JP2006303834A - Surface-acoustic wave device - Google Patents

Surface-acoustic wave device Download PDF

Info

Publication number
JP2006303834A
JP2006303834A JP2005121732A JP2005121732A JP2006303834A JP 2006303834 A JP2006303834 A JP 2006303834A JP 2005121732 A JP2005121732 A JP 2005121732A JP 2005121732 A JP2005121732 A JP 2005121732A JP 2006303834 A JP2006303834 A JP 2006303834A
Authority
JP
Japan
Prior art keywords
surface acoustic
wave device
acoustic wave
piezoelectric substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005121732A
Other languages
Japanese (ja)
Inventor
Kunihito Yamanaka
国人 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2005121732A priority Critical patent/JP2006303834A/en
Publication of JP2006303834A publication Critical patent/JP2006303834A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To constitute a SAW device that endures a temperature change in heat cycle testing or the like, when the SAW device is constituted by using a piezoelectric substrate having strong pyroelectric effects. <P>SOLUTION: In a surface acoustic-wave device, a surface acoustic-wave device element, formed by arranging at least one IDT electrode on the piezoelectric substrate having the strong pyroelectric effect, is bonded and fixed to the internal bottom section of a package by using adhesive. In such a surface acoustic-wave device, the hardness of the adhesive is set to Shore 28 or smaller. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、弾性表面波デバイスに関し、特に焦電効果による電極破壊を防止した弾性表面波デバイスに関するものである。   The present invention relates to a surface acoustic wave device, and more particularly to a surface acoustic wave device that prevents electrode destruction due to the pyroelectric effect.

近年、弾性表面波デバイス(SAWデバイス)は通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話、LAN等に多く用いられている。また、最近では高速道の自動料金収受システム(ETC)にもSAWフィルタが用いられるようになり、規格は中心周波数が40MHz、帯域幅が4MHzから5MHzのものが多い。ETCのように車載される機器は使用環境が厳しく、ヒートサイクル試験として、−55℃(5分)〜125℃(5分)の3000サイクルから6000サイクルが課せられている。
これまで、これらのSAWフィルタには、共振器型SAWフィルタが多く採用されてきたが、共振器型SAWフィルタは群遅延時間特性が悪いという欠点があり、最近では一方向性変換器等を用いた群遅延時間特性の良好なトランスバーサル型SAWフィルタの要求が強くなってきている。
In recent years, surface acoustic wave devices (SAW devices) have been widely used in the communication field, and are widely used especially for cellular phones, LANs, and the like because they have excellent characteristics such as high performance, small size, and mass productivity. Recently, SAW filters have also been used in highway automatic toll collection systems (ETC), and many standards have a center frequency of 40 MHz and a bandwidth of 4 MHz to 5 MHz. Equipment mounted on the vehicle such as ETC has a severe use environment, and as a heat cycle test, 3000 cycles to 6000 cycles of −55 ° C. (5 minutes) to 125 ° C. (5 minutes) are imposed.
Until now, many of these SAW filters have been resonator-type SAW filters. However, the resonator-type SAW filters have the disadvantage of poor group delay time characteristics, and recently, unidirectional converters have been used. The demand for a transversal SAW filter having good group delay time characteristics has been increasing.

図4(a)はトランスバーサル型SAWフィルタ素子の基本的な構成を示す平面図であって、圧電基板20の主面上に表面波の伝搬方向に沿ってIDT電極21、22を所定の間隔を隔して配置すると共に該IDT電極21、22の間に電極23を配設する。IDT電極21、22はそれぞれ互いに間挿し合う複数本の電極指を有する一対の櫛形電極により形成されている。図4(b)、(c)はそれぞれ図4(a)に示したトランスバーサル型SAWフィルタ素子をパッケージ24の内底部に実装した平面図と、Q−Qにおける断面図とである。図4(b)の平面図に示すように、周縁の段差部に外底部の接続用端子電極(図示せず)と導通した端子電極25、25’、26、26’と、接地用端子電極27とが形成されたパッケージ24の内底部に、図4(c)の断面図に示すように、圧電基板20の裏面を、接着剤28を用いて接着固定する。そして、IDT電極21のそれぞれの櫛形電極は入力端子電極25、25’にボンディングワイヤ29にて接続されると共に、IDT電極22のそれぞれの櫛形電極は出力端子電極26、26’に同様に接続される。さらに、電極23は接地用端子電極27にボンディングワイヤ29にて接続され、パッケージ24の上部周縁部に形成されたメタライズ部に金属蓋31を抵抗溶接して、トランスバーサル型SAWフィルタが構成される。   FIG. 4A is a plan view showing the basic configuration of the transversal SAW filter element, and the IDT electrodes 21 and 22 are arranged on the main surface of the piezoelectric substrate 20 along the propagation direction of the surface wave at a predetermined interval. And the electrode 23 is disposed between the IDT electrodes 21 and 22. The IDT electrodes 21 and 22 are each formed by a pair of comb-shaped electrodes having a plurality of electrode fingers that are interleaved with each other. FIGS. 4B and 4C are a plan view in which the transversal SAW filter element shown in FIG. 4A is mounted on the inner bottom portion of the package 24 and a cross-sectional view at QQ. As shown in the plan view of FIG. 4B, terminal electrodes 25, 25 ′, 26, and 26 ′ that are electrically connected to the connecting terminal electrode (not shown) on the outer bottom portion at the peripheral stepped portion, and the grounding terminal electrode. As shown in the sectional view of FIG. 4C, the back surface of the piezoelectric substrate 20 is bonded and fixed to the inner bottom portion of the package 24 formed with the adhesive 27 using an adhesive 28. The comb electrodes of the IDT electrode 21 are connected to the input terminal electrodes 25 and 25 ′ by bonding wires 29, and the comb electrodes of the IDT electrode 22 are similarly connected to the output terminal electrodes 26 and 26 ′. The Further, the electrode 23 is connected to the ground terminal electrode 27 by a bonding wire 29, and a metal lid 31 is resistance-welded to a metallized portion formed on the upper peripheral portion of the package 24 to constitute a transversal SAW filter. .

図4(a)に示すように正規型IDT電極を用いると、励振された表面波は左右双方に均等に伝搬するので、本質的に6dBの損失が発生することになる。そのため、挿入損失を低減すべく一方向性を有する弾性表面波変換器を用いるのが一般的である。また、圧電基板20の長辺方向(表面波伝搬方向)の両端に弾性表面波吸収体(吸音材)30を塗布して不要反射波を抑圧することがある。なお、ベタ電極23の作用は入出力端子間の直達波の遮蔽用として機能している。 When a regular IDT electrode is used as shown in FIG. 4 (a), the excited surface wave propagates equally to both the left and right, so that a loss of 6 dB is essentially generated. Therefore, it is common to use a surface acoustic wave transducer having unidirectionality to reduce insertion loss. In addition, the surface acoustic wave absorber (sound absorbing material) 30 may be applied to both ends of the piezoelectric substrate 20 in the long side direction (surface wave propagation direction) to suppress unnecessary reflected waves. Note that the action of the solid electrode 23 functions to shield direct waves between the input and output terminals.

圧電基板に128°回転Yカットのニオブ酸リチウム(LiNbO)を、接着剤に硬度ショアA80を、IDT電極の一部に一方向性弾性表面波変換器を用いて、中心周波数が40MHz、帯域幅が4MHzのトランスバーサル型SAWフィルタを構成し、通過帯域、減衰域とも良好な特性が得られた。このトランスバーサル型SAWフィルタを、温度範囲−55℃(5分)〜125℃(5分)、300サイクル、3000サイクルのヒートサイクル試験を行った。その結果は図5に示すように、300サイクルで15%、3000サイクルで87%の電極破壊が生じた。この電極破壊はニオブ酸リチウムの有する焦電効果が主たる要因と思われる。 Using a piezoelectric substrate with Y-cut lithium niobate (LiNbO 3 ) rotated at 128 °, hardness Shore A80 as the adhesive, and a unidirectional surface acoustic wave transducer as part of the IDT electrode, the center frequency is 40 MHz, A transversal SAW filter with a width of 4 MHz was constructed, and good characteristics were obtained in both the passband and attenuation band. This transversal SAW filter was subjected to a heat cycle test in a temperature range of −55 ° C. (5 minutes) to 125 ° C. (5 minutes), 300 cycles and 3000 cycles. As a result, as shown in FIG. 5, 15% of electrode breakage occurred at 300 cycles and 87% at 3000 cycles. This electrode breakdown is thought to be mainly due to the pyroelectric effect of lithium niobate.

そこで、特開2004−254114等に開示された、温度変化による静電気の発生が少なく、電荷が発生しても速やかに自己中和できる改良ニオブ酸リチウムを用いることにした。この改良ニオブ酸リチウムは、ニオブ酸リチウム単結晶に鉄、銅、マンガン、モリブデン、コバルト、ニッケル、亜鉛等を0.01wt%以上1.00wt%以下の割合で含ませた圧電結晶である。この圧電基板を用い、図5と同様に試作し、ヒートサイクル試験を行った結果が、図6に示す故障率である。3000サイクルのヒートサイクル試験では電極破壊は生じなかったが、6000サイクルでは約4%の電極破壊が生じた。
特開2004−254114号公報
Therefore, the improved lithium niobate disclosed in Japanese Patent Application Laid-Open No. 2004-254114 or the like is used, which is less likely to generate static electricity due to temperature change and can quickly self-neutralize even when charges are generated. This improved lithium niobate is a piezoelectric crystal in which iron, copper, manganese, molybdenum, cobalt, nickel, zinc, or the like is contained in a lithium niobate single crystal at a ratio of 0.01 wt% to 1.00 wt%. A failure rate shown in FIG. 6 is obtained by making a prototype using this piezoelectric substrate in the same manner as in FIG. 5 and conducting a heat cycle test. In the 3000 cycle heat cycle test, no electrode destruction occurred, but in the 6000 cycle, about 4% electrode destruction occurred.
JP 2004-254114 A

解決しようとする問題点は、焦電効果による電極破壊を防止すべく、上記のように改良型のニオブ酸リチウムを用いてトランスバーサル型SAWフィルタを構成してたが、温度範囲−55℃(5分)〜125℃(5分)、6000サイクルのヒートサイクル試験では、約4%の電極破壊が生じるという問題である。 The problem to be solved is that the transversal type SAW filter is formed using the improved lithium niobate as described above in order to prevent the electrode destruction due to the pyroelectric effect, but the temperature range is -55 ° C ( In the heat cycle test of 5 minutes) to 125 ° C. (5 minutes) and 6000 cycles, there is a problem that about 4% of electrode destruction occurs.

本発明に係る弾性表面波デバイスの請求項1の発明は、保証減衰量を改善するため、圧電基板上に少なくとも1個のIDT電極を配置して形成した弾性表面波デバイス素子を接着剤を用いてパッケージの内底部に接着固定した弾性表面波デバイスにおいて、前記接着剤の硬度をショア50以下として弾性表面波デバイスを構成することを特徴とする。
請求項2の発明は、圧電基板上に少なくとも1個のIDT電極を配置して形成した弾性表面波デバイス素子を接着剤にてパッケージの内底部に接着固定した弾性表面波デバイスにおいて、前記接着剤の硬度をショア28以下として弾性表面波デバイスを構成することを特徴とする。
請求項3の発明は、前記圧電基板が表面電荷を自己中和し除去する電荷中和特性を有するニオブ酸リチウム単結晶から切り出された圧電基板であることを特徴とする請求項1又は2に記載の弾性表面波デバイスである。
In the surface acoustic wave device according to the first aspect of the present invention, an adhesive is used for the surface acoustic wave device element formed by disposing at least one IDT electrode on the piezoelectric substrate in order to improve the guaranteed attenuation. In the surface acoustic wave device bonded and fixed to the inner bottom portion of the package, the surface acoustic wave device is configured by setting the hardness of the adhesive to Shore 50 or less.
According to a second aspect of the present invention, there is provided a surface acoustic wave device in which a surface acoustic wave device element formed by disposing at least one IDT electrode on a piezoelectric substrate is bonded and fixed to an inner bottom portion of a package with an adhesive. The surface acoustic wave device is configured with a hardness of shore 28 or less.
According to a third aspect of the present invention, in the piezoelectric substrate according to the first or second aspect, the piezoelectric substrate is a piezoelectric substrate cut out from a lithium niobate single crystal having charge neutralization characteristics that self-neutralizes and removes surface charges. It is a surface acoustic wave device of description.

本発明に係る弾性表面波デバイスは、圧電基板の裏面とパッケージ内底部との接着固定に用いる接着剤に硬度の柔らかい接着剤を用いて構成するため、パッケージと圧電基板との熱膨張係数の違いによる歪みが緩和されるので、歪みによる発生電荷を減少させることができ、ヒートサイクル試験に十分に耐えることができる弾性表面波デバイスを構成できるという利点がある。   Since the surface acoustic wave device according to the present invention is configured using a soft adhesive as an adhesive used for bonding and fixing the back surface of the piezoelectric substrate and the bottom of the package, the difference in thermal expansion coefficient between the package and the piezoelectric substrate. Therefore, the surface acoustic wave device that can sufficiently withstand the heat cycle test can be constructed.

図1は本発明に係るトランスバーサル型弾性表面波フィルタの実施の形態を示す図であって、同図(a)はトランスバーサル型弾性表面波フィルタ素子、同図(b)はトランスバーサル型弾性表面波フィルタ素子をパッケージに実装したものの平面図、同図(c)はQ−Qにおける断面図である。トランスバーサル型SAWフィルタ素子の基本的な構成は、圧電基板1の主面上に表面波の伝搬方向に沿ってIDT電極2、3を所定の間隔を隔して配置すると共に該IDT電極2、3の間に電極4を配設する。IDT電極該IDT電極2、3はそれぞれ互いに間挿し合う複数本の電極指を有する一対の櫛形電極により形成されている。図1(b)の平面図に示すように、パッケージ5の周縁の段差部に外底部の接続用端子電極(図示せず)と導通した端子電極6、6’、7、7’と、接地用端子電極8とが形成されている。このパッケージ5の内底部に、図1(c)の断面図に示すように、圧電基板1の裏面を、接着剤9を用いて接着固定する。そして、IDT電極2のそれぞれの櫛形電極はボンディングワイヤ10にて端子電極6、6’に接続されると共に、IDT電極3のそれぞれの櫛形電極は、同様に入力端子電極7、7’に接続される。さらに、電極4はボンディングワイヤ10にて接地用端子電極8に接続され、パッケージ5の上部周縁部に形成されたメタライズ部(図示せず)に金属蓋12を抵抗溶接して、トランスバーサル型SAWフィルタが構成される。なお、圧電基板1の両端に吸音材11を塗布して不要反射波を抑圧することがある。   FIG. 1 is a diagram showing an embodiment of a transversal type surface acoustic wave filter according to the present invention. FIG. 1 (a) is a transversal type surface acoustic wave filter element, and FIG. 1 (b) is a transversal type elastic wave filter. The top view of what mounted the surface wave filter element in the package, the figure (c) is a sectional view in QQ. The basic configuration of the transversal SAW filter element is that the IDT electrodes 2 and 3 are arranged on the main surface of the piezoelectric substrate 1 along the propagation direction of the surface wave at a predetermined interval and the IDT electrodes 2 and The electrode 4 is disposed between the three. IDT electrodes The IDT electrodes 2 and 3 are each formed of a pair of comb-shaped electrodes having a plurality of electrode fingers that are interleaved with each other. As shown in the plan view of FIG. 1B, terminal electrodes 6, 6 ′, 7, 7 ′ which are electrically connected to connection terminal electrodes (not shown) on the outer bottom portion at the stepped portion on the periphery of the package 5, and grounding Terminal electrode 8 is formed. As shown in the sectional view of FIG. 1C, the back surface of the piezoelectric substrate 1 is bonded and fixed to the inner bottom portion of the package 5 using an adhesive 9. The comb electrodes of the IDT electrode 2 are connected to the terminal electrodes 6 and 6 ′ by the bonding wire 10, and the comb electrodes of the IDT electrode 3 are similarly connected to the input terminal electrodes 7 and 7 ′. The Further, the electrode 4 is connected to the grounding terminal electrode 8 by a bonding wire 10, and a metal lid 12 is resistance-welded to a metallized portion (not shown) formed on the upper peripheral edge of the package 5, thereby transversal SAW. A filter is configured. Note that the sound absorbing material 11 may be applied to both ends of the piezoelectric substrate 1 to suppress unnecessary reflected waves.

自己中和する改良型のニオブ酸リチウムを用いてトランスバーサル型SAWフィルタを構成しても、温度範囲−55℃(5分)〜125℃(5分)、6000サイクルのヒートサイクル試験で4%程度の電極破壊が生じた。この理由として、圧電基板の熱膨張係数とパッケージの熱膨張係数とに差があり、圧電基板がパッケージの内底部に強固に接着固定されると、温度変化に対し圧電基板に歪みが生じ、この歪みによって発生する電荷が、焦電効果による電荷に重畳し、電極破壊が生じるものと推測した。   Even if a transversal SAW filter is constructed using a modified lithium niobate that self-neutralizes, a temperature range of −55 ° C. (5 minutes) to 125 ° C. (5 minutes), 4% in a heat cycle test of 6000 cycles Some degree of electrode destruction occurred. The reason for this is that there is a difference between the thermal expansion coefficient of the piezoelectric substrate and the thermal expansion coefficient of the package. If the piezoelectric substrate is firmly bonded and fixed to the inner bottom of the package, the piezoelectric substrate is distorted with respect to temperature changes. It was presumed that the electric charge generated by the distortion was superimposed on the electric charge due to the pyroelectric effect, and electrode destruction occurred.

そこで、圧電基板をパッケージの内底部に固定する接着剤の硬度を変えて、トランスバーサル型SAWフィルタを構成し、ヒートサイクル試験を行った。圧電基板に通常のニオブ酸リチウムから切り出された128°回転Yカットを用い、圧電基板の接着剤の硬度はショアA50、ショアA35、ショアA28とし、温度範囲−55℃(5分)〜125℃(5分)、300サイクル、3000サイクルのヒートサイクル試験を行った。その結果が図2(a)、(b)に示す図である。ショアA50の接着剤を用いた場合は、300サイクルのヒートサイクル試験における電極破壊は0%、3000サイクルのヒートサイクル試験では55%の電極破壊が発生した。ショアA35の接着剤を用いた場合は、300サイクルのヒートサイクル試験における電極破壊は0%、3000サイクルのヒートサイクル試験では30%の電極破壊が発生した。ショアA28の接着剤を用いた場合は、300サイクルのヒートサイクル試験における電極破損は0%、3000サイクルのヒートサイクル試験では2%の電極破壊が発生した。この結果より通常のニオブ酸リチウムを用いる場合には、圧電基板接着固定用の接着剤は硬度の低いショアA28を用いることにより、電極破壊を小さくすることができることが判明した。   Therefore, a transversal SAW filter was constructed by changing the hardness of the adhesive that fixes the piezoelectric substrate to the inner bottom of the package, and a heat cycle test was performed. The piezoelectric substrate used was a 128 ° rotated Y-cut cut from ordinary lithium niobate, and the adhesive hardness of the piezoelectric substrate was Shore A50, Shore A35, Shore A28, and a temperature range of −55 ° C. (5 minutes) to 125 ° C. (5 minutes), 300 cycles and 3000 cycles of heat cycle test. The results are shown in FIGS. 2 (a) and 2 (b). When the Shore A50 adhesive was used, 0% electrode breakage occurred in the 300-cycle heat cycle test and 55% electrode breakage occurred in the 3000-cycle heat cycle test. When the Shore A35 adhesive was used, electrode breakage was 0% in the 300-cycle heat cycle test and 30% electrode breakage in the 3000-cycle heat cycle test. When the Shore A28 adhesive was used, electrode breakage was 0% in the 300-cycle heat cycle test, and 2% electrode breakage occurred in the 3000-cycle heat cycle test. From this result, it was found that when ordinary lithium niobate is used, the electrode breakage can be reduced by using Shore A28 having a low hardness as the adhesive for fixing the piezoelectric substrate.

次に、圧電基板に改良型のニオブ酸リチウムを用いてトランスバーサル型SAWフィルタ素子を構成し、圧電基板の接着剤の硬度としてショアA50、ショアA35、ショアA28をそれぞれ用いて、弾性表面波フィルタを試作し、温度範囲−55℃(5分)〜125℃(5分)、3000サイクル、6000サイクルのヒートサイクル試験を行った。その結果が図3(a)、(b)に示す図である。硬度ショアA50、ショアA35、ショアA28のいずれの硬度の接着剤を用いても電極破損は生じないことが判明した。   Next, a transversal-type SAW filter element is formed by using improved lithium niobate for the piezoelectric substrate, and Shore A50, Shore A35, and Shore A28 are used as the hardness of the adhesive of the piezoelectric substrate, respectively. And a heat cycle test of a temperature range of −55 ° C. (5 minutes) to 125 ° C. (5 minutes), 3000 cycles, and 6000 cycles was performed. The results are shown in FIGS. 3 (a) and 3 (b). It has been found that no electrode breakage occurs even when an adhesive having any hardness of Shore A50, Shore A35, or Shore A28 is used.

以上では圧電基板にニオブ酸リチウム、改良型のニオブ酸リチウムを用いたトランスバーサル型SAWフィルタについて説明したが、本発明はニオブ酸リチウム、改良型のニオブ酸リチウムを用いた共振器型SAWフィルタ、SAW共振子等のSAWデバイスに適用できることは説明するまでもない。
また、強焦電効果結晶であるタンタル酸リチウム、改良型タンタル酸リチウム等についても本発明は適用できる。
Although the transversal SAW filter using the lithium niobate and the improved lithium niobate as the piezoelectric substrate has been described above, the present invention relates to a resonator type SAW filter using lithium niobate, an improved lithium niobate, Needless to say, the present invention can be applied to SAW devices such as SAW resonators.
The present invention can also be applied to lithium tantalate, improved lithium tantalate, and the like, which are strong pyroelectric effect crystals.

本発明に係るトランスバーサル型SAWフィルタの構造を示した概略構成図で、(a)は素子の平面図、(b)はパッケージに実装した平面図、(c)は断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic block diagram which showed the structure of the transversal type | mold SAW filter based on this invention, (a) is a top view of an element, (b) is the top view mounted in the package, (c) is sectional drawing. (a)、(b)はヒートサイクル試験における接着剤の硬度と電極破壊率との関係を示す図である。(A), (b) is a figure which shows the relationship between the hardness of an adhesive agent, and an electrode destruction rate in a heat cycle test. (a)、(b)はヒートサイクル試験における接着剤の硬度と電極破壊率との関係を示す図である。(A), (b) is a figure which shows the relationship between the hardness of an adhesive agent, and an electrode destruction rate in a heat cycle test. 従来のトランスバーサル型SAWフィルタの構成を示す図で、(a)は素子の平面図、(b)はパッケージに実装した平面図、(c)は断面図である。It is a figure which shows the structure of the conventional transversal type | mold SAW filter, (a) is a top view of an element, (b) is the top view mounted in the package, (c) is sectional drawing. ヒートサイクル試験における接着剤の硬度と電極破壊率との関係を示す図である。It is a figure which shows the relationship between the hardness of the adhesive agent, and an electrode destruction rate in a heat cycle test. ヒートサイクル試験における接着剤の硬度と電極破壊率との関係を示す図である。It is a figure which shows the relationship between the hardness of the adhesive agent, and an electrode destruction rate in a heat cycle test.

符号の説明Explanation of symbols

1 圧電基板
2、3 IDT電極
4 電極(ベタ電極)
5 パッケージ
6、6’、7、7’ 端子電極
8 接地電極
9 接着剤
10 ボンディングワイヤ
11 吸音材
12 金属蓋



1 Piezoelectric substrate 2, 3 IDT electrode 4 Electrode (solid electrode)
5 Package 6, 6 ', 7, 7' Terminal electrode 8 Ground electrode 9 Adhesive 10 Bonding wire 11 Sound absorbing material 12 Metal lid



Claims (3)

圧電基板上に少なくとも1個のIDT電極を配置して形成した弾性表面波デバイス素子を接着剤を用いてパッケージの内底部に接着固定した弾性表面波デバイスにおいて、
前記接着剤の硬度をショア50以下としたことを特徴とする弾性表面波デバイス。
In a surface acoustic wave device in which a surface acoustic wave device element formed by arranging at least one IDT electrode on a piezoelectric substrate is bonded and fixed to an inner bottom portion of a package using an adhesive,
A surface acoustic wave device characterized in that the adhesive has a hardness of Shore 50 or less.
圧電基板上に少なくとも1個のIDT電極を配置して形成した弾性表面波デバイス素子を接着剤にてパッケージの内底部に接着固定した弾性表面波デバイスにおいて、
前記接着剤の硬度をショア28以下としたことを特徴とする弾性表面波デバイス。
In a surface acoustic wave device in which a surface acoustic wave device element formed by arranging at least one IDT electrode on a piezoelectric substrate is bonded and fixed to an inner bottom portion of a package with an adhesive,
A surface acoustic wave device characterized in that the adhesive has a hardness of Shore 28 or less.
前記圧電基板が表面電荷を自己中和し除去する電荷中和特性を有するニオブ酸リチウム単結晶から切り出された圧電基板であることを特徴とする請求項1又は2に記載の弾性表面波デバイス。



3. The surface acoustic wave device according to claim 1, wherein the piezoelectric substrate is a piezoelectric substrate cut out from a lithium niobate single crystal having charge neutralization characteristics for self-neutralizing and removing surface charges.



JP2005121732A 2005-04-19 2005-04-19 Surface-acoustic wave device Pending JP2006303834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121732A JP2006303834A (en) 2005-04-19 2005-04-19 Surface-acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121732A JP2006303834A (en) 2005-04-19 2005-04-19 Surface-acoustic wave device

Publications (1)

Publication Number Publication Date
JP2006303834A true JP2006303834A (en) 2006-11-02

Family

ID=37471605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121732A Pending JP2006303834A (en) 2005-04-19 2005-04-19 Surface-acoustic wave device

Country Status (1)

Country Link
JP (1) JP2006303834A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050626A (en) * 2008-08-20 2010-03-04 Nippon Dempa Kogyo Co Ltd Surface acoustic wave filter
JPWO2020261715A1 (en) * 2019-06-26 2020-12-30
US11962288B2 (en) 2021-09-27 2024-04-16 Soitec Surface elastic wave filter with resonant cavities

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050626A (en) * 2008-08-20 2010-03-04 Nippon Dempa Kogyo Co Ltd Surface acoustic wave filter
JPWO2020261715A1 (en) * 2019-06-26 2020-12-30
US11962288B2 (en) 2021-09-27 2024-04-16 Soitec Surface elastic wave filter with resonant cavities

Similar Documents

Publication Publication Date Title
US10340887B2 (en) Band pass filter and filter module
US9843305B2 (en) Elastic wave resonator, elastic wave filter device, and duplexer
JP5848675B2 (en) Duplexer
US9847770B2 (en) Elastic wave resonator, elastic wave filter apparatus, and duplexer
WO2016017730A1 (en) Elastic wave element, filter element, and communication device
JP6453913B2 (en) Elastic wave device, duplexer and communication device
US7211925B2 (en) Surface acoustic wave device and branching filter
JP5158725B2 (en) Surface acoustic wave device and communication device using the same
JP2008109413A (en) Elastic wave device and filter
JP2012156741A (en) Antenna duplexer
JPWO2010116776A1 (en) Elastic wave filter
JPWO2015002047A1 (en) Surface acoustic wave resonator and surface acoustic wave filter device
WO2019107280A1 (en) Acoustic wave filter, duplexer, and communication device
WO2005011114A1 (en) Surface acoustic wave device
JP3255128B2 (en) Surface acoustic wave filter
JPWO2019138811A1 (en) Elastic wave devices, multiplexers, high frequency front-end circuits, and communication devices
JP2018014715A (en) Acoustic wave element, filter element, and communication device
US10476473B2 (en) Elastic wave element and elastic wave filter device
JP2006303834A (en) Surface-acoustic wave device
JP4023730B2 (en) Surface acoustic wave device and duplexer
JP2018196028A (en) Acoustic wave filter and multiplexer
WO2018117060A1 (en) Acoustic wave resonator, filter device, and multiplexer
WO2017170742A1 (en) Surface acoustic wave element and communication device
JP2006211187A (en) Surface acoustic wave device
JP2006311330A (en) Surface acoustic wave device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403