JP2006303024A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2006303024A
JP2006303024A JP2005119944A JP2005119944A JP2006303024A JP 2006303024 A JP2006303024 A JP 2006303024A JP 2005119944 A JP2005119944 A JP 2005119944A JP 2005119944 A JP2005119944 A JP 2005119944A JP 2006303024 A JP2006303024 A JP 2006303024A
Authority
JP
Japan
Prior art keywords
insulating film
element isolation
semiconductor substrate
width
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005119944A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Shinada
一義 品田
Tomomi Ushijima
知巳 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP2005119944A priority Critical patent/JP2006303024A/en
Publication of JP2006303024A publication Critical patent/JP2006303024A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device wherein the yield and reliability of elements in a memory can be improved and the devices of a logic can be made micro, and to provide its manufacturing method. <P>SOLUTION: The semiconductor device includes a semiconductor substrate 11 having a memory 1 and a logic 2 arranged around the memory part 1; a first device isolating insulating film 23 which is buried in the memory 1 and of which width Lt<SB>1</SB>of the upper surface is larger than that Lb<SB>1</SB>of the lower surface; a second device isolating insulating film 22 which is buried in the logic 2 and has a side wall nearly vertical to the main surface of a semiconductor substrate 11, and of which width L2 is smaller than the width Lt<SB>1</SB>of the upper surface of the first device isolating insulating film 23; a tunnel insulating film 25a which is pinched by the first device isolating insulating film 23 and is arranged on the semiconductor substrate 11; a floating gate electrode 27a on the tunnel insulating film 25a; a first control gate electrode 30a which is arranged on the floating gate electrode 27a while being electrically insulated therefrom; a gate insulating film 29b which is pinched by the second device isolating insulating film 22, and is arranged on the semiconductor substrate 11; and a second control gate electrode 30b on the gate insulating film 29b. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体装置に係わり、特に、シャロートレンチアイソレーション(STI)技術により素子分離をした半導体装置及び半導体装置の製造方法に関する。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device in which element isolation is performed by a shallow trench isolation (STI) technique and a method for manufacturing the semiconductor device.

システムの大規模化に伴い、CMOS技術の微細化が進んでいる。デザインルール0.25μm世代以降の半導体装置では、ロジック部のゲート長だけでなく、素子分離領域幅の縮小化が必要となる。このため、プロセス変換差の大きいシリコンの局所酸化(LOCOS)の替わりに、シャロートレンチアイソレーション(STI)による素子分離形成技術が主要技術として用いられている(例えば、特許文献1参照)。   As the system scales up, CMOS technology is becoming finer. In semiconductor devices of the design rule 0.25 μm generation and beyond, it is necessary to reduce not only the gate length of the logic part but also the width of the element isolation region. For this reason, element isolation formation technology by shallow trench isolation (STI) is used as a main technology instead of local oxidation (LOCOS) of silicon having a large process conversion difference (see, for example, Patent Document 1).

STIは、反応性イオンエッチング(RIE)技術により半導体基板をエッチングして溝を形成し、その溝に絶縁膜を埋め込んで素子分離領域を形成する。STIは、プロセス変換差が0に近く、理想的な素子分離形状が得られる点で、LOCOSによる分離に比べて微細化に有利とされている。しかしながら、例えば、不揮発性メモリを搭載する領域においては、厚さ約8nmもの薄いトンネル酸化膜をSTIの厚い埋込酸化膜に接して形成する。このため、埋込酸化膜と接する領域が酸素供給不足になり、酸素供給不足領域におけるトンネル酸化膜の薄膜化が生じる。薄膜化が生じると、10〜15MV/cmもの高電界を印加した場合に、LOCOSによる分離の場合に比べて耐久性が著しく劣化する。また、トンネル酸化膜の薄膜化によりストレス誘起リーク電流が発生し、信頼性が低下する問題もある。   In STI, a semiconductor substrate is etched by reactive ion etching (RIE) technology to form a groove, and an insulating film is embedded in the groove to form an element isolation region. STI is advantageous for miniaturization compared to LOCOS isolation in that the process conversion difference is close to 0 and an ideal element isolation shape can be obtained. However, for example, in a region where a non-volatile memory is mounted, a thin tunnel oxide film having a thickness of about 8 nm is formed in contact with a thick STI buried oxide film. For this reason, the region in contact with the buried oxide film becomes insufficient in oxygen supply, and the tunnel oxide film becomes thinner in the oxygen supply insufficient region. When thinning occurs, durability is significantly deteriorated when a high electric field of 10 to 15 MV / cm is applied as compared with the case of separation by LOCOS. Further, there is a problem that stress-induced leakage current is generated due to the thinning of the tunnel oxide film and reliability is lowered.

さらに、LOCOSの替わりにSTIによる素子分離形成技術を用いた場合は、埋込酸化膜の上面又は下面のコーナー近傍に応力が発生し、結晶欠陥が発生する場合がある。結晶欠陥が発生すると、不揮発性メモリの消去/書き込み動作時に10〜20Vの高電圧(Vpp)を基板に印加する際にリークが生じるため、消去/書き込み動作が十分にできず、歩留まりが低下する。   Further, when the element isolation formation technology by STI is used instead of LOCOS, stress may be generated near the corner of the upper surface or the lower surface of the buried oxide film, and crystal defects may occur. When a crystal defect occurs, a leak occurs when a high voltage (Vpp) of 10 to 20 V is applied to the substrate during the erase / write operation of the nonvolatile memory, so that the erase / write operation cannot be performed sufficiently and the yield is reduced. .

特開平2004−56072号公報Japanese Patent Laid-Open No. 2004-56072

本発明は、メモリ部の素子の歩留まり及び信頼性を向上でき、ロジック部の素子の微細化が可能な半導体装置及び半導体装置の製造方法を提供する。   The present invention provides a semiconductor device and a method for manufacturing the semiconductor device that can improve the yield and reliability of the elements in the memory portion and can miniaturize the elements in the logic portion.

本発明の一態様は、(イ)メモリ部とメモリ部の周囲に配置されたロジック部を有する半導体基板と、(ロ)メモリ部に埋め込まれ、上面の幅が下面の幅より大きい第1素子分離絶縁膜と、(ハ)ロジック部に埋め込まれ、半導体基板の主面に略垂直な側壁を有し、幅が第1素子分離絶縁膜の上面の幅より小さい第2素子分離絶縁膜と、(ニ)第1素子分離絶縁膜により挟まれた半導体基板上に配置されたトンネル絶縁膜と、(ホ)トンネル絶縁膜上の浮遊ゲート電極と、(ヘ)浮遊ゲート電極上に浮遊ゲート電極と絶縁して配置された第1制御ゲート電極と、(ト)第2素子分離絶縁膜により挟まれた半導体基板上のゲート絶縁膜と、(チ)ゲート絶縁膜上の第2制御ゲート電極とを備える半導体装置であることを要旨とする。   One aspect of the present invention is: (a) a semiconductor substrate having a memory portion and a logic portion arranged around the memory portion; and (b) a first element embedded in the memory portion and having a top surface width greater than a bottom surface width. An isolation insulating film; and (c) a second element isolation insulating film embedded in the logic portion, having a side wall substantially perpendicular to the main surface of the semiconductor substrate, and having a width smaller than the width of the upper surface of the first element isolation insulating film; (D) a tunnel insulating film disposed on a semiconductor substrate sandwiched between first element isolation insulating films, (e) a floating gate electrode on the tunnel insulating film, and (f) a floating gate electrode on the floating gate electrode. A first control gate electrode disposed in an insulating manner; (g) a gate insulating film on a semiconductor substrate sandwiched between second element isolation insulating films; and (h) a second control gate electrode on the gate insulating film. The gist is that the semiconductor device is provided.

本発明の更に他の態様は、(イ)半導体基板上のメモリ部に、開口部の幅が底面の幅より大きい第1の溝を形成し、第1の溝に第1素子分離絶縁膜を埋め込むステップと、(ロ)メモリ部の周辺に配置されたロジック部に、開口部の幅が第1の溝の開口部の幅より小さく、略垂直な側壁を有した第2の溝を形成し、第2の溝に第2素子分離絶縁膜をそれぞれ埋め込むステップと、(ハ)第1素子分離絶縁膜に挟まれた半導体基板上にトンネル絶縁膜を形成するステップと、(ニ)トンネル絶縁膜上に浮遊ゲート電極を形成するステップと、(ホ)浮遊ゲート電極上にゲート間絶縁膜を形成するステップと、(ヘ)ゲート間絶縁膜上に第1制御ゲート電極を形成するステップと、(ト)第2素子分離絶縁膜に挟まれた半導体基板上にゲート絶縁膜を形成するステップと、(チ)ゲート絶縁膜上に第2制御ゲート電極を形成するステップとを含む半導体装置の製造方法であることを要旨とする。   According to still another aspect of the present invention, (a) a first groove having a width larger than that of a bottom surface is formed in a memory portion on a semiconductor substrate, and a first element isolation insulating film is formed in the first groove. And (b) forming a second groove having a width of the opening smaller than the width of the opening of the first groove and having a substantially vertical side wall in the logic portion arranged around the memory portion. Burying a second element isolation insulating film in each of the second trenches; (c) forming a tunnel insulating film on the semiconductor substrate sandwiched between the first element isolation insulating films; and (d) a tunnel insulating film. Forming a floating gate electrode thereon; (e) forming an intergate insulating film on the floating gate electrode; (f) forming a first control gate electrode on the intergate insulating film; G) Gate insulation on the semiconductor substrate sandwiched between the second element isolation insulating films Forming a, and summarized in that a method of manufacturing a semiconductor device and forming a second control gate electrode on the (h) a gate insulating film.

本発明によれば、メモリ部の素子の歩留まり及び信頼性を向上でき、ロジック部の素子の微細化が可能な半導体装置及び半導体装置の製造方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the yield and reliability of the element of a memory part can be improved, and the manufacturing method of a semiconductor device which can miniaturize the element of a logic part, and a semiconductor device can be provided.

次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、各ブロックの寸法等は現実のものとは異なることに留意すべきである。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。この発明の技術的思想は、特許請求の範囲において種々の変更を加えることができる。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and the dimensions and the like of each block are different from the actual ones. It goes without saying that the drawings include parts having different dimensional relationships and ratios. The following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is to change the structure and arrangement of components to the following. Not specific. The technical idea of the present invention can be variously modified within the scope of the claims.

(第1の実施の形態)
第1の実施の形態に係る半導体装置は、図1示すように、メモリ部1とメモリ部1の周囲に配置されたロジック部2を有する半導体基板11を備える。
(First embodiment)
As shown in FIG. 1, the semiconductor device according to the first embodiment includes a semiconductor substrate 11 having a memory unit 1 and a logic unit 2 arranged around the memory unit 1.

メモリ部1は、図2に示すように、断面図上複数の領域として埋め込まれた第1素子分離絶縁膜23、複数の第1素子分離絶縁膜23に挟まれた半導体基板11上に配置されたトンネル絶縁膜25a、トンネル絶縁膜25a上の浮遊ゲート電極27a、浮遊ゲート電極27a上のゲート間絶縁膜28a、及びゲート間絶縁膜28a上に配置された第1制御ゲート電極30aを有する。第1制御ゲート電極30aは、ゲート間絶縁膜28aにより浮遊ゲート電極27aから絶縁されている。   As shown in FIG. 2, the memory unit 1 is disposed on a first element isolation insulating film 23 embedded as a plurality of regions in a cross-sectional view, and a semiconductor substrate 11 sandwiched between the plurality of first element isolation insulating films 23. A tunnel insulating film 25a, a floating gate electrode 27a on the tunnel insulating film 25a, an inter-gate insulating film 28a on the floating gate electrode 27a, and a first control gate electrode 30a disposed on the inter-gate insulating film 28a. The first control gate electrode 30a is insulated from the floating gate electrode 27a by the intergate insulating film 28a.

トンネル絶縁膜25aの直下の半導体基板11の表面領域の周囲には、ソース領域31及びドレイン領域32がそれぞれ形成されている。トンネル絶縁膜25a、浮遊ゲート電極27a、ゲート間絶縁膜28a、第1制御ゲート電極30a、ソース領域31、及びドレイン領域32は、図1に示すように、メモリ部1のメモリセル40aを構成する。即ち、「断面図上複数の領域として埋め込まれ」とは、図2に示すようなメモリセル40aのチャネル領域(或いはゲート長方向)に沿った断面図上に複数の領域として埋め込まれているように見かけ上見える場合を許容するものであり、現実には、図2の紙面の手前又は紙面の奥で連続し、一体の領域でもよい。   A source region 31 and a drain region 32 are formed around the surface region of the semiconductor substrate 11 immediately below the tunnel insulating film 25a. The tunnel insulating film 25a, the floating gate electrode 27a, the inter-gate insulating film 28a, the first control gate electrode 30a, the source region 31, and the drain region 32 constitute a memory cell 40a of the memory unit 1 as shown in FIG. . That is, “embedded as a plurality of regions on the cross-sectional view” means that it is embedded as a plurality of regions on the cross-sectional view along the channel region (or gate length direction) of the memory cell 40a as shown in FIG. In reality, it may be an integrated region that is continuous in front of or behind the paper surface of FIG.

図3に示すように、第1素子分離絶縁膜23は、半導体基板11の主面と同一レベルに位置する上面の幅Lt1が下面の幅Lb1より大きい。ここで、上面及び下面の幅Lt1,Lb1は、図3の断面図上、半導体基板11の主面に対して並行な方向に定義される。また、トンネル絶縁膜25aに接する第1素子分離絶縁膜23の上面のコーナー部における、第1素子分離絶縁膜23の上面と側壁とのなす角度αは、90度より小さくなっている。第1素子分離絶縁膜23のコーナー部の角度αは、80度以下が好ましく、より好ましくは70〜80度程度である。 As shown in FIG. 3, in the first element isolation insulating film 23, the upper surface width Lt 1 located at the same level as the main surface of the semiconductor substrate 11 is larger than the lower surface width Lb 1 . Here, the widths Lt 1 and Lb 1 of the upper surface and the lower surface are defined in a direction parallel to the main surface of the semiconductor substrate 11 in the cross-sectional view of FIG. In addition, the angle α between the upper surface of the first element isolation insulating film 23 and the side wall at the corner portion of the upper surface of the first element isolation insulating film 23 in contact with the tunnel insulating film 25a is smaller than 90 degrees. The angle α of the corner portion of the first element isolation insulating film 23 is preferably 80 degrees or less, more preferably about 70 to 80 degrees.

第1素子分離絶縁膜23の下の半導体基板11内には、チャネルストップ領域26が配置されている。チャネルストップ領域26は、1×1017cm-3〜1×1018cm-3程度のアクセプタをドープした不純物拡散層である。図1に示すように、チャネルストップ領域26は、メモリセル40aの高電圧の印加方向に対して垂直に埋設されている。図1に示すチャネルストップ領域26の配置は、バイト型EEPROMをメモリ部1として採用する場合に好適である。メモリ部1がフラッシュEEPROMの場合は、チャネルストップ領域26は、特に配置しなくてもよい。 A channel stop region 26 is disposed in the semiconductor substrate 11 below the first element isolation insulating film 23. The channel stop region 26 is an impurity diffusion layer doped with an acceptor of about 1 × 10 17 cm −3 to 1 × 10 18 cm −3 . As shown in FIG. 1, the channel stop region 26 is buried perpendicular to the direction in which the high voltage is applied to the memory cell 40a. The arrangement of the channel stop region 26 shown in FIG. 1 is suitable when a byte EEPROM is employed as the memory unit 1. In the case where the memory unit 1 is a flash EEPROM, the channel stop region 26 need not be particularly arranged.

ロジック部2は、図2の断面図上、複数の領域として埋め込まれた第2素子分離絶縁膜22、断面図上複数の第2素子分離絶縁膜22により挟まれた半導体基板11上に配置されたゲート絶縁膜29b、及びゲート絶縁膜29b上の第2制御ゲート電極30bを有する。ゲート絶縁膜29bの直下の半導体基板11の表面領域の周囲には、ソース領域33及びドレイン領域34が形成されている。   The logic section 2 is disposed on the semiconductor substrate 11 sandwiched between the second element isolation insulating film 22 embedded as a plurality of regions on the cross-sectional view of FIG. And a second control gate electrode 30b on the gate insulating film 29b. A source region 33 and a drain region 34 are formed around the surface region of the semiconductor substrate 11 immediately below the gate insulating film 29b.

ゲート絶縁膜29b、第2制御ゲート電極30b、ソース領域33、及びドレイン領域34は、図1に示すように、ロジックセル50aを構成する。即ち、「断面図上複数の領域として埋め込まれた第2素子分離絶縁膜22」とは、図2に示すように、ロジックセル50aを構成するトランジスタのチャネル方向(ゲート長方向)に沿った断面図上で、見かけ上複数の領域として埋め込まれたように見える場合を許容する意味であり、現実には図1に示すように、ロジックセル50aを構成するトランジスタの周囲で連続した一体の領域でもよい。   The gate insulating film 29b, the second control gate electrode 30b, the source region 33, and the drain region 34 constitute a logic cell 50a as shown in FIG. That is, the “second element isolation insulating film 22 embedded as a plurality of regions on the cross-sectional view” means a cross-section along the channel direction (gate length direction) of the transistors constituting the logic cell 50a as shown in FIG. In the figure, it is meant to allow a case where it appears to be embedded as a plurality of regions. In reality, as shown in FIG. 1, even in an integrated region continuous around the transistors constituting the logic cell 50a. Good.

図2に示すように、第2素子分離絶縁膜22は、半導体基板11の主面に略垂直な側壁を有する。ここで、「略垂直な側壁」とは、ソース領域33及びドレイン領域34にそれぞれ接する第2素子分離絶縁膜22の上面のコーナー部における、第2素子分離絶縁膜22の上面と側壁とのなす角度βが80〜90度であることを指す。略垂直な側壁であるため、半導体基板11の主面と同一レベルに位置する第2素子分離絶縁膜22の上面の幅Lt2は、下面の幅Lb2とほぼ同一の大きさである。このため、第2素子分離絶縁膜22は、共通の幅L2=Lt2=Lb2で定義される。 As shown in FIG. 2, the second element isolation insulating film 22 has a side wall substantially perpendicular to the main surface of the semiconductor substrate 11. Here, the “substantially vertical side wall” is defined by the upper surface and the side wall of the second element isolation insulating film 22 at the corner portion of the upper surface of the second element isolation insulating film 22 in contact with the source region 33 and the drain region 34, respectively. It means that the angle β is 80 to 90 degrees. Since the side wall is substantially vertical, the width Lt 2 of the upper surface of the second element isolation insulating film 22 located at the same level as the main surface of the semiconductor substrate 11 is substantially the same as the width Lb 2 of the lower surface. For this reason, the second element isolation insulating film 22 is defined by a common width L2 = Lt 2 = Lb 2 .

ここで、第2素子分離絶縁膜22の幅L2は、第1素子分離絶縁膜23の上面の幅Lt1より小さい。即ち、幅L2は、図2の断面図上の半導体基板11の主面に対して並行な方向に定義される。なお、第2素子分離絶縁膜22の幅Lt2及びLb2は、図3の断面上の半導体基板11の主面に対して並行な方向に定義しても、一定の目的を達成可能である。 Here, the width L 2 of the second element isolation insulating film 22 is smaller than the width Lt 1 of the upper surface of the first element isolation insulating film 23. That is, the width L2 is defined in a direction parallel to the main surface of the semiconductor substrate 11 on the cross-sectional view of FIG. Even if the widths Lt 2 and Lb 2 of the second element isolation insulating film 22 are defined in a direction parallel to the main surface of the semiconductor substrate 11 on the cross section of FIG. 3, a certain purpose can be achieved. .

図2及び図3に示す半導体装置によれば、メモリ部1の第1素子分離絶縁膜23の上面の幅Lt1が、底面の幅Lb1に比べて大きい。第1素子分離絶縁膜23の側壁は、半導体基板11の主面に対して90度以下に傾斜して形成されるため、一般的に用いられるSTIの埋込絶縁膜のように、半導体基板11の主面に対して垂直な側壁が形成される場合に比べて、第1素子分離絶縁膜23のコーナー部の結晶欠陥が生じにくくなる。この結果、メモリ部1の消去/書き込み動作時に10〜20Vの高電圧を印加しても、結晶欠陥の存在による高電圧によるリーク電流を防止でき、歩留まりを向上できる。 According to the semiconductor device shown in FIGS. 2 and 3, the width Lt 1 of the upper surface of the first element isolation insulating film 23 of the memory unit 1 is larger than the width Lb 1 of the bottom surface. The side walls of the first element isolation insulating film 23 are formed so as to be inclined at 90 degrees or less with respect to the main surface of the semiconductor substrate 11, so that the semiconductor substrate 11 is like a buried insulating film of STI generally used. Compared with the case where the side wall perpendicular to the main surface is formed, crystal defects at the corners of the first element isolation insulating film 23 are less likely to occur. As a result, even when a high voltage of 10 to 20 V is applied during the erase / write operation of the memory unit 1, a leakage current due to the high voltage due to the presence of crystal defects can be prevented, and the yield can be improved.

一方、ロジック部2のロジックセル50aは、メモリセル40aに比べて低電圧が印加されるため、第2制御ゲート電極30bを絶縁するゲート絶縁膜29bの厚さがトンネル絶縁膜25aに比べて薄く形成されている。よって、トンネル絶縁膜25a形成時の酸素供給不足による薄膜化現象は生じにくい。このため、図2及び図3に示す半導体装置においては、第2素子分離絶縁膜22の上面の幅Lt2を第1素子分離絶縁膜23の上面の幅Lt1より狭くし、主面に略垂直の側壁を有して埋め込むことにより、ロジックセル50aの微細化が実現できる。この結果、メモリ部1のメモリセル40aの歩留まり及び信頼性を高くすると共に、ロジック部2のロジックセル50aの構造を微細化した半導体装置が提供できる。 On the other hand, since a low voltage is applied to the logic cell 50a of the logic unit 2 compared to the memory cell 40a, the gate insulating film 29b that insulates the second control gate electrode 30b is thinner than the tunnel insulating film 25a. Is formed. Therefore, a thinning phenomenon due to insufficient oxygen supply during the formation of the tunnel insulating film 25a is unlikely to occur. For this reason, in the semiconductor device shown in FIGS. 2 and 3, the width Lt 2 of the upper surface of the second element isolation insulating film 22 is made smaller than the width Lt 1 of the upper surface of the first element isolation insulating film 23, and is approximately on the main surface. By embedding with a vertical side wall, the logic cell 50a can be miniaturized. As a result, it is possible to provide a semiconductor device in which the yield and reliability of the memory cell 40a in the memory unit 1 are increased and the structure of the logic cell 50a in the logic unit 2 is miniaturized.

図4〜図17を用いて、第1の実施の形態に係る半導体装置の製造方法を説明する。なお、以下に述べる半導体装置の製造方法は一例であり、この変形例を含めて、これ以外の種々の組立方法により実現可能であることは勿論である。なお、図4〜図12のメモリ部1は、図1のB−B方向からみた断面を示す。図13〜図17のメモリ部1は、図1のA−A方向からみた断面を示す。図4〜図17のロジック部2は、図1のA−A方向からみた断面を示す。   A method for manufacturing the semiconductor device according to the first embodiment will be described with reference to FIGS. The semiconductor device manufacturing method described below is merely an example, and it is needless to say that the present invention can be realized by various other assembly methods including this modification. Note that the memory unit 1 in FIGS. 4 to 12 shows a cross section as viewed from the BB direction in FIG. 1. The memory unit 1 in FIGS. 13 to 17 shows a cross section viewed from the direction AA in FIG. The logic part 2 of FIGS. 4-17 shows the cross section seen from the AA direction of FIG.

(a)半導体基板11の表面に、約5nmの第1酸化膜12を堆積させる。第1酸化膜12の表面には、約100nmの窒化膜13を堆積させる。窒化膜13の表面には、第1酸化膜12より十分に厚い膜、例えば約150nmの第2酸化膜14を堆積させる。次に、第2酸化膜14の表面にレジスト膜15を塗布し、フォトリソグラフィ技術によりレジスト膜15をパターニングし、図4に示すように、第2酸化膜14を一部露出させる。   (A) A first oxide film 12 of about 5 nm is deposited on the surface of the semiconductor substrate 11. A nitride film 13 of about 100 nm is deposited on the surface of the first oxide film 12. On the surface of the nitride film 13, a film sufficiently thicker than the first oxide film 12, for example, a second oxide film 14 of about 150 nm is deposited. Next, a resist film 15 is applied to the surface of the second oxide film 14, and the resist film 15 is patterned by a photolithography technique to partially expose the second oxide film 14 as shown in FIG.

(b)図5に示すように、レジスト膜15から一部露出した第2酸化膜14をRIE等の異方性エッチングにより除去する。その後、残存するレジスト膜15を剥離する。パターニングされた第2酸化膜14をマスクとして、図6に示すように、窒化膜13及び第1酸化膜12の一部をRIEにより選択的に除去する。図7に示すように、メモリ部1上にレジスト膜16を選択的に被覆し、ロジック部2の半導体基板11の一部をエッチングし、溝(第2の溝)17を形成する。このとき、第2の溝17の側壁が略垂直となるように、即ち、半導体基板11の主面からみた側壁の角度βが90度又は80〜90度となるように、RIE等により第2の溝17を形成する。   (B) As shown in FIG. 5, the second oxide film 14 partially exposed from the resist film 15 is removed by anisotropic etching such as RIE. Thereafter, the remaining resist film 15 is peeled off. Using the patterned second oxide film 14 as a mask, as shown in FIG. 6, the nitride film 13 and a part of the first oxide film 12 are selectively removed by RIE. As shown in FIG. 7, a resist film 16 is selectively coated on the memory portion 1, and a part of the semiconductor substrate 11 in the logic portion 2 is etched to form a groove (second groove) 17. At this time, the second side is formed by RIE or the like so that the side wall of the second groove 17 is substantially vertical, that is, the side wall angle β viewed from the main surface of the semiconductor substrate 11 is 90 degrees or 80 to 90 degrees. The groove 17 is formed.

(c)図8に示すように、ロジック部2上にレジスト膜18を塗布し、メモリ部1の半導体基板11の一部をエッチングし、溝(第1の溝)20を形成する。エッチングは、エッチングガスの流量を減らす、又はガスを排出させる時間を減らすこと等により、第1の溝20の側壁に反応生成物を徐々に堆積させながら、幅Lt1が幅Lb1に比べて広くなるように、RIE等により形成する。その後、第1の溝20の側壁に残存する反応生成物を除去する。ここで、図8の断面上、半導体基板11の主面側からみた第1の溝20の側壁の角度αは、80度以下、若しくは70〜80度程度が好ましい。さらに、第1の溝20の開口部の幅Lt1は、ロジック部2の第2の溝17の開口部の幅Lt2に比べて広く形成されるのが好ましい。例えば、第1の溝20の開口部の幅Lt1は0.7〜0.8μm程度、第2の溝17の開口部の幅L2は0.2〜0.4μm程度に形成できる。なお、図7及び図8に示す例では、第2の溝17を先に形成する例を示しているが、第2の溝17の形成前に、第1の溝20を先に形成してもよいことは勿論である。 (C) As shown in FIG. 8, a resist film 18 is applied on the logic part 2, and a part of the semiconductor substrate 11 of the memory part 1 is etched to form a groove (first groove) 20. In the etching, the reaction product is gradually deposited on the side wall of the first groove 20 by reducing the flow rate of the etching gas or reducing the time for discharging the gas, and the width Lt 1 is larger than the width Lb 1. It is formed by RIE or the like so as to widen. Thereafter, the reaction product remaining on the side wall of the first groove 20 is removed. Here, on the cross section of FIG. 8, the angle α of the side wall of the first groove 20 viewed from the main surface side of the semiconductor substrate 11 is preferably 80 degrees or less, or about 70 to 80 degrees. Further, the width Lt 1 of the opening of the first groove 20 is preferably formed wider than the width Lt 2 of the opening of the second groove 17 of the logic part 2. For example, the width Lt 1 of the opening of the first groove 20 can be about 0.7 to 0.8 μm, and the width L2 of the opening of the second groove 17 can be about 0.2 to 0.4 μm. 7 and 8 show an example in which the second groove 17 is formed first. However, before the second groove 17 is formed, the first groove 20 is formed first. Of course, it is also good.

(d)図9に示すように、半導体基板11の表面全面に約550nmの第3酸化膜21を堆積する。窒化膜13をストッパ層として、化学機械研磨(CMP)法等により窒化膜13の表面が露出するまで平坦化する。図10に示すように、メモリ部1の第1の溝20に第1素子分離絶縁膜23を、ロジック部2の第2の溝17に第2素子分離絶縁膜22をそれぞれ埋め込む。そして、窒化膜13及び第1素子分離絶縁膜23及び第2素子分離絶縁膜22の表面にレジスト膜24を塗布する。フォトリソグラフィ技術により、図11に示すように、メモリ部1の第1素子分離絶縁膜23の中央部にマスク合わせをし、レジスト膜24の一部に開口部を設ける。開口部から例えばボロン(B)等のp型不純物イオンを、半導体基板11内部に選択的に注入する。このようにして、第1素子分離絶縁膜23の下の半導体基板11内においてメモリセル40aの高電圧の印加方向に方向に延伸するチャネルストップ領域26を形成する。その後、レジスト膜24を除去する。 (D) As shown in FIG. 9, a third oxide film 21 of about 550 nm is deposited on the entire surface of the semiconductor substrate 11. Using the nitride film 13 as a stopper layer, planarization is performed until the surface of the nitride film 13 is exposed by chemical mechanical polishing (CMP) or the like. As shown in FIG. 10, the first element isolation insulating film 23 is embedded in the first groove 20 of the memory unit 1, and the second element isolation insulating film 22 is embedded in the second groove 17 of the logic unit 2. Then, a resist film 24 is applied to the surfaces of the nitride film 13, the first element isolation insulating film 23, and the second element isolation insulating film 22. As shown in FIG. 11, a mask is aligned with the center of the first element isolation insulating film 23 of the memory unit 1 and an opening is provided in a part of the resist film 24 by photolithography. For example, p-type impurity ions such as boron (B) are selectively implanted into the semiconductor substrate 11 from the opening. In this manner, the channel stop region 26 extending in the direction in which the high voltage is applied to the memory cell 40a is formed in the semiconductor substrate 11 below the first element isolation insulating film 23. Thereafter, the resist film 24 is removed.

(e)さらに、半導体基板11表面の窒化膜13、第1酸化膜12を全面剥離し、メモリ部1の半導体基板11の表面に約8nmのトンネル絶縁膜25を形成する。トンネル絶縁膜25としては、酸化膜、オキシナイトライド(SiOxy)膜等が好適である。トンネル絶縁膜25の表面には、図12に示すように、浮遊ゲートとなる第1のポリシリコン膜27を約100nm堆積する。第1のポリシリコン膜27及びトンネル絶縁膜25をRIEによりエッチングし、メモリセル40aのトンネル絶縁膜予定領域25A及び浮遊ゲート電極予定領域27Aのパターンを形成する。その後、半導体基板11の表面に、図13に示すように、ゲート間絶縁膜28を約15nm堆積する。ゲート間絶縁膜28としては、例えば酸化膜、ONO膜等が好適である。 (E) Further, the nitride film 13 and the first oxide film 12 on the surface of the semiconductor substrate 11 are peeled off, and a tunnel insulating film 25 of about 8 nm is formed on the surface of the semiconductor substrate 11 of the memory unit 1. As the tunnel insulating film 25, an oxide film, an oxynitride (SiO x N y ) film or the like is suitable. On the surface of the tunnel insulating film 25, as shown in FIG. 12, a first polysilicon film 27 to be a floating gate is deposited to about 100 nm. The first polysilicon film 27 and the tunnel insulating film 25 are etched by RIE to form a pattern of the tunnel insulating film planned region 25A and the floating gate electrode planned region 27A of the memory cell 40a. Thereafter, an inter-gate insulating film 28 is deposited on the surface of the semiconductor substrate 11 by about 15 nm as shown in FIG. As the inter-gate insulating film 28, for example, an oxide film, an ONO film or the like is suitable.

(f)図14に示すように、ロジック部2に堆積されたゲート間絶縁膜28、第1のポリシリコン膜27及びトンネル絶縁膜25をそれぞれ選択的に剥離する。図15に示すように、ロジック部2の半導体基板11の表面にゲート絶縁膜29を約3nm堆積し、ゲート絶縁膜29の表面及びメモリ部1の表面の全面に約200nmの第2のポリシリコン膜30を堆積する。その後、メモリ部1の第2のポリシリコン膜30、ゲート間絶縁膜28、浮遊ゲート電極予定領域27A、トンネル絶縁膜予定領域25Aを一括でエッチングする。この結果、図16に示すように、半導体基板11上にトンネル絶縁膜25a、浮遊ゲート電極27a、ゲート間絶縁膜28a及び第1制御ゲート電極30aが形成される。ロジック部2においては、第2のポリシリコン膜30及びゲート絶縁膜29をRIEによりエッチングし、ロジックセル50aのゲート絶縁膜29b及び第2制御ゲート電極30bを形成する。図17に示すように、燐(P)やヒ素(As)等のn型不純物イオンを半導体基板11内部に選択的に注入し、この注入されたイオンを熱処理で活性化すれば、ソース領域31,33及びドレイン領域32,34が形成され、図1〜図3に示す半導体装置が完成する。   (F) As shown in FIG. 14, the inter-gate insulating film 28, the first polysilicon film 27, and the tunnel insulating film 25 deposited in the logic unit 2 are selectively peeled off. As shown in FIG. 15, a gate insulating film 29 is deposited on the surface of the semiconductor substrate 11 in the logic section 2 by about 3 nm, and a second polysilicon film of about 200 nm is formed on the entire surface of the gate insulating film 29 and the memory section 1. A film 30 is deposited. Thereafter, the second polysilicon film 30, the intergate insulating film 28, the floating gate electrode planned region 27A, and the tunnel insulating film planned region 25A of the memory unit 1 are etched together. As a result, as shown in FIG. 16, a tunnel insulating film 25a, a floating gate electrode 27a, an intergate insulating film 28a, and a first control gate electrode 30a are formed on the semiconductor substrate 11. In the logic part 2, the second polysilicon film 30 and the gate insulating film 29 are etched by RIE to form the gate insulating film 29b and the second control gate electrode 30b of the logic cell 50a. As shown in FIG. 17, if n-type impurity ions such as phosphorus (P) and arsenic (As) are selectively implanted into the semiconductor substrate 11 and the implanted ions are activated by heat treatment, the source region 31 is obtained. 33 and drain regions 32 and 34 are formed, and the semiconductor device shown in FIGS. 1 to 3 is completed.

第1の実施の形態に係る半導体装置の製造方法によれば、半導体基板11の主面と第1素子分離絶縁膜23の側壁とのなす角度αが90度以下となる第1の溝20をSTIにより形成し、この第1の溝20に第1素子分離絶縁膜23を埋め込む。このため、半導体基板11上のメモリ部1に約8nmのトンネル絶縁膜25を形成する場合においても、半導体基板11に対して垂直に埋め込んで形成したSTIの埋込絶縁膜に比べて、酸素不足領域の発生を抑制できる。この結果、第1素子分離絶縁膜23との接触領域のトンネル絶縁膜25の薄膜化現象を抑制でき、半導体基板11上に均一な厚さのトンネル絶縁膜25を形成できる。よって、図4〜17に示す半導体装置の製造方法によれば、メモリ部1にSTIを用いた場合においても、LOCOS分離と同程度以上の信頼性及び歩留まりを確保でき、高電圧印加時のストレス誘起リーク電流の発生を防止できる。   According to the method for manufacturing a semiconductor device according to the first embodiment, the first groove 20 in which the angle α formed between the main surface of the semiconductor substrate 11 and the side wall of the first element isolation insulating film 23 is 90 degrees or less is formed. A first element isolation insulating film 23 is buried in the first trench 20 by STI. For this reason, even when the tunnel insulating film 25 of about 8 nm is formed in the memory portion 1 on the semiconductor substrate 11, the oxygen deficiency is lower than that of the STI buried insulating film formed by being buried perpendicularly to the semiconductor substrate 11. Generation of the area can be suppressed. As a result, the thinning phenomenon of the tunnel insulating film 25 in the contact region with the first element isolation insulating film 23 can be suppressed, and the tunnel insulating film 25 having a uniform thickness can be formed on the semiconductor substrate 11. Therefore, according to the manufacturing method of the semiconductor device shown in FIGS. 4 to 17, even when the STI is used for the memory unit 1, reliability and yield equal to or higher than those of LOCOS isolation can be ensured, and stress at the time of applying high voltage Generation of induced leakage current can be prevented.

図8に示すように、第1素子分離絶縁膜23の幅Lt1は、幅Lb1に比べて大きく形成される。この結果、半導体基板11に対して垂直に埋め込まれるSTIの埋込絶縁膜に比べて、第1素子分離絶縁膜23の上面及び下面のコーナー部の結晶欠陥を生じにくくでき、信頼性を向上させることができる。 As shown in FIG. 8, the width Lt 1 of the first element isolation insulating film 23 is formed larger than the width Lb 1 . As a result, crystal defects at the corners of the upper surface and the lower surface of the first element isolation insulating film 23 can be made less likely to occur than in the STI embedded insulating film embedded perpendicularly to the semiconductor substrate 11 and the reliability is improved. be able to.

メモリ部1に比べて低電界で動作するロジック部2のゲート絶縁膜29は、トンネル絶縁膜25に比べて薄く形成されるため、ゲート絶縁膜29の薄膜化現象が生じにくい。第1の実施の形態に係る半導体装置の製造方法によれば、半導体基板11の主面に対して略垂直な第2の溝17をSTIにより形成し、且つ、第2素子分離絶縁膜22の幅Lt2を第1素子分離絶縁膜23の幅Lt1より狭く形成することで、ロジックセル50aをより微細化することができる。 Since the gate insulating film 29 of the logic unit 2 that operates in a lower electric field than the memory unit 1 is formed thinner than the tunnel insulating film 25, the gate insulating film 29 is less likely to be thinned. According to the manufacturing method of the semiconductor device according to the first embodiment, the second groove 17 substantially perpendicular to the main surface of the semiconductor substrate 11 is formed by STI, and the second element isolation insulating film 22 is formed. width Lt 2 by forming narrower than the width Lt 1 of the first element isolation insulating film 23 can be further miniaturized logic cell 50a.

(第2の実施の形態)
第2の実施の形態に係る半導体装置は、図18に示すように、第1素子分離絶縁膜38が、上面から下面に向かって幅が次第に狭くなるように形成された曲面からなる第1側壁部231a及び第1側壁部231aに連続し、半導体基板11の主面に略垂直な平面部からなる第2側壁部231bを有する点が、第1の実施の形態に係る半導体装置と異なる。図18に示す半導体装置は、図3に示す半導体装置と同様に、第1素子分離絶縁膜38の上面の幅Lt1が底面の幅Lbに比べて広くなっている。また、図18の断面上、第1素子分離絶縁膜37の上面と半導体基板11の主面と第1側壁部231aのなす角度αが、90度以下、好ましくは70〜78度である。なお、図18においては幅Lt1、Lbを図1のA−A方向からみた断面に並行な方向に定義しているが、幅Lt1、Lbは、図1のB−B方向に並行な断面に定義することも可能である。他は、第1の実施の形態に係る半導体装置と実質的に同様であるので説明を省略する。
(Second Embodiment)
In the semiconductor device according to the second embodiment, as shown in FIG. 18, the first side wall made of a curved surface in which the first element isolation insulating film 38 is formed so that the width gradually decreases from the upper surface toward the lower surface. The semiconductor device according to the first embodiment is different from the semiconductor device according to the first embodiment in that the semiconductor device according to the first embodiment has a second side wall portion 231b that is continuous with the portion 231a and the first side wall portion 231a and is formed of a plane portion substantially perpendicular to the main surface of the semiconductor substrate 11. In the semiconductor device shown in FIG. 18, the width Lt 1 of the top surface of the first element isolation insulating film 38 is wider than the width Lb 1 of the bottom surface, as in the semiconductor device shown in FIG. In addition, in the cross section of FIG. 18, an angle α formed by the upper surface of the first element isolation insulating film 37, the main surface of the semiconductor substrate 11, and the first sidewall portion 231a is 90 degrees or less, preferably 70 to 78 degrees. In FIG. 18, the widths Lt 1 and Lb 1 are defined in a direction parallel to the cross section viewed from the AA direction in FIG. 1, but the widths Lt 1 and Lb 1 are defined in the BB direction in FIG. It is also possible to define parallel sections. Others are substantially the same as those of the semiconductor device according to the first embodiment, and thus description thereof is omitted.

第2の実施の形態に係る半導体装置によれば、第1素子分離絶縁膜23の上面の幅Lt1が下面の幅Lbに比べて広いため、半導体基板11上に配置するトンネル絶縁膜25aを均一に形成することができ、歩留まり及び信頼性を向上させることができる。 In the semiconductor device according to the second embodiment, since the width Lt 1 of the upper surface of the first element isolation insulating film 23 is wider than the width Lb 1 of the lower surface, the tunnel insulating film 25 a disposed on the semiconductor substrate 11. Can be formed uniformly, and the yield and reliability can be improved.

図19〜図22を用いて、第2の実施の形態に係る半導体装置の製造方法を説明する。半導体基板11上に第1酸化膜12、窒化膜13、第2酸化膜14を順次堆積させ、半導体基板11の一部を露出させるまでの工程は、図4〜図6に示す工程と同様であるので、説明を省略する。   A method for manufacturing a semiconductor device according to the second embodiment will be described with reference to FIGS. The steps from sequentially depositing the first oxide film 12, the nitride film 13, and the second oxide film 14 on the semiconductor substrate 11 to expose a part of the semiconductor substrate 11 are the same as the steps shown in FIGS. Since there is, description is abbreviate | omitted.

(a)ロジック部2上にレジスト膜35を塗布し、メモリ部1の半導体基板11の一部を、ケミカルドライエッチング(CDE)等の等方性イオンエッチングし、図19に示すように、曲面状の第1側壁部231aにより溝幅が次第に狭くなる上方溝36を形成する。その後、レジスト膜35を除去する。図20に示すように、上方溝36の底面をRIE等により異方的にエッチングすることにより、第1側壁部231aに連続し、半導体基板11の主面に略垂直な平面部からなる第2側壁部231bを有する下方溝37をする。ロジック部2は、第2の溝17の側壁が略垂直となるように、即ち、半導体基板11の主面からみた側壁の角度βが90度又は80〜90度となるように、RIE等により形成する。   (A) A resist film 35 is applied on the logic part 2, and a part of the semiconductor substrate 11 of the memory part 1 is subjected to isotropic ion etching such as chemical dry etching (CDE) to obtain a curved surface as shown in FIG. The upper groove 36 whose groove width is gradually narrowed is formed by the first side wall portion 231a having a shape. Thereafter, the resist film 35 is removed. As shown in FIG. 20, the bottom surface of the upper groove 36 is anisotropically etched by RIE or the like, so that a second portion consisting of a flat portion that is continuous with the first side wall portion 231 a and substantially perpendicular to the main surface of the semiconductor substrate 11 is formed. A lower groove 37 having a side wall portion 231b is formed. The logic unit 2 uses RIE or the like so that the side wall of the second groove 17 is substantially vertical, that is, the side wall angle β viewed from the main surface of the semiconductor substrate 11 is 90 degrees or 80 to 90 degrees. Form.

(b)図21に示すように、半導体基板11の表面全面に約550nmの第3酸化膜21を堆積し、RIE等によりエッチバックする。CMP法等により窒化膜13の表面を平坦化して、図22に示すように、メモリ部1の上方溝36及び下方溝37に第1素子分離絶縁膜23を埋め込む。ロジック部2の第2の溝17には、第2素子分離絶縁膜22を埋め込む。その後は、図11〜図17に示すステップと実質的に同様であるので、説明を省略する。   (B) As shown in FIG. 21, a third oxide film 21 of about 550 nm is deposited on the entire surface of the semiconductor substrate 11 and etched back by RIE or the like. The surface of the nitride film 13 is planarized by CMP or the like, and the first element isolation insulating film 23 is embedded in the upper groove 36 and the lower groove 37 of the memory unit 1 as shown in FIG. A second element isolation insulating film 22 is embedded in the second groove 17 of the logic unit 2. The subsequent steps are substantially the same as the steps shown in FIGS.

第2の実施の形態に係る半導体装置の製造方法によれば、メモリ部1の第1素子分離絶縁膜38をSTIにより形成する際に、図18に示すように、曲面状の第1側壁部231aにより溝幅が次第に狭くなる上方溝36を、等方性イオンエッチングにより予め形成する。そして、上方溝36の底面から半導体基板11の主面に略垂直な平面状の第2側壁部231bを有する下方溝37を、異方性イオンエッチングにより形成する。この時、ロジック部2の第2の溝17も同時に形成する。この結果、上方溝36に接する半導体基板11上に厚いトンネル絶縁膜25を堆積しても、垂直状のSTIの埋込絶縁膜を用いた場合に比べて酸素不足領域の発生を抑制でき、均一な膜厚のトンネル絶縁膜25を堆積できる。よって、メモリ部1のメモリセル40aに高電圧を印加した場合においても、高歩留まりで信頼性の高い半導体装置を製造できる。   According to the method of manufacturing a semiconductor device according to the second embodiment, when the first element isolation insulating film 38 of the memory unit 1 is formed by STI, as shown in FIG. An upper groove 36 whose groove width is gradually narrowed by 231a is formed in advance by isotropic ion etching. Then, a lower groove 37 having a planar second side wall portion 231b substantially perpendicular to the main surface of the semiconductor substrate 11 from the bottom surface of the upper groove 36 is formed by anisotropic ion etching. At this time, the second groove 17 of the logic unit 2 is also formed at the same time. As a result, even when a thick tunnel insulating film 25 is deposited on the semiconductor substrate 11 in contact with the upper groove 36, the generation of an oxygen-deficient region can be suppressed as compared with the case where a vertical STI buried insulating film is used. A tunnel insulating film 25 having a sufficient thickness can be deposited. Therefore, even when a high voltage is applied to the memory cell 40a of the memory unit 1, a semiconductor device with high yield and high reliability can be manufactured.

(その他の実施の形態)
本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
Although the present invention has been described according to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

第1及び第2の実施の形態に係る半導体装置の構造は、例えば、図23に示すように、不揮発性メモリ101を含む半導体集積回路100を搭載したICカード10に適用できる。半導体集積回路100は、不揮発性メモリ101、ロジック102、ROM103、RAM104、CPU105、I/O部106を含む。ICカード10は、接触型ICカードでも非接触型ICカードであっても構わない。ICカード10が非接触型ICカードの場合は、半導体集積回路100の外部のICカード10上にI/O部106として機能するアンテナ部が配置される。   The structure of the semiconductor device according to the first and second embodiments can be applied to an IC card 10 on which a semiconductor integrated circuit 100 including a nonvolatile memory 101 is mounted, for example, as shown in FIG. The semiconductor integrated circuit 100 includes a nonvolatile memory 101, a logic 102, a ROM 103, a RAM 104, a CPU 105, and an I / O unit 106. The IC card 10 may be a contact type IC card or a non-contact type IC card. When the IC card 10 is a non-contact IC card, an antenna unit that functions as the I / O unit 106 is disposed on the IC card 10 outside the semiconductor integrated circuit 100.

図3及び図18に示す半導体装置の構成は、ロジック部2のゲート絶縁膜29bより厚く酸化膜を堆積するI/O部106、或いは高耐圧MOSFET部を搭載する半導体集積回路100上のいずれにも適用可能であることは勿論である。   The configuration of the semiconductor device shown in FIG. 3 and FIG. 18 is any of the I / O unit 106 for depositing an oxide film thicker than the gate insulating film 29b of the logic unit 2 and the semiconductor integrated circuit 100 on which the high voltage MOSFET unit is mounted. Of course, it is applicable.

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は、上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の第1の実施の形態に係る半導体装置の概要を示す平面図である。1 is a plan view showing an outline of a semiconductor device according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る半導体装置の例を示し、図1のA−A方向からみた断面図である。FIG. 2 is a cross-sectional view showing the example of the semiconductor device according to the first embodiment of the present invention as seen from the AA direction in FIG. 1. 本発明の第1の実施の形態に係る半導体装置の例を示し、メモリ部1は図1のB−B方向、ロジック部2は図1のC−C方向からみた断面図である。1 illustrates an example of a semiconductor device according to a first embodiment of the present invention, in which a memory unit 1 is a cross-sectional view as viewed from a BB direction in FIG. 1 and a logic unit 2 is a cross-sectional view as viewed from a CC direction in FIG. 本発明の第1の実施の形態に係る半導体装置の製造方法を示し、メモリ部1は図1のB−B方向、ロジック部2は図1のA−A方向からみた工程断面図である。1A and 1B show a method of manufacturing a semiconductor device according to a first embodiment of the present invention, in which a memory section 1 is a process sectional view as seen from the BB direction of FIG. 1 and a logic section 2 is seen from the AA direction of FIG. 本発明の第1の実施の形態に係る半導体装置の製造方法を示し、メモリ部1は図1のB−B方向、ロジック部2は図1のA−A方向からみた工程断面図である。1A and 1B show a method of manufacturing a semiconductor device according to a first embodiment of the present invention, in which a memory section 1 is a process sectional view as seen from the BB direction of FIG. 1 and a logic section 2 is seen from the AA direction of FIG. 本発明の第1の実施の形態に係る半導体装置の製造方法を示し、メモリ部1は図1のB−B方向、ロジック部2は図1のA−A方向からみた工程断面図である。1A and 1B show a method of manufacturing a semiconductor device according to a first embodiment of the present invention, in which a memory section 1 is a process sectional view as seen from the BB direction of FIG. 1 and a logic section 2 is seen from the AA direction of FIG. 本発明の第1の実施の形態に係る半導体装置の製造方法を示し、メモリ部1は図1のB−B方向、ロジック部2は図1のA−A方向からみた工程断面図である。1A and 1B show a method of manufacturing a semiconductor device according to a first embodiment of the present invention, in which a memory section 1 is a process sectional view as seen from the BB direction of FIG. 1 and a logic section 2 is seen from the AA direction of FIG. 本発明の第1の実施の形態に係る半導体装置の製造方法を示し、メモリ部1は図1のB−B方向、ロジック部2は図1のA−A方向からみた工程断面図である。1A and 1B show a method of manufacturing a semiconductor device according to a first embodiment of the present invention, in which a memory section 1 is a process sectional view as seen from the BB direction of FIG. 1 and a logic section 2 is seen from the AA direction of FIG. 本発明の第1の実施の形態に係る半導体装置の製造方法を示し、メモリ部1は図1のB−B方向、ロジック部2は図1のA−A方向からみた工程断面図である。1A and 1B show a method of manufacturing a semiconductor device according to a first embodiment of the present invention, in which a memory section 1 is a process sectional view as seen from the BB direction of FIG. 1 and a logic section 2 is seen from the AA direction of FIG. 本発明の第1の実施の形態に係る半導体装置の製造方法を示し、メモリ部1は図1のB−B方向、ロジック部2は図1のA−A方向からみた工程断面図である。1A and 1B show a method of manufacturing a semiconductor device according to a first embodiment of the present invention, in which a memory section 1 is a process sectional view as seen from the BB direction of FIG. 1 and a logic section 2 is seen from the AA direction of FIG. 本発明の第1の実施の形態に係る半導体装置の製造方法を示し、メモリ部1は図1のB−B方向、ロジック部2は図1のA−A方向からみた工程断面図である。1A and 1B show a method of manufacturing a semiconductor device according to a first embodiment of the present invention, in which a memory section 1 is a process sectional view as seen from the BB direction of FIG. 1 and a logic section 2 is seen from the AA direction of FIG. 本発明の第1の実施の形態に係る半導体装置の製造方法を示し、メモリ部1は図1のB−B方向、ロジック部2は図1のA−A方向からみた工程断面図である。1A and 1B show a method of manufacturing a semiconductor device according to a first embodiment of the present invention, in which a memory section 1 is a process sectional view as seen from the BB direction of FIG. 1 and a logic section 2 is seen from the AA direction of FIG. 本発明の第1の実施の形態に係る半導体装置の製造方法を示し、図1のA−A方向からみた工程断面図である。FIG. 3 is a process sectional view showing the method for manufacturing the semiconductor device according to the first embodiment of the present invention, as viewed from the AA direction in FIG. 1. 本発明の第1の実施の形態に係る半導体装置の製造方法を示し、図1のA−A方向からみた工程断面図である。FIG. 3 is a process sectional view showing the method for manufacturing the semiconductor device according to the first embodiment of the present invention, as viewed from the AA direction in FIG. 1. 本発明の第1の実施の形態に係る半導体装置の製造方法を示し、図1のA−A方向からみた工程断面図である。FIG. 3 is a process sectional view showing the method for manufacturing the semiconductor device according to the first embodiment of the present invention, as viewed from the AA direction in FIG. 1. 本発明の第1の実施の形態に係る半導体装置の製造方法を示し、図1のA−A方向からみた工程断面図である。FIG. 3 is a process sectional view showing the method for manufacturing the semiconductor device according to the first embodiment of the present invention, as viewed from the AA direction in FIG. 1. 本発明の第1の実施の形態に係る半導体装置の製造方法を示し、図1のA−A方向からみた工程断面図である。FIG. 3 is a process sectional view showing the method for manufacturing the semiconductor device according to the first embodiment of the present invention, as viewed from the AA direction in FIG. 1. 本発明の第2の実施の形態に係る半導体装置を示し、図1のA−A方向からみた断面図である。FIG. 4 is a cross-sectional view showing a semiconductor device according to a second embodiment of the present invention, as viewed from the AA direction in FIG. 1. 本発明の第2の実施の形態に係る半導体装置の製造方法を示し、図1のA−A方向からみた工程断面図である。FIG. 9 is a process cross-sectional view illustrating the method for manufacturing a semiconductor device according to the second embodiment of the present invention, as viewed from the AA direction in FIG. 1. 本発明の第2の実施の形態に係る半導体装置の製造方法を示し、図1のA−A方向からみた工程断面図である。FIG. 9 is a process cross-sectional view illustrating the method for manufacturing a semiconductor device according to the second embodiment of the present invention, as viewed from the AA direction in FIG. 1. 本発明の第2の実施の形態に係る半導体装置の製造方法を示し、図1のA−A方向からみた工程断面図である。FIG. 9 is a process cross-sectional view illustrating the method for manufacturing a semiconductor device according to the second embodiment of the present invention, as viewed from the AA direction in FIG. 1. 本発明の第2の実施の形態に係る半導体装置の製造方法を示し、図1のA−A方向からみた工程断面図である。FIG. 9 is a process cross-sectional view illustrating the method for manufacturing a semiconductor device according to the second embodiment of the present invention, as viewed from the AA direction in FIG. 1. 本発明の実施の形態に係る半導体装置に好適なICカードの一例を示すブロック図である。It is a block diagram which shows an example of an IC card suitable for the semiconductor device which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…メモリ部
2…ロジック部
11…半導体基板
17…第2の溝
20…第1の溝
22…第2素子分離絶縁膜
23…第1素子分離絶縁膜
25a…トンネル絶縁膜
26…チャネルストップ領域
27a…浮遊ゲート電極
28a…ゲート間絶縁膜
29b…ゲート絶縁膜
30a…第1制御ゲート電極
30b…第2制御ゲート電極
31,33…ソース領域
32,34…ドレイン領域
36…上方溝
37…下方溝
38…第1素子分離絶縁膜
40a…メモリセル
50a…ロジックセル
231a…第1側壁部
231b…第2側壁部
DESCRIPTION OF SYMBOLS 1 ... Memory part 2 ... Logic part 11 ... Semiconductor substrate 17 ... 2nd groove | channel 20 ... 1st groove | channel 22 ... 2nd element isolation insulating film 23 ... 1st element isolation insulating film 25a ... Tunnel insulating film 26 ... Channel stop area | region 27a ... floating gate electrode 28a ... inter-gate insulating film 29b ... gate insulating film 30a ... first control gate electrode 30b ... second control gate electrode 31, 33 ... source region 32, 34 ... drain region 36 ... upper groove 37 ... lower groove 38 ... 1st element isolation insulating film 40a ... Memory cell 50a ... Logic cell 231a ... 1st side wall part 231b ... 2nd side wall part

Claims (5)

メモリ部と該メモリ部の周囲に配置されたロジック部を有する半導体基板と、
前記メモリ部に埋め込まれ、上面の幅が下面の幅より大きい第1素子分離絶縁膜と、
前記ロジック部に埋め込まれ、前記半導体基板の主面に略垂直な側壁を有し、幅が前記第1素子分離絶縁膜の上面の幅より小さい第2素子分離絶縁膜と、
前記第1素子分離絶縁膜により挟まれた前記半導体基板上に配置されたトンネル絶縁膜と、
前記トンネル絶縁膜上の浮遊ゲート電極と、
前記浮遊ゲート電極上に前記浮遊ゲート電極と絶縁して配置された第1制御ゲート電極と、
前記第2素子分離絶縁膜により挟まれた前記半導体基板上のゲート絶縁膜と、
前記ゲート絶縁膜上の第2制御ゲート電極
とを備えることを特徴とする半導体装置。
A semiconductor substrate having a memory portion and a logic portion arranged around the memory portion;
A first element isolation insulating film embedded in the memory unit and having a top surface width greater than a bottom surface width;
A second element isolation insulating film embedded in the logic portion, having a side wall substantially perpendicular to the main surface of the semiconductor substrate, and having a width smaller than the width of the upper surface of the first element isolation insulating film;
A tunnel insulating film disposed on the semiconductor substrate sandwiched between the first element isolation insulating films;
A floating gate electrode on the tunnel insulating film;
A first control gate electrode disposed on the floating gate electrode and insulated from the floating gate electrode;
A gate insulating film on the semiconductor substrate sandwiched between the second element isolation insulating films;
And a second control gate electrode on the gate insulating film.
前記第1素子分離絶縁膜は、前記上面から前記下面に向かって幅が次第に狭くなるように形成された曲面からなる第1側壁部及び前記第1側壁部に連続し前記主面に略垂直な平面部からなる第2側壁部を有することを特徴とする請求項1に記載の半導体装置。   The first element isolation insulating film is continuous with the first side wall portion and the first side wall portion formed of a curved surface so that the width gradually decreases from the upper surface toward the lower surface, and is substantially perpendicular to the main surface. The semiconductor device according to claim 1, further comprising a second side wall portion formed of a planar portion. 前記第1素子分離絶縁膜の下の前記半導体基板内にチャネルストップ領域が配置されていることを特徴とする請求項1又は2に記載の半導体装置。   3. The semiconductor device according to claim 1, wherein a channel stop region is disposed in the semiconductor substrate under the first element isolation insulating film. 半導体基板上のメモリ部に、開口部の幅が底面の幅より大きい第1の溝を形成し、前記第1の溝に第1素子分離絶縁膜を埋め込むステップと、
前記メモリ部の周辺に配置されたロジック部に、開口部の幅が前記第1の溝の開口部の幅より小さく、略垂直な側壁を有した第2の溝を形成し、前記第2の溝に第2素子分離絶縁膜をそれぞれ埋め込むステップと、
前記第1素子分離絶縁膜に挟まれた前記半導体基板上にトンネル絶縁膜を形成するステップと、
前記トンネル絶縁膜上に浮遊ゲート電極を形成するステップと、
前記浮遊ゲート電極上にゲート間絶縁膜を形成するステップと、
前記ゲート間絶縁膜上に第1制御ゲート電極を形成するステップと、
前記第2素子分離絶縁膜に挟まれた前記半導体基板上にゲート絶縁膜を形成するステップと、
前記ゲート絶縁膜上に第2制御ゲート電極を形成するステップ
とを含むことを特徴とする半導体装置の製造方法。
Forming a first groove in the memory portion on the semiconductor substrate, the width of the opening being larger than the width of the bottom surface, and embedding the first element isolation insulating film in the first groove;
A second groove having a substantially vertical sidewall is formed in the logic portion arranged around the memory portion, the width of the opening being smaller than the width of the opening of the first groove, and the second groove. Embedding a second element isolation insulating film in the trench,
Forming a tunnel insulating film on the semiconductor substrate sandwiched between the first element isolation insulating films;
Forming a floating gate electrode on the tunnel insulating film;
Forming an intergate insulating film on the floating gate electrode;
Forming a first control gate electrode on the inter-gate insulating film;
Forming a gate insulating film on the semiconductor substrate sandwiched between the second element isolation insulating films;
Forming a second control gate electrode on the gate insulating film. A method for manufacturing a semiconductor device, comprising:
前記第1の溝を形成するステップは、
曲面状の第1側壁部により溝幅が次第に狭くなる上方溝を形成するステップと、
前記上方溝の底面から前記主面に略垂直な平面状の第2側壁部を有する下方溝を形成するステップ
と含むことを特徴とする請求項4に記載の半導体装置の製造方法。
Forming the first groove comprises:
Forming an upper groove in which the groove width is gradually narrowed by the curved first side wall portion;
The method of manufacturing a semiconductor device according to claim 4, further comprising: forming a lower groove having a planar second side wall portion substantially perpendicular to the main surface from the bottom surface of the upper groove.
JP2005119944A 2005-04-18 2005-04-18 Semiconductor device and its manufacturing method Withdrawn JP2006303024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005119944A JP2006303024A (en) 2005-04-18 2005-04-18 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005119944A JP2006303024A (en) 2005-04-18 2005-04-18 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006303024A true JP2006303024A (en) 2006-11-02

Family

ID=37470986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005119944A Withdrawn JP2006303024A (en) 2005-04-18 2005-04-18 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006303024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101022580B1 (en) 2009-02-19 2011-03-16 이상윤 Mass storage semiconductor memory device and method for fabricating the same
JP7376628B2 (en) 2021-02-23 2023-11-08 台湾積體電路製造股▲ふん▼有限公司 Semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101022580B1 (en) 2009-02-19 2011-03-16 이상윤 Mass storage semiconductor memory device and method for fabricating the same
JP7376628B2 (en) 2021-02-23 2023-11-08 台湾積體電路製造股▲ふん▼有限公司 Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2006344900A (en) Semiconductor device
US20040041231A1 (en) Semiconductor device and method of manufacturing the same
US6700143B2 (en) Dummy structures that protect circuit elements during polishing
US20070205436A1 (en) Flash memory cell with split gate structure and method for forming the same
US7494869B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JP2005322912A (en) Split-gate flash memory device and manufacturing method therefor
TW452983B (en) Non-volatile semiconductor memory device and its manufacturing method
JP2009188291A (en) Nonvolatile semiconductor storage and method of manufacturing method the same
JP2009016615A (en) Semiconductor memory device
US20050112821A1 (en) Method of manufacturing split-gate memory
JPH0864700A (en) Nonvolatile semiconductor storage device and its production
US7238572B2 (en) Method of manufacturing EEPROM cell
JP4080485B2 (en) Bit line structure and manufacturing method thereof
US9171962B2 (en) Semiconductor device and method of manufacturing the same
KR20050085361A (en) Shallow trench isolation in floating gate devices
US8044513B2 (en) Semiconductor device and semiconductor device manufacturing method
US6468862B1 (en) High capacitive-coupling ratio of stacked-gate flash memory having high mechanical strength floating gate
JPH09321255A (en) Manufacturing nonvolatile semiconductor memory device
US20070181935A1 (en) Method of fabricating flash memory device and flash memory device fabricated thereby
US7129540B2 (en) Semiconductor circuit arrangement with trench isolation and fabrication method
US8063431B2 (en) EEPROM and method for manufacturing EEPROM
JP2006303024A (en) Semiconductor device and its manufacturing method
JP2010109019A (en) Semiconductor apparatus and method of manufacturing the same
US7651912B2 (en) Semiconductor device and method of fabricating the same
JP2001332637A (en) Semiconductor memory device and its manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701