JP2006303321A - Zinc-contained iron-nitride powder - Google Patents

Zinc-contained iron-nitride powder Download PDF

Info

Publication number
JP2006303321A
JP2006303321A JP2005125409A JP2005125409A JP2006303321A JP 2006303321 A JP2006303321 A JP 2006303321A JP 2005125409 A JP2005125409 A JP 2005125409A JP 2005125409 A JP2005125409 A JP 2005125409A JP 2006303321 A JP2006303321 A JP 2006303321A
Authority
JP
Japan
Prior art keywords
powder
iron nitride
goethite
magnetic
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005125409A
Other languages
Japanese (ja)
Other versions
JP4700998B2 (en
Inventor
Takefumi Amino
岳文 網野
Kenji Shoda
憲司 正田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2005125409A priority Critical patent/JP4700998B2/en
Publication of JP2006303321A publication Critical patent/JP2006303321A/en
Application granted granted Critical
Publication of JP4700998B2 publication Critical patent/JP4700998B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a magnetic characteristic by which a progress of nitriding is promoted in an iron-nitride magnetic powder to effectively prevent a sintering by using a Goethite resulting from dissolving Al. <P>SOLUTION: The iron-nitride powder mainly comprised of Fe<SB>16</SB>N<SB>2</SB>contains the dissolved Al, and is obtained by applying a nitriding treatment to an α-Fe powder obtained by reducing the Goethite coated by Zn. An average particle diameter of a long diameter can be 20 nm or smaller. It is desirable that Zn content to Fe is 0.05 to 5% in atomic ratio. Particularly, when an X-ray diffraction is conducted by Co-Kα-ray, it is a favorable object that the powder has a relation of equation (1): I<SB>50</SB>/I<SB>52</SB>≥1.5 between a peak height I<SB>50</SB>in a range of 2θ: 49.5 to 50.5° of the X-ray diffraction pattern and the peak height I<SB>52</SB>of the range of 2θ: 51.5 to 53.0°. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高記録密度の磁気記録媒体に適した窒化鉄系の磁性粉末に関する。   The present invention relates to an iron nitride-based magnetic powder suitable for a high recording density magnetic recording medium.

近年の磁気記録媒体には一層の高記録密度化が望まれており、それを達成するために記録波長の短波長化が進められてきている。磁性粒子の大きさは、短波長の信号を記録する領域の長さよりも極めて小さくなければ、明瞭な磁化遷移状態を作り出すことができず、実質的に記録不可能となる。よって、磁性粉末には、その粒子の大きさが記録波長よりも十分に小さいことが要求される。   In recent years, higher recording density has been desired for magnetic recording media, and in order to achieve this, recording wavelengths have been shortened. If the size of the magnetic particle is not much smaller than the length of the region for recording a signal with a short wavelength, a clear magnetization transition state cannot be created, and recording becomes impossible. Therefore, the magnetic powder is required to have a particle size sufficiently smaller than the recording wavelength.

また、高密度化を進めるためには記録信号の分解能を上げる必要があり、そのために磁気記録媒体のノイズを低減することが重要となる。ノイズは粒子の大きさによる影響が大きく、微粒子であればあるほどノイズの低減が進む。よって、高記録密度用の磁性粉末としては、この点からも粒子の大きさが十分に小さいことが要求される。   In order to increase the density, it is necessary to increase the resolution of the recording signal. For this reason, it is important to reduce the noise of the magnetic recording medium. Noise is greatly influenced by the size of the particles, and the smaller the particles, the more the noise is reduced. Therefore, the magnetic powder for high recording density is required to have a sufficiently small particle size from this point.

しかし、微粒子になるに従って、お互いの粒子同士が一つ一つ独立して存在することが難しくなり、データストレージ用として一般的に使用されるメタル磁性粉の場合でも著しく微粒子化すると、その製造過程の還元時において焼結しやすいといった問題がある。焼結を起こしてしまうと、粒子体積が大きくなるため、ノイズの発生源となり、またテープ化する際には、分散性の悪化や、表面平滑性が損なわれるなどの悪影響を及ぼす。高密度記録媒体に適した磁性粉末としては、磁性体として磁気特性が良好であることが必要であるが、それ以上にテープ化する際の粉体特性すなわち、粒子サイズ、粒度分布、比表面積、TAP密度、分散性などが重要である。   However, as the particles become finer, it becomes difficult for each particle to exist independently, and even in the case of metal magnetic powders commonly used for data storage, if the particles become significantly finer, the manufacturing process There is a problem that it is easy to sinter during reduction. If the sintering occurs, the volume of the particles becomes large, so that it becomes a source of noise, and when taped, it has adverse effects such as deterioration of dispersibility and loss of surface smoothness. Magnetic powder suitable for high-density recording media needs to have good magnetic properties as a magnetic material, but powder properties when taped to more than that, that is, particle size, particle size distribution, specific surface area, TAP density, dispersibility, etc. are important.

これまでに、優れた磁気特性を持つ高密度記録媒体に適した磁性粉末としてFe162相を主相とする窒化鉄系磁性粉末が知られており、特許文献1に開示されている。例えば特許文献1には、高保磁力(Hc)、高飽和磁化(σs)を発現する磁性体として比表面積の大きな窒化鉄系の磁性体が開示され、Fe162相の結晶磁気異方性と磁性粉末の比表面積を大きくすることの相乗効果として、形状に因らず高磁気特性が得られると教示されている。 So far, an iron nitride-based magnetic powder having an Fe 16 N 2 phase as a main phase is known as a magnetic powder suitable for a high-density recording medium having excellent magnetic properties, and is disclosed in Patent Document 1. For example, Patent Document 1 discloses an iron nitride-based magnetic material having a large specific surface area as a magnetic material that exhibits a high coercive force (Hc) and a high saturation magnetization (σs), and crystal magnetic anisotropy of the Fe 16 N 2 phase. As a synergistic effect of increasing the specific surface area of the magnetic powder, it is taught that high magnetic properties can be obtained regardless of the shape.

特許文献2には、特許文献1に改良を加えた磁性粉末として、本質的に球状ないし楕円状の希土類−鉄−ホウ素系、希土類−鉄系、または希土類−窒化鉄系の磁性粉末が記載されており、それらを用いてテープ媒体を作製すると優れた特性が得られると教示されている。なかでもFe162相を主相とする希土類−窒化鉄系磁性粉末は20nm程度の微粒子であるにもかかわらず、保磁力が200kA/m(2512Oe)以上と高く、また、BET法による比表面積が小さいことから飽和磁化も高く、保存安定性もよいとされ、この希土類−窒化鉄系磁性粉末を使用することにより、塗布型磁気記録媒体の記録密度を飛躍的に高めることができると記載されている。また、特許文献2の実施例には20nm以下の粒子サイズレベルの磁気特性に優れた粒子の記載がある。 Patent Document 2 describes an essentially spherical or elliptical rare earth-iron-boron-based, rare-earth-iron-based, or rare-earth-iron nitride-based magnetic powder as an improved magnetic powder from Patent Document 1. It is taught that excellent properties can be obtained when they are used to make tape media. Among them, the rare earth-iron nitride magnetic powder mainly composed of Fe 16 N 2 phase has a high coercive force of 200 kA / m (2512 Oe) or more in spite of being fine particles of about 20 nm, and the ratio by BET method. It is said that since the surface area is small, the saturation magnetization is also high and the storage stability is good. By using this rare earth-iron nitride magnetic powder, the recording density of the coating type magnetic recording medium can be dramatically increased. Has been. Moreover, the Example of patent document 2 has description of the particle | grains excellent in the magnetic characteristic of a particle size level of 20 nm or less.

この希土類−窒化鉄系磁性粉末の製法は、希土類元素とAl、Si、の1種または2種を粒子表面に被着したマグネタイトを還元することによって希土類―鉄系の磁性粉末にした後、NH3ガスによる窒化処理を行うアンモニア窒化法であり、この窒化処理で生成するFe162相の大きな結晶磁気異方性により、高記録密度媒体に適した磁性粉末すなわち微粒子でかつ高Hc、高σs等の特性を有する磁性粉末を得ることができる。 This rare earth-iron nitride magnetic powder is produced by reducing magnetite with rare earth elements and one or two of Al and Si deposited on the surface of the particles to reduce the magnetite to a rare earth-iron magnetic powder. This is an ammonia nitriding method that performs nitriding with three gases. Due to the large magnetocrystalline anisotropy of the Fe 16 N 2 phase produced by this nitriding, magnetic powder suitable for high recording density media, that is, fine particles, high Hc, and high Magnetic powder having characteristics such as σs can be obtained.

特開2000−277311号公報JP 2000-277311 A 国際公開第03/079333号パンフレットInternational Publication No. 03/079333 Pamphlet

平均粒子径が20nm以下にもなると、粒子径を1nm小さくするだけでも粒子体積の低減効果は非常に大きい。例えば40nmから39nmに小さくする場合だと粒子体積はは93%に低減するにとどまるが、20nmから19nmに小さくする場合は86%にまで減少する。また、体積低減効果が大きくなるに伴い比表面積の増大効果も高まる。しかしながら、粒子径が小さくなると途中の製造過程で焼結が起こりやすくなるという問題がある。磁気特性について高いポテンシャルを有しているものでも、焼結が起きると本来の優れた磁気特性が十分発揮されなくなるだけでなく、粒度分布や分散性を阻害するようになり、結果として塗布型磁気記録媒体には適用しにくいものとなってしまう。   When the average particle size is 20 nm or less, the effect of reducing the particle volume is very large even if the particle size is reduced by 1 nm. For example, when the size is reduced from 40 nm to 39 nm, the particle volume is only reduced to 93%, but when the size is reduced from 20 nm to 19 nm, the particle volume is reduced to 86%. In addition, as the volume reduction effect increases, the effect of increasing the specific surface area also increases. However, there is a problem that sintering is likely to occur during the production process when the particle size is reduced. Even if the magnetic properties have a high potential, when sintering occurs, the original excellent magnetic properties are not fully exhibited, but also the particle size distribution and dispersibility are hindered. It becomes difficult to apply to a recording medium.

特許文献2では、大きな結晶磁気異方性を持つFe162相を生成させる際、焼結防止剤として、Si、Al、希土類元素(Yを含む)などを粒子表面に被着することにより、焼結のない微粒子を作製している。しかし、この被着により焼結防止を行う方法は、被着の条件が不十分な場合、粒子ごとに焼結防止剤の被着の度合いが異なるので、十分に被着されたところは焼結防止できる反面、あまり被着されていないところは焼結してしまう。その結果、得られる粉体の粒度分布が悪化する問題がある。特に微粒子になると粒子は凝集しやすく、凝集体として振る舞うため、被着ムラが生じやすい。粒度分布の悪化は、テープの表面性を悪化させる原因となり、ひいてはテープの電磁変換特性を悪化させる。 In Patent Document 2, when an Fe 16 N 2 phase having a large magnetocrystalline anisotropy is generated, Si, Al, rare earth elements (including Y), etc. are deposited on the particle surface as a sintering inhibitor. , Producing fine particles without sintering. However, the method of preventing sintering by this deposition is that when the deposition conditions are insufficient, the degree of deposition of the sintering inhibitor varies from particle to particle. While it can be prevented, it will sinter in places that are not so much deposited. As a result, there is a problem that the particle size distribution of the obtained powder is deteriorated. In particular, in the case of fine particles, the particles tend to aggregate and behave as aggregates, so that uneven deposition tends to occur. The deterioration of the particle size distribution causes the surface properties of the tape to deteriorate, and consequently the electromagnetic conversion characteristics of the tape.

また、粒子が凝集せず均一に分散されていたとしても、被着による焼結防止法では、微粒子化して比表面積が増えると、全ての表面をコーティングするためには比表面積の増大に応じて焼結防止剤量も増やさなければならない。さらに、Siを焼結防止剤として使用する場合、Siは吸着力が強く高い焼結防止効果が得られるが、その反面、Si同士の結合も強いために粒子の分散性を阻害しやすい。   In addition, even if the particles are uniformly dispersed without being agglomerated, in the method of preventing sintering by deposition, if the specific surface area increases as the particles become finer, the entire surface is coated according to the increase in specific surface area. The amount of sintering inhibitor must also be increased. Furthermore, when Si is used as an anti-sintering agent, Si has a strong adsorptive power and a high anti-sintering effect can be obtained, but on the other hand, the bonding between Si is also strong, so that the dispersibility of the particles tends to be hindered.

そこで、本出願人はこのような問題を解決すべく種々検討の末、窒化鉄系磁性粉末製造の出発材料としてAlを固溶したゲーサイトを使用すると、粒度分布が狭く焼結の少ない平均粒子径20nm以下の窒化鉄系磁性粉末が得られることを見出し、特願2004−76080号として提案した。この窒化鉄系磁性粉末はテープ化する際に良好な分散性を呈するものである。   Therefore, after various studies to solve such problems, the present applicant uses a goethite containing Al as a starting material for the production of iron nitride-based magnetic powder. It has been found that an iron nitride magnetic powder having a diameter of 20 nm or less can be obtained and proposed as Japanese Patent Application No. 2004-76080. This iron nitride magnetic powder exhibits good dispersibility when taped.

ところが、Alを固溶したゲーサイトを使用すると、分散性を阻害することなく焼結防止を図ることができるものの、Fe162への窒化がうまく進行しないという事態が生じることがあった。窒化が不十分だとα−Fe相が多く残存してしまい磁気特性、特に保磁力Hcの低下を招く。 However, when goethite containing Al is used as a solid solution, sintering can be prevented without impairing dispersibility, but there are cases where nitriding to Fe 16 N 2 does not proceed well. If nitriding is insufficient, a large amount of α-Fe phase remains and causes a decrease in magnetic properties, particularly coercive force Hc.

本発明はこのような現状に鑑み、Alを固溶したゲーサイトを使用することにより焼結防止および分散性確保を図ったFe162相主体の窒化鉄系磁性粉末において、さらに、窒化の進行を改善したものを提供しようというものである。 In view of such a current situation, the present invention provides a Fe 16 N 2 phase-based iron nitride-based magnetic powder that uses a goethite in which Al is dissolved to prevent sintering and ensure dispersibility. It is about providing something that improves progress.

発明者らは種々検討の結果、Znを被着させたゲーサイトを原料として還元処理を経て生成したα−Fe粉末に対し、窒化処理を施すと、磁気特性に優れたFe162相主体の窒化鉄系粉末が得られることを見出した。そのゲーサイトとしては特にAlを固溶させることによって焼結防止を図ったものを適用することが好ましい。窒化の進行が改善された好ましいFe162相主体の窒化鉄系粉末は、窒化後に例えばZnをFeに対する原子比(すなわちZn/Fe原子比)で0.05〜5%含有するものである。
ここで、Zn/Fe原子比は、粉末中のZn含有量(原子%)とFe含有量(原子%)を測定し、次式、
Zn含有量(原子%)/Fe含有量(原子%)×100
により求めることができる。
We result of various studies, the goethite was deposited with Zn to alpha-Fe powder produced through the reduction treatment as a raw material, when subjected to a nitriding treatment, Fe 16 N 2 phase mainly having excellent magnetic properties It was found that an iron nitride-based powder was obtained. As the goethite, it is particularly preferable to apply a material that prevents sintering by dissolving Al in solid solution. The preferable Fe 16 N 2 phase-based iron nitride-based powder with improved nitriding progress contains, for example, 0.05 to 5% of Zn in terms of atomic ratio to Fe (ie, Zn / Fe atomic ratio) after nitriding. .
Here, the Zn / Fe atomic ratio was measured by measuring the Zn content (atomic%) and Fe content (atomic%) in the powder,
Zn content (atomic%) / Fe content (atomic%) × 100
It can ask for.

Alは、Feに対する原子比で0.1〜20%含有していることが好ましい。このようなものにおいては優れた焼結防止効果が発揮される。粉末中に含まれる上記Alの含有量はゲーサイト中に固溶していたAlが主体となるが、焼結防止効果を高めるためにはAlの被着処理をも行うことも有効であり、その場合は、被着Alの分も上記Al含有量に含め粒子設計を行う。このような本発明のFe162相主体の窒化鉄系粉末として、長径(それぞれの粒子の中で最も長い径を測定して得られる長さ)の平均粒子径が20nm以下に微粒子化したものが提供される。 Al is preferably contained in an atomic ratio of 0.1 to 20% with respect to Fe. In such a thing, the outstanding sintering prevention effect is exhibited. The content of Al contained in the powder is mainly Al dissolved in goethite, but in order to enhance the sintering prevention effect, it is also effective to perform Al deposition treatment, In that case, the particles are designed by including the deposited Al in the Al content. As such an iron nitride-based powder mainly composed of the Fe 16 N 2 phase of the present invention, the average particle diameter of the long diameter (the length obtained by measuring the longest diameter among the respective particles) was reduced to 20 nm or less. Things are provided.

ここで、「Fe162相主体の窒化鉄系粉末」とは、評価対象となる粉末についてCo−Kα線によるX線回折を行ったとき、そのX線回折パターンにおいて、回折角2θが10〜120°の範囲にある回折ピークのうち最も高いピークが49.5〜50.5°の位置に出現するものをいう。そして特に、そのX線回折パターンにおいて、2θ:49.5〜50.5°の範囲におけるピークの高さI50と、2θ:51.5〜53.0°の範囲におけるピークの高さI52との間に下記(1)式の関係が成り立つものが好適な対象となる。
50/I52≧1.5 ……(1)
ただし、ピークの高さはX線回折強度(cps)に比例する量として定まる値を採用して比の値を算出する。
Here, “Fe 16 N 2 phase-based iron nitride-based powder” means that when a powder to be evaluated is subjected to X-ray diffraction by Co—Kα rays, the diffraction angle 2θ is 10 in the X-ray diffraction pattern. The highest peak among the diffraction peaks in the range of ˜120 ° appears at the position of 49.5-50.5 °. In particular, in the X-ray diffraction pattern, the peak height I 50 in the range of 2θ: 49.5 to 50.5 ° and the peak height I 52 in the range of 2θ: 51.5 to 53.0 ° Those satisfying the relationship of the following expression (1) are suitable targets.
I 50 / I 52 ≧ 1.5 (1)
However, the value of the ratio is calculated by adopting a value determined as an amount proportional to the X-ray diffraction intensity (cps) as the peak height.

本発明によれば、Znを被着させたゲーサイトを使用することにより、窒化が十分に進行した磁気特性の良好なFe162相主体の窒化鉄系粉末が提供可能になった。特に、Alを固溶させた後、さらにZnやAlを被着させたゲーサイトを還元処理に供することができるので、Al固溶+Al被着による優れた焼結防止効果と、Zn被着による窒化促進効果とを両方同時に享受することができる。このため、従来のSi被着による焼結防止手段を採用する必要がなく、Si被着で問題になった分散性低下のデメリットが回避できる。したがって本発明は、磁気特性の面および粉体特性の面において、塗布型磁気記録媒体に好適な磁性粉を提供するものである。 According to the present invention, by using a goethite coated with Zn, it is possible to provide an iron nitride-based powder mainly composed of an Fe 16 N 2 phase having a sufficiently advanced nitriding and excellent magnetic properties. In particular, since the goethite on which Zn or Al is further deposited can be subjected to the reduction treatment after the Al is solid-dissolved, the excellent anti-sintering effect due to the Al solid solution + Al deposition and the Zn deposition. Both of the nitriding promotion effects can be enjoyed simultaneously. For this reason, it is not necessary to employ the conventional means for preventing sintering by Si deposition, and the disadvantage of the decrease in dispersibility that has become a problem with Si deposition can be avoided. Therefore, the present invention provides a magnetic powder suitable for a coating type magnetic recording medium in terms of magnetic characteristics and powder characteristics.

本発明では、ゲーサイト(オキシ水酸化鉄)に由来するα−Feを窒化処理して得られるFe162相主体の窒化鉄系磁性粉末を対象とする。ゲーサイトからα−Feを得るには水素などの雰囲気で還元処理を行う必要がある。ゲーサイトから直接α−Feを得ることもできるし、中間物質として鉄酸化物を生成させる過程をとってもよい。いずれの場合も、水素などの還元雰囲気中で熱処理を施すのが一般的である。この還元熱処理に際しては粒子同士の焼結を防止することが重要となる。焼結防止手段としては前述のようにSiを被着する方法や、Alを固溶する原料粉を使用する方法などがあるが、塗布型磁気記録媒体への適用を考慮すると、後者のAl固溶による方法が分散性等の面で有利といえる。ただし、後者の場合、窒化の進行が抑制されるというマイナス要因を抱えており、その克服法の確立が待たれていた。 In the present invention, iron nitride magnetic powder mainly composed of Fe 16 N 2 phase obtained by nitriding α-Fe derived from goethite (iron oxyhydroxide) is an object. In order to obtain α-Fe from goethite, it is necessary to perform a reduction treatment in an atmosphere such as hydrogen. Α-Fe can be obtained directly from goethite, or a process of generating iron oxide as an intermediate substance may be taken. In either case, the heat treatment is generally performed in a reducing atmosphere such as hydrogen. In this reduction heat treatment, it is important to prevent sintering of the particles. As the sintering preventing means, there are a method of depositing Si as described above and a method of using raw material powder that dissolves Al, but considering the application to a coating type magnetic recording medium, the latter Al solidification method. It can be said that the method using dissolution is advantageous in terms of dispersibility. However, in the latter case, there is a negative factor that the progress of nitriding is suppressed, and the establishment of a method for overcoming this has been awaited.

発明者らの詳細な研究の結果、Alを固溶させたゲーサイトであっても、Znをさらに被着させることにより、窒化の進行のし易さが顕著に改善され、保磁力に優れた微細な窒化鉄系粉末が得られることがわかった。その際、粉末中におけるZnの存在量として、Feに対する原子比(Zn/Fe原子比)で0.05%以上を確保することが望ましい。それよりZnが少ないと十分な窒化促進効果が得られない。Zn/Fe原子比の上限については、窒化促進効果が十分に得られ、かつ他の特性(磁気特性や粉体特性)を阻害しない限り特に制限はないが、Zn/Fe原子比が5%を超えるとFeの含有量が減少することに起因してσsが低下し、磁気記録媒体として必要な記録信号を得ることが難しくなる。通常、Zn/Fe原子比は0.1〜3%の範囲で良好な結果が得られる。   As a result of detailed researches by the inventors, even if it is a goethite in which Al is dissolved, by further depositing Zn, the easiness of nitriding is remarkably improved and the coercive force is excellent. It was found that fine iron nitride powder was obtained. At this time, it is desirable to ensure that the abundance of Zn in the powder is 0.05% or more in terms of the atomic ratio to Fe (Zn / Fe atomic ratio). If Zn is less than that, a sufficient nitriding promotion effect cannot be obtained. The upper limit of the Zn / Fe atomic ratio is not particularly limited as long as the effect of promoting nitriding is sufficiently obtained and other characteristics (magnetic characteristics and powder characteristics) are not impaired, but the Zn / Fe atomic ratio is 5%. If it exceeds, σs decreases due to a decrease in the Fe content, and it becomes difficult to obtain a recording signal necessary for the magnetic recording medium. Usually, good results are obtained when the Zn / Fe atomic ratio is in the range of 0.1 to 3%.

窒化し易いということはFe162相が生成され易いということであり、具体的には同じ条件で窒化処理を施した場合、窒化処理後にFe162相の存在率がより高く且つα−Feの存在率がより低くなるということである。特性X線を照射したX線回折によれば、Fe162相の最も強度の高い回折ピークとα−Feの最も強度の高い回折ピークはかなり近い位置に出現する。例えばCo−Kα線を用いたX線回折では、Fe162相の前記ピークは回折角2θが49.5〜50.5°の間に出現し、α−Feのそれは2θが51.5〜53.0°の間に出現する。これら2つのピーク高さ(回折強度(cps)に比例した値としてプロットしたもの)の相対的な比を調べることによって、窒化のし易さを評価することができる。 Easily nitriding means that an Fe 16 N 2 phase is easily generated. Specifically, when nitriding is performed under the same conditions, the abundance of Fe 16 N 2 phase is higher after nitriding and α This means that the abundance of -Fe is lower. According to the X-ray diffraction irradiated with characteristic X-rays, the diffraction peak with the highest intensity of the Fe 16 N 2 phase and the diffraction peak with the highest intensity of α-Fe appear at very close positions. For example, in X-ray diffraction using Co—Kα rays, the peak of the Fe 16 N 2 phase appears when the diffraction angle 2θ is between 49.5 and 50.5 °, and that of α-Fe is 2θ of 51.5. Appears between -53.0 °. By examining the relative ratio of these two peak heights (plotted as a value proportional to the diffraction intensity (cps)), the ease of nitriding can be evaluated.

発明者らの検討によれば、実用的な窒化処理の条件で製造された窒化鉄系粉末において、Co−Kα線を用いて測定されたX線回折パターン上の、2θ:49.5〜50.5°の範囲におけるピークの高さI50と、2θ:51.5〜53.0°の範囲におけるピークの高さI52との間に下記(1)式、
50/I52≧1.5 ……(1)
の関係が成り立つ粉末は、窒化が十分に進行しており、平均粒子径が同レベルのもので比べた場合、それぞれの粒子径に応じた用途において優れた磁気特性を発揮することがわかった。特に平均長径が20nm以下に微粒子化された窒化鉄系粉末において上記(1)式を満たすものは、記録密度の高い塗布型磁気記録媒体用の磁性粉として好適な磁気特性を発揮する。
According to the study by the inventors, in an iron nitride-based powder manufactured under practical nitriding conditions, 2θ: 49.5-50 on the X-ray diffraction pattern measured using Co—Kα rays. Between the peak height I 50 in the range of 0.5 ° and the peak height I 52 in the range of 2θ: 51.5 to 53.0 °, the following formula (1):
I 50 / I 52 ≧ 1.5 (1)
It was found that powders satisfying the above relationship are sufficiently nitrided and exhibit excellent magnetic properties in applications corresponding to the respective particle sizes when compared with those having the same average particle size. In particular, iron nitride powders having an average major axis of 20 nm or less that satisfy the above formula (1) exhibit magnetic characteristics suitable as magnetic powders for coating-type magnetic recording media having a high recording density.

Znを被着したゲーサイトを使用したときに窒化の進行が改善されるメカニズムについては、現時点で明らかにされていない。ただ、後述の図1から判るように、本発明の窒化鉄磁性粉末では粒子の最外層にZnの濃化した酸化物皮膜が形成されている。このZnの濃化した酸化物皮膜は、Znを含まない酸化物皮膜と比べ、内部への窒素の進入が生じやすい構造をもつのではないかと推察される。   The mechanism by which the progress of nitriding is improved when using a goethite coated with Zn has not been clarified at this time. However, as can be seen from FIG. 1 described later, in the iron nitride magnetic powder of the present invention, an oxide film enriched with Zn is formed on the outermost layer of the particles. This Zn-concentrated oxide film is presumed to have a structure in which nitrogen is more likely to enter the inside than an oxide film not containing Zn.

本発明の窒化鉄系粉末は、例えば以下のような製造法により得ることができる。
出発原料としては、優れた焼結防止効果を付与するために、内部にAlが固溶しているゲーサイトを用意することが望ましい。このようなゲーサイトを得るには、ゲーサイトを湿式法で合成する際にAlを同伴させる。例えば、第一鉄塩水溶液(FeSO4、FeCl2などの水溶液)を水酸化アルカリ(NaOHやKOH水溶液)で中和した後、空気などで酸化してゲーサイトを生成させる方法では、このゲーサイトの生成反応を、Al含有塩が存在する環境下で行えばよい。また、第一鉄塩水溶液を炭酸アルカリで中和した後、空気などで酸化してゲーサイトを生成させる方法でも、このゲーサイトの生成反応をAl含有塩の存在下で行えばよい。別法として、第二鉄塩水溶液(FeCl3などの水溶液)をNaOHなどで中和してゲーサイトを生成させる反応を、やはりAl含有塩との存在下で行ってもよい。
The iron nitride-based powder of the present invention can be obtained, for example, by the following production method.
As a starting material, it is desirable to prepare a goethite in which Al is dissolved in order to provide an excellent sintering preventing effect. In order to obtain such a goethite, Al is accompanied when the goethite is synthesized by a wet method. For example, a method in which a ferrous salt aqueous solution (aqueous solution of FeSO 4 , FeCl 2, etc.) is neutralized with an alkali hydroxide (NaOH or KOH aqueous solution) and then oxidized with air to generate goethite. The production reaction may be performed in an environment in which an Al-containing salt is present. Further, in the method of neutralizing the ferrous salt aqueous solution with alkali carbonate and then oxidizing it with air or the like to generate goethite, this goethite formation reaction may be performed in the presence of an Al-containing salt. Alternatively, the reaction of neutralizing an aqueous ferric salt solution (aqueous solution of FeCl 3 ) with NaOH or the like to generate goethite may also be performed in the presence of an Al-containing salt.

次に、このゲーサイトにZnを被着させる。例えば、上記のAl固溶ゲーサイトを水中に分散させた後、硝酸亜鉛、硫酸亜鉛などの水溶性Zn含有塩を添加して、アルカリで中和する方法や、該分散液から水を蒸発させる方法などによって、粒子表面にZnを被着させることができる。Znの被着量は、上記所望のZn/Fe原子比になるように調整することが望ましい。この段階でのZn/Fe原子比は、概ね窒化処理後のFe/Zn原子比にそのまま反映される。被着量の調整はZn含有塩の濃度を変えることによって可能である。   Next, Zn is deposited on this goethite. For example, after dispersing the above Al solid solution goethite in water, adding a water-soluble Zn-containing salt such as zinc nitrate or zinc sulfate and neutralizing with alkali, or evaporating water from the dispersion Zn can be deposited on the particle surface by a method or the like. It is desirable to adjust the Zn deposition amount so that the desired Zn / Fe atomic ratio is obtained. The Zn / Fe atomic ratio at this stage is directly reflected in the Fe / Zn atomic ratio after nitriding. The amount of deposition can be adjusted by changing the concentration of the Zn-containing salt.

Znのみを被着させたゲーサイトをそのまま還元処理に供することもできるが、より高い焼結防止効果を得るために、Al、希土類元素(Yを含む)などの1種以上を被着させることが望ましい。これらは、上記のZnの被着と同時に行うことができる。その場合、必要な被着元素を含む水溶性塩を上記Zn含有塩とともに添加した液を使用すればよい。Al源、希土類元素(Yを含む)源となる塩としては、それぞれ例えばアルミン酸ナトリウム、硝酸ランタンおよび硝酸イットリウムを挙げることができる。その他、Zr、Mo、W、P、Bなどを被着させることも焼結防止効果を高める上で有効である。   The goethite coated with only Zn can be subjected to reduction treatment as it is, but in order to obtain a higher sintering prevention effect, one or more of Al, rare earth elements (including Y), etc. are deposited. Is desirable. These can be performed simultaneously with the above Zn deposition. In that case, a solution obtained by adding a water-soluble salt containing a necessary deposition element together with the Zn-containing salt may be used. Examples of the salt serving as the Al source and the rare earth element (including Y) source include sodium aluminate, lanthanum nitrate, and yttrium nitrate, respectively. In addition, depositing Zr, Mo, W, P, B, etc. is also effective in enhancing the sintering prevention effect.

ゲーサイトに固溶させるAl量および被着させるAl量は両方の総和がFeに対するAl/Fe原子比で0.1〜14%、好ましくは1〜10%程度とすればよい。Al/Fe原子比が0.1%未満だと、その磁性粉末のσsは高くなるが、十分な焼結防止効果が得られない。逆に14%を超えると焼結防止効果は十分であるが、Zn被着の手法を採用しても窒化の進行促進効果が不足する。ゲーサイトに被着させるAlを除く焼結防止剤の量(Yを含む希土類元素などの総量X)はFeに対する原子比X/Feで0.1〜10%好ましくは0.1〜5%とすればよい。   The total amount of Al to be dissolved in goethite and the amount of Al to be deposited may be about 0.1 to 14%, preferably about 1 to 10% in terms of the Al / Fe atomic ratio with respect to Fe. When the Al / Fe atomic ratio is less than 0.1%, the σs of the magnetic powder increases, but a sufficient sintering preventing effect cannot be obtained. Conversely, if it exceeds 14%, the sintering preventing effect is sufficient, but even if the Zn deposition method is employed, the effect of promoting the progress of nitriding is insufficient. The amount of sintering inhibitor excluding Al (total amount X of rare earth elements including Y, etc.) deposited on goethite is 0.1 to 10%, preferably 0.1 to 5% in terms of the atomic ratio X / Fe to Fe. do it.

このようにして得られたゲーサイトはろ過・水洗工程を経た後、200℃以下の温度で乾燥し、これを還元処理に供することができる。あるいはゲーサイトを、200〜600℃で脱水する処理や、水分濃度5〜20%の水素雰囲気で還元する処理に供して、一旦中間物質とし、これをさらに還元処理してもよい。この中間物質は鉄と酸素の化合物であれば特に限定されるものではなく、ゲーサイト(初期のものが変性したもの)、ヘマタイト、マグヘマイト、マグネタイト、ウスタイトなどが挙げられる。これらの平均粒子径は35nm以下であることが望ましい。35nmよりも大きい場合には、最終的に得られる窒化鉄系磁性粉末の粒子径も大きくなり、その結果粒子体積が大きくなって短波長記録に適さず、また、その磁気テープの表面平滑性も悪くノイズも高くなるので、高記録密度磁気記録媒体用の磁性粉末には適さなくなる。   The goethite thus obtained can be subjected to a reduction treatment after being filtered and washed with water and then dried at a temperature of 200 ° C. or lower. Alternatively, the goethite may be subjected to a treatment of dehydrating at 200 to 600 ° C. or a treatment of reducing in a hydrogen atmosphere having a moisture concentration of 5 to 20% to temporarily form an intermediate substance, which may be further reduced. The intermediate substance is not particularly limited as long as it is a compound of iron and oxygen, and examples thereof include goethite (an initial one is modified), hematite, maghemite, magnetite, and wustite. These average particle diameters are desirably 35 nm or less. If it is larger than 35 nm, the particle diameter of the finally obtained iron nitride-based magnetic powder is also increased. As a result, the particle volume is increased, which is not suitable for short wavelength recording, and the surface smoothness of the magnetic tape is also reduced. Unfortunately, the noise becomes high, so it is not suitable for magnetic powders for high recording density magnetic recording media.

次いで、ゲーサイトあるいは上記中間物質をα‐Feに還元する。還元処理は一般的に水素(H2)を使用した還元方法が適しており、温度は300〜600℃が好ましい。300℃よりも低いと還元が不十分となることがあり、その場合、酸素が残留して窒化処理の速度が著しく低下することがある。還元温度が600℃を超えると、Al等の焼結防止剤を含有させる対策をとっても粒子間の焼結が起こりやすく、平均粒子径の増大や分散性の悪化を招き好ましくない。 Next, the goethite or the intermediate substance is reduced to α-Fe. In general, a reduction method using hydrogen (H 2 ) is suitable for the reduction treatment, and the temperature is preferably 300 to 600 ° C. If the temperature is lower than 300 ° C., the reduction may be insufficient. In this case, oxygen may remain and the nitriding speed may be significantly reduced. When the reduction temperature exceeds 600 ° C., sintering between particles is likely to occur even if a measure to contain a sintering inhibitor such as Al is taken, which causes an increase in average particle diameter and deterioration of dispersibility.

窒化処理自体は、同出願人による特開平11−340023号広報に記載されているアンモニア法を適用することができる。すなわちアンモニアに代表される窒素含有ガスを200℃以下で流しながら、数時間から数十時間保持することによってFe162相を主体とする窒化鉄粉体を得ることができる。なお、この窒化処理に使用するガス中の酸素量は数ppmもしくはそれ以下であることが望ましい。 For the nitriding treatment itself, the ammonia method described in Japanese Patent Application Laid-Open No. 11-340023 published by the same applicant can be applied. That is, an iron nitride powder mainly composed of an Fe 16 N 2 phase can be obtained by holding a nitrogen-containing gas typified by ammonia at 200 ° C. or lower and holding it for several hours to several tens of hours. The amount of oxygen in the gas used for the nitriding treatment is preferably several ppm or less.

この窒化処理のあとは、窒素中に酸素を0.01〜2体積%程度含有させた混合ガスで粒子表面を徐酸化し、大気中でも安定に取り扱える窒化鉄系磁性粉末とするのが好ましい。   After the nitriding treatment, it is preferable to gradually oxidize the particle surface with a mixed gas containing about 0.01 to 2% by volume of oxygen in nitrogen to obtain an iron nitride-based magnetic powder that can be stably handled in the air.

なお、高記録密度磁気記録媒体に適用するには、長径の平均径が20nm以下の微細な窒化鉄系粉末であることが望ましいが、そのような粒子径のコントロールは、原材料であるゲーサイトの空気酸化の割合や時間、温度を制御することによって行うことができる。   In order to apply to a high recording density magnetic recording medium, it is desirable to use a fine iron nitride-based powder having a major axis having an average diameter of 20 nm or less. It can be performed by controlling the rate, time, and temperature of air oxidation.

以下に本発明の実施例を挙げるが、その前に、各実施例で得られた特性値を測定した方法について予め説明しておく。   Examples of the present invention will be described below, but before that, methods for measuring characteristic values obtained in the respective examples will be described in advance.

〔組成分析〕
磁性粉末中のFeの定量は平沼産業株式会社製平沼自動滴定装置(COMTIME−980)を用いて行った。
[Composition analysis]
The amount of Fe in the magnetic powder was determined using a Hiranuma automatic titrator (COMTIME-980) manufactured by Hiranuma Sangyo Co., Ltd.

〔粉体バルクにおける磁気特性〕
磁気特性(保磁力Hc、飽和磁化σs)の測定:VSM(デジタルメジャーメントシステムズ株式会社製)を用いて、最大796kA/mの外部印加磁場で測定した。
[Magnetic properties in powder bulk]
Measurement of magnetic properties (coercive force Hc, saturation magnetization σs): Measurement was performed with an externally applied magnetic field of 796 kA / m at maximum using VSM (manufactured by Digital Measurement Systems Co., Ltd.).

〔平均粒子径〕
30万倍の透過型電子顕微鏡写真として映し出された粒子のうち、2粒子もしくはそれ以上粒子が重なっているのか焼結しているのか判別できない粒子を除き、粒子同士の境界が判別できる粒子1000個について、それぞれの粒子の中で最も長い径を測定して得られる長さの平均値を用いた。
[Average particle size]
1000 particles capable of discriminating the boundary between particles except for particles displayed as 300,000 times transmission electron micrographs, in which it is not possible to determine whether two or more particles overlap or are sintered. The average value of the lengths obtained by measuring the longest diameter among the particles was used.

〔ESCAによる各元素の濃度分布測定〕
窒化鉄系粒子の表面付近における元素濃度の深さ方向プロファイルを調べるため、ESCAを用いて測定を行った。測定は、アルバック・ファイ(株)製、5800を用い、X線源:Al陽極線源、150W、分析面積:800μmφ、中和銃:使用、試料調整:試料ホルダー上にセット、取り出し角:45°、Arスパッタリング速度:8.7nm/min(SiO2換算値)の条件で測定した。
[Measurement of concentration distribution of each element by ESCA]
In order to investigate the depth profile of the element concentration in the vicinity of the surface of the iron nitride-based particles, measurement was performed using ESCA. Measurement is made by ULVAC-PHI Co., Ltd. 5800, X-ray source: Al anode source, 150 W, analysis area: 800 μmφ, neutralizing gun: used, sample adjustment: set on sample holder, take-off angle: 45 °, Ar sputtering rate: 8.7 nm / min (SiO 2 conversion value)

ESCA測定において、粒子表面に濃化している元素は、測定開始直後にもっとも高濃度に検出され、その後検出濃度が低下し、ある濃度で一定になる。このことから例えばZnと酸素の濃度変化が上記の変化を示す場合だと、Znが粒子外層の酸化膜層に主体的に存在するといえる。   In ESCA measurement, the element concentrated on the particle surface is detected at the highest concentration immediately after the start of measurement, and then the detected concentration decreases and becomes constant at a certain concentration. From this, for example, when the change in the concentration of Zn and oxygen shows the above change, it can be said that Zn is mainly present in the oxide film layer of the outer particle layer.

〔実施例1〕
0.2モル/L(Lはリットルを表す)のFeSO4水溶液4Lに、12モル/LのNaOH水溶液0.5Lと、アルミン酸ナトリウム水溶液を加えた上で、40℃の液温を維持しながら空気を300mL/minの流量で2.5時間吹き込むことによりAlを固溶した澱物(ゲーサイト)を得た。
[Example 1]
After adding 0.5 L of 12 mol / L NaOH aqueous solution and sodium aluminate aqueous solution to 4 L of FeSO 4 aqueous solution of 0.2 mol / L (L represents liter), the liquid temperature at 40 ° C. is maintained. Then, air was blown at a flow rate of 300 mL / min for 2.5 hours to obtain a starch (goethite) in which Al was dissolved.

このゲーサイトの澱物をろ過・水洗したうえ再度水中に分散させた。その分散液に硝酸亜鉛水溶液および硝酸イットリウム水溶液を加え、40℃でアルミン酸ナトリウム水溶液およびNaOH水溶液を添加してpH=7〜8に調整し、粒子表面にZn、YおよびAlを被着させた。その後、液をろ過して得た固形分を水洗したのち、空気中110℃で乾燥した。   The goethite starch was filtered, washed with water and dispersed again in water. A zinc nitrate aqueous solution and an yttrium nitrate aqueous solution were added to the dispersion, and a sodium aluminate aqueous solution and an NaOH aqueous solution were added at 40 ° C. to adjust the pH to 7 to 8, and Zn, Y and Al were deposited on the particle surfaces. . Thereafter, the solid content obtained by filtering the liquid was washed with water and then dried at 110 ° C. in air.

得られた粉末はX線回折の結果ゲーサイトを主体とする化合物であることが確認された。このゲーサイト粉末の長径の平均粒子径は30nmであった。この粉末を出発原料とし、500℃、3時間水素ガスにより還元処理をした後100℃まで冷却し、この温度で水素ガスをアンモニアガスに切り替え、再度昇温して、140℃に達したところで、20時間窒化処理を行った。窒化処理後は80℃まで冷却し、窒素ガスに切り替えた。そして、この窒素ガスに0.01〜2%のO2濃度となるように空気を添加して粒子表面を徐酸化処理し、得られた粉末を大気中に取り出した。 As a result of X-ray diffraction, the obtained powder was confirmed to be a compound mainly composed of goethite. The average particle size of the major axis of this goethite powder was 30 nm. Using this powder as a starting material, reduction treatment with hydrogen gas at 500 ° C. for 3 hours and cooling to 100 ° C., at this temperature, the hydrogen gas was switched to ammonia gas, the temperature was raised again, and when it reached 140 ° C., Nitriding treatment was performed for 20 hours. After the nitriding treatment, it was cooled to 80 ° C. and switched to nitrogen gas. Then, the nitrogen gas of air so that the O 2 concentration of 0.01% to 2% of the particle surface and gradual oxidation treatment was added, and the obtained powder was taken out into the atmosphere.

得られた粉末は電子顕微鏡写真から、平均粒子径17nmの球状ないし楕円状の粒子で構成されていることがわかった。X線回折の結果これはFe162相を主体とする窒化鉄系粉末であり、I50/I52=1.69であった。この窒化鉄粉末の組成、特性などを表1に示してある。また、ESCAによる表面付近の元素濃度のプロファイルを図1に示してある。図1(b)は、同(a)のZnの曲線を縦方向に拡大表示したものである。 From the electron micrograph, the obtained powder was found to be composed of spherical or elliptical particles having an average particle diameter of 17 nm. As a result of X-ray diffraction, this was an iron nitride-based powder mainly composed of Fe 16 N 2 phase, and I 50 / I 52 = 1.69. Table 1 shows the composition and characteristics of the iron nitride powder. FIG. 1 shows a profile of element concentration near the surface by ESCA. FIG. 1B is an enlarged view of the Zn curve of FIG.

〔比較例1〕
Znを被着させなかったこと(Zn源として液中に硝酸亜鉛を添加しなかったこと)を除き、実施例1と同様にして窒化鉄系粉末を作製した。
[Comparative Example 1]
An iron nitride-based powder was produced in the same manner as in Example 1 except that Zn was not deposited (no zinc nitrate was added to the solution as a Zn source).

得られた粉末は電子顕微鏡写真から、平均粒子径18nmの球状ないし楕円状の粒子で構成されていることがわかった。X線回折の結果これはFe162相を主体とする窒化鉄系粉末であり、I50/I52=1.39であった。この窒化鉄粉末の組成、特性などを表1に示してある。また、ESCAによる表面付近の元素濃度のプロファイルを図2に示してある。図2(b)は、同(a)のZnの曲線を縦方向に拡大表示したものである。 From the electron micrograph, the obtained powder was found to be composed of spherical or elliptical particles having an average particle diameter of 18 nm. As a result of X-ray diffraction, this was an iron nitride-based powder mainly composed of Fe 16 N 2 phase, and I 50 / I 52 = 1.39. Table 1 shows the composition and characteristics of the iron nitride powder. Further, a profile of the element concentration near the surface by ESCA is shown in FIG. FIG. 2B is an enlarged view of the Zn curve of FIG.

〔比較例2〕
比較例1に比べてゲーサイトに固溶させるAlの添加量を増加させたことを除き、比較例1と同様にして窒化鉄系粉末を作製した。
[Comparative Example 2]
An iron nitride-based powder was produced in the same manner as in Comparative Example 1, except that the amount of Al added to the goethite was increased as compared with Comparative Example 1.

得られた粉末は電子顕微鏡写真から、平均粒子径17nmの球状ないし楕円状の粒子で構成されていることがわかった。X線回折の結果、I50/I52=0.86であった。この粉末の組成、特性などを表1に示してある。 From the electron micrograph, the obtained powder was found to be composed of spherical or elliptical particles having an average particle diameter of 17 nm. As a result of X-ray diffraction, I 50 / I 52 = 0.86. The composition and characteristics of this powder are shown in Table 1.

表1で示すように、比較例1であっても、平均粒子径が20nmといった非常に小さい径を有する磁性粉末が得られている。しかし、磁気記録密度をさらに向上させるためにはさらなる微粒子化が必要で、粒子の焼結をいかに抑制するか検討しなければならない。比較例2ではゲーサイトの固溶Alを増量したことにより比較例1よりは焼結防止効果が大きく、微粒子のものが得られている(すなわち長径の平均粒子径が小さくなっている)。しかし、窒化がどの程度進んだかを判断する指標となるI50/I52値は非常に低く、Alの固溶量を増やすことによって窒化が進行しにくいものになっていることがわかる。これに対し、Al固溶量を増加させる代わりにZnを被着させた実施例1では、比較例2と同等に微粒子のものが得られており、焼結防止効果がAlの固溶量を多くしたものと同等に高くなったことがわかる。さらに、I50/I52が1.5を超えて高く、窒化も十分に進行しており、そのため保磁力Hcの向上が見られ、200kA/mを上回る高保磁力を呈するものが得られている。なお、飽和磁化σsは逆に若干低下する傾向が見られるが、比較例ではI50/I52<1.5であるので、Fe相が多く存在し、このためFe相の飽和磁化が影響して実施例よりも高くなっている。このことから、比較例では、Fe162相とFe相の2相が存在することがわかり、2相が混合された状態は磁気特性に悪影響を及ぼすので磁気記録媒体の磁性体としては好ましくない。 As shown in Table 1, even in Comparative Example 1, a magnetic powder having a very small diameter such as an average particle diameter of 20 nm is obtained. However, in order to further improve the magnetic recording density, further finer particles are necessary, and it is necessary to examine how to suppress the sintering of the particles. In Comparative Example 2, the amount of goethite solute Al is increased, so that the sintering preventing effect is larger than that of Comparative Example 1, and fine particles are obtained (that is, the average particle diameter of the long diameter is small). However, the I 50 / I 52 value, which is an index for determining how much nitriding has progressed, is very low, and it can be seen that nitriding is difficult to proceed by increasing the amount of Al dissolved. On the other hand, in Example 1 in which Zn was deposited instead of increasing the amount of Al solid solution, fine particles were obtained in the same manner as in Comparative Example 2, and the anti-sintering effect reduced the amount of Al solid solution. It turns out that it became as high as what we increased. Further, I 50 / I 52 is higher than 1.5, and nitriding is sufficiently advanced. Therefore, the coercive force Hc is improved, and a product exhibiting a high coercive force exceeding 200 kA / m is obtained. . In contrast, the saturation magnetization σs tends to slightly decrease, but in the comparative example, I 50 / I 52 <1.5, so that there is a large amount of Fe phase, and therefore the saturation magnetization of the Fe phase has an effect. It is higher than the example. From this, it can be seen that in the comparative example, there are two phases of Fe 16 N 2 phase and Fe phase, and the mixed state adversely affects the magnetic characteristics, so it is preferable as the magnetic material of the magnetic recording medium. Absent.

図1から、本発明の窒化鉄系粉末は表面付近の酸化物皮膜中にZnが濃化していることがわかる。
なお、参考のため、図3、図4、図5にはそれぞれ実施例1、比較例1および比較例2で得られた窒化鉄系粉末の透過型電子顕微鏡写真を示す。各写真とも、掲載している視野の横方向両端の距離が約580nmに相当する。
FIG. 1 shows that Zn is concentrated in the oxide film near the surface of the iron nitride powder of the present invention.
For reference, FIGS. 3, 4, and 5 show transmission electron micrographs of the iron nitride powders obtained in Example 1, Comparative Example 1, and Comparative Example 2, respectively. In each photograph, the distance between both ends in the horizontal direction of the field of view corresponds to about 580 nm.

実施例1の窒化鉄系粉末についてESCAによる元素濃度の深さ方向プロファイルを示すグラフ。The graph which shows the depth direction profile of the element concentration by ESCA about the iron nitride system powder of Example 1. FIG. 比較例1の窒化鉄系粉末についてESCAによる元素濃度の深さ方向プロファイルを示すグラフ。The graph which shows the depth direction profile of the element concentration by ESCA about the iron nitride type powder of the comparative example 1. 実施例1で得られた窒化鉄系粉末の透過型電子顕微鏡写真。2 is a transmission electron micrograph of the iron nitride powder obtained in Example 1. FIG. 比較例1で得られた窒化鉄系粉末の透過型電子顕微鏡写真。2 is a transmission electron micrograph of the iron nitride-based powder obtained in Comparative Example 1. FIG. 比較例2で得られた窒化鉄系粉末の透過型電子顕微鏡写真。6 is a transmission electron micrograph of the iron nitride-based powder obtained in Comparative Example 2. FIG.

Claims (6)

Znを被着させたゲーサイトを還元して得られたα−Fe粉末に窒化処理を施してなるFe162相主体の窒化鉄系粉末。 An iron nitride-based powder mainly composed of Fe 16 N 2 phase obtained by nitriding α-Fe powder obtained by reducing goethite coated with Zn. 前記ゲーサイトが固溶Alを含むものである請求項1に記載の窒化鉄系粉末。   The iron nitride-based powder according to claim 1, wherein the goethite contains solute Al. ZnをFeに対する原子比で0.05〜5%含有するFe162相主体の窒化鉄系粉末。 An iron nitride-based powder mainly composed of Fe 16 N 2 phase containing 0.05 to 5% of Zn with respect to Fe. さらにAlをFeに対する原子比で0.1〜20%含有する請求項3に記載のFe162相主体の窒化鉄系粉末。 The iron nitride-based powder mainly comprising an Fe 16 N 2 phase according to claim 3, further comprising Al in an atomic ratio of 0.1 to 20% with respect to Fe. 平均粒子径が20nm以下である請求項1〜4に記載の窒化鉄系粉末。   The iron nitride-based powder according to claim 1, having an average particle size of 20 nm or less. Co−Kα線によるX線回折を行ったとき、X線回折パターンの2θ:49.5〜50.5°の範囲におけるピークの高さI50と、2θ:51.5〜53.0°の範囲におけるピークの高さI52との間に下記(1)式の関係が成り立つ請求項1〜5のいずれかに記載の窒化鉄系粉末。
50/I52≧1.5 ……(1)
When X-ray diffraction was performed using Co-Kα rays, the peak height I 50 in the range of 2θ: 49.5 to 50.5 ° of the X-ray diffraction pattern and 2θ: 51.5 to 53.0 ° The iron nitride-based powder according to any one of claims 1 to 5, wherein a relationship of the following formula (1) is established between the peak height I 52 in the range.
I 50 / I 52 ≧ 1.5 (1)
JP2005125409A 2005-04-22 2005-04-22 Zn-containing iron nitride powder Expired - Fee Related JP4700998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125409A JP4700998B2 (en) 2005-04-22 2005-04-22 Zn-containing iron nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005125409A JP4700998B2 (en) 2005-04-22 2005-04-22 Zn-containing iron nitride powder

Publications (2)

Publication Number Publication Date
JP2006303321A true JP2006303321A (en) 2006-11-02
JP4700998B2 JP4700998B2 (en) 2011-06-15

Family

ID=37471230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125409A Expired - Fee Related JP4700998B2 (en) 2005-04-22 2005-04-22 Zn-containing iron nitride powder

Country Status (1)

Country Link
JP (1) JP4700998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083732A (en) * 2016-11-22 2018-05-31 住友電気工業株式会社 Iron nitride grain and method for producing iron nitride grain

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759304A (en) * 1980-09-26 1982-04-09 Kanto Denka Kogyo Kk Magnetic recording material and its manufacture
JPS57116715A (en) * 1981-01-10 1982-07-20 Hitachi Maxell Ltd Manufacture of metallic magnetic powder
JPS6418925A (en) * 1987-07-15 1989-01-23 Taiyo Yuden Kk Treatment of oxide magnetic powder
JPH0456709A (en) * 1990-06-26 1992-02-24 Toda Kogyo Corp Manufacture of metallic magnetic particle powder containing iron showing spindle shape as essential component
WO2003079333A1 (en) * 2002-03-18 2003-09-25 Hitachi Maxell, Ltd. Magnetic recording medium and magnetic recording cartridge
JP2004047088A (en) * 2002-07-05 2004-02-12 Hitachi Maxell Ltd Magnetic tape
JP2004273094A (en) * 2003-02-19 2004-09-30 Hitachi Maxell Ltd Magnetic recording medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759304A (en) * 1980-09-26 1982-04-09 Kanto Denka Kogyo Kk Magnetic recording material and its manufacture
JPS57116715A (en) * 1981-01-10 1982-07-20 Hitachi Maxell Ltd Manufacture of metallic magnetic powder
JPS6418925A (en) * 1987-07-15 1989-01-23 Taiyo Yuden Kk Treatment of oxide magnetic powder
JPH0456709A (en) * 1990-06-26 1992-02-24 Toda Kogyo Corp Manufacture of metallic magnetic particle powder containing iron showing spindle shape as essential component
WO2003079333A1 (en) * 2002-03-18 2003-09-25 Hitachi Maxell, Ltd. Magnetic recording medium and magnetic recording cartridge
JP2004047088A (en) * 2002-07-05 2004-02-12 Hitachi Maxell Ltd Magnetic tape
JP2004273094A (en) * 2003-02-19 2004-09-30 Hitachi Maxell Ltd Magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083732A (en) * 2016-11-22 2018-05-31 住友電気工業株式会社 Iron nitride grain and method for producing iron nitride grain

Also Published As

Publication number Publication date
JP4700998B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4534059B2 (en) Iron nitride magnetic powder and method for producing the same
US5645652A (en) Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same
JP4769130B2 (en) Iron nitride magnetic powder, method for producing the same, and magnetic recording medium
JP4758203B2 (en) High coercive force iron-based magnetic powder and magnetic recording medium
JP3268830B2 (en) Metal magnetic powder and method for producing the same
JP2004319923A (en) Iron nitride-based magnetic powder
JP4779092B2 (en) Magnetic powder suitable for low noise media
JP4700998B2 (en) Zn-containing iron nitride powder
JP2008103510A (en) Iron-nitride magnetic powder and manufacturing method therefor
US7074281B2 (en) Magnetic powder for magnetic recording
JP3925640B2 (en) Spindle-like alloy magnetic particle powder for magnetic recording and production method thereof
JP5130456B2 (en) Ferromagnetic metal powder and magnetic recording medium using the same
JP3750414B2 (en) Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof
JP2006190842A (en) Magnetic metal powder and magnetic recording medium using the same
JP4469994B2 (en) Iron nitride magnetic powder with excellent weather resistance
JP4182310B2 (en) Method for producing spindle-shaped alloy magnetic particle powder mainly composed of Fe and Co for magnetic recording
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JP2003247002A (en) Metal magnetic grain powder essentially consisting of iron, production method thereof and magnetic recording medium
JP4378763B2 (en) Method for producing compound particle powder containing iron as its main component
EP0371384B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
JP2001355001A (en) Spindlelike goethite particle powder, spindlelike hematite particle powder, spindlelike metallic magnetic particle powder essentially consisting of iron and their production method
JP5337286B2 (en) Metal magnetic powder
JPH11251122A (en) Precursor for manufacturing magnetic powder and ferromagnetic metal power obtained from the same
JPH06140222A (en) Magnetic metal powder and manufacture thereof
JP4669916B2 (en) Method for producing magnetic powder for magnetic recording

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees