JP2006303088A - Cleaning method of silicon substrate - Google Patents

Cleaning method of silicon substrate Download PDF

Info

Publication number
JP2006303088A
JP2006303088A JP2005121004A JP2005121004A JP2006303088A JP 2006303088 A JP2006303088 A JP 2006303088A JP 2005121004 A JP2005121004 A JP 2005121004A JP 2005121004 A JP2005121004 A JP 2005121004A JP 2006303088 A JP2006303088 A JP 2006303088A
Authority
JP
Japan
Prior art keywords
cleaning
silicon substrate
substrate
surface roughness
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005121004A
Other languages
Japanese (ja)
Inventor
Nobuyuki Morimoto
信之 森本
Hideki Nishihata
秀樹 西畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2005121004A priority Critical patent/JP2006303088A/en
Publication of JP2006303088A publication Critical patent/JP2006303088A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning method in which surface roughness can be recovered easily when it is worsened by cleaning in the fabrication process of an SOI substrate. <P>SOLUTION: Ozone cleaning (O<SB>3</SB>cleaning) is performed before substrates are stuck. The O<SB>3</SB>cleaning may be performed following to SC-1 cleaning or HF cleaning. Ozone concentration of ozone water is, preferably, set at 1 ppm or above. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、貼り合わせシリコン基板の製造方法に関し、特に材料となる基板を貼り合わせる前の洗浄方法に関するものである。   The present invention relates to a method for manufacturing a bonded silicon substrate, and more particularly to a cleaning method before bonding substrates as materials.

水素イオン注入基板を貼り合わせて形成された、いわゆるSOI( Silicon On Insulator )基板は、集積回路を形成した場合に高速、低消費電力、高温動作、耐放射線効果などの数々の優れた性能を発揮するため、次世代の超LSI用の半導体基板として注目を集めている。
従来からSOI基板の製造方法としては、第1のシリコン基板表面に熱酸化法等により酸化膜を形成した後、表面から水素イオンを注入することにより基板内部に微小気泡層(注入層)を形成する水素イオン注入工程と、水素イオン注入した基板を洗浄した後第2のシリコン基板表面に密着させる貼り合わせ工程と、貼り合わせた2枚の基板を前記微小気泡層を境にして剥離する剥離工程と、剥離した第2のシリコン基板の接着強度を向上させるアニール工程と、表面を平坦にする平坦化処理工程と、所定の厚さにする薄膜化処理工程を経て製造する方法が知られている(例えば、特許文献1参照。)。
The so-called SOI (Silicon On Insulator) substrate formed by bonding hydrogen ion implanted substrates exhibits numerous excellent performances such as high speed, low power consumption, high temperature operation, and radiation resistance when an integrated circuit is formed. Therefore, it has attracted attention as a semiconductor substrate for next-generation VLSI.
Conventionally, as a method for manufacturing an SOI substrate, after forming an oxide film on the surface of the first silicon substrate by a thermal oxidation method or the like, a microbubble layer (injection layer) is formed inside the substrate by implanting hydrogen ions from the surface. A hydrogen ion implantation step, a bonding step in which the hydrogen ion implanted substrate is washed and then brought into close contact with the surface of the second silicon substrate, and a peeling step in which the two bonded substrates are separated from each other with the microbubble layer as a boundary And an annealing process for improving the adhesive strength of the peeled second silicon substrate, a planarization process for flattening the surface, and a thinning process for obtaining a predetermined thickness are known. (For example, refer to Patent Document 1).

このイオン注入剥離法は、貼り合わせSOI基板の製造方法として極めて優れた方法であるが、これらのSOI基板を量産レベルで歩留まり良く生産するためには、貼り合わせ界面に発生するボイドと呼ばれる結合不良を低減させる必要がある。
特許文献1に記載された方法では、パーティクルを除去するために基板洗浄と水素イオン注入を数回に分割して実施する方法を提案している。洗浄方法としてはアンモニア、過酸化水素、純水、電解イオン水、NHOH/H/HOの混合液(SC−1)等による洗浄を提唱している。
This ion implantation delamination method is an extremely excellent method for manufacturing bonded SOI substrates. However, in order to produce these SOI substrates at a mass production level with a high yield, bonding defects called voids generated at the bonding interface are known. Need to be reduced.
The method described in Patent Document 1 proposes a method in which substrate cleaning and hydrogen ion implantation are divided into several times to remove particles. As a cleaning method, cleaning with ammonia, hydrogen peroxide, pure water, electrolytic ion water, a mixed solution of NH 4 OH / H 2 O 2 / H 2 O (SC-1) or the like is proposed.

また、パーティクルを除去してブリスター不良のない貼り合わせ基板を得る別の方法として、二枚の基板をNHOH/H/HOの混合液による洗浄(SC−1洗浄)をする工程と、該洗浄した基板を乾燥する工程と、該乾燥した基板を接合する工程と、該接合した基板の一方を薄膜化する工程を含み、前記SC−1洗浄する工程における洗浄液の温度を25℃以上60℃以下とする貼り合せ基板の製造方法も提案されている(例えば、特許文献2参照。)。この方法に依れば300mmを超える大直径の貼り合せ基板であっても、ブリスター不良やボイド不良が発生することを防止することができ、貼り合せ基板の製造歩留りを大幅に向上させることができるとされている。
国際公開第01−093334号パンフレット 特開2003−309101号公報
In addition, as another method for obtaining a bonded substrate free from blister defects by removing particles, cleaning the two substrates with a mixed solution of NH 4 OH / H 2 O 2 / H 2 O (SC-1 cleaning). A temperature of the cleaning liquid in the SC-1 cleaning step, including a step of drying the cleaned substrate, a step of bonding the dried substrate, and a step of thinning one of the bonded substrates. A method of manufacturing a bonded substrate having a temperature of 25 ° C. or more and 60 ° C. or less has also been proposed (see, for example, Patent Document 2). According to this method, it is possible to prevent the occurrence of blister defects and void defects even for a bonded substrate having a large diameter exceeding 300 mm, and the manufacturing yield of the bonded substrate can be greatly improved. It is said that.
International Publication No. 01-093334 Pamphlet JP 2003-309101 A

シリコン基板を過酸化水素や弗酸を含む水溶液で洗浄すると、基板表面の表面粗さが悪化して、その後貼り合わせを行い剥離する際に、イオン注入層を境界として剥離しない領域、すなわち貼り合わせ界面で剥がれてしまう領域(ボイド)が発生する。
従来、一旦表面粗さが悪化した場合には回復手段が無いので、温度管理や洗浄時間を厳しく管理して表面を粗らさないようにする必要があった。
本発明は上記の様な事情に鑑みなされたものであって、洗浄により表面粗さが悪化した場合でも、表面粗さを容易に回復させることができる洗浄方法を提供することを目的とする。
When a silicon substrate is washed with an aqueous solution containing hydrogen peroxide or hydrofluoric acid, the surface roughness of the substrate surface deteriorates, and when bonding is performed and then separated, the region where the ion implantation layer does not separate, that is, bonding is performed. A region (void) that peels off at the interface occurs.
Conventionally, since there is no recovery means once the surface roughness is deteriorated, it has been necessary to strictly control the temperature control and the cleaning time so as not to roughen the surface.
This invention is made | formed in view of the above situations, Comprising: It aims at providing the cleaning method which can recover surface roughness easily, even when surface roughness deteriorates by washing | cleaning.

上記課題を解決するため本発明のシリコン基板の洗浄方法は、貼り合わせSOI基板の製造方法において、基板の貼り合わせ前にオゾン水洗浄(O3洗浄)を行うことを特徴とする基板の洗浄方法を採用した。
本発明のシリコン基板の洗浄方法においては、SC−1洗浄またはHF洗浄に引き続きオゾン水洗浄しても良い。
また、オゾン水のオゾン濃度は1ppm以上とすることが好ましい。
In order to solve the above problems, a method for cleaning a silicon substrate according to the present invention is a method for cleaning a substrate, characterized in that in the method for manufacturing a bonded SOI substrate, ozone water cleaning (O3 cleaning) is performed before bonding the substrates. Adopted.
In the silicon substrate cleaning method of the present invention, ozone water cleaning may be performed subsequent to SC-1 cleaning or HF cleaning.
Moreover, it is preferable that the ozone concentration of ozone water shall be 1 ppm or more.

本発明に依れば、SC−1洗浄やHF洗浄によりパーティクルを完全に除去する工程で表面粗さが悪化しても、再び表面粗さを回復することができるので、貼り合わせ界面で剥がれるボイドを低減させることができ、製造歩留まりが向上して安価にSOI基板を提供することが可能となる。   According to the present invention, even if the surface roughness deteriorates in the step of completely removing particles by SC-1 cleaning or HF cleaning, the surface roughness can be recovered again, so that the void peels off at the bonding interface. Thus, the manufacturing yield can be improved and an SOI substrate can be provided at a low cost.

図1に本発明のシリコン基板の洗浄方法を使用したSOI基板の製造工程の概略を示す。このSOI基板の製造工程は、第1のシリコン基板表面に熱酸化法等により酸化膜を形成する酸化膜形成工程(a)、表面から水素イオンを注入することにより基板内部に微小気泡層(注入層)を形成する水素イオン注入工程(b)、水素イオン注入した基板を洗浄する洗浄工程(c)、第2のシリコン基板表面とを密着させる貼り合わせ工程(d)、貼り合わせた2枚の基板を前記微小気泡層を境にして剥離する剥離処理工程(e)、剥離した第2のシリコン基板表面の微小気泡層表面を平坦にする平坦化処理工程(f)、所定の厚さにする薄膜化処理工程(g)を経て製造する。   FIG. 1 shows an outline of a manufacturing process of an SOI substrate using the silicon substrate cleaning method of the present invention. This SOI substrate manufacturing process includes an oxide film forming step (a) in which an oxide film is formed on the surface of the first silicon substrate by a thermal oxidation method or the like, and a microbubble layer (injection) is injected into the substrate by injecting hydrogen ions from the surface. Layer)), a cleaning step (c) for cleaning the hydrogen ion-implanted substrate, a bonding step (d) for closely contacting the surface of the second silicon substrate, and two bonded sheets An exfoliation process step (e) for exfoliating the substrate with the microbubble layer as a boundary, a flattening process step (f) for flattening the microbubble layer surface of the exfoliated second silicon substrate surface, and a predetermined thickness. It manufactures through a thinning process step (g).

図2及び図3に、各工程における処理の概要を説明する。
先ず、図2(a)に示す様に、第1のシリコン基板(トップウェーハ)1の表面に熱酸化法、CVD等により酸化膜11を形成する。酸化膜の膜厚は100〜300nm程度とするのが好ましい。
第1のシリコン基板1として単結晶シリコン基板を用いれば、膜厚が極めて均一なSOI層を有するSOI基板を低コストで作製できるので、各種デバイスへ広範囲に適用することができる。また、単結晶シリコン基板であれば大口径化にも適している。
The outline of processing in each step will be described with reference to FIGS.
First, as shown in FIG. 2A, an oxide film 11 is formed on the surface of a first silicon substrate (top wafer) 1 by thermal oxidation, CVD, or the like. The thickness of the oxide film is preferably about 100 to 300 nm.
If a single crystal silicon substrate is used as the first silicon substrate 1, an SOI substrate having an SOI layer with a very uniform film thickness can be manufactured at low cost, so that it can be widely applied to various devices. A single crystal silicon substrate is also suitable for increasing the diameter.

次いで、図2(b)に示すように、酸化膜11の表面から2×1016/cm〜1×1017/cmの水素イオンを注入する。すると酸化膜11の下に活性シリコン層13を介して所望の深さに水素イオン注入層12が形成される。イオン注入の際のエネルギーによって決まる水素イオン注入層の深さが活性シリコン層の厚さを決めることになる。水素イオン注入層12は格子欠陥を多く含み、材質が脆くなっているので、後に続く剥離工程において剥離面Sとなる。 Next, as shown in FIG. 2B, hydrogen ions of 2 × 10 16 / cm 2 to 1 × 10 17 / cm 2 are implanted from the surface of the oxide film 11. Then, a hydrogen ion implanted layer 12 is formed at a desired depth under the oxide film 11 via the active silicon layer 13. The depth of the hydrogen ion implantation layer determined by the energy at the time of ion implantation determines the thickness of the active silicon layer. Since the hydrogen ion implantation layer 12 includes many lattice defects and is made of a brittle material, it becomes the separation surface S in the subsequent separation step.

次に、貼り合わせ工程に先立って水素イオン注入を終えた第1のシリコン基板と貼り合わせる第2のシリコン基板を洗浄する。洗浄方法については本発明の最も特徴とする部分なので、あとからあらためて詳説する。   Next, prior to the bonding step, the second silicon substrate to be bonded to the first silicon substrate that has been implanted with hydrogen ions is cleaned. Since the cleaning method is the most characteristic part of the present invention, it will be described in detail later.

次に、洗浄を終えた第1のシリコン基板1と第2のシリコン基板を重ね合わせて貼り合わせる。第2のシリコン基板(ベースウェーハ)2としては、同じく鏡面研磨した単結晶シリコン基板を使用することができる。
第2のシリコン基板として単結晶シリコン基板を用いれば、平坦度に優れた基板が得られ、しかも直径200mmや300mmあるいはそれ以上の大口径基板も得ることができる。
接合は図2(d)に示すように、室温下で第2のシリコン基板2の鏡面研磨した表面の上に、第1のシリコン基板1を天地反転させて酸化膜11面を下にして重ね合わせる。
Next, the first silicon substrate 1 and the second silicon substrate that have been cleaned are overlapped and bonded together. As the second silicon substrate (base wafer) 2, a single crystal silicon substrate that is similarly mirror-polished can be used.
If a single crystal silicon substrate is used as the second silicon substrate, a substrate having excellent flatness can be obtained, and a large-diameter substrate having a diameter of 200 mm, 300 mm or more can also be obtained.
As shown in FIG. 2 (d), the first silicon substrate 1 is turned upside down on the mirror-polished surface of the second silicon substrate 2 at room temperature and overlapped with the oxide film 11 face down. Match.

次いで、図3(e)に示す剥離工程において剥離面Sを境界として、剥がすことができるようになる。   Next, in the peeling step shown in FIG. 3E, the peeling surface S can be used as a boundary to peel off.

このようにして得られた表面に薄い水素イオン注入層12を有する第2のシリコン基板(ベースウェーハ)2の剥離面には、数十nm程度の凹凸が形成されている。このため必要に応じて機械研磨法や化学研磨法を使用して、表面を平滑化する(図3(f)参照。)。
最後に図3(g)に示すように、残った水素イオン注入層12と活性シリコン層13の一部を除去して、所望の厚さのSOI基板を得る。
On the peeled surface of the second silicon substrate (base wafer) 2 having the thin hydrogen ion implantation layer 12 on the surface thus obtained, irregularities of about several tens of nanometers are formed. Therefore, the surface is smoothed by using a mechanical polishing method or a chemical polishing method as necessary (see FIG. 3F).
Finally, as shown in FIG. 3G, the remaining hydrogen ion implantation layer 12 and part of the active silicon layer 13 are removed to obtain an SOI substrate having a desired thickness.

ここで、図1(c)の洗浄工程に話を戻す。本発明では通常行われているように、水素イオン注入した第1のシリコン基板を第2のシリコン基板と貼り合わせる前に洗浄する。このときオゾン洗浄を用いるのを最大の特徴としている。洗浄は貼り合わせるシリコン基板表面に付着したパーティクルを除去するために行うものである。
パーティクルを除去するためであっても、酸化膜を形成したイオン注入基板を例えば弗酸水溶液で必要以上に洗浄すると、表面粗さが悪化してその後に貼り合わせを行いさらに剥離する場合に、水素イオン注入層を境界として剥離できない領域、すなわち貼り合わせ接合面から剥がれる領域(ボイド)が発生する。
Here, the description returns to the cleaning step of FIG. As is usually done in the present invention, the first silicon substrate into which hydrogen ions have been implanted is cleaned before being bonded to the second silicon substrate. At this time, the greatest feature is to use ozone cleaning. Cleaning is performed to remove particles adhering to the surface of the silicon substrate to be bonded.
Even if it is for removing particles, if the ion-implanted substrate on which the oxide film is formed is washed more than necessary with, for example, a hydrofluoric acid aqueous solution, the surface roughness deteriorates, and then bonding and further peeling are performed. A region that cannot be separated from the ion-implanted layer as a boundary, that is, a region (void) that is separated from the bonded surface is generated.

このように表面粗さが悪化した場合でも、オゾン水洗浄(O3洗浄)を行うことにより表面粗さが回復して、その後に貼り合わせを行ってさらに剥離する場合にボイドの発生を防止して、水素イオン注入層を境界として綺麗に剥離でるようになる。
また、O3洗浄は表面の有機物を除去する効果もあるため、ボイドやブリスター不良を防止することができる(文献:特開2000−30992)
O3洗浄にはオゾンを溶解させた水溶液を使用するが、1ppm以上のオゾンが発生するオゾン(O)濃度が必要であり、O濃度が1ppm未満では長時間洗浄しても表面粗さを回復させることができない。1〜10ppmのO濃度では、表面粗さは回復するが洗浄に長時間を要する。従って10ppm以上の濃度とすることが好ましい。
また、O3洗浄の時間は特に限定させるものではなく、基板表面の粗さに依存する。すなわち、表面粗さが粗いと回復させるのに長時間要し、表面粗さがそれほど粗くない場合には、O3洗浄の時間は短くて良い。
Even when the surface roughness deteriorates as described above, the surface roughness is recovered by performing ozone water cleaning (O3 cleaning), and then voids are prevented in the case of further bonding and peeling. It can be peeled cleanly with the hydrogen ion implanted layer as a boundary.
Moreover, since O3 cleaning also has an effect of removing organic substances on the surface, voids and blister defects can be prevented (reference: Japanese Patent Laid-Open No. 2000-30992)
An aqueous solution in which ozone is dissolved is used for O3 cleaning, but an ozone (O 3 ) concentration that generates ozone of 1 ppm or more is necessary. If the O 3 concentration is less than 1 ppm, the surface roughness is reduced even after cleaning for a long time. It cannot be recovered. At an O 3 concentration of 1 to 10 ppm, the surface roughness is recovered, but cleaning requires a long time. Accordingly, the concentration is preferably 10 ppm or more.
Further, the O3 cleaning time is not particularly limited and depends on the roughness of the substrate surface. That is, it takes a long time to recover when the surface roughness is rough, and when the surface roughness is not so rough, the O3 cleaning time may be short.

表面粗さに関しては、AFM(原子間力顕微鏡)にて表面粗さを測定し、その表面粗さを基にO3洗浄の洗浄時間を決める。具体的にはO3洗浄後の仕上がり表面粗さが0.1nm(測定領域:10×10μm)以下となるようにO3洗浄の時間を決める必要がある。例えば、SC−1やHF洗浄により0.1〜0.2nm(測定領域:10×10μm)以上になった場合には、洗浄の時間は20分以上とし、さらに0.2〜0.3nm(測定領域:10×10μm)以上になった場合には、洗浄の時間は40分以上とする。このように表面粗さの値が高くなるにともなって、O3洗浄の時間を長くする必要がある。   Regarding the surface roughness, the surface roughness is measured with an AFM (atomic force microscope), and the cleaning time for O3 cleaning is determined based on the surface roughness. Specifically, it is necessary to determine the O3 cleaning time so that the finished surface roughness after O3 cleaning is 0.1 nm (measurement region: 10 × 10 μm) or less. For example, when the SC-1 or HF cleaning results in 0.1 to 0.2 nm (measurement region: 10 × 10 μm) or more, the cleaning time is set to 20 minutes or more, and further 0.2 to 0.3 nm ( When the measurement area is 10 × 10 μm) or more, the cleaning time is 40 minutes or more. Thus, as the value of the surface roughness increases, it is necessary to lengthen the O3 cleaning time.

表面粗さとO3洗浄の適正条件との関係を調べた。表1は表面粗さが0.1〜0.2nmのシリコン基板について、O3洗浄のO 濃度と洗浄時間を変えて洗浄し、表面粗さの改善を調査した。また、表2には表面粗さが0.2〜0.3nmのシリコン基板について同様の調査をした。結果を表1及び表2に示す。 The relationship between surface roughness and appropriate conditions for O3 cleaning was examined. Table 1 shows that a silicon substrate having a surface roughness of 0.1 to 0.2 nm was cleaned by changing the O 3 concentration of O 3 cleaning and the cleaning time, and the improvement of the surface roughness was investigated. In Table 2, the same investigation was conducted on a silicon substrate having a surface roughness of 0.2 to 0.3 nm. The results are shown in Tables 1 and 2.

Figure 2006303088
Figure 2006303088

Figure 2006303088
Figure 2006303088

表1,2で「<0.1に改善」と記載された条件で洗浄した基板を使用して貼り合わせた場合には、貼り合わせ界面で剥がれる領域は発生しなかった。また、「改善効果なし」と記載された条件で洗浄した基板を使用して貼り合わせた場合には、貼り合わせ界面で剥がれる領域が発生した。
表1,2の結果から、O3洗浄液のO 濃度は1%以上とする必要があることが判る。また、O3洗浄液のO 濃度が高くなるほど必要な洗浄時間は短くなり、さらに洗浄前の表面粗さが粗いほど必要な洗浄時間は長くなることが判る。
In the case where the substrates cleaned under the conditions described in Tables 1 and 2 as “improvement to <0.1” were used for bonding, no peeling area was generated at the bonding interface. In addition, when bonding was performed using a substrate cleaned under the condition described as “no improvement effect”, a region peeled off at the bonding interface occurred.
From the results of Tables 1 and 2, it can be seen that the O 3 concentration of the O 3 cleaning liquid needs to be 1% or more. It can also be seen that the higher the O 3 concentration of the O 3 cleaning solution, the shorter the required cleaning time, and the longer the surface roughness before cleaning, the longer the required cleaning time.

本発明においては、O3洗浄をSC−1(HO/H/NHOH系洗浄液、70℃、3分間浸漬)洗浄やHF(5〜50ppmのHFを添加した酸素飽和超純水、室温)洗浄等の酸系洗浄やアルカリ系洗浄と併用して用いることができる。
洗浄工程の一例を示せば、アルカリ系洗浄槽→純水リンス槽→酸系洗浄槽→O3洗浄槽→純水リンス槽の順序で洗浄する。酸系洗浄で表面が粗くなった後でO3洗浄をするのが効果的である。
In the present invention, O3 cleaning is SC-1 (H 2 O / H 2 O 2 / NH 4 OH-based cleaning solution, 70 ° C., 3 minutes immersion) cleaning or HF (oxygen saturation ultrapure with addition of 5 to 50 ppm of HF). Water, room temperature) can be used in combination with acid cleaning such as cleaning or alkaline cleaning.
If an example of a washing | cleaning process is shown, it will wash | clean in order of an alkaline type washing tank-> pure water rinse tank-> acid type washing tank-> O3 washing tank-> pure water rinse tank. It is effective to perform O3 cleaning after the surface becomes rough by acid cleaning.

(実施例)
厚さ150nmの酸化膜を形成した直径200mmのシリコン基板に、ドーズ量:1×1017/cm 、加速電圧:50keV、ビーム電流:20Aで水素イオン注入を行い、
基板貼り合わせ前の基板洗浄として以下の(a)〜(d)の洗浄を行った。
(a) SC−1洗浄;NHOH:1%/H:2.5%/HO洗浄液、60℃、 5分間浸漬、
(b) リンス ;超純水、5分間浸漬、
(c) HF洗浄 ;HF0.1%、5分間浸漬、
(d) O3洗浄 ;O 0.1%、20分間洗浄
SC−1洗浄及びHF洗浄後のシリコン基板の表面粗さは0.2nm(10×10μm)であったので、O3洗浄時間は20分間とした。
その後ベースとなる直径200mmのシリコン基板と貼り合わせ、剥離処理によりSOI基板とし、目視外観検査により貼り合わせ界面で剥がれるボイド領域の発生状況を検査した。その結果、ボイド領域の発生は認められなかった。
(Example)
A silicon substrate having a diameter of 200 mm on which an oxide film having a thickness of 150 nm is formed is implanted with hydrogen ions at a dose of 1 × 10 17 / cm 2 , an acceleration voltage of 50 keV, and a beam current of 20 A.
The following cleanings (a) to (d) were performed as substrate cleaning before substrate bonding.
(A) SC-1 cleaning; NH 4 OH: 1% / H 2 O 2 : 2.5% / H 2 O cleaning solution, 60 ° C., immersion for 5 minutes,
(B) Rinse: Ultrapure water, immersed for 5 minutes,
(C) HF cleaning; HF 0.1%, immersion for 5 minutes,
(D) O3 cleaning; O 3 0.1%, since the silicon surface roughness of the substrate after cleaning SC-1 cleaning and HF cleaning for 20 minutes was 0.2nm (10 × 10μm), O3 cleaning time 20 Minutes.
Thereafter, the substrate was bonded to a silicon substrate having a diameter of 200 mm, an SOI substrate was formed by a peeling process, and the occurrence of a void region peeled off at the bonding interface was inspected by visual appearance inspection. As a result, no void area was observed.

(比較例)
実施例と同様の水素イオン注入したシリコン基板について、貼り合わせ前の洗浄としてO3洗浄を省略し、以下の(a)〜(d’)の洗浄を行った。
(a) SC−1洗浄;NHOH:1%/H:2.5%/HO洗浄液、60℃、 5分間浸漬、
(b) リンス ;超純水、5分間浸漬、
(c) HF洗浄 ;HF0.1%、5分間浸漬、
(d’)リンス ;超純水、5分間浸漬、
その後ベースとなる直径200mmのシリコン基板と貼り合わせ、剥離処理によりSOI基板とし、目視外観検査により貼り合わせ界面で剥がれるボイド領域の発生状況を検査した。その結果、ボイド領域が数カ所発生しているのが認められた。
(Comparative example)
For the silicon substrate implanted with hydrogen ions similar to the example, O3 cleaning was omitted as cleaning before bonding, and the following cleanings (a) to (d ′) were performed.
(A) SC-1 cleaning; NH 4 OH: 1% / H 2 O 2 : 2.5% / H 2 O cleaning solution, 60 ° C., immersion for 5 minutes,
(B) Rinse: Ultrapure water, immersed for 5 minutes,
(C) HF cleaning; HF 0.1%, immersion for 5 minutes,
(D ′) rinse; ultrapure water, immersed for 5 minutes,
Thereafter, the substrate was bonded to a silicon substrate having a diameter of 200 mm, an SOI substrate was formed by a peeling process, and the occurrence of a void region peeled off at the bonding interface was inspected by visual appearance inspection. As a result, several void areas were observed.

SOI基板の製造工程の概略を示す図である。It is a figure which shows the outline of the manufacturing process of an SOI substrate. 図1の各工程における処理の概要を説明する図である。It is a figure explaining the outline | summary of the process in each process of FIG. 図2に続く各工程における処理の概要を説明する図である。It is a figure explaining the outline | summary of the process in each process following FIG.

符号の説明Explanation of symbols

1・・・・・・第1のシリコン基板、2・・・・・・第2のシリコン基板、11・・・・・・酸化膜、12・・・・・・水素イオン注入層、13・・・・・・活性シリコン層
1... 1st silicon substrate 2... 2nd silicon substrate 11... Oxide film, 12. ... Active silicon layer

Claims (3)

水素イオン注入による貼り合わせSOI基板の製造方法において、基板の貼り合わせ前にオゾン水洗浄(O3洗浄)を行うことを特徴とするシリコン基板の洗浄方法。   In the method for manufacturing a bonded SOI substrate by hydrogen ion implantation, a method for cleaning a silicon substrate, wherein ozone water cleaning (O3 cleaning) is performed before bonding the substrates. SC−1洗浄またはHF洗浄に引き続きオゾン水洗浄することを特徴とする請求項1に記載のシリコン基板の洗浄方法。   2. The method for cleaning a silicon substrate according to claim 1, wherein ozone water cleaning is performed subsequent to SC-1 cleaning or HF cleaning. 前記オゾン水のオゾン濃度が1ppm以上であることを特徴とする請求項1または請求項2に記載のシリコン基板の洗浄方法。
The method for cleaning a silicon substrate according to claim 1 or 2, wherein an ozone concentration of the ozone water is 1 ppm or more.
JP2005121004A 2005-04-19 2005-04-19 Cleaning method of silicon substrate Withdrawn JP2006303088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121004A JP2006303088A (en) 2005-04-19 2005-04-19 Cleaning method of silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121004A JP2006303088A (en) 2005-04-19 2005-04-19 Cleaning method of silicon substrate

Publications (1)

Publication Number Publication Date
JP2006303088A true JP2006303088A (en) 2006-11-02

Family

ID=37471043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121004A Withdrawn JP2006303088A (en) 2005-04-19 2005-04-19 Cleaning method of silicon substrate

Country Status (1)

Country Link
JP (1) JP2006303088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054451A (en) * 2010-09-02 2012-03-15 Shin Etsu Chem Co Ltd Method of manufacturing bonded substrate and semiconductor substrate cleaning liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054451A (en) * 2010-09-02 2012-03-15 Shin Etsu Chem Co Ltd Method of manufacturing bonded substrate and semiconductor substrate cleaning liquid

Similar Documents

Publication Publication Date Title
JP4934966B2 (en) Manufacturing method of SOI substrate
JP4509488B2 (en) Manufacturing method of bonded substrate
JP5315596B2 (en) Manufacturing method of bonded SOI wafer
JP5572347B2 (en) Method for manufacturing SOI substrate
WO2001048825A1 (en) Method for manufacturing bonded wafer
JP5622988B2 (en) Method for manufacturing semiconductor substrate
JP2011066392A (en) Method for reprocessing semiconductor substrate, and method for manufacturing soi substrate
JP2011103409A (en) Wafer laminating method
KR100827907B1 (en) Process for cleaning silicon substrate
JP5728180B2 (en) Semiconductor substrate recycling method
JP5520744B2 (en) Semiconductor substrate recycling method
JP2010080834A (en) Method of manufacturing soi substrate
JP6760245B2 (en) Method for manufacturing an SOI wafer having a thin film SOI layer
JP2012182201A (en) Method of manufacturing semiconductor wafer
JP2006303088A (en) Cleaning method of silicon substrate
JP5433927B2 (en) Manufacturing method of bonded wafer
JP6200273B2 (en) Manufacturing method of bonded wafer
JP5364345B2 (en) Method for manufacturing SOI substrate
JP2004031430A (en) Soi wafer and its manufacture
JP5634210B2 (en) Method for manufacturing semiconductor substrate
JP5953340B2 (en) Manufacturing method of bonded substrate
JP2012054451A (en) Method of manufacturing bonded substrate and semiconductor substrate cleaning liquid

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701