JP2006301551A - Dc motor rotation principle explaning device - Google Patents

Dc motor rotation principle explaning device Download PDF

Info

Publication number
JP2006301551A
JP2006301551A JP2005153045A JP2005153045A JP2006301551A JP 2006301551 A JP2006301551 A JP 2006301551A JP 2005153045 A JP2005153045 A JP 2005153045A JP 2005153045 A JP2005153045 A JP 2005153045A JP 2006301551 A JP2006301551 A JP 2006301551A
Authority
JP
Japan
Prior art keywords
simulated
pole
armature
polarity indicator
indicator lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005153045A
Other languages
Japanese (ja)
Inventor
Hisao Nishida
久雄 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005153045A priority Critical patent/JP2006301551A/en
Publication of JP2006301551A publication Critical patent/JP2006301551A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DC motor rotation principle explaning device which facilitates understanding of a multipolar DC motor through visual decision of the revolution principle of multipolar DC motor. <P>SOLUTION: The device enables learning of the rotation direction of a three-pole simulated armature 6 by the state of lighting of the three-pole simulated armature 6 which can be rotated manually, and N-polarity display lamps 21, 23 and 25 equipped to the poles 6a, 6b, and 6c, and S-polarity display lamps 22, 24 and 26, and a state of lighting of a simulated fixed field magnetic pole, N-polarity display lamps 27 and 29 of the simulated fixed field magnetic pole, and S-polarity display lamps 28 and 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、小学生あるいは中学生などにおいて学習する直流モーター(電動機)の回転原理を、視覚に訴えて理解させるための直流モーター回転原理説明器に関するものである。  The present invention relates to a direct current motor rotation principle explanation device for visually appealing and understanding the rotation principle of a direct current motor (electric motor) learned by elementary school students or junior high school students.

従来の直流モーター回転原理説明器としては、各種の用具や模型品などがあるが、ほとんどのものが、N・S2極の固定界磁極と2極形模擬電機子により説明するように構成されている(例えば、特許文献1参照)。
これらの用具や模型品などにより、直流モーターの回転原理をある程度理解させることができるが、実用されている直流モーターは、ほとんどが多極形のものである。従って、上記の2極形の用具や模型品では、小学生あるいは中学生などに十分に理解させることは困難であった。
There are various tools and models as conventional DC motor rotation principle explanation devices, but most of them are configured to be explained by N / S2 pole fixed field pole and two pole type simulated armature. (For example, refer to Patent Document 1).
These tools and models can give you some understanding of the rotation principle of DC motors, but most DC motors in practical use are multipolar. Therefore, it has been difficult for elementary school students or junior high school students to fully understand the above-mentioned bipolar tools and models.

特開2002−366026号公報JP 2002-366026 A

解決しようとする問題点は、直流モーターの回転原理と共に、多極形の回転原理を小学生あるいは中学生などに十分に理解させることが困難であったことにある。  The problem to be solved is that it was difficult for elementary school students or junior high school students to fully understand the multi-pole rotation principle as well as the rotation principle of the DC motor.

この発明に係る直流モーター回転原理説明器においては、3極形模擬電機子の各極に設けたN極性表示灯及びS極性表示灯と、模擬固定界磁極のN極性表示灯及びS極性表示灯との点灯状態により、3極形模擬電機子の回転方向を習得できるようにしたことを主要な特徴とする。また、第2の解決手段は、2極形模擬電機子を付属部品として備えることにより、2極形と3極形を比較することにより、多極形の直流モーターの回転原理及びその特徴を説明できるようにするものである。  In the DC motor rotation principle explanation device according to the present invention, an N-polarity indicator lamp and an S-polarity indicator lamp provided on each pole of a three-pole type simulated armature, and an N-polarity indicator lamp and an S-polarity indicator lamp of a simulated fixed field pole The main feature is that the rotation direction of the three-pole simulated armature can be learned by the lighting state. The second solution is to provide a two-pole simulated armature as an accessory, and compare the two-pole and three-pole types to explain the rotation principle and characteristics of a multi-pole DC motor. It is something that can be done.

この発明の直流モーター回転原理説明器は、単に直流モーターの回転原理だけでなく、実用されている直流モーターにおける、多極形の回転原理をわかり易く説明できるという利点がある。また、2極形の回転子に簡単に取替えできるので、2極形の回転子に比較して3極形(多極形)回転子の回転動作をわかり易く説明することができる。  The DC motor rotation principle explanation device of the present invention has an advantage that it can easily explain not only the rotation principle of the DC motor but also the multipolar rotation principle in a practical DC motor. In addition, since it can be easily replaced with a two-pole rotor, the rotation operation of a three-pole (multi-pole) rotor can be explained in an easy-to-understand manner compared to a two-pole rotor.

実施の形態1.
図1〜図8は、この発明の実施の形態1を示すもので、図1は斜視図、図2は平面図、図3は正面図、図4は整流子とブラシの関係を示す拡大斜視図、図5〜図8は電気回路図である。図において、1は木材または合成樹脂材で形成された基盤、2及び3は金属板で形成された軸受板であり、基盤1の所定位置に互いに対向するように立設されている。軸受板2及び3の両方または一方は軸受孔の部分に挿入溝2a(軸受板3の挿入溝3aは図示を省略)を設けて、後述の電機子軸4を上側から嵌込むことができるようになされている。4は回転できるように軸受板2及び3の間に支承された電機子軸であり、一方の先端に手動回転用ノブ5が設けてある。6は電機子軸4の中間部に装着された模擬電機子であり、合成樹脂板あるいは高強度の厚紙で120度間隔のY字形に形成されている。このY字形のそれぞれの先端は3極の磁極部6a,6b,6cに形成されている。7は模擬電機子コイルで、3極の磁極部6a,6b,6cに巻回されている。8は模擬整流子であり、電機子軸4の一端に装着されている。この模擬整流子8の3枚の整流子片8a,8b,8cは銅板または黄銅板で形成され、3枚の整流子片間および模擬整流子8と電機子軸4との間は絶縁されている。
Embodiment 1 FIG.
1 to 8 show a first embodiment of the present invention. FIG. 1 is a perspective view, FIG. 2 is a plan view, FIG. 3 is a front view, and FIG. 4 is an enlarged perspective view showing the relationship between a commutator and a brush. FIGS. 5 to 8 are electric circuit diagrams. In the figure, reference numeral 1 denotes a base made of wood or a synthetic resin material, and 2 and 3 are bearing plates made of a metal plate, and are erected at predetermined positions on the base 1 so as to face each other. Both or one of the bearing plates 2 and 3 is provided with an insertion groove 2a in the bearing hole portion (the insertion groove 3a of the bearing plate 3 is not shown) so that an armature shaft 4 described later can be fitted from above. Has been made. Reference numeral 4 denotes an armature shaft supported between the bearing plates 2 and 3 so that it can rotate, and a manual rotation knob 5 is provided at one end. Reference numeral 6 denotes a simulated armature attached to an intermediate portion of the armature shaft 4 and is formed of a synthetic resin plate or high-strength cardboard in a Y-shape with an interval of 120 degrees. Each Y-shaped tip is formed in a three-pole magnetic pole part 6a, 6b, 6c. A simulated armature coil 7 is wound around three magnetic pole portions 6a, 6b and 6c. 8 is a simulated commutator, which is attached to one end of the armature shaft 4. The three commutator pieces 8a, 8b, 8c of the simulated commutator 8 are formed of a copper plate or a brass plate, and the three commutator pieces and the simulated commutator 8 and the armature shaft 4 are insulated. Yes.

9は一対のブラシ片9a,9bからなるブラシであり、リン青銅板のような弾性を有する導電材で形成されたもので、一端が基盤1に固着され、他端は模擬整流子8と接触するように構成されている。10及び11は基盤1に立設された一対の模擬固定界磁極であり、合成樹脂板あるいは高強度の厚紙で形成され、模擬固定界磁極10と模擬固定界磁極11の間で、模擬電機子6の3極の磁極部6a,6b,6cが回転できるように配置されている。14,15は電源クリップであり、16aは直流電源の電池で、後述の模擬電機子6に設置される表示灯の直流電源になる。なお、電源クリップ14,15は、直流モーターの回転原理を説明する際、説明内容に応じて、電池16aのプラス極またはマイナス極に接続するための接続用具である。16b(図2及び図5に示す)も直流電源の電池で、後述の模擬固定界磁極10,11に設置される表示灯の直流電源になる。17(図5に示す)は模擬固定界磁極10,11に設置される表示灯の回路のメインスイッチ、18(図5に示す)は模擬電機子6に設置される表示灯の回路のメインスイッチである。20(図5に示す)は模擬固定界磁極変換スイッチである。  Reference numeral 9 denotes a brush composed of a pair of brush pieces 9a and 9b, which is formed of an elastic conductive material such as a phosphor bronze plate. One end is fixed to the base 1 and the other end is in contact with the simulated commutator 8. Is configured to do. Reference numerals 10 and 11 denote a pair of simulated fixed field magnetic poles erected on the base 1, which are formed of a synthetic resin plate or high-strength cardboard, and between the simulated fixed field magnetic pole 10 and the simulated fixed field magnetic pole 11. Six three-pole magnetic pole portions 6a, 6b, 6c are arranged so as to be rotatable. Reference numerals 14 and 15 denote power supply clips, and reference numeral 16a denotes a direct-current power supply battery which serves as a direct-current power supply for an indicator lamp installed in a simulated armature 6 described later. The power supply clips 14 and 15 are connection tools for connecting to the positive electrode or the negative electrode of the battery 16a according to the content of the description when the principle of rotation of the DC motor is described. Reference numeral 16b (shown in FIGS. 2 and 5) is also a battery of a DC power source, which serves as a DC power source for an indicator lamp installed in simulated fixed field magnetic poles 10 and 11 described later. 17 (shown in FIG. 5) is the main switch of the circuit of the indicator lamp installed on the simulated fixed field poles 10 and 11, and 18 (shown in FIG. 5) is the main switch of the circuit of the indicator lamp installed on the simulated armature 6. It is. Reference numeral 20 (shown in FIG. 5) denotes a simulated fixed field magnetic pole conversion switch.

21〜26は模擬電機子6の3極の磁極部6a,6b,6cに設置された極性表示灯である。即ち、磁極部6aにはN極性表示灯21とS極性表示灯22が設置されている。磁極部6bにはN極性表示灯23とS極性表示灯24が設置されている。磁極部6cにはN極性表示灯25とS極性表示灯26が設置されている。27〜30は模擬固定界磁極10,11に設置された極性表示灯である。即ち、模擬固定界磁極10にはN極性表示灯27とS極性表示灯28が設置されている。模擬固定界磁極11にはN極性表示灯29とS極性表示灯2が設置されている。上記において、N極性表示灯21,23,25,27,29は赤色の発光ダイオードを、S極性表示灯22、24,26,28,30は青色発光ダイオードを用いてある。
また、直流電源の電池16aの近傍には、電池16aの極性を表示するための+(プラス)極性表示灯31と−(マイナス)極性表示灯32が設置されている。この表示灯も発光ダイオードを用いてあるが、発光ダイオードの色は、赤色と青色でもよいし、他の色でもよい。なお、極性表示灯21〜32の発光ダイオードには、すべて、定電流ダイオードが直列に接続されているが、説明用の符号は省略してある。
Reference numerals 21 to 26 denote polarity indicator lamps installed on the three magnetic pole portions 6 a, 6 b, 6 c of the simulated armature 6. That is, the N polarity indicator lamp 21 and the S polarity indicator lamp 22 are installed in the magnetic pole part 6a. An N polarity indicator lamp 23 and an S polarity indicator lamp 24 are installed in the magnetic pole portion 6b. An N polarity indicator lamp 25 and an S polarity indicator lamp 26 are installed in the magnetic pole portion 6c. Reference numerals 27 to 30 denote polarity indicator lamps installed on the simulated fixed field magnetic poles 10 and 11. That is, the simulated fixed field magnetic pole 10 is provided with an N polarity indicator lamp 27 and an S polarity indicator lamp 28. The simulated fixed field magnetic pole 11 is provided with an N-polarity indicator lamp 29 and an S-polarity indicator lamp 2. In the above, the N polarity indicator lamps 21, 23, 25, 27, 29 use red light emitting diodes, and the S polarity indicator lamps 22, 24, 26, 28, 30 use blue light emitting diodes.
Also, a + (plus) polarity indicator lamp 31 and a-(minus) polarity indicator lamp 32 for displaying the polarity of the battery 16a are installed near the battery 16a of the DC power supply. Although this indicator lamp also uses a light emitting diode, the color of the light emitting diode may be red and blue, or other colors. Note that constant current diodes are all connected in series to the light emitting diodes of the polarity indicator lamps 21 to 32, but the reference numerals are omitted.

上記の構成部品において、模擬電機子6、模擬電機子コイル7、模擬整流子8、模擬固定界磁極10,11などは、教科書に示されたモーター学習用の挿絵と類似の形状・構造にするのが最善であるが、学習用の挿絵と異なる形状・構造であってもよい。なお、極性表示灯21〜32と、メインスイッチ17,18などとの関係は、図5に示す回路図のように構成されている。  In the above components, the simulated armature 6, the simulated armature coil 7, the simulated commutator 8, the simulated fixed field magnetic poles 10, 11, and the like have a shape and structure similar to the illustration for motor learning shown in the textbook. However, it may have a shape / structure different from the illustration for learning. The relationship between the polarity indicator lamps 21 to 32 and the main switches 17 and 18 is configured as shown in the circuit diagram of FIG.

上記構成の直流モーター回転原理説明器の動作について説明する。この説明において、図5の回路図上で、N極性表示灯21,23,25、27,29(赤色の発光ダイオード)が点灯しているときは、白色の丸印で表示してある。点灯していないときはダイオードの符号のままとする。同様に、S極性表示灯22、24,26,28、30(青色発光ダイオード)が点灯しているときは、黒色の丸印で表示してある。点灯していないときはダイオードの符号のままとする。そして、N極性表示灯21,23,25、27,29(赤色の発光ダイオード)の点灯は、永久磁石のN極性を意味するものであり、S極性表示灯22、24,26,28、30(青色発光ダイオード)の点灯は、永久磁石のS極性を意味するものである。  The operation of the DC motor rotation principle explanation device having the above configuration will be described. In this description, when the N polarity indicator lamps 21, 23, 25, 27, 29 (red light emitting diodes) are lit on the circuit diagram of FIG. 5, they are indicated by white circles. When it is not lit, the diode sign is used. Similarly, when the S polarity indicator lamps 22, 24, 26, 28, and 30 (blue light emitting diodes) are lit, they are indicated by black circles. When it is not lit, the diode sign is used. The lighting of the N polarity indicator lamps 21, 23, 25, 27, 29 (red light emitting diodes) means the N polarity of the permanent magnet, and the S polarity indicator lamps 22, 24, 26, 28, 30. Lighting of (blue light emitting diode) means the S polarity of the permanent magnet.

先ず、図5の状態において、メインスイッチ17,18をオンにする。このオンにより+極性表示灯31と−極性表示灯32が点灯する。メインスイッチ17,18のオンに続いて、電源クリップ14をブラシ片9aの回路に接続し、電源クリップ15をブラシ片9bの回路に接続する。この接続により、電池16aの+極→ブラシ片9a→整流子片8a→N極性表示灯21→整流子片8c→ブラシ片9b→電池16aの−極に至る回路が形成されて、磁極部6aのN極性表示灯21(赤色)が点灯する。また、電池16aの+極→ブラシ片9a→整流子片8a→S極性表示灯24→整流子片8b→S極性表示灯26→整流子片8c→ブラシ片9b→電池16aの−極に至る回路が形成されて、磁極部6bのS極性表示灯24(青色)と磁極部6cのS極性表示灯26(青色)が点灯する。
次に、模擬固定界磁極変換スイッチ20を図示のように上側にオンすると、電池16bの+極→S極性表示灯28→N極性表示灯29→電池16bの−極に至る回路が形成されて、模擬固定界磁極11のS極性表示灯27(青色)と模擬固定界磁極10のN極性表示灯29(赤色)が点灯する。これらの点灯状態を図6に示す。
First, in the state of FIG. 5, the main switches 17 and 18 are turned on. When this is turned on, the + polarity indicator lamp 31 and the -polarity indicator lamp 32 are lit. After the main switches 17 and 18 are turned on, the power clip 14 is connected to the circuit of the brush piece 9a, and the power clip 15 is connected to the circuit of the brush piece 9b. By this connection, a circuit extending from the positive pole of the battery 16a → the brush piece 9a → the commutator piece 8a → the N polarity indicator lamp 21 → the commutator piece 8c → the brush piece 9b → the negative pole of the battery 16a is formed, and the magnetic pole portion 6a. The N polarity indicator lamp 21 (red) lights up. Further, the positive electrode of the battery 16a → the brush piece 9a → the commutator piece 8a → the S polarity indicator lamp 24 → the commutator piece 8b → the S polarity indicator lamp 26 → the commutator piece 8c → the brush piece 9b → the negative electrode of the battery 16a. A circuit is formed, and the S polarity indicator lamp 24 (blue) of the magnetic pole portion 6b and the S polarity indicator lamp 26 (blue) of the magnetic pole portion 6c are lit.
Next, when the simulated fixed field pole conversion switch 20 is turned on as shown in the figure, a circuit is formed from the positive pole of the battery 16b → the S polarity indicator lamp 28 → the N polarity indicator lamp 29 → the negative pole of the battery 16b. The S polarity indicator lamp 27 (blue) of the simulated fixed field pole 11 and the N polarity indicator lamp 29 (red) of the simulated fixed field pole 10 are lit. These lighting states are shown in FIG.

上記の表示灯の点灯により、図6において、模擬固定界磁極10のN極性表示灯29(赤色)の点灯は、模擬固定界磁極10がN極性であると仮定する。また、模擬固定界磁極11のS極性表示灯27(青色)の点灯は、模擬固定界磁極11がS極性であると仮定する。さらに、模擬電機子6において、磁極部6aのN極性表示灯21(赤色)の点灯は、磁極部6aがN極性であると仮定する。磁極部6bのS極性表示灯24(青色)の点灯は、磁極部6bがS極性であると仮定する。磁極部6cのS極性表示灯26(青色)の点灯は、磁極部6cがS極性であると仮定する。
従って、模擬固定界磁極10のN極赤色と磁極部6cのS極青色の間に吸引力を生じると判断し、模擬固定界磁極11のS極青色と磁極部6bのS極青色の間に反発力を生じると判断する。この判断から模擬電機子6は矢印A方向に回転するものと理解される。
In FIG. 6, it is assumed that the N-polarity indicator lamp 29 (red) of the simulated fixed field magnetic pole 10 is turned on in FIG. Further, lighting of the S polarity indicator lamp 27 (blue) of the simulated fixed field pole 11 assumes that the simulated fixed field pole 11 has S polarity. Furthermore, in the simulated armature 6, the lighting of the N polarity indicator lamp 21 (red) of the magnetic pole portion 6a assumes that the magnetic pole portion 6a has N polarity. When the S polarity indicator lamp 24 (blue) of the magnetic pole portion 6b is turned on, it is assumed that the magnetic pole portion 6b has S polarity. When the S polarity indicator lamp 26 (blue) of the magnetic pole portion 6c is turned on, it is assumed that the magnetic pole portion 6c has the S polarity.
Accordingly, it is determined that an attractive force is generated between the N pole red color of the simulated fixed field magnetic pole 10 and the S pole blue color of the magnetic pole part 6c, and between the S pole blue color of the simulated fixed field magnetic pole 11 and the S pole blue color of the magnetic pole part 6b. Judged to generate repulsive force. From this determination, it is understood that the simulated armature 6 rotates in the arrow A direction.

上記回転により、図7のように、模擬電機子6の磁極部6aが右下に、磁極部6bが左下に、磁極部6cが中央上になり、同時に、模擬整流子8の整流子片8a,8b,8cも一緒に回転する。この回転により、整流子片8a,8b,8cに対するブラシ片9a,9bの接触関係が変移する。ブラシ片9a,9bの接触関係の変移により、磁極部6aのS極性表示灯22が点灯してS極青色に、磁極部6bのS極性表示灯24が点灯してS極青色になる。従って、模擬固定界磁極10のN極赤色と磁極部6bのS極青色の間に吸引力を生じると判断し、模擬固定界磁極11のS極青色と磁極部6aのS極青色の間に反発力を生じると判断する。この判断から前記と同様に模擬電機子6は矢印A方向に回転するものと理解される。  As a result of the rotation, the magnetic pole portion 6a of the simulated armature 6 is located at the lower right, the magnetic pole portion 6b is located at the lower left, and the magnetic pole portion 6c is located at the upper center, as shown in FIG. , 8b and 8c rotate together. By this rotation, the contact relationship of the brush pieces 9a, 9b with respect to the commutator pieces 8a, 8b, 8c changes. Due to the change in the contact relationship between the brush pieces 9a and 9b, the S polarity indicator lamp 22 of the magnetic pole portion 6a is lit and becomes S polar blue, and the S polarity indicator lamp 24 of the magnetic pole portion 6b is lit and becomes S pole blue. Accordingly, it is determined that an attractive force is generated between the N pole red color of the simulated fixed field magnetic pole 10 and the S pole blue color of the magnetic pole part 6b, and between the S pole blue color of the simulated fixed field magnetic pole 11 and the S pole blue color of the magnetic pole part 6a. Judged to generate repulsive force. From this determination, it is understood that the simulated armature 6 rotates in the direction of arrow A as described above.

図7の状態から矢印A方向に回転すると、図8のように、模擬電機子6の磁極部6cが右下に、磁極部6aが左下に、磁極部6bが中央上になり、同時に、模擬整流子8の整流子片8a,8b,8cも一緒に回転する。この回転により、整流子片8a,8b,8cに対するブラシ片9a,9bの接触関係が変移する。ブラシ片9a,9bの接触関係の変移により、磁極部6aのS極性表示灯22が点灯してS極青色に、磁極部6cのS極性表示灯26が点灯してS極青色になる。従って、模擬固定界磁極10のN極赤色と磁極部6aのS極青色の間に吸引力を生じると判断し、模擬固定界磁極11のS極青色と磁極部6bのS極青色の間に反発力を生じると判断する。この判断から前記と同様に模擬電機子6は矢印A方向に回転するものと理解される。  When rotating from the state of FIG. 7 in the direction of arrow A, as shown in FIG. 8, the magnetic pole part 6c of the simulated armature 6 is on the lower right, the magnetic pole part 6a is on the lower left, and the magnetic pole part 6b is on the center. The commutator pieces 8a, 8b, 8c of the commutator 8 also rotate together. By this rotation, the contact relationship of the brush pieces 9a, 9b with respect to the commutator pieces 8a, 8b, 8c changes. Due to the change in the contact relationship between the brush pieces 9a and 9b, the S polarity indicator lamp 22 of the magnetic pole portion 6a is lit and becomes S polar blue, and the S polarity indicator lamp 26 of the magnetic pole portion 6c is lit and becomes S pole blue. Accordingly, it is determined that an attractive force is generated between the N pole red color of the simulated fixed field magnetic pole 10 and the S pole blue color of the magnetic pole part 6a, and between the S pole blue color of the simulated fixed field magnetic pole 11 and the S pole blue color of the magnetic pole part 6b. Judged to generate repulsive force. From this determination, it is understood that the simulated armature 6 rotates in the direction of arrow A as described above.

これを学童に説明するときは、あらかじめ、永久磁石のN極とS極の間には吸引力が働き、N極とN極またはS極とS極の間には反発力が働くことを教えておく。また、鉄心にコイルを巻いて、これに直流電流を流したとき、鉄心の一方がN極になり、他方がS極になることを教えておく。さらに、図1に示すように、3極がY字形に形成されたそれぞれの磁極部6a,6b,6cは、磁極部6aがN極ならば、磁極部6bと6cはS極になる。従って、磁極部6bがN極ならば磁極部6aと6cがS極になり、磁極部6cがN極ならば磁極部6aと6bがS極になるようにコイルを巻いてあることを教えておく。なお、これらは、簡単な実験で学童に明確に理解される。この磁極の形成及び磁極の吸引・反発を理解するだけで、前記の直流モーター回転原理説明器による説明が容易になされ、直流モーターの回転原理が適切に理解される。さらに、模擬電機子6を急速回転させると、N極性表示灯とS極性表示灯が帯状の模様になって、N極性とS極性の切り替え状態が視覚により識別されて学習意欲が増大される効果を生じる。  When explaining this to school children, teach in advance that an attractive force acts between the north and south poles of the permanent magnet, and a repulsive force acts between the north and north poles or between the south and south poles. Keep it. It is also taught that when a coil is wound around an iron core and a direct current is passed through it, one of the iron cores becomes the N pole and the other becomes the S pole. Further, as shown in FIG. 1, in each of the magnetic pole portions 6a, 6b, and 6c in which the three poles are formed in a Y shape, if the magnetic pole portion 6a is an N pole, the magnetic pole portions 6b and 6c are S poles. Therefore, if the magnetic pole part 6b is an N pole, the magnetic pole parts 6a and 6c are S poles, and if the magnetic pole part 6c is an N pole, the coil is wound so that the magnetic pole parts 6a and 6b are S poles. deep. These are clearly understood by school children through simple experiments. By just understanding the formation of the magnetic pole and the attraction / repulsion of the magnetic pole, the explanation by the DC motor rotation principle explanation device can be easily made, and the rotation principle of the DC motor can be properly understood. Further, when the simulated armature 6 is rapidly rotated, the N-polarity indicator lamp and the S-polarity indicator lamp have a belt-like pattern, and the switching state between the N-polarity and the S-polarity is visually identified to increase learning motivation. Produce.

実施の形態2.
上記実施の形態1に示した直流モーター回転原理説明器は、模擬電機子6の構成として3極の磁極部6a,6b,6cを備えたものであるが、これを、2極の磁極部を備えた模擬電機子に取り替えて説明することも容易にできる。
即ち、図9は2極の磁極部を備えた模擬電機子による直流モーター回転原理説明器における電気回路図であり、上記実施の形態1における3極の磁極部を備えた模擬電機子による直流モーター回転原理説明器(図1及び図5に示すもの)において、模擬電機子6を模擬電機子61に、また、模擬整流子8を模擬整流子81に取り替えて構成したものである。
Embodiment 2. FIG.
The direct current motor rotation principle explanation device shown in the first embodiment includes the three-pole magnetic pole portions 6a, 6b, and 6c as the configuration of the simulated armature 6. It can also be easily explained by replacing the provided armature.
That is, FIG. 9 is an electric circuit diagram in a DC motor rotation principle explanation device using a simulated armature having a two-pole magnetic pole portion, and a DC motor using a simulated armature having a three-pole magnetic pole portion in the first embodiment. In the rotation principle explanation device (shown in FIGS. 1 and 5), the simulated armature 6 is replaced with a simulated armature 61, and the simulated commutator 8 is replaced with a simulated commutator 81.

図10は、2極用の模擬電機子61と模擬整流子81を備えた回転子を示すもので、図において、61は模擬電機子、81は整流子片81a,81bを有する模擬整流子、4は電機子軸、5は手動回転用ノブであり、これらは、前記3極用のものと同様の材料で構成され、一体化されている。なお、61a及び61bは磁極部、62は模擬電機子コイル、63〜66は極性表示灯であり、磁極部6aにはN極性表示灯63とS極性表示灯64が設置されている。磁極部6bにはN極性表示灯65とS極性表示灯66が設置されている。上記において、N極性表示灯63,65は赤色の発光ダイオードを、S極性表示灯64、66は青色発光ダイオードを用いてある。この2極用の模擬電機子61と模擬整流子81を備えた回転子は、特許文献1の特開2002−366026号公報における直流モーター回転原理説明器の回転子と同類のものであり、特開2002−366026号公報に示された電気回路図と形態、この実施の2の電気回路図(図9)とは若干異なるが、動作を理解するための表示灯の点灯は同一である。  FIG. 10 shows a rotor having a two-pole simulated armature 61 and a simulated commutator 81, in which 61 is a simulated armature, 81 is a simulated commutator having commutator pieces 81a and 81b, 4 is an armature shaft, and 5 is a manual rotation knob, which are made of the same material as that for the three-pole type and are integrated. In addition, 61a and 61b are magnetic pole portions, 62 is a simulated armature coil, 63 to 66 are polarity indicator lamps, and an N polarity indicator lamp 63 and an S polarity indicator lamp 64 are installed in the magnetic pole portion 6a. An N polarity indicator lamp 65 and an S polarity indicator lamp 66 are installed in the magnetic pole portion 6b. In the above, the N polarity indicator lamps 63 and 65 use red light emitting diodes, and the S polarity indicator lamps 64 and 66 use blue light emitting diodes. The rotor including the two-pole simulated armature 61 and the simulated commutator 81 is similar to the rotor of the DC motor rotation principle explanation device in Japanese Patent Application Laid-Open No. 2002-366026. Although the electric circuit diagram and form shown in Japanese Laid-Open Patent Publication No. 2002-36626 are slightly different from the electric circuit diagram of the second embodiment (FIG. 9), the lighting of the indicator lamp for understanding the operation is the same.

上記2極用の模擬電機子に取り替えるために、軸受板2及び3のいずれか一方または両方の軸受孔には、図1及び図3に示すように挿入溝4aを設けるか、もしくは、軸受板2及び3を基盤1に対して容易に着脱できるようにしておくのが望ましい。また、模擬電機子が軸方向の動きを止めるために、図2に示すように止め輪4aを設けておくのが望ましい。さらに、直流電源としての電池は、電池16aと電池16bに分離しておいたほうが、切り替えなどの説明が容易にできる。  In order to replace the two-pole simulated armature, either or both of the bearing plates 2 and 3 are provided with an insertion groove 4a as shown in FIGS. 1 and 3, or the bearing plate It is desirable that 2 and 3 can be easily attached to and detached from the base 1. Further, in order to stop the simulated armature from moving in the axial direction, it is desirable to provide a retaining ring 4a as shown in FIG. Furthermore, switching and the like can be facilitated by separating the battery as the DC power source into the battery 16a and the battery 16b.

上記実施の形態1及び2の構成において、極性表示灯は発光ダイオードを用いたもので説明したが、発光ダイオードに限定されるものでなく、面発光体のような極性表示灯にすれば点灯の表示面が大きくなるので、極性の理解が容易になる。また、直流電源としての電池には、+−の極性を表示するための表示灯を設けることも理解を容易にするために大切な構成になる。  In the configurations of the first and second embodiments described above, the polarity indicator lamp uses a light emitting diode. However, the polarity indicator lamp is not limited to the light emitting diode, and can be turned on if a polarity indicator lamp such as a surface light emitter is used. Since the display surface becomes large, it is easy to understand the polarity. In addition, a battery as a DC power supply is provided with an indicator lamp for displaying +-polarity, which is an important configuration for easy understanding.

上記のように、この発明の直流モーター回転原理説明器は、3極用の回転子で説明するものであるが、2極用の回転子に簡単に取替えできるので、2極用の回転子に対する3極用(多極用)回転子の回転動作をわかり易く説明することができる。  As described above, the DC motor rotation principle explanation device of the present invention is explained with a rotor for three poles, but can be easily replaced with a rotor for two poles. The rotation operation of the tripolar (multipolar) rotor can be explained in an easy-to-understand manner.

この発明の実施の形態1を示す直流モーター回転原理説明器の斜視図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a DC motor rotation principle explanation device showing Embodiment 1 of the present invention. 同直流モーター回転原理説明器の上面図。The top view of the DC motor rotation principle explanation device. 同直流モーター回転原理説明器の正面図Front view of the DC motor rotation principle explanation device 同整流子とブラシの関係を示す拡大斜視図Enlarged perspective view showing relationship between commutator and brush 同直流モーター回転原理説明器の電気回路図Electric circuit diagram of the DC motor rotation principle explanation device 同直流モーター回転原理説明器の電気回路図Electric circuit diagram of the DC motor rotation principle explanation device 同直流モーター回転原理説明器の電気回路図Electric circuit diagram of the DC motor rotation principle explanation device 同直流モーター回転原理説明器の電気回路図Electric circuit diagram of the DC motor rotation principle explanation device 実施の形態2を示す直流モーター回転原理説明器の電気回路図Electric circuit diagram of DC motor rotation principle explanation device showing embodiment 2 実施の形態2の模擬電機子を示す拡大斜視図Enlarged perspective view showing a simulated armature of the second embodiment

符号の説明Explanation of symbols

1 基盤
2 軸受板
3 軸受板
4 電機子軸
6 模擬電機子
8 模擬整流子
9a ブラシ
9b ブラシ
10 模擬固定界磁極
11 模擬固定界磁極
16a 電池
16b 電池
21,23,25,27,29 N極性表示灯
22、24,26,28,30 S極性表示灯
DESCRIPTION OF SYMBOLS 1 Base 2 Bearing plate 3 Bearing plate 4 Armature shaft 6 Simulated armature 8 Simulated commutator 9a Brush 9b Brush 10 Simulated fixed field magnetic pole 11 Simulated fixed field magnetic pole 16a Battery 16b Battery 21, 23, 25, 27, 29 N polarity display Lights 22, 24, 26, 28, 30 S polarity indicator

Claims (5)

手動で回転できるように軸受板で支承された電機子軸と、上記電機子軸の中間部に装着された3極形模擬電機子と、上記電機子軸の一端部に装着された模擬整流子と、一端が上記模擬整流子に摺接し他端は直流電源に接続されたブラシと、上記3極形模擬電機子の磁極部に対向し、かつ、上記3極形模擬電機子が回転できるように配置された一対の模擬固定界磁極と、上記模擬整流子及びブラシを介して上記直流電源に接続されると共に、上記3極形模擬電機子のそれぞれの磁極部に設置され、かつ、いずれか一方を選択して点灯できるようになされたN極性表示灯及びS極性表示灯と、上記直流電源に接続されると共に、上記一対の模擬固定界磁極のそれぞれに設置され、かつ、いずれか一方を選択して点灯できるようになされたN極性表示灯及びS極性表示灯とを備え、上記3極形模擬電機子のN極性表示灯及びS極性表示灯と、上記模擬固定界磁極のN極性表示灯及びS極性表示灯との点灯状態により、上記3極形模擬電機子の回転方向を習得できるようになされた直流モーター回転原理説明器。  An armature shaft supported by a bearing plate so that it can be manually rotated, a three-pole simulated armature attached to an intermediate portion of the armature shaft, and a simulated commutator attached to one end of the armature shaft And one end is in sliding contact with the simulated commutator and the other end is opposed to a DC power source and a magnetic pole portion of the three-pole simulated armature so that the three-pole simulated armature can rotate. A pair of simulated fixed field magnetic poles disposed on the DC power supply via the simulated commutator and brush, and installed at each magnetic pole of the three-pole simulated armature, and either N polarity indicator lamps and S polarity indicator lamps that can be selected and turned on, and are connected to the DC power source and installed in each of the pair of simulated fixed field poles, and either one is N polarity table that can be selected and lit Lamps and S-polarity indicator lamps, and the three-pole simulated armature N-polarity indicator lamps and S-polarity indicator lamps, and the simulated fixed field pole N-polarity indicator lamps and S-polarity indicator lamps, DC motor rotation principle explanation device designed to be able to learn the rotation direction of the three-pole simulated armature. 3極形模擬電機子の磁極部に設置されたN極性表示灯及びS極性表示灯を点灯させるための直流電源と、模擬固定界磁極に設置されたN極性表示灯及びS極性表示灯を点灯させるための直流電源とを、別々の直流電源にしたことを特徴とする請求項1記載の直流モーター回転原理説明器。  DC power supply for turning on the N-polarity indicator lamp and S-polarity indicator lamp installed at the magnetic pole of the 3-pole simulated armature, and the N-polarity indicator lamp and S-polarity indicator lamp installed at the simulated fixed field pole 2. The direct current motor rotation principle explanation device according to claim 1, wherein the direct current power source is a separate direct current power source. 3極形模擬電機子の磁極部に設置されたN極性表示灯及びS極性表示灯を点灯させるための直流電源は、その直流電源の極性を表示する表示灯を設けたものであることを特徴とする請求項1または2記載の直流モーター回転原理説明器。  The DC power source for lighting the N-polarity indicator lamp and the S-polarity indicator lamp installed at the magnetic pole part of the three-pole type simulated armature is provided with an indicator lamp that displays the polarity of the DC power source. The direct current motor rotation principle explanation device according to claim 1 or 2. 3極形模擬電機子の磁極部に設置されたN極性表示灯及びS極性表示灯は、面発光体で形成された表示灯であることを特徴とする請求項1ないし3のいずれか一項に記載の直流モーター回転原理説明器。  The N-polarity indicator lamp and the S-polarity indicator lamp installed at the magnetic pole part of the three-pole type simulated armature are indicator lamps formed of a surface light emitter. DC motor rotation principle explanation device described in 1. 2極形模擬電機子を付属部品として備えたものであることを特徴とする請求項1ないし4のいずれか一項に記載の直流モーター回転原理説明器。  The direct current motor rotation principle explanation device according to any one of claims 1 to 4, wherein a two-pole type simulated armature is provided as an accessory.
JP2005153045A 2005-04-21 2005-04-21 Dc motor rotation principle explaning device Pending JP2006301551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005153045A JP2006301551A (en) 2005-04-21 2005-04-21 Dc motor rotation principle explaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005153045A JP2006301551A (en) 2005-04-21 2005-04-21 Dc motor rotation principle explaning device

Publications (1)

Publication Number Publication Date
JP2006301551A true JP2006301551A (en) 2006-11-02

Family

ID=37469864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005153045A Pending JP2006301551A (en) 2005-04-21 2005-04-21 Dc motor rotation principle explaning device

Country Status (1)

Country Link
JP (1) JP2006301551A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927916A (en) * 2014-04-28 2014-07-16 蚌埠市创新科普产品工程研究中心有限公司 Motor demonstration model
CN104143280A (en) * 2014-06-28 2014-11-12 江苏省兴化中学 Direct current motor demonstration teaching aid with internal resistor adjustable
CN105225585A (en) * 2015-09-22 2016-01-06 哈尔滨工业大学 Adopt the rotating magnetic field imagery dynamic demonstration device of Non-follow control
CN109727515A (en) * 2019-03-06 2019-05-07 张嘉馨 A kind of magnetic line of force and the visual generator model of current direction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927916A (en) * 2014-04-28 2014-07-16 蚌埠市创新科普产品工程研究中心有限公司 Motor demonstration model
CN103927916B (en) * 2014-04-28 2016-02-03 蚌埠市创新科普产品工程研究中心有限公司 Motor demonstrating model
CN104143280A (en) * 2014-06-28 2014-11-12 江苏省兴化中学 Direct current motor demonstration teaching aid with internal resistor adjustable
CN105225585A (en) * 2015-09-22 2016-01-06 哈尔滨工业大学 Adopt the rotating magnetic field imagery dynamic demonstration device of Non-follow control
CN109727515A (en) * 2019-03-06 2019-05-07 张嘉馨 A kind of magnetic line of force and the visual generator model of current direction

Similar Documents

Publication Publication Date Title
KR101174246B1 (en) Portable electric candle having lamp for pendulum and rotation movement
US20170136381A1 (en) Magnetically Connected Block
US9209560B2 (en) Electronic block with magnetic connection
US20070155249A1 (en) Vehicle power plug with a control switch
EA200800263A1 (en) ELECTRICAL ENGINE
JP2006301551A (en) Dc motor rotation principle explaning device
WO2007121427A3 (en) Electricity generating apparatus utilizing a single magnetic flux path
CN104081489A (en) Circuit breaker
KR101164454B1 (en) Electric candle having lamp for pendulum and rotation movement
KR200446603Y1 (en) Assembly kit with teaching material for d.c. motor
US4501568A (en) Shuttle wheel toy
JP3171199U (en) Lamp stand structure of serial connection type lighting tube
CN106023769A (en) Motor and engine integrated teaching demonstration model
JP3790780B2 (en) DC motor rotation principle explanation device
CN103394201A (en) Electronic bricks
TW201721612A (en) Educational two-phase motor model
CN2142744Y (en) Flash gyro
JP3153226U (en) Turbine type DC generator with light emitting diode
CN103377578A (en) Teaching electromotor
CN212276656U (en) Brushless DC motor demonstration teaching aid
BR202018073141Y1 (en) ARRANGEMENT INTRODUCED IN A SET OF ELECTRONIC MODULES WITH MAGNETIC ASSOCIATION
CN201032618Y (en) Antiriot water-proof magnetic electrical equipment switch
CN211530351U (en) Connector, lamp for track lamp and electrical appliance
JP2001331097A (en) Wind power generator manufacturing kit for, teaching aid for learning and wind power generator for teaching aid for learning
JPH0346796Y2 (en)