JP2006302793A - Destaticizing method - Google Patents

Destaticizing method Download PDF

Info

Publication number
JP2006302793A
JP2006302793A JP2005125980A JP2005125980A JP2006302793A JP 2006302793 A JP2006302793 A JP 2006302793A JP 2005125980 A JP2005125980 A JP 2005125980A JP 2005125980 A JP2005125980 A JP 2005125980A JP 2006302793 A JP2006302793 A JP 2006302793A
Authority
JP
Japan
Prior art keywords
powder
charged
inert gas
charge
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005125980A
Other languages
Japanese (ja)
Other versions
JP4315123B2 (en
Inventor
Yasuyuki Imai
靖之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005125980A priority Critical patent/JP4315123B2/en
Publication of JP2006302793A publication Critical patent/JP2006302793A/en
Application granted granted Critical
Publication of JP4315123B2 publication Critical patent/JP4315123B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Elimination Of Static Electricity (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a destaticizing method of charged powders securing safety by avoiding dust explosion and fire due to electrostatic charges in a manufacturing process using charged powders and reducing weighing and measuring errors, and improving production efficiency with destaticizing in short period of time. <P>SOLUTION: This is a destaticizing method of charged powders and destaticizes by supplying an ionized inert gas to the charged powders in fluid state. Fluid state of the charged powders is obtained by free dropping of the powders or by using ionized inert gas to the transferred gas. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は帯電粉体の除電方法に関し、特に工業製品の製造工程において使用される粉体の除電方法に関する。   The present invention relates to a method for removing charge from a charged powder, and more particularly, to a method for removing charge from a powder used in an industrial product manufacturing process.

高分子化合物などの有機粉体あるいはセラミックなどの無機粉体は帯電しやすいため、これらの帯電粉体を原料とする場合、各種プロセスにおいて安全性や生産効率への影響を考慮する必要がある。   Since organic powders such as polymer compounds or inorganic powders such as ceramics are easily charged, when these charged powders are used as raw materials, it is necessary to consider the influence on safety and production efficiency in various processes.

例えば、電子部品などを搭載するプリント配線板の基板となる積層板はエポキシ樹脂などを含有する樹脂ワニス中に添加剤としてシリカ粉体、タルク粉体あるいはアルミナ粉体などの無機粉体を混合し、これを成形して製造されている。このような無機粉体は従来有機粉体に比べて帯電量が少なく取り扱いが容易であったが、高性能の積層板を形成するために微粒子化や表面処理が検討されており帯電しやすい粉体となってきている。このため粉体を充填した原料タンクなどの粉体供給部から他の成分と混合するための混合槽へ粉体を搬送する際に配管を通過させる場合、配管内壁に帯電粉体が付着しやすく粉体供給部の減量分を測定することによる減量法では正確な計量ができず他の成分に対して所定量の配合が行われないという問題や、配管内壁に付着した粉体を混合槽に搬送するためには配管外から振動を与える必要があり、著しく生産効率が低下するという問題がある。また、樹脂ワニス調製のために粉体を有機溶媒などの可燃性液体と混合する場合には帯電により放電が発生し、空気などの支燃性ガス雰囲気では粉塵爆発や火災が発生する虞がある。   For example, a laminated board used as a printed wiring board substrate on which electronic parts are mounted is mixed with an inorganic powder such as silica powder, talc powder or alumina powder as an additive in a resin varnish containing an epoxy resin or the like. This is manufactured by molding. Such inorganic powders are less charged than conventional organic powders and are easy to handle. However, in order to form high-performance laminates, fine particles and surface treatments are being studied and powders that are easily charged It has become a body. For this reason, when powder is transported from a powder supply unit such as a raw material tank filled with powder to a mixing tank for mixing with other components, charged powder tends to adhere to the inner wall of the pipe. In the weight loss method by measuring the weight loss in the powder supply unit, accurate measurement is not possible, and the prescribed amount of other components cannot be blended, and powder adhering to the inner wall of the pipe is added to the mixing tank. In order to carry it, it is necessary to apply vibration from outside the piping, and there is a problem that the production efficiency is remarkably lowered. In addition, when powder is mixed with a flammable liquid such as an organic solvent to prepare a resin varnish, discharge may occur due to electrification, and dust explosion and fire may occur in a flammable gas atmosphere such as air. .

このため除電を行う必要があるが、帯電粉体の除電方法としては粉体を充填した粉体供給部の外壁を除電することや、予め不活性ガスを粉体供給部内に供給すること、さらには粉体を撹拌しながら除電剤を散布することなどが提案されている(例えば、特許文献1)。
特開平7−192886号
For this reason, it is necessary to neutralize the charge. As a charge neutralization method for the charged powder, it is necessary to neutralize the outer wall of the powder supply unit filled with powder, to supply an inert gas into the powder supply unit in advance, For example, it has been proposed to spray a neutralizing agent while stirring the powder (for example, Patent Document 1).
JP-A-7-192886

しかしながら、粉体供給部の外壁からのみの除電では間接的な除電であるため粉体などの除電されにくい帯電物では長時間の除電が必要となる。また、一旦除電を行っても粉体供給部内の粉体同士の接触による再帯電の発生や、粉体が原料タンクなどの粉体供給部から搬送される場合には配管内壁との接触による帯電発生のため本質的な解決となっていない。   However, since the charge removal from the outer wall of the powder supply unit is an indirect charge removal, it is necessary to remove the charge for a long time with a charged object such as a powder that is difficult to remove. In addition, once static elimination is performed, recharging occurs due to contact between powders in the powder supply unit, and when powder is conveyed from a powder supply unit such as a raw material tank, charging due to contact with the inner wall of the pipe It is not an essential solution because of the occurrence.

また、不活性ガスの導入はガスの供給のみであるため除電効果が低く、微粒子で嵩高い粉体では粉体層の内部まで不活性ガスが行き渡らないため十分な除電が行えていないのが現状である。例えば、前記した積層板の製造において使用される無機粉体では安全性確保のために帯電量を20kV未満とすることが必要であるが、粉体供給部での不活性ガスのみによる除電では40kV程度までしか除電できないことが判明した。   In addition, since the introduction of inert gas is only gas supply, the effect of static elimination is low, and in the case of fine and bulky powder, the inert gas does not reach the inside of the powder layer, so sufficient static elimination cannot be performed. It is. For example, the inorganic powder used in the production of the laminated plate described above needs to have a charge amount of less than 20 kV in order to ensure safety, but it is 40 kV for static elimination only with an inert gas in the powder supply unit. It was found that static electricity can only be removed to a certain extent.

さらに除電剤を添加する方法では配合工程において組成が変動してしまうため、他の成分と混合する製造工程では使用することができない。   Furthermore, since the composition varies in the blending process in the method of adding a static eliminating agent, it cannot be used in the manufacturing process of mixing with other components.

一方、フィルムなどの長尺の帯電物を走行状態とし、そのフィルムの表面を棒状電極などにより除電することも行われているが、帯電物が粉体の場合、容器内に充填された状態では粉体層の厚さがあるため表面のみが除電されるという問題や、帯電電荷以上の除電が行われると表面のみ除電が進行しすぎて逆極性に帯電させてしまう場合があり、全体が均一に除電された粉体を得ることができず、また粉体の帯電量に応じて除電条件を変更することが困難である。   On the other hand, a long charged object such as a film is set in a running state, and the surface of the film is neutralized with a rod-shaped electrode or the like. However, when the charged object is a powder, There is a problem that only the surface is neutralized due to the thickness of the powder layer, and if neutralization more than the charged charge is performed, the neutralization of the surface may progress too much and the reverse polarity may be charged. Thus, it is difficult to obtain a powder that has been neutralized, and it is difficult to change the neutralization condition according to the amount of charge of the powder.

本発明は上記課題を解決するものであり、帯電粉体が用いられる製造工程において安全性を確保しつつ、生産効率を改善できる帯電粉体の除電方法を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a method for eliminating charge from a charged powder that can improve production efficiency while ensuring safety in a manufacturing process in which the charged powder is used.

本発明の請求項1に係る発明の帯電粉体の除電方法は、帯電粉体を流動状態とし、その流動状態にある帯電粉体にイオン化した不活性ガスを供給することにより除電を行うことを特徴とするものである。   According to a first aspect of the present invention, there is provided a method for neutralizing a charged powder, wherein the charged powder is made into a fluidized state, and the charge is removed by supplying an ionized inert gas to the charged powder in the fluidized state. It is a feature.

また本発明の請求項2に係る発明の除電方法は、上記請求項1に係る発明の除電方法において粉体の自由落下により帯電粉体の流動状態を形成することを特徴とするものである。   The neutralization method of the invention according to claim 2 of the present invention is characterized in that in the neutralization method of the invention according to claim 1, the flow state of the charged powder is formed by free fall of the powder.

また本発明の請求項3に係る発明の除電方法は、上記請求項1に係る発明の除電方法において粉体の搬送気体にイオン化した不活性ガスを用いることにより帯電粉体の流動状態を形成することを特徴とするものである。   According to a third aspect of the present invention, there is provided a static elimination method for forming a fluidized state of a charged powder by using an ionized inert gas as a powder carrier gas in the neutralization method according to the first aspect of the present invention. It is characterized by this.

またさらに本発明の請求項4に係る発明の除電方法は、上記請求項1〜3のいずれか1項の発明の除電方法において、無機粉体が帯電粉体である場合、前記無機粉体を2〜6kg/分で供給しながら流動状態を形成し、前記流動状態にある無機粉体に前記イオン化した不活性ガスを30〜300L/分で供給しつつ、前記無機粉体を前記イオン化した不活性ガスに30秒〜2分接触することにより帯電量を低減することを特徴とするものである。   Furthermore, the static elimination method of the invention according to claim 4 of the present invention is the static elimination method according to any one of claims 1 to 3, wherein the inorganic powder is a charged powder. A flow state is formed while supplying at 2 to 6 kg / min, and the ionized inert gas is supplied to the inorganic powder in the flow state at 30 to 300 L / min while the ionized inert gas is supplied to the inorganic powder. The charge amount is reduced by contact with the active gas for 30 seconds to 2 minutes.

請求項1に係る発明の除電方法によれば、イオン化した不活性ガスにより除電を行うため除電効果が高く、不活性ガス単独での除電よりも短時間で効率的に帯電した粉体を電気的に中和することができるとともに、支燃性ガスを用いないため安全性に優れた除電を行うことができる。また、前記不活性ガスを流動状態にある帯電粉体に供給するため連続的な処理が可能であるとともに、粉体層の内部まで除電を行え、処理粉体全体の帯電量を均質化することができ、配管内壁などへの粉体の付着を低減することができるため帯電粉体が用いられる製造工程に利用すれば短時間の搬送処理が可能であり、計量誤差も低減されるため生産効率を改善することができる。さらに、イオン化した不活性ガスを供給することにより除電を行うため除電条件の変更が容易であり、帯電量の異なる粉体を除電する場合も帯電粉体に適した所望の除電を行うことができる。   According to the static elimination method of the invention according to claim 1, since the static elimination is performed with the ionized inert gas, the static elimination effect is high, and the electrically charged powder is electrically charged in a shorter time than the static elimination with the inert gas alone. In addition to neutralization, it is possible to carry out static elimination with excellent safety because no flammable gas is used. In addition, since the inert gas is supplied to the charged powder in a fluidized state, continuous processing is possible, and charge removal can be performed to the inside of the powder layer, so that the charge amount of the entire processed powder is uniformized. And can reduce the adhesion of powder to the inner wall of the pipe, etc., so that it can be used for manufacturing processes where charged powder is used, so that it can be transported in a short time, and the measurement error is also reduced, resulting in production efficiency. Can be improved. Further, since the charge removal is performed by supplying an ionized inert gas, it is easy to change the charge removal conditions, and even when a powder with a different charge amount is removed, a desired charge removal suitable for the charged powder can be performed. .

請求項2に係る発明の除電方法によれば、帯電粉体の流動状態を自由落下によって形成するため製造プロセスで粉体を搬送する途中での除電が可能であり、別途除電処理設備を設ける必要がない。また、本発明の除電方法は短時間での除電が可能であるため、粉体供給部から粉体を搬送する際に粉体を自由落下させることによって流動状態を形成しても十分に除電することができる。   According to the static elimination method of the invention according to claim 2, since the flow state of the charged powder is formed by free fall, it is possible to eliminate static electricity while the powder is being conveyed in the manufacturing process, and it is necessary to separately provide a static elimination treatment facility. There is no. In addition, since the static elimination method of the present invention can perform static elimination in a short time, even when a fluidized state is formed by freely dropping the powder when the powder is conveyed from the powder supply unit, the static elimination is sufficiently performed. be able to.

請求項3に係る発明の除電方法によれば、帯電量が多い帯電粉体や除電後の帯電量を低下させたい場合で、粉体の自由落下では帯電粉体とイオン化した不活性ガスの接触時間が十分確保できない場合に、粉体の搬送気体にイオン化した不活性ガスが用いられるため、粉体を十分に除電することができ、配管などへの付着をさらに低減することができる。   According to the static elimination method of the invention according to claim 3, in the case where it is desired to reduce the charged powder having a large charge amount or the charge amount after static elimination, contact between the charged powder and the ionized inert gas in the free fall of the powder. Since ionized inert gas is used as the carrier gas for the powder when sufficient time cannot be secured, the powder can be sufficiently discharged, and adhesion to piping and the like can be further reduced.

請求項4に係る発明の除電方法によれば、帯電粉体が無機粉体である場合に帯電量を低減し、有機溶媒などの可燃性液体と混合する積層板製造時において製造工程の安全性と生産効率を改善することができる。   According to the static elimination method of the invention according to claim 4, when the charged powder is an inorganic powder, the charge amount is reduced, and the safety of the manufacturing process at the time of manufacturing a laminated board mixed with a combustible liquid such as an organic solvent. And can improve the production efficiency.

(実施の形態1)
図1は本発明の実施の一形態に係る除電方法を実施する処理装置の一例を示す概略構成図であり、樹脂製の配管2、混合槽3及び配管2の途中で帯電粉体1を除電するためのイオン化した不活性ガス5を配管2内に供給する不活性ガス供給部4からなっている。また、処理装置は防爆エリア内に電気的に接地された状態で配置されており、図示していないが配管2の上方には粉体供給部である原料タンクが配置されており、不活性ガス供給部4は不活性ガスをイオン化する除電装置と繋がっている。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram showing an example of a processing apparatus for performing a static elimination method according to an embodiment of the present invention, in which a charged powder 1 is neutralized in the middle of a resin pipe 2, a mixing tank 3 and a pipe 2. It consists of an inert gas supply unit 4 that supplies ionized inert gas 5 to the pipe 2. Further, the processing apparatus is disposed in an explosion-proof area in a state of being electrically grounded. Although not shown, a raw material tank as a powder supply unit is disposed above the pipe 2, and an inert gas is provided. The supply part 4 is connected with the static elimination apparatus which ionizes an inert gas.

本発明において除電される帯電粉体1としては、具体的には、例えば、シリカ粉体、タルク粉体、アルミナ粉体などの無機粉体や高分子化合物などの有機粉体などを挙げることができる。特にシリカ粉体は微粒子になる程帯電量多くなり、積層板製造の工業原料であるシリカ粉体では粒径が1〜100μmの微粒子が使用されているため、各機器を接地等する除電では十分な除電を行うことができず除電時間が長時間化する傾向があり、また粉体を混合槽3に搬送する際、粉体供給部と混合槽3を繋ぐ配管2の内壁に付着した状態になるとともに、混合槽3で可燃性の有機溶媒などが投入されている場合には安全性に問題がある。例えば上記のようなシリカ粉体は除電されていない場合40kV程度の帯電量であるが、帯電による配管内壁への付着や放電を回避するためには20kV未満、好ましくは10kV以下にする必要がある。   Specific examples of the charged powder 1 to be neutralized in the present invention include inorganic powders such as silica powder, talc powder, and alumina powder, and organic powders such as polymer compounds. it can. In particular, the amount of charge increases as the silica powder becomes finer, and the silica powder, which is an industrial raw material for laminate production, uses fine particles with a particle size of 1 to 100 μm. The charge removal time tends to be prolonged, and when the powder is transported to the mixing tank 3, it is attached to the inner wall of the pipe 2 connecting the powder supply unit and the mixing tank 3. In addition, when a combustible organic solvent or the like is charged in the mixing tank 3, there is a problem in safety. For example, the above silica powder has a charge amount of about 40 kV when it is not neutralized, but it is necessary to make it less than 20 kV, preferably 10 kV or less, in order to avoid adhesion to the inner wall of the pipe and discharge due to charging. .

このため本発明では原料タンクから混合槽3へ粉体を搬送する際に配管2の途中で配管2の粉体供給口から排出口の一方向に自由落下して流動状態にある帯電粉体1にイオン化した不活性ガス5を配管2内に供給し、帯電粉体1が所定の帯電量となるようにガス流量を調節して連続的に除電を行う。   Therefore, in the present invention, when the powder is transported from the raw material tank to the mixing tank 3, the charged powder 1 is in a fluid state by freely falling in one direction from the powder supply port of the pipe 2 to the discharge port in the middle of the pipe 2. Then, the ionized inert gas 5 is supplied into the pipe 2, and the charge is continuously removed by adjusting the gas flow rate so that the charged powder 1 has a predetermined charge amount.

本発明の除電装置には従来から公知の帯電を中和するためのイオンを発生する装置を使用することができ、窒素あるいはアルゴンなどの不活性ガスをイオン化できるものであれば特に制限されない。例えば、電極に高電圧を印加し、コロナ放電を発生させて電極周囲のガスを正及び負にイオン化する方法や、不活性ガスに軟X線などのエネルギーを照射しイオン化する方法などを挙げることでき、これらの中でも電圧の印加によって正及び負イオンを交互に発生する交流タイプの除電装置が好ましい。このような除電装置を用いると、電極部を通過する不活性ガスの流量によってイオン量を制御することができる。好適な市販の除電装置としては春日電機株式会社製のPAS801ALなどがある。   As the static eliminator of the present invention, a conventionally known device for generating ions for neutralizing the charge can be used, and there is no particular limitation as long as it can ionize an inert gas such as nitrogen or argon. For example, a method of applying a high voltage to the electrode to generate corona discharge to positively and negatively ionize the gas around the electrode, a method of ionizing an inert gas by irradiating energy such as soft X-rays, etc. Among them, an AC type static eliminator that generates positive and negative ions alternately by applying a voltage is preferable. If such a static elimination apparatus is used, the amount of ions can be controlled by the flow rate of the inert gas passing through the electrode portion. A suitable commercially available static neutralizer includes PAS801AL manufactured by Kasuga Electric Co., Ltd.

イオン化した不活性ガス5の帯電粉体1への供給方法は特に制限されず、ファンなどによる送風以外に、圧縮ガスによる吹き付け、配管内を減圧することによる吸引などを用いることができる。   The method for supplying the ionized inert gas 5 to the charged powder 1 is not particularly limited, and in addition to blowing with a fan or the like, blowing with a compressed gas, suction by reducing the pressure in the piping, or the like can be used.

本発明において帯電粉体1がシリカ粉体などの微粒子の無機粉体である場合、20kV未満の帯電量に効率的に除電するため配管内へ供給する無機粉体の量は、2〜6kg/分とすることが好ましい。また、その際イオン化した不活性ガスの流量としては、30〜300L/分とすることが好ましく、100〜200L/分とすることがより好ましい。無機粉体の量を2kg/分以上、イオン化した不活性ガスの流量を30L/分以上とすることにより効率的な除電を行うことができ、無機粉体の量を6kg/分以下、イオン化した不活性ガスの流量を300L/分以下とすることにより微細な粉体を用いた場合でも配管2内での浮遊を抑制し混合槽3への落下時間を低減することができる。また、無機粉体が除電部である配管2内でイオン化した不活性ガスと接触する接触時間は、30秒〜2分とすることが好ましく、1〜2分とすることがより好ましい。接触時間を30秒〜2分とすることにより、帯電量を10kV以下に低減し、微細な粉体の付着も防止することができるとともに、処理の効率化を図ることができる。   In the present invention, when the charged powder 1 is a fine inorganic powder such as silica powder, the amount of the inorganic powder supplied into the pipe for efficient charge removal to a charge amount of less than 20 kV is 2-6 kg / Minutes are preferred. In addition, the flow rate of the inert gas ionized at that time is preferably 30 to 300 L / min, and more preferably 100 to 200 L / min. By making the amount of the inorganic powder 2 kg / min or more and the flow rate of the ionized inert gas 30 L / min or more, efficient neutralization can be performed, and the amount of the inorganic powder is ionized 6 kg / min or less. By setting the flow rate of the inert gas to 300 L / min or less, even when a fine powder is used, floating in the pipe 2 can be suppressed and the dropping time to the mixing tank 3 can be reduced. Moreover, it is preferable to set it as 30 second-2 minutes, and it is more preferable to set it as 1-2 minutes as the contact time which the inorganic powder contacts with the ionized inert gas in the piping 2 which is a static elimination part. By setting the contact time to 30 seconds to 2 minutes, the charge amount can be reduced to 10 kV or less, the adhesion of fine powder can be prevented, and the processing efficiency can be increased.

上記のような除電条件で除電を行うと、無機粉体が十分に除電されるため除電部である配管2内のみを不活性ガスで充填すれば良く混合槽内などを不活性ガス雰囲気とする必要がなくなるという利点も有する。本発明において帯電粉体の除電後の帯電量は処理時間を長時間とすることにより0kVとすることもできるが、生産効率が低減するため帯電粉体の放電発生電位などを考慮して所定の帯電量となるように除電すればよい。   If neutralization is performed under the above-described neutralization conditions, the inorganic powder is sufficiently neutralized, so it is sufficient to fill the inside of the pipe 2 that is the neutralization section with an inert gas, and the inside of the mixing tank is made an inert gas atmosphere. There is also an advantage that it is not necessary. In the present invention, the charge amount after neutralization of the charged powder can be set to 0 kV by increasing the processing time. However, in order to reduce the production efficiency, a predetermined amount is considered in consideration of the discharge generation potential of the charged powder. What is necessary is just to neutralize so that it may become charge amount.

上記のような除電方法によって帯電粉体を除電することにより、微粒子の嵩高い粉体であっても配管内を自由落下する流動状態で除電されるため混合槽に投入される処理粉体全体を均一に除電することができる。また、帯電粉体を粉体供給部から自由落下させることにより帯電粉体の流動状態を形成しているため処理設備を別途設ける必要もなく、連続的な除電が可能である。さらに、イオン化した不活性ガスを供給することにより除電を行っているため電荷の中和が速く、配管内を自由落下する短時間の処理であっても、十分な除電を行うことができる。   By neutralizing the charged powder by the above-mentioned static elimination method, even if it is a bulky powder of fine particles, the entire treated powder charged in the mixing tank is removed because it is statically eliminated in a fluidized state where it falls freely in the pipe. The charge can be removed uniformly. In addition, since the charged powder is in a fluidized state by freely dropping the charged powder from the powder supply unit, it is not necessary to separately provide a processing facility, and continuous charge removal is possible. Further, since neutralization is performed by supplying an ionized inert gas, neutralization of charges is fast, and sufficient neutralization can be performed even in a short-time treatment in which free fall in the piping.

(実施の形態2)
本発明は、実施の形態1において混合槽への供給前に除電した粉体を一旦保持し、その状態でさらにイオン化した不活性ガスで除電することも好ましい形態である。
(Embodiment 2)
In the present invention, it is also a preferred embodiment that the powder that has been neutralized before being supplied to the mixing tank in the first embodiment is temporarily retained, and then further neutralized with an ionized inert gas.

帯電量を更に低減したい場合や大量の帯電粉体を除電処理する場合、自由落下による流動状態でイオン化した不活性ガスを供給するだけでなく、除電した粉体を混合槽への供給前に更に除電することが好ましい。   If you want to further reduce the amount of charge, or if you want to remove a large amount of charged powder, not only supply the inert gas ionized in the flow state due to free fall, but also before removing the discharged powder into the mixing tank It is preferable to remove static electricity.

図2は本実施の形態の処理装置の一例を示す概略構成図であり、配管2の混合槽3側の端部に落下してきた粉体を混合槽3に供給する前に一旦保持できるようになっている以外は実施の形態1と同様である。このため、実施の形態1と同じ部分については説明を省略し、配管2の端部での除電処理について以下に述べる。   FIG. 2 is a schematic configuration diagram showing an example of the processing apparatus of the present embodiment, so that the powder falling on the end of the pipe 2 on the mixing tank 3 side can be temporarily held before being supplied to the mixing tank 3. It is the same as that of Embodiment 1 except having become. For this reason, description is abbreviate | omitted about the same part as Embodiment 1, and the static elimination process in the edge part of the piping 2 is described below.

図2に示すように粉体供給部から配管2に搬送され自由落下して流動状態にある帯電粉体1は不活性ガス供給部4からのイオン化した不活性ガス5により一定の帯電量まで除電され配管内を搬送される。配管2の混合槽3側の端部は搬送されてきた粉体が堆積するようにダンパ6により閉口されており、この堆積した粉体にさらに一定時間イオン化した不活性ガス5を粉体に供給できるようになっている。本実施の形態における帯電粉体の量及びイオン化した不活性ガス5の流量は実施の形態1と同じ流量とすることができ、配管2の端部で堆積した粉体への供給時間は、1〜2分とすることが好ましい。配管2の端部での除電が終了すると、ダンパ6を開口することにより混合槽3へ搬送される。なお、本実施の形態では配管2の混合槽3側の端部で粉体を保持できる構成としているが、イオン化した不活性ガスを供給できる構造であれば配管2とは別に粉体保持部を設けることもできる。   As shown in FIG. 2, the charged powder 1 that is transported from the powder supply unit to the pipe 2 and freely falls and is in a fluid state is discharged to a certain charge amount by the ionized inert gas 5 from the inert gas supply unit 4. And transported in the piping. The end of the pipe 2 on the side of the mixing tank 3 is closed by a damper 6 so that the conveyed powder is deposited, and an inert gas 5 ionized for a certain period of time is supplied to the deposited powder. It can be done. The amount of the charged powder and the flow rate of the ionized inert gas 5 in this embodiment can be the same as those in the first embodiment, and the supply time to the powder deposited at the end of the pipe 2 is 1 It is preferable to set it to -2 minutes. When the charge removal at the end of the pipe 2 is completed, the damper 6 is opened and conveyed to the mixing tank 3. In the present embodiment, the powder can be held at the end of the pipe 2 on the mixing tank 3 side. However, if the structure can supply ionized inert gas, the powder holding section is provided separately from the pipe 2. It can also be provided.

また本実施の形態では、帯電粉体1の配管2への供給を所定量に分割してバッチ処理で行うことが好ましい。バッチ処理を行うことにより配管2の端部での堆積量を低減できるため堆積した粉体層の除電を短時間で行うことができ、処理効率を向上することができる。   Moreover, in this Embodiment, it is preferable to divide the supply to the piping 2 of the charged powder 1 into predetermined amount, and to perform by batch processing. Since the amount of deposition at the end of the pipe 2 can be reduced by performing batch processing, the accumulated powder layer can be neutralized in a short time, and the processing efficiency can be improved.

(実施の形態3)
本発明は実施の形態1において除電前に予め帯電粉体の帯電量を測定し、その帯電量の測定結果によって除電条件を変更することも好ましい形態である。
(Embodiment 3)
The present invention is also a preferred embodiment in which the charge amount of the charged powder is measured in advance before the charge removal in the first embodiment, and the charge removal condition is changed according to the measurement result of the charge amount.

除電前に帯電粉体の帯電量を予め測定することにより適切な除電ができるため処理の短時間化が測れるとともに、逆極性への帯電を防止することができるため好ましい。   It is preferable to measure the charge amount of the charged powder before the charge removal in advance, so that appropriate charge removal can be performed, so that the processing time can be shortened and the charge to the reverse polarity can be prevented.

図3は本実施の形態の処理装置の一例を示す概略構成図であり、配管2の上方に帯電粉体1の帯電量を測定する測定部7が配置されており、測定部7内にある帯電粉体1の電位を測定できるようになっている以外は実施の形態1と同様である。このため、実施の形態1と同じ部分については説明を省略し、測定部7での処理について以下に述べる。   FIG. 3 is a schematic configuration diagram illustrating an example of the processing apparatus according to the present embodiment. A measurement unit 7 that measures the charge amount of the charged powder 1 is disposed above the pipe 2 and is in the measurement unit 7. The same as the first embodiment except that the potential of the charged powder 1 can be measured. For this reason, the description of the same parts as those in the first embodiment is omitted, and the processing in the measurement unit 7 will be described below.

測定部7は静電気センサなどの帯電量測定器8と接続されており、測定部7内の帯電粉体1の帯電量や極性などを検出できるようになっている。このような測定器を用いて粉体の帯電量を測定する場合、例えば測定部7の内壁面に帯電量測定器8の端子を設置し、その端子により落下する帯電粉体の帯電量を測定することができる。   The measurement unit 7 is connected to a charge amount measuring device 8 such as an electrostatic sensor so that the charge amount and polarity of the charged powder 1 in the measurement unit 7 can be detected. When measuring the charge amount of the powder using such a measuring device, for example, the terminal of the charge amount measuring device 8 is installed on the inner wall surface of the measuring unit 7, and the charge amount of the charged powder falling by the terminal is measured. can do.

本実施の形態では上記で測定された帯電量に基づきイオン化した不活性ガス5の流量、粉体の供給量、接触時間などの除電条件が制御される。例えば、粉体の帯電量を電位として検出し、その検出結果をアナログ信号に変換し、それを不活性ガス供給部4のガス流量弁の開度にフィードバックして、除電された粉体の帯電量が所定範囲になるように不活性ガス供給部4から配管2内へのガス流量を制御する方法が挙げられる。   In the present embodiment, the static elimination conditions such as the flow rate of the inert gas 5 ionized, the supply amount of powder, and the contact time are controlled based on the charge amount measured above. For example, the charge amount of the powder is detected as a potential, and the detection result is converted into an analog signal, which is fed back to the opening of the gas flow valve of the inert gas supply unit 4 to charge the discharged powder. There is a method of controlling the gas flow rate from the inert gas supply unit 4 into the pipe 2 so that the amount falls within a predetermined range.

(実施の形態4)
上記各実施の形態では粉体の自由落下により帯電粉体の流動状態を形成する場合について説明したが、本発明は帯電粉体をイオン化した不活性ガスで搬送することにより帯電粉体の流動状態を形成して除電することも好ましい形態である。
(Embodiment 4)
In each of the embodiments described above, the case where the flow state of the charged powder is formed by the free fall of the powder has been described. However, the present invention is directed to the flow state of the charged powder by conveying the charged powder with an ionized inert gas. It is also a preferable form to form a static electricity.

帯電量が多い帯電粉体や除電後の帯電量を低下させたい場合で、粉体の自由落下では帯電粉体とイオン化した不活性ガスの接触時間が十分確保できない場合に搬送気体に除電のためのイオン化した不活性ガスを用いることによって効率的な除電ができるため好ましい。また、微粒子の帯電粉体である場合、気体で搬送することにより粉体が浮遊状態となるため処理粉体全体の除電を効率的に行うことができる。   If you want to reduce the charge amount of a charged powder with a large amount of charge or the charge removal, and if the contact time between the charged powder and the ionized inert gas cannot be secured sufficiently by free fall of the powder, It is preferable to use an ionized inert gas because efficient charge removal can be performed. In addition, in the case of a charged fine particle powder, since the powder is in a floating state by being conveyed in a gas, the entire treated powder can be neutralized efficiently.

図4は本実施の形態の処理装置の一例を示す概略構成図である。処理装置は他の実施の形態と同様に防爆エリア内に電気的に接地された状態で配置されており、配管2は一方の端部がイオン化した不活性ガス5の不活性ガス供給部4と、他方の端部が真空ポンプ9と繋がっていて、不活性ガス供給部4から流入したガスが真空ポンプ9により吸引され配管2の内部にガスの流路が形成できるようになっている。そして、粉体供給部であるホッパー10から配管内に投入された帯電粉体1は配管2内を流れるイオン化した不活性ガス5によって真空ポンプ9側に搬送され粉体の供給口から排出口に向かって一方向に進行する流動状態が形成される。この搬送時に配管2内を流動する帯電粉体1がイオン化した不活性ガス5と接触するため、処理粉体全体を連続して効率的に除電することができる。   FIG. 4 is a schematic configuration diagram illustrating an example of the processing apparatus according to the present embodiment. The processing apparatus is disposed in the explosion-proof area in the state of being electrically grounded as in the other embodiments, and the pipe 2 has an inert gas supply unit 4 of the inert gas 5 whose one end is ionized. The other end is connected to the vacuum pump 9, and the gas flowing in from the inert gas supply unit 4 is sucked by the vacuum pump 9 so that a gas flow path can be formed inside the pipe 2. Then, the charged powder 1 put into the pipe from the hopper 10 which is a powder supply unit is conveyed to the vacuum pump 9 side by the ionized inert gas 5 flowing in the pipe 2 and is transferred from the powder supply port to the discharge port. A flow state is formed that travels in one direction. Since the charged powder 1 flowing in the pipe 2 during the conveyance comes into contact with the ionized inert gas 5, the entire treated powder can be discharged efficiently and continuously.

真空ポンプ9側の配管端部には所定サイズのスクリーンなどからなる分離部11が形成されており、イオン化した不活性ガス5により搬送されてきた粉体はこの分離部11によりガスと粉体を分離できるようになっている。そして、分離された粉体は下方に設置された混合槽3内に投入される。   A separation part 11 made of a screen of a predetermined size or the like is formed at the pipe end on the vacuum pump 9 side, and the powder conveyed by the ionized inert gas 5 is separated into gas and powder by the separation part 11. It can be separated. And the isolate | separated powder is thrown in in the mixing tank 3 installed below.

本実施の形態において帯電粉体がシリカ粉体などの微粒子の無機粉体である場合、配管内に供給する無機粉体の量及びイオン化した不活性ガスの流量は実施の形態1と同様の範囲とすることができるが、搬送のために粉体の量は、3〜6kg/分とし、ガス流量を、100〜200L/分とすることが好ましい。   In the present embodiment, when the charged powder is a fine inorganic powder such as silica powder, the amount of the inorganic powder supplied into the pipe and the flow rate of the ionized inert gas are in the same range as in the first embodiment. However, it is preferable that the amount of powder for conveyance is 3 to 6 kg / min and the gas flow rate is 100 to 200 L / min.

(その他の実施の形態)
上記で説明された各実施の形態はいずれも一例であり、本発明は上記実施の形態で説明されていない各形態を組み合わせた形態とすることもできる。また、上記の各実施の形態ではいずれも粉体供給部と混合槽が配管で連続的に繋がった処理装置で一方向に進行する帯電粉体の流動状態を形成した配管内を除電部として除電を行う場合について説明したが、本発明はこれに限定されるものではない。すなわち、連続した工程を取る必要のない製造プロセスでは除電処理を独立した工程とし、除電処理を行った後に他の工程に粉体を移送することもでき、その際ランダムな流動状態の帯電粉体にイオン化した不活性ガスを供給して除電することもできる。なお、具体的な各機器の形状、取り付け位置などは使用される製造工程に合せて適宜変更可能である。例えば、上記各実施の形態では直線状の配管を用いているが、帯電粉体を搬送し、除電処理ができれば必ずしもこれに限定されるものでなく、湾曲した形状のものであってもよい。
(Other embodiments)
Each of the embodiments described above is an example, and the present invention may be combined with each of the embodiments not described in the above embodiments. Further, in each of the above embodiments, the neutralization unit uses the inside of the pipe in which the flow state of the charged powder traveling in one direction is formed in the processing apparatus in which the powder supply unit and the mixing tank are continuously connected by the pipe as the static elimination unit. However, the present invention is not limited to this. In other words, in a manufacturing process that does not require a continuous process, the charge removal process is an independent process, and after performing the charge removal process, the powder can be transferred to another process. It is also possible to remove the charge by supplying an ionized inert gas. It should be noted that the specific shape and mounting position of each device can be appropriately changed according to the manufacturing process used. For example, in each of the above embodiments, a straight pipe is used. However, the present invention is not necessarily limited to this as long as the charged powder can be transported and the charge removal process can be performed, and may have a curved shape.

実施の形態1の処理装置を利用し、表1に示す各条件でシリカ粉体(粒径:1μm)の除電処理を行った。このシリカ粉体の除電前の帯電量は、粉体供給口側の配管に設置した静電気測定器(春日電機株式会社製,KSD−0103)により測定したところ40kVであった。   Using the treatment apparatus of the first embodiment, the charge removal treatment of the silica powder (particle size: 1 μm) was performed under the conditions shown in Table 1. The amount of charge of the silica powder before static elimination was 40 kV as measured by a static electricity measuring device (KSD-0103, manufactured by Kasuga Electric Co., Ltd.) installed in the pipe on the powder supply port side.

原料タンクから樹脂製の配管(径:80mmφ,長さ:8m)にシリカ粉体50kgを連続的に投入した。イオン化した不活性ガスの供給は、窒素ガスを除電装置に供給し、交流高電圧アンプにより通過する不活性ガスをイオン化した後、このガスを配管内にファンによる送風で供給して自由落下により搬送されるシリカ粉体の除電を行い、配管の下方に配置した混合槽にシリカ粉体を充填した。各条件による除電の違いを評価するため、混合槽に充填されたシリカ粉体の帯電量及び投入量に対する充填量の計量誤差を測定した。対比のためイオン化していない窒素ガスを供給して除電した場合と除電を行わずに充填した場合とを併せて示す。   From a raw material tank, 50 kg of silica powder was continuously charged into a resin pipe (diameter: 80 mmφ, length: 8 m). To supply the ionized inert gas, nitrogen gas is supplied to the static eliminator, the inert gas passing through the AC high-voltage amplifier is ionized, and then this gas is supplied into the pipe by a fan and transported by free fall. The silica powder was neutralized, and the silica powder was filled in a mixing tank disposed below the pipe. In order to evaluate the difference in charge removal depending on each condition, the charge amount of the silica powder filled in the mixing tank and the weighing error of the filling amount with respect to the charged amount were measured. For comparison, a case where neutralization is performed by supplying non-ionized nitrogen gas and a case where charging is performed without performing neutralization are shown together.

Figure 2006302793
Figure 2006302793

表1に示すように、シリカ粉体の量を3〜6kg/分、ガス流量を30〜200L/分で供給し、接触時間1〜2分の範囲で除電することにより投入量に対して計量誤差を3%以内とでき配管内での付着が低減されていることが分かる。また除電後の帯電量は10kV以下であり、放電発生のない安全な粉体まで除電できることが分かる。   As shown in Table 1, the amount of silica powder is 3 to 6 kg / min, the gas flow rate is 30 to 200 L / min, and the charge is measured in the range of contact time 1 to 2 min. It can be seen that the error can be within 3% and the adhesion in the piping is reduced. Moreover, the charge amount after static elimination is 10 kV or less, and it can be seen that it is possible to eliminate static electricity even with no discharge.

実施の形態2の処理装置を利用し、配管端部のダンパを閉じた状態で実験1の条件と同じ除電条件で配管内に投入されたシリカ粉体に窒素ガスをイオン化した不活性ガスを供給して除電を行うとともに、堆積したシリカ粉体層にさらに1分間連続してガスを供給して除電を行った。この結果、混合槽に充填されたシリカ粉体の帯電量は0kVであり、計量誤差は1%以内であった。   Using the treatment apparatus of the second embodiment, an inert gas obtained by ionizing nitrogen gas is supplied to the silica powder charged in the pipe under the same static elimination conditions as in Experiment 1 with the damper at the pipe end closed. Then, the charge was removed, and the gas was discharged by continuously supplying gas to the deposited silica powder layer for 1 minute. As a result, the charge amount of the silica powder filled in the mixing tank was 0 kV, and the measurement error was within 1%.

実施の形態4の処理装置を利用し、配管(径:80mmφ,長さ:8m)に、シリカ粉体を6kg/分で投入し、窒素ガスをイオン化した不活性ガスをガス流量200L/分で供給し、配管内を真空ポンプで吸引しながら接触時間1分で実験1と同様にシリカ粉体の除電を行った。この結果混合槽に充填されたシリカ粉体の帯電量は7kVであり、計量誤差は1%以内であった。   Using the processing apparatus of the fourth embodiment, silica powder is introduced into a pipe (diameter: 80 mmφ, length: 8 m) at 6 kg / min, and an inert gas obtained by ionizing nitrogen gas is supplied at a gas flow rate of 200 L / min. The silica powder was discharged in the same manner as in Experiment 1 with a contact time of 1 minute while suctioning the inside of the pipe with a vacuum pump. As a result, the charge amount of the silica powder filled in the mixing tank was 7 kV, and the measurement error was within 1%.

本発明の実施の形態1の処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus of Embodiment 1 of this invention. 本発明の実施の形態2の処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus of Embodiment 2 of this invention. 本発明の実施の形態3の処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus of Embodiment 3 of this invention. 本発明の実施の形態4の処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus of Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 帯電粉体
2 配管
3 混合槽
4 不活性ガス供給部
5 イオン化した不活性ガス
7 測定部
DESCRIPTION OF SYMBOLS 1 Charged powder 2 Piping 3 Mixing tank 4 Inert gas supply part 5 Ionized inert gas 7 Measuring part

Claims (4)

帯電粉体の除電方法であって、流動状態にある前記帯電粉体にイオン化した不活性ガスを供給することにより除電を行う除電方法。   A method for neutralizing a charged powder, wherein the charge is removed by supplying an ionized inert gas to the charged powder in a fluidized state. 前記流動状態にある帯電粉体が、粉体の自由落下によるものである請求項1に記載の除電方法。   The charge eliminating method according to claim 1, wherein the charged powder in the fluidized state is due to free fall of the powder. 前記流動状態にある帯電粉体が、粉体の搬送気体に前記イオン化した不活性ガスを用いることによるものである請求項1に記載の除電方法。   The charge eliminating method according to claim 1, wherein the charged powder in the fluidized state is obtained by using the ionized inert gas as a powder carrier gas. 前記帯電粉体が無機粉体であり、前記無機粉体を2〜6kg/分で供給しながら流動状態を形成し、前記流動状態にある無機粉体に前記イオン化した不活性ガスを30〜300L/分で供給しつつ、前記無機粉体を前記イオン化した不活性ガスに30秒〜2分接触することにより除電を行う請求項1〜3のいずれか1項に記載の除電方法。   The charged powder is an inorganic powder, and a fluidized state is formed while supplying the inorganic powder at 2 to 6 kg / min, and the ionized inert gas is added to the fluidized inorganic powder in an amount of 30 to 300 L. The static elimination method of any one of Claims 1-3 which performs static elimination by contacting the said inorganic powder with the said ionized inert gas for 30 second-2 minutes, supplying at / min.
JP2005125980A 2005-04-25 2005-04-25 Static elimination method Expired - Fee Related JP4315123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125980A JP4315123B2 (en) 2005-04-25 2005-04-25 Static elimination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005125980A JP4315123B2 (en) 2005-04-25 2005-04-25 Static elimination method

Publications (2)

Publication Number Publication Date
JP2006302793A true JP2006302793A (en) 2006-11-02
JP4315123B2 JP4315123B2 (en) 2009-08-19

Family

ID=37470831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125980A Expired - Fee Related JP4315123B2 (en) 2005-04-25 2005-04-25 Static elimination method

Country Status (1)

Country Link
JP (1) JP4315123B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035003A (en) * 2009-07-29 2011-02-17 Tdk Corp Method of manufacturing dust core
JP2011225219A (en) * 2010-04-15 2011-11-10 Sumitomo Chemical Co Ltd Handling container and processing device for powder or mist
JP2013081917A (en) * 2011-10-12 2013-05-09 Matsui Mfg Co Apparatus for collecting powdered and granular material
JP2013133205A (en) * 2011-12-27 2013-07-08 Trinc:Kk Object conveying device
CN110592586A (en) * 2019-10-29 2019-12-20 岗春激光科技(江苏)有限公司 Powder feeding device
JP2019218186A (en) * 2018-06-21 2019-12-26 花王株式会社 Granule scattering device
CN112461884A (en) * 2020-12-07 2021-03-09 中国计量大学 Nano powder dispersing method and device based on ion flow control

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035003A (en) * 2009-07-29 2011-02-17 Tdk Corp Method of manufacturing dust core
JP2011225219A (en) * 2010-04-15 2011-11-10 Sumitomo Chemical Co Ltd Handling container and processing device for powder or mist
JP2013081917A (en) * 2011-10-12 2013-05-09 Matsui Mfg Co Apparatus for collecting powdered and granular material
JP2013133205A (en) * 2011-12-27 2013-07-08 Trinc:Kk Object conveying device
JP2019218186A (en) * 2018-06-21 2019-12-26 花王株式会社 Granule scattering device
JP7102244B2 (en) 2018-06-21 2022-07-19 花王株式会社 Granule spraying device
CN110592586A (en) * 2019-10-29 2019-12-20 岗春激光科技(江苏)有限公司 Powder feeding device
CN112461884A (en) * 2020-12-07 2021-03-09 中国计量大学 Nano powder dispersing method and device based on ion flow control

Also Published As

Publication number Publication date
JP4315123B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4315123B2 (en) Static elimination method
EP2906353B1 (en) Method and apparatus for electrostatic painting
JP2001189199A (en) Ion generator and charge neutralizing device
TWI397230B (en) Ion generating device
GB0229004D0 (en) Powder coating apparatus and process
AU639046B2 (en) Method of electrostatically depositing smaller particles fir st
US3786309A (en) Electrostatic powder spraying method and apparatus
EP2960359B1 (en) Deposition method and deposition apparatus
JP2000311797A (en) Static eliminator and its method
JP4448458B2 (en) Substrate cleaning method and substrate cleaning apparatus
CA2147950A1 (en) Vapor ionizing apparatus
JP3049542B2 (en) How to adjust the mixing ratio of positive and negative ions
JP2000021596A (en) Air ionizing device and method
Sharma et al. Modification of electrostatic properties of polymer powders by atmospheric pressure plasma treatment
JP2838856B2 (en) Corona air ionizer
JP5222572B2 (en) Working room
JP3454842B2 (en) Air ionizer
JPH0547488A (en) Static eliminator for clean room
JP2005001818A (en) Device for static-eliminating, supplying, and conveying charged powder
JP2003236754A (en) Blast method and device
JPS6047400A (en) Device for removing soltion charge
JP2006075658A (en) Plasma treatment method of insulating nanoparticle and plasma treatment apparatus
JP2021163692A (en) Ionizer and static elimination system
JP2010073496A (en) Static eliminator
JPH0724361A (en) Static powder separation and classification apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees