JP2010107488A - Ultrasonograph - Google Patents

Ultrasonograph Download PDF

Info

Publication number
JP2010107488A
JP2010107488A JP2008282641A JP2008282641A JP2010107488A JP 2010107488 A JP2010107488 A JP 2010107488A JP 2008282641 A JP2008282641 A JP 2008282641A JP 2008282641 A JP2008282641 A JP 2008282641A JP 2010107488 A JP2010107488 A JP 2010107488A
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
probe
unit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008282641A
Other languages
Japanese (ja)
Inventor
Koichiro Kawashima
紘一郎 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHOONPA ZAIRYO SHINDAN KENKYUS
CHOONPA ZAIRYO SHINDAN KENKYUSHO KK
Original Assignee
CHOONPA ZAIRYO SHINDAN KENKYUS
CHOONPA ZAIRYO SHINDAN KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHOONPA ZAIRYO SHINDAN KENKYUS, CHOONPA ZAIRYO SHINDAN KENKYUSHO KK filed Critical CHOONPA ZAIRYO SHINDAN KENKYUS
Priority to JP2008282641A priority Critical patent/JP2010107488A/en
Publication of JP2010107488A publication Critical patent/JP2010107488A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonograph which uses ultrasonic wave to nondestructively detect and image any detached area present on the surface of an measuring object, interfacial surface between film and base material, etc. <P>SOLUTION: In this ultrasonograph, signal generated by an ultrasonic signal generator 2 is amplified by an ultrasonic signal amplifier 3 to be entered into the measuring object 30 from an ultrasonic transmission probe 4 and an ultrasonic transceiver probe 6. The probe 6 receives surface vertical reflected wave, while an ultrasonic receiving probe 5 receives surface wave propagated through surface layer, these received waves are recorded in a receiving amplifier 8 and a waveform memory section 10. A waveform processor 12 calculates time difference in between surface vertical reflected wave and surface propagation wave to contrast the calculated result with guide wave dispersion curve computed by a guide wave rate dispersion curve calculation software 11 built in a personal computer 9, changing any propagation time difference beyond predefined threshold range into color tone. Then an image display section 13 displays it to distinguish any detached area from healthy one on interfacial surface between film and base material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、表面層あるいは薄板状物体中を伝搬する超音波を用いて、非接触あるいは水を介して被測定対象物表面及び皮膜/基材界面及び重ね薄板界面に存在する欠陥及び隙間部を非破壊的に検出し画像化する診断装置に関するものである。   The present invention uses ultrasonic waves propagating in a surface layer or a thin plate-like object to detect defects and gaps existing on the surface of the object to be measured, the film / substrate interface, and the laminated thin plate interface through non-contact or water. The present invention relates to a diagnostic apparatus that detects and images nondestructively.

金属材料表面の塗膜、表面のメッキ層、耐熱プラズマ溶射セラミックスコーティング、プレス金型表面の耐摩耗性セラミックス蒸着膜、異種金属のクラッド板、木材合板などの被覆材料が産業において広範に用いられている。   Coating materials such as coatings on the surface of metal materials, plating layers on the surface, heat-resistant plasma sprayed ceramic coatings, wear-resistant ceramics deposited films on the surface of press dies, clad plates made of dissimilar metals, and wood plywood are widely used in the industry. Yes.

それら皮膜の特性、形成された皮膜及び重ね板界面の健全性、密着度を評価するため、日本工業規格では各種引き剥がし、引っかき、スクラッチ試験法が規定されている (非特許文献1−4)。
JIS K5600-5-4 引っかき硬度(鉛筆法)について。 JIS K5600-5-5 塗料一般試験方法−第5部:塗膜の機械的性質−第5節:引っかき硬度(荷重針法)。 JIS H 8504 めっきの密着性試験方法 。 JIS K7312 熱硬化性ポリウレタンエラストマー成形物の物理試験方法。
In order to evaluate the properties of the films, the integrity of the formed films and the interface between the laminated boards, and the degree of adhesion, Japanese Industrial Standards define various peeling, scratching, and scratch test methods (Non-Patent Documents 1-4). .
About JIS K5600-5-4 scratch hardness (pencil method). JIS K5600-5-5 General test methods for paints-Part 5: Mechanical properties of paint film-Section 5: Scratch hardness (load needle method). JIS H 8504 Plating adhesion test method. JIS K7312 Physical testing method for thermosetting polyurethane elastomer moldings.

しかし、上記の試験方法はいずれも皮膜を破壊する破壊的試験法であるので、プラント構成部材、製品、金型、工具には適用できない。   However, any of the above test methods is a destructive test method that breaks the film, and therefore cannot be applied to plant components, products, molds, and tools.

皮膜を破壊せずに、その特性あるいは健全性を評価するため、例えば超音波法(特許文献1)、渦電流法(特許文献2)、マイクロ波法(特許文献3)が出願されている。
特開平6−118068号公報 特開2005−208061号公報 特開2007−303956号公報
In order to evaluate the characteristics or soundness without destroying the film, for example, an ultrasonic method (Patent Document 1), an eddy current method (Patent Document 2), and a microwave method (Patent Document 3) have been filed.
Japanese Patent Laid-Open No. 6-11868 JP 2005-208061 A Japanese Patent Laid-Open No. 2007-303956

しかし、特許文献1の方法は、超音波センサーを直接被測定面に押し当て、送信周波数を掃引して共振周波数を測定するため、面の凹凸状況、音響結合材の影響を受け易く、原理的にかなり大きな面積のはく離の検出しかできない。一方、非接触測定である特許文献2及び特許文献3の渦電流あるいはマイクロ波を用いる方法は、リフトオフ(被測定物表面とセンサー間距離)の影響を受けやすいので現場での測定が困難であるという問題点を有する。   However, since the method of Patent Document 1 directly presses the ultrasonic sensor against the surface to be measured and sweeps the transmission frequency to measure the resonance frequency, the method is easily influenced by the surface unevenness state and the acoustic coupling material. However, it is only possible to detect delamination of a considerably large area. On the other hand, the methods using eddy currents or microwaves disclosed in Patent Document 2 and Patent Document 3 that are non-contact measurement are easily affected by lift-off (distance between the surface of the object to be measured and the sensor), and are difficult to measure in the field. Has the problem.

さらに、上記の各方法では測定対象物が平面状である場合には適用できるが、円管表面あるいは円筒内面のような曲率を持つ面については、リフトオフの影響により測定結果の変動が大きくなるという問題点を有する。   Furthermore, each of the above methods can be applied when the object to be measured is planar, but for a surface having a curvature, such as the surface of a circular tube or the inner surface of a cylinder, the variation in measurement results increases due to the effect of lift-off. Has a problem.

本発明は、上記事情に鑑み、金属材料表面の塗膜、表面のメッキ層、プラズマ溶射セラミックスコーティング、プレス金型表面の耐摩耗性セラミックス蒸着膜、異種金属のクラッド板、木材合板などの皮膜と基材界面の健全性を、空気伝搬超音波法あるいは水浸超音波法を用いて評価することのできる超音波診断装置を提供することを目的とする。   In view of the above circumstances, the present invention provides a coating film on a metal material surface, a plating layer on the surface, a plasma sprayed ceramic coating, a wear-resistant ceramic vapor deposition film on the surface of a press mold, a clad plate of a dissimilar metal, a wood plywood, and the like. It is an object of the present invention to provide an ultrasonic diagnostic apparatus capable of evaluating the soundness of a substrate interface using an air propagation ultrasonic method or a water immersion ultrasonic method.

上記目的を達成するため、本発明が採用した解決手段は、超音波信号発生部と、該発生部で発生させた電気信号を電気的に増幅し超音波送信部に印加する超音波信号増幅部と、該増幅部で増幅した電気信号を被測定物に入射して表面波及び表面垂直反射波をそれぞれ励起する超音波送信部と、前記被測定物の表面近傍を伝搬した表面波波動及び表面垂直反射波をそれぞれ検出する超音波受信部と、該超音波受信部で受信した受信信号を増幅する受信増幅部と、該受信増幅部で増幅した信号をデジタル変換しデジタル収録する波形記憶部と、パーソナルコンピュータ内に内蔵された走査機構駆動信号発生部からの出力信号に基づき前記超音波送信部及び前記超音波受信部の両者を被測定物に対して相対的に移動させる走査機構と、該パーソナルコンピュータ内に内蔵された波形処理部及び画像表示部並びにガイド波速度分散曲線計算ソフトウエアと、を備え、前記パーソナルコンピュータからの指令に基づいて前記超音波信号発生部で発生させた電気信号を前記超音波信号増幅部で増幅し、その増幅した電気信号により前記超音波送信部を励起して表面波及び表面垂直反射波を被測定物に入射し、該被測定物の表面近傍を伝搬した表面波波動及び表面垂直反射波を前記超音波受信部によりそれぞれ受信し、その受信信号を前記受信増幅部でそれぞれ増幅した後、高速A/D変換ボードでデジタル変換し、そのデジタル波形を前記デジタル波形記憶部に収録し、その収録された波形から表面垂直反射波到着時間と表面波伝搬時間との差を前記波形処理部によって計算し、その差が前記ガイド波速度分散曲線計算ソフトウエアを用いて理論表面波速度又はガイド波速度から予め計算される伝搬時間のしきい値の範囲から外れる場合と外れない場合とで色彩を異ならせて前記画像表示部に表示し、それらを前記走査機構によって走査される走査位置ごとにカラーマッピングすることで被測定物の表面直下に存在するはく離部を高速で画像化することにより欠陥の有無を識別することを特徴とする。   In order to achieve the above object, the solution adopted by the present invention includes an ultrasonic signal generating unit and an ultrasonic signal amplifying unit for electrically amplifying an electric signal generated by the generating unit and applying the electric signal to the ultrasonic transmitting unit. An ultrasonic transmission unit for injecting an electric signal amplified by the amplification unit into the object to be measured to excite a surface wave and a surface vertical reflected wave, and a surface wave wave and a surface propagating near the surface of the object to be measured. An ultrasonic receiving unit for detecting vertical reflected waves; a reception amplifying unit for amplifying a received signal received by the ultrasonic receiving unit; and a waveform storage unit for digitally converting the signal amplified by the receiving amplifying unit and recording it digitally A scanning mechanism that moves both of the ultrasonic transmitter and the ultrasonic receiver relative to the object to be measured based on an output signal from a scanning mechanism drive signal generator built in the personal computer, personal A waveform processing unit and an image display unit built in the computer, and guide wave velocity dispersion curve calculation software, and the electrical signal generated by the ultrasonic signal generation unit based on a command from the personal computer A surface that is amplified by an ultrasonic signal amplifying unit, excites the ultrasonic transmitting unit by the amplified electric signal, and enters a surface wave and a surface vertical reflected wave on the object to be measured, and propagates in the vicinity of the surface of the object to be measured. The wave wave and the surface vertical reflected wave are received by the ultrasonic wave receiving unit, the received signal is amplified by the receiving amplification unit, and then digitally converted by a high-speed A / D conversion board, and the digital waveform is converted into the digital waveform. The difference between the surface vertical reflected wave arrival time and the surface wave propagation time is calculated by the waveform processing unit from the recorded waveform, and the difference is calculated from the recorded waveform. The image display unit uses different colors depending on whether it deviates from the threshold range of the propagation time calculated in advance from the theoretical surface wave velocity or guide wave velocity using the wave velocity dispersion curve calculation software. In addition, it is possible to identify the presence or absence of a defect by imaging at a high speed a peeling portion that exists immediately below the surface of the object to be measured by color mapping each scanning position scanned by the scanning mechanism. And

前記超音波送信部は、平面超音波探触子、集束型超音波探触子、空気超音波探触子、アレイ超音波センサ、YAGレーザー、空気ジェット、あるいは超磁歪探触子のいずれかを選択することにより、各種被膜/基材の組合わせの診断に対応できる。   The ultrasonic transmission unit includes a planar ultrasonic probe, a focused ultrasonic probe, an air ultrasonic probe, an array ultrasonic sensor, a YAG laser, an air jet, or a giant magnetostrictive probe. By selecting, it is possible to cope with the diagnosis of various coating / substrate combinations.

前記超音波受信部として、圧電性セラミックス素子、圧電性高分子素子、空気超音波探触子、アレイセンサあるいはレーザードップラー変位計のいずれかを選択することにより、各種被膜/基材の組み合わせの診断に対応できる。   Diagnosis of various coating / substrate combinations by selecting one of a piezoelectric ceramic element, a piezoelectric polymer element, an air ultrasonic probe, an array sensor, or a laser Doppler displacement meter as the ultrasonic receiver. It can correspond to.

前記走査機構は、一次元、二次元、円筒内面、円筒内外面、円錐台内外面、に沿って移動できるので、それら各種形状の被膜/基材の組み合わせの診断に対応できる。   Since the scanning mechanism can move along one-dimensional, two-dimensional, cylindrical inner surface, cylindrical inner / outer surface, and truncated cone inner / outer surface, it can cope with diagnosis of coating / substrate combinations of these various shapes.

本発明により、空気超音波探触子、水浸表面波探触子などを用いて被測定物から数十mm離れて超音波を送受信し、被膜と基材界面におけるはく離部を非破壊的に検出し画像化する手段が確立された。   According to the present invention, ultrasonic waves are transmitted and received at a distance of several tens of millimeters from an object to be measured using an air ultrasonic probe, a water immersion surface wave probe, etc. Means for detecting and imaging have been established.

厚さ数ミクロンの蒸着コーティング膜に対しては、周波数数十MHzの水浸表面波探触子を用いて、被膜と基材界面の健全性を非破壊的に評価できる。   For a deposited coating film having a thickness of several microns, the soundness of the coating film and the substrate interface can be evaluated nondestructively using a water immersion surface wave probe having a frequency of several tens of MHz.

厚さ数十ミクロンのめっき層、塗膜については、周波数数MHzの水浸表面波探触子あるいは空気超音波探触子を用いて、被膜と基材界面の健全性を非破壊的に評価できる。   For plating layers and coating films with a thickness of several tens of microns, non-destructive evaluation of the integrity of the coating film / substrate interface is performed using a water immersion surface wave probe or air ultrasonic probe with a frequency of several MHz. it can.

厚さ数百ミクロンの溶射セラミックスコーティング、厚さmm台の樹脂ライニング、クラッド板に対しては、周波数数十ないし数百kHzの空気超音波探触子を用いて被膜と基材界面の健全性を非破壊的に評価できる。   For thermal sprayed ceramic coatings with thicknesses of several hundred microns, resin linings with thicknesses of the order of millimeters, and clad plates, using an air ultrasonic probe with a frequency of several tens to several hundreds of kHz, the integrity of the coating and substrate interface Can be evaluated nondestructively.

周波数数百kHz空気超音波を用いるときには、被測定物表面に0.1mm台の凹凸があってもそのまま超音波の送受ができるので、従来の超音波探傷法のように超音波入射面をグラインダー等で平滑にする必要が無い。   When air ultrasonic waves with a frequency of several hundred kHz are used, even if the surface of the object to be measured has an unevenness of the order of 0.1 mm, ultrasonic waves can be sent and received as it is, so the ultrasonic incident surface is grindered as in the conventional ultrasonic flaw detection method. There is no need for smoothing.

空気超音波探触子を用いると、接触式あるいは水浸超音波法では測定できない、水中音速より遅く空中音速より早い伝搬速度を持つCFRP、 プラスチック材料、木材等の表面波あるいはガイド波を励起することができる。   When an air ultrasonic probe is used, it can excite surface waves or guide waves of CFRP, plastic materials, wood, etc., which have a propagation velocity slower than underwater sound velocity and faster than airborne sound velocity, which cannot be measured by contact-type or water-immersion ultrasonic methods. be able to.

本発明を用いて内部欠陥を非接触で検出するための最良の形態を実施例に基づき、図面を参照して以下に説明する。   A best mode for detecting an internal defect in a non-contact manner using the present invention will be described below based on an embodiment with reference to the drawings.

図4は、空気超音波探触子を用いた空気超音波診断装置を説明する図である。空気超音波診断装置1は、表面波空気超音波送信探触子4及び表面波空気超音波受信探触子5及び表面垂直反射波を送受信するための表面垂直反射波空気超音波送受一体化探触子6と、それらに電気信号を送る超音波信号発生部2、その信号を増幅する超音波信号増幅部3と、空気超音波探触子4〜6を被測定物30に対して相対的に移動しながら位置決めを行う超音波探触子走査機構7と、空気超音波受信探触子5,6で受信した信号を増幅する受信増幅部8と、パーソナルコンピュータ9内に内蔵される、超音波探触子走査機構7を駆動させるための信号を発生させる走査機構駆動信号発生部14、増幅されたアナログ信号をデジタル信号に変換する高速A/D変換ボードを用いて波形を記憶する波形記憶部10、ガイド波速度分散曲線計算ソフトウエア11、及び波形処理部12並びに画像表示部13を備えて構成されている。   FIG. 4 is a diagram for explaining an air ultrasonic diagnostic apparatus using an air ultrasonic probe. The air ultrasonic diagnostic apparatus 1 includes a surface wave air ultrasonic wave transmission probe 4, a surface wave air ultrasonic wave reception probe 5, and a surface vertical reflected wave air ultrasonic wave transmission / reception integrated probe for transmitting and receiving surface vertical reflected waves. The probe 6, the ultrasonic signal generator 2 that sends electrical signals to them, the ultrasonic signal amplifier 3 that amplifies the signals, and the air ultrasonic probes 4 to 6 are relative to the object to be measured 30. An ultrasonic probe scanning mechanism 7 that performs positioning while moving to the position, a reception amplifying unit 8 that amplifies signals received by the air ultrasonic reception probes 5 and 6, and a supercomputer built in the personal computer 9. Waveform storage for storing waveforms using a scanning mechanism drive signal generator 14 for generating a signal for driving the acoustic probe scanning mechanism 7 and a high-speed A / D conversion board for converting the amplified analog signal into a digital signal. Part 10, guide wave velocity dispersion curve It is configured to include a calculation software 11 and the waveform processing section 12, and the image display unit 13.

図5は、水浸表面波探触子を用いた水浸超音波診断装置を説明する図である。水浸超音波診断装置1Aは、被測定物30と共に水槽50内に浸漬されて表面波超音波送信探触子と表面波超音波受信探触子及び表面垂直反射波送受機能を一体化した水浸表面波探触子40と、それに電気信号を送る超音波信号発生部2、その信号を増幅する超音波信号増幅部3と、水浸表面波探触子40を被測定物30に対して相対的に移動しながら位置決めを行う超音波探触子走査機構7と、水浸表面波探触子40で受信した信号を増幅する受信増幅部8、パーソナルコンピュータ9内に内蔵される、超音波探触子走査機構7を駆動させるための信号を発生させる走査機構駆動信号発生部14、増幅されたアナログ信号をデジタル信号に変換する高速A/D変換ボードを用いて波形を記憶する波形記憶部10、ガイド波速度分散曲線計算ソフトウエア11、及び波形処理部12並びに画像表示部13を備えて構成されている。   FIG. 5 is a diagram illustrating a water immersion ultrasonic diagnostic apparatus using a water immersion surface wave probe. The water-immersion ultrasonic diagnostic apparatus 1A is immersed in a water tank 50 together with the object to be measured 30, and integrates a surface wave ultrasonic transmission probe, a surface wave ultrasonic reception probe, and a surface vertical reflected wave transmission / reception function. The immersion surface wave probe 40, the ultrasonic signal generation unit 2 that sends an electrical signal thereto, the ultrasonic signal amplification unit 3 that amplifies the signal, and the immersion surface wave probe 40 are attached to the object to be measured 30. An ultrasonic probe scanning mechanism 7 that performs positioning while relatively moving, a reception amplifying unit 8 that amplifies a signal received by the water immersion surface wave probe 40, and an ultrasonic wave incorporated in the personal computer 9. A scanning mechanism drive signal generator 14 that generates a signal for driving the probe scanning mechanism 7 and a waveform storage unit that stores a waveform using a high-speed A / D conversion board that converts the amplified analog signal into a digital signal. 10. Guide wave velocity dispersion curve calculation Futouea 11, and includes a waveform processing section 12 and the image display unit 13 is constituted.

図5の水浸超音波診断装置1Aでは、図3に示す水浸表面波探触子40を用いるので、被測定物30に垂直な縦波反射波は自動的に励起・受信される。したがって図4のような3個の探触子を必要としない。なお、超音波送信探触子として、平面超音波探触子、集束型超音波探触子、空気超音波探触子、アレイ超音波センサ、YAGレーザー、空気ジェット、あるいは超磁歪探触子のいずれかを選択することができ、また、超音波受信探触子として、圧電性セラミックス素子、圧電性高分子素子、空気超音波探触子、アレイセンサ、あるいはレーザードップラー変位計のいずれかを選択することができる。   In the immersion ultrasonic diagnostic apparatus 1A shown in FIG. 5, the immersion surface wave probe 40 shown in FIG. 3 is used, so that the longitudinal wave reflected wave perpendicular to the object to be measured 30 is automatically excited and received. Therefore, three probes as shown in FIG. 4 are not required. In addition, as an ultrasonic transmission probe, a plane ultrasonic probe, a focused ultrasonic probe, an air ultrasonic probe, an array ultrasonic sensor, a YAG laser, an air jet, or a giant magnetostrictive probe Any of these can be selected, and a piezoelectric ceramic element, a piezoelectric polymer element, an air ultrasonic probe, an array sensor, or a laser Doppler displacement meter can be selected as the ultrasonic receiving probe. can do.

ところで、図4及び図5に示す超音波診断装置において、パーソナルコンピュータ9に内蔵されたガイド波速度分散曲線計算ソフトウエア11により、皮膜及び基材の物性値と板厚(健全な場合)又は膜厚(はく離部がある場合)を入力すると、図1に示すような周波数×板厚/膜厚の関数として各種モードのガイド波速度分散曲線が表示される。   By the way, in the ultrasonic diagnostic apparatus shown in FIG. 4 and FIG. 5, the physical property value and the plate thickness (when healthy) or the film of the film and the base material are calculated by the guide wave velocity dispersion curve calculation software 11 built in the personal computer 9. When the thickness (when there is a peeling portion) is input, guide wave velocity dispersion curves in various modes are displayed as a function of frequency × plate thickness / film thickness as shown in FIG.

図2(A)に示すように、被測定物30における皮膜32と基材31が健全に接合されているとき、被測定物30の板厚を伝搬する表面波速度が図1の各曲線の漸近値(図1中の右端四角囲み枠W1内)で与えられる。   As shown in FIG. 2A, when the film 32 and the base material 31 of the object to be measured 30 are joined firmly, the surface wave velocity that propagates the plate thickness of the object to be measured 30 is as shown in each curve of FIG. Asymptotic value (given in the right end square box W1 in FIG. 1).

図2(B)に示すように、被測定物30における皮膜32と基材31との間にはく離部33が存在している場合には、はく離部膜厚は健全に結合されている場合の被測定物30の厚さの数十分の1以下であるので、周波数×膜厚の値が小さくなり、図1の左端四角囲み枠W2内に示すように、面内伸縮を伴う高速のS0モードと曲げ変形を伴う低速のA0モードの波がはく離した膜厚内を伝搬する。 As shown in FIG. 2 (B), when the separation part 33 exists between the film 32 and the base material 31 in the object to be measured 30, the film thickness of the separation part is soundly coupled. Since the thickness of the object to be measured 30 is one tenth or less of the thickness, the value of the frequency × film thickness becomes small, and as shown in the left end square frame W2 in FIG. A low-speed A 0 mode wave accompanied with a 0 mode and bending deformation propagates in the separated film thickness.

はく離部33を伝搬する上記A0モードあるいはS0モードのガイド波のいずれが図2(B)の測定状態で測定されるかは、皮膜の物性、厚さ及びはく離部の輪郭によって規定される振幅に依存する。 Whether the A 0 mode or S 0 mode guide wave propagating through the peeling portion 33 is measured in the measurement state of FIG. 2B is defined by the physical properties of the film, the thickness, and the outline of the peeling portion. Depends on amplitude.

図2(A)に示すはく離のない場合の表面波の伝搬時間は、はく離の有無に依存しない空中伝搬時間、健全部を表面波速度で伝搬する時間の和である。一方はく離部を含む図2(B)に示す表面波/ガイド波の伝搬時間は、はく離の有無に依存しない空中伝搬時間、健全部を表面波速度(VR)で伝搬する時間、はく離部を上記S0あるいはA0モードの速度(VG)で伝搬する時間の和である。 The propagation time of the surface wave when there is no separation shown in FIG. 2 (A) is the sum of the air propagation time that does not depend on the presence or absence of separation and the time for propagation through the healthy part at the surface wave velocity. The propagation time of the surface wave / guide wave shown in FIG. 2 (B) including the separation part is the air propagation time that does not depend on the presence or absence of separation, the time to propagate the healthy part at the surface wave velocity (V R ), and the separation part. This is the sum of the propagation times at the speed (V G ) of the S 0 or A 0 mode.

上記両者の伝搬時間の差は次式で表される。
式(1)・・t=(L−d)/VR+d/VG
The difference between the above two propagation times is expressed by the following equation.
Formula (1) ··· t = (L−d) / V R + d / V G

例えば、長さ「d」のはく離部33が表面波/ガイド波の伝搬距離Lの1/2であり、図1に示すように、S0モードの速度VG(5400m/s)が表面波速度VR(3000m/s)の1.8倍であるとき、図2(A)の健全部伝搬時間に対する図2(B)のはく離部33を含む伝搬時間の比は約0.78(78%)となる。現在のデジタル波形処理装置を用いれば1%程度の伝搬時間差は容易に計算できる。 For example, the separation portion 33 having the length “d” is ½ of the propagation distance L of the surface wave / guide wave, and the velocity V G (5400 m / s) of the S 0 mode is the surface wave as shown in FIG. When the velocity V R (3000 m / s) is 1.8 times, the ratio of the propagation time including the separation portion 33 of FIG. 2B to the healthy portion propagation time of FIG. 2A is about 0.78 (78 %). If the current digital waveform processing apparatus is used, a propagation time difference of about 1% can be easily calculated.

式(1)においては、図2に示すように超音波送信は1本の線として仮定しているが、数百kHzの空気超音波探触子を用いる場合、たとえば鋼の表面波波長は7mm程度となるので、効率的に表面波を励起するためそれ以上の開口を持つ超音波探触子を使用する。このため式(1)の距離Lを測定前に正確に評価することは困難である。   In equation (1), the ultrasonic transmission is assumed as one line as shown in FIG. 2, but when an air ultrasonic probe of several hundred kHz is used, for example, the surface wave wavelength of steel is 7 mm. Therefore, in order to efficiently excite surface waves, an ultrasonic probe having a larger aperture is used. For this reason, it is difficult to accurately evaluate the distance L in Expression (1) before measurement.

そこで、この問題を回避するため、表面垂直反射波を受信する探触子6を設け、表面垂直反射波に対する表面波/ガイド波受信時間の差(図6のt0又はt1)を測定し、それらを走査位置ごとに、測定した差が図1に示す「速度しきい値」から計算される「時間しきい値」の範囲内と範囲外とで異なる色彩でカラーマッピングすることにより、図6に示すような相対伝搬速度差画像(はく離領域画像60)を求める。なお、図1に示す「速度しきい値」の範囲は、測定誤差等を考慮して健全部の表面波速度(VR)の±10%程度の範囲として設定される。 In order to avoid this problem, a probe 6 for receiving the surface vertical reflected wave is provided, and the difference between the surface wave / guide wave reception time (t0 or t1 in FIG. 6) with respect to the surface vertical reflected wave is measured. 6 for each scanning position by color mapping with different colors within and outside the range of the “time threshold” calculated from the “speed threshold” shown in FIG. A relative propagation velocity difference image (peeling region image 60) as shown is obtained. The range of the “velocity threshold value” shown in FIG. 1 is set as a range of about ± 10% of the surface wave velocity (V R ) of the healthy part in consideration of measurement errors and the like.

この手法は、図2(A)及び(B)における中央の表面垂直反射波空気超音波送受信一体化探触子6で受信される表面垂直反射波の時間は、表面波測定用探触子4,5の空中伝搬時間、健全部を表面波速度で伝搬する時間の和と一定値だけ異なるので、後者(健全部を表面波速度で伝搬する時間)の代わりに用いることができる。   In this method, the time of the surface vertical reflected wave received by the central surface vertical reflected wave air ultrasonic wave transmitting / receiving integrated probe 6 in FIGS. 2 (A) and 2 (B) is the surface wave measuring probe 4. , 5 is different from the sum of the propagation time in the air and the time for propagating the healthy part at the surface wave velocity by a certain value, so that the latter (the time for propagating the healthy part at the surface wave velocity) can be used instead of the latter.

図4及び図5に示す超音波診断装置は、最適測定形態を示すものであるが、その簡易形態として、走査画像化を行わず、図6に示す表面垂直反射波(左波束)に対する表面波(右波束)の伝搬時間差があらかじめ設定した時間差の範囲を外れた場合にアラームを発生させる超音波診断装置であってもよい。   The ultrasonic diagnostic apparatus shown in FIGS. 4 and 5 shows an optimum measurement form, but as a simple form, the surface wave with respect to the surface vertical reflected wave (left wave packet) shown in FIG. The ultrasonic diagnostic apparatus may generate an alarm when the propagation time difference of (right wave packet) is out of a preset time difference range.

表面波及びガイド波速度分散を示す概念図である。It is a conceptual diagram which shows a surface wave and guide wave velocity dispersion | distribution. 空気超音波探触子を用いた表面波/ガイド波測定の概念図である。It is a conceptual diagram of surface wave / guide wave measurement using an air ultrasonic probe. 水浸表面波探触子を用いた表面波/ガイド波測定の概念図である。It is a conceptual diagram of surface wave / guide wave measurement using a water immersion surface wave probe. 実施形態に係る空気超音波探触子を用いた空気超音波診断装置の全体構成説明図である。1 is an explanatory diagram of the overall configuration of an air ultrasonic diagnostic apparatus using an air ultrasonic probe according to an embodiment. 実施形態に係る水浸超音波探触子を用いた水浸超音波診断装置の全体構成説明図である。1 is an explanatory diagram of the overall configuration of a water immersion ultrasonic diagnostic apparatus using a water immersion ultrasonic probe according to an embodiment. 伝搬時間差マップによるはく離領域画像の例である。It is an example of the peeling area | region image by a propagation time difference map.

符号の説明Explanation of symbols

1 空気超音波診断装置
1A 水浸超音波診断装置
2 超音波信号発生部
3 超音波信号増幅部
4 表面波空気超音波送信探触子
5 表面波空気超音波受信探触子
6 表面垂直反射波空気超音波送受一体化探触子
7 走査機構
8 受信増幅部
9 パーソナルコンピュータ
10 波形記憶部
11 ガイド波速度分散曲線計算ソフトウエア
12 波形処理部
13 画像表示部
14 走査機構駆動信号発生部
30 被測定物
31 基材
32 皮膜
33 はく離部
40 水浸表面波探触子
50 水槽
60 はく離領域画像
DESCRIPTION OF SYMBOLS 1 Air ultrasonic diagnostic apparatus 1A Water immersion ultrasonic diagnostic apparatus 2 Ultrasonic signal generation part 3 Ultrasonic signal amplification part 4 Surface wave air ultrasonic transmission probe 5 Surface wave air ultrasonic reception probe 6 Surface vertical reflected wave Air ultrasonic transmission / reception integrated probe 7 Scanning mechanism 8 Reception amplification unit 9 Personal computer 10 Waveform storage unit 11 Guide wave velocity dispersion curve calculation software 12 Waveform processing unit 13 Image display unit 14 Scanning mechanism drive signal generation unit 30 Measured Object 31 Base material 32 Coating 33 Peeling part 40 Water immersion surface wave probe 50 Water tank 60 Peeling area image

Claims (3)

超音波信号発生部と、該発生部で発生させた電気信号を電気的に増幅し超音波送信部に印加する超音波信号増幅部と、該増幅部で増幅した電気信号を被測定物に入射して表面波及び表面垂直反射波をそれぞれ励起する超音波送信部と、前記被測定物の表面近傍を伝搬した表面波波動及び表面垂直反射波をそれぞれ検出する超音波受信部と、該超音波受信部で受信した受信信号を増幅する受信増幅部と、該受信増幅部で増幅した信号をデジタル変換しデジタル収録する波形記憶部と、パーソナルコンピュータ内に内蔵された走査機構駆動信号発生部からの出力信号に基づき前記超音波送信部及び前記超音波受信部の両者を被測定物に対して相対的に移動させる走査機構と、該パーソナルコンピュータ内に内蔵された波形処理部及び画像表示部並びにガイド波速度分散曲線計算ソフトウエアと、を備え、
前記パーソナルコンピュータからの指令に基づいて前記超音波信号発生部で発生させた電気信号を前記超音波信号増幅部で増幅し、その増幅した電気信号により前記超音波送信部を励起して表面波及び表面垂直反射波を被測定物に入射し、該被測定物の表面近傍を伝搬した表面波波動及び表面垂直反射波を前記超音波受信部によりそれぞれ受信し、その受信信号を前記受信増幅部でそれぞれ増幅した後、高速A/D変換ボードでデジタル変換し、そのデジタル波形を前記デジタル波形記憶部に収録し、その収録された波形から表面垂直反射波到着時間と表面波伝搬時間との差を前記波形処理部によって計算し、その差が前記ガイド波速度分散曲線計算ソフトウエアを用いて理論表面波速度又はガイド波速度から予め計算される伝搬時間のしきい値の範囲から外れる場合と外れない場合とで色彩を異ならせて前記画像表示部に表示し、それらを前記走査機構によって走査される走査位置ごとにカラーマッピングすることで被測定物の表面直下に存在するはく離部を高速で画像化することにより欠陥の有無を識別することを特徴とする超音波診断装置。
Ultrasonic signal generator, ultrasonic signal amplifier that electrically amplifies the electrical signal generated by the generator and applies it to the ultrasonic transmitter, and the electrical signal amplified by the amplifier enters the device under test An ultrasonic transmitter for exciting the surface wave and the surface vertical reflected wave respectively, an ultrasonic receiver for detecting the surface wave wave and the surface vertical reflected wave propagated near the surface of the object to be measured, and the ultrasonic wave A reception amplification unit that amplifies the reception signal received by the reception unit, a waveform storage unit that digitally converts the signal amplified by the reception amplification unit, and digital recording, and a scanning mechanism drive signal generation unit built in the personal computer A scanning mechanism that moves both the ultrasonic transmission unit and the ultrasonic reception unit relative to the object to be measured based on an output signal, and a waveform processing unit and an image display unit built in the personal computer. Comprising a guided wave velocity dispersion curve computation software, to,
The electrical signal generated by the ultrasonic signal generator based on a command from the personal computer is amplified by the ultrasonic signal amplifier, and the ultrasonic transmitter is excited by the amplified electrical signal to generate surface waves and The surface vertical reflected wave is incident on the object to be measured, the surface wave wave and the surface vertical reflected wave propagated in the vicinity of the surface of the object to be measured are received by the ultrasonic wave reception unit, and the received signal is received by the reception amplification unit. After each amplification, digital conversion is performed with a high-speed A / D conversion board, and the digital waveform is recorded in the digital waveform storage unit, and the difference between the surface reflected wave arrival time and the surface wave propagation time is calculated from the recorded waveform. The propagation time threshold calculated by the waveform processing unit and the difference is calculated in advance from the theoretical surface wave velocity or guide wave velocity using the guide wave velocity dispersion curve calculation software. Different colors are displayed depending on whether the value is out of the range or not, and displayed on the image display unit, and color mapping is performed for each scanning position scanned by the scanning mechanism so that it is directly below the surface of the object to be measured. An ultrasonic diagnostic apparatus characterized by identifying the presence or absence of a defect by imaging an existing peeling part at high speed.
前記超音波送信部は、平面超音波探触子、集束型超音波探触子、空気超音波探触子、アレイ超音波センサ、YAGレーザー、空気ジェット、あるいは超磁歪探触子のいずれかであることを特徴とする請求項1記載の超音波診断装置。   The ultrasonic transmission unit may be any one of a plane ultrasonic probe, a focused ultrasonic probe, an air ultrasonic probe, an array ultrasonic sensor, a YAG laser, an air jet, or a giant magnetostrictive probe. The ultrasonic diagnostic apparatus according to claim 1, wherein: 前記超音波受信部は、圧電性セラミックス素子、圧電性高分子素子、空気超音波探触子、アレイセンサ、あるいはレーザードップラー変位計のいずれかであることを特徴とする請求項1又は請求項2記載の超音波診断装置。   3. The ultrasonic wave receiving unit is any one of a piezoelectric ceramic element, a piezoelectric polymer element, an air ultrasonic probe, an array sensor, and a laser Doppler displacement meter. The ultrasonic diagnostic apparatus as described.
JP2008282641A 2008-11-01 2008-11-01 Ultrasonograph Pending JP2010107488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282641A JP2010107488A (en) 2008-11-01 2008-11-01 Ultrasonograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282641A JP2010107488A (en) 2008-11-01 2008-11-01 Ultrasonograph

Publications (1)

Publication Number Publication Date
JP2010107488A true JP2010107488A (en) 2010-05-13

Family

ID=42297056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282641A Pending JP2010107488A (en) 2008-11-01 2008-11-01 Ultrasonograph

Country Status (1)

Country Link
JP (1) JP2010107488A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037420A (en) * 2010-08-09 2012-02-23 Nippon Hoso Kyokai <Nhk> Surface hardness measurement device, tactile and inner force presentation device, surface hardness measurement program, and tactile and inner force presentation program
KR101403216B1 (en) 2012-11-15 2014-06-03 재단법인 포항산업과학연구원 Apparatus and method of detecting surface defect of wire rod using ultrasonic wave
CN105784844A (en) * 2016-03-03 2016-07-20 西安天力金属复合材料有限公司 Device and method for detecting interface ultrasonic imaging of laminar metallic composite
CN108709933A (en) * 2018-05-17 2018-10-26 马飞虎 A kind of non-destructive detecting device for metal material production
CN113616233A (en) * 2020-05-06 2021-11-09 北京金航道科技有限公司 Sound pickup method of stethoscope and stethoscope
CN114486625A (en) * 2022-01-18 2022-05-13 中车长江运输设备集团有限公司 Foaming uniformity detection imaging device and method for polyurethane metal sandwich board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037420A (en) * 2010-08-09 2012-02-23 Nippon Hoso Kyokai <Nhk> Surface hardness measurement device, tactile and inner force presentation device, surface hardness measurement program, and tactile and inner force presentation program
KR101403216B1 (en) 2012-11-15 2014-06-03 재단법인 포항산업과학연구원 Apparatus and method of detecting surface defect of wire rod using ultrasonic wave
CN105784844A (en) * 2016-03-03 2016-07-20 西安天力金属复合材料有限公司 Device and method for detecting interface ultrasonic imaging of laminar metallic composite
CN108709933A (en) * 2018-05-17 2018-10-26 马飞虎 A kind of non-destructive detecting device for metal material production
CN113616233A (en) * 2020-05-06 2021-11-09 北京金航道科技有限公司 Sound pickup method of stethoscope and stethoscope
CN114486625A (en) * 2022-01-18 2022-05-13 中车长江运输设备集团有限公司 Foaming uniformity detection imaging device and method for polyurethane metal sandwich board

Similar Documents

Publication Publication Date Title
Blomme et al. Air-coupled ultrasonic NDE: experiments in the frequency range 750 kHz–2 MHz
CN107747922B (en) Method for measuring subsurface defect buried depth based on laser ultrasound
KR101513142B1 (en) Layered-body detachment-testing method and detachment-testing device
JP2010107488A (en) Ultrasonograph
JP4244334B2 (en) Ultrasonic material evaluation system
Neuenschwander et al. Application of air-coupled ultrasonics for the characterization of polymer and polymer-matrix composite samples
CA2699474C (en) Acoustic thickness measurements using gas as a coupling medium
US8322221B1 (en) Non-contact high resolution near field acoustic imaging system
Osumi et al. Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method
JP2009276319A (en) Air ultrasonic diagnostic apparatus
JP2012037307A (en) Ultrasonic inspection system
Adams et al. An adaptive array excitation scheme for the unidirectional enhancement of guided waves
JP4795925B2 (en) Ultrasonic thickness measurement method and apparatus
JP5804497B2 (en) Lamb wave damage imaging system
Hayashi Defect imaging for plate-like structures using diffuse field
JP5609540B2 (en) Defect detection method and defect detection apparatus using leaky surface acoustic wave
US7938006B2 (en) Non-contact ultrasound materials systems and measurement techniques
JP2009058238A (en) Method and device for defect inspection
JP2007003197A (en) Ultrasonic material diagnosis method and apparatus
Maev Acoustic microscopy for materials characterization
JP2017090201A (en) Aerial ultrasonic flaw detection device and aerial ultrasonic flaw detection system
Nakase et al. Nondestructive evaluation of plane crack tip in a thin plate using laser-induced pulse wave and symmetric lamb wave
JP2008261889A (en) Imaging method of internal defect by ultrasonic wave, and its device
Imano et al. Experimental study on the mode conversion of lamb wave using a metal plate having a notch type defect
JP2012093246A (en) Ultrasonic probe and method for detecting defect