら、この物品に加わる衝撃力をセンサを通して電圧に変換させ、
液体中のどの場所でも伝播する超音波の周波数を測定する、
ことを特徴とする超音波の周波数測定方法。
A sensor that detects the vibration wavelength is attached to an article of a certain shape,
Put this article in a liquid that has been irradiated with ultrasonic waves,
While moving this up and down, left and right, the impact force applied to this article is converted into voltage through the sensor,
Measure the frequency of ultrasonic waves propagating anywhere in the liquid,
A method for measuring the frequency of ultrasonic waves.
JP2005124513A 2005-04-22 2005-04-22 Measuring method of strength or frequency of ultra sonic wave Withdrawn JP2006304029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005124513A JP2006304029A (en) 2005-04-22 2005-04-22 Measuring method of strength or frequency of ultra sonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005124513A JP2006304029A (en) 2005-04-22 2005-04-22 Measuring method of strength or frequency of ultra sonic wave

Publications (1)

Publication Number Publication Date
JP2006304029A true JP2006304029A (en) 2006-11-02

Family

ID=37471770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005124513A Withdrawn JP2006304029A (en) 2005-04-22 2005-04-22 Measuring method of strength or frequency of ultra sonic wave

Country Status (1)

Country Link
JP (1) JP2006304029A (en)

Similar Documents

Publication Publication Date Title
TWI248509B (en) Method of measuring flow of fluid moving in pipe or groove-like flow passage
JP2005345466A5 (en)
JP2010522870A5 (en)
Saalbach et al. Self-sensing cavitation detection in ultrasound-induced acoustic cavitation
JP5163857B2 (en) Concrete structure quality inspection method and concrete structure quality inspection apparatus
JP5467854B2 (en) Ultrasonic intensity measuring method and intensity measuring apparatus
JP3121740B2 (en) Liquid level sensor with plunger
JP5470186B2 (en) Inspection device cleanliness inspection device and cleanliness inspection method
JP4646813B2 (en) Biosensor measurement system, viscosity measurement method, and trace mass measurement method
JP2006304029A (en) Measuring method of strength or frequency of ultra sonic wave
JP5599269B2 (en) Wavelength detection method, wavelength detection device, dissolved gas total amount evaluation method, dissolved gas total amount evaluation device, dissolved gas total amount control method, and dissolved gas total amount control device
CN104075797A (en) Method for measuring output amplitude of power ultrasound equipment under loading condition
JP2010107488A (en) Ultrasonograph
JP2012107918A (en) Crack detection device and crack detection method
TWM382483U (en) Measurement device for the stored amount of an enclosed container
JP4403280B2 (en) Method for measuring physical properties of soft thin film and apparatus therefor
JP7297293B2 (en) airborne ultrasonic inspection device
JP2003194615A (en) Method and device for detecting filler
JP3998589B2 (en) Sound pressure measuring device and pressure measuring method
RU116632U1 (en) DIAGNOSTIC SYSTEM FOR MEASURING FREE VIBRATIONS OF A MONITORED OBJECT
JP4068908B2 (en) Sound pressure sensor
JP2007309850A5 (en)
JP2008256528A (en) Ultrasonic measuring device
JP2009139188A (en) Ultrasonic apparatus for measuring surface roughness and method therefor
CN218099014U (en) Ultrasonic detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091023

A761 Written withdrawal of application

Effective date: 20091120

Free format text: JAPANESE INTERMEDIATE CODE: A761