JP2006301508A - Eyepiece and optical apparatus using the same - Google Patents

Eyepiece and optical apparatus using the same Download PDF

Info

Publication number
JP2006301508A
JP2006301508A JP2005126492A JP2005126492A JP2006301508A JP 2006301508 A JP2006301508 A JP 2006301508A JP 2005126492 A JP2005126492 A JP 2005126492A JP 2005126492 A JP2005126492 A JP 2005126492A JP 2006301508 A JP2006301508 A JP 2006301508A
Authority
JP
Japan
Prior art keywords
eyepiece
lens
lens group
optical element
refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005126492A
Other languages
Japanese (ja)
Other versions
JP2006301508A5 (en
JP4756901B2 (en
Inventor
Kazuo Fujibayashi
和夫 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005126492A priority Critical patent/JP4756901B2/en
Publication of JP2006301508A publication Critical patent/JP2006301508A/en
Publication of JP2006301508A5 publication Critical patent/JP2006301508A5/ja
Application granted granted Critical
Publication of JP4756901B2 publication Critical patent/JP4756901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Telescopes (AREA)
  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an eyepiece capable of realizing a wide apparent visual field and high performance. <P>SOLUTION: The eyepiece comprising a front lens group having an image surface flattening function and a rear lens group consisting of a plurality of lens groups which are successively arranged from the light incident side and allowing a user to observe an intermediate image formed on an intermediate image forming surface between the front lens group and the rear lens group through the rear lens group includes a refractive optical element of a solid material which satisfies a condition of -2.1×10<SP>-3</SP>×νd+0.693<θgF0.555<θgF<0.9 in an optical path when the refractive indexes of a material for g, F, d, and C rays are respectively Ng, NF, Nd, and NC, an Abbe number is νd, a partial dispersion ratio is θgF. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は対物レンズ(撮影レンズ)で形成された物体像を観察するのに好適な接眼レンズ及びそれを用いた望遠鏡および双眼鏡(観察光学系)等の光学機器に関し、特に高解像度、広視界の光学機器に好適なものである。   The present invention relates to an eyepiece suitable for observing an object image formed by an objective lens (photographing lens), and an optical apparatus such as a telescope and binoculars (observation optical system), and in particular, has a high resolution and a wide field of view. It is suitable for optical equipment.

望遠鏡、双眼鏡等の観察用の光学機器は、視野全体を無理なく観察できるように広視野であることが望まれている。このような望遠鏡、双眼鏡等の光学機器では対物レンズの像を接眼レンズで拡大して観察している。対物レンズの実画角は元来極めて小さいために高性能、広視野を実現するには、見掛け視界(視野角)の大きい接眼レンズに負うところが大きい。   Optical instruments for observation such as telescopes and binoculars are desired to have a wide field of view so that the entire field of view can be observed without difficulty. In such an optical apparatus such as a telescope and binoculars, an image of an objective lens is magnified and observed with an eyepiece. Since the actual angle of view of the objective lens is originally extremely small, in order to realize a high performance and a wide field of view, an eyepiece having a large apparent field of view (viewing angle) is greatly affected.

従来より高性能、広視野の接眼レンズは種々と提案されている(例えば特許文献1〜3)。   Various types of high-performance and wide-field eyepieces have been proposed (for example, Patent Documents 1 to 3).

特許文献1の接眼レンズは光の入射側より射出側へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群、そして正の屈折力の第5レンズ群の5つのレンズ群から構成されている。   The eyepiece lens of Patent Document 1 has, in order from the light incident side to the light exit side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a positive refraction. The lens unit is composed of five lens units, a fourth lens unit having a power and a fifth lens unit having a positive refractive power.

特許文献2の接眼レンズは光の入射側より射出側へ順に、負の屈折力の第1レンズ群と正の屈折力の第2レンズ群の2つのレンズ群を介して結像した中間像を正の屈折力の第3レンズ群、正の屈折力の第4レンズ群、そして正の屈折力の第5レンズ群で観察する全体として5つのレンズ群から構成されている。   The eyepiece of Patent Document 2 sequentially forms an intermediate image formed through two lens groups, a first lens group having a negative refractive power and a second lens group having a positive refractive power, from the light incident side to the light exit side. The third lens group having positive refractive power, the fourth lens group having positive refractive power, and the fifth lens group having positive refractive power as a whole are composed of five lens groups.

特許文献3の接眼レンズは、負の屈折力の第1レンズ群と正の屈折力の第2レンズ群より成る像面平坦化手段を介して中間像位置に形成した中間像を拡大して観察するレンズ群から構成されている。   The eyepiece disclosed in Patent Document 3 magnifies and observes an intermediate image formed at an intermediate image position through an image plane flattening means comprising a first lens group having a negative refractive power and a second lens group having a positive refractive power. It consists of a lens group.

一般に、接眼レンズは、広視界になるほど、観察視野周辺の光学性能が劣化しやすくなる。特に、広視界になるほど観察視野周辺で倍率色収差が大きく発生してくる。   In general, as the eyepiece lens has a wider field of view, the optical performance around the observation field tends to deteriorate. In particular, as the field of view becomes wider, the chromatic aberration of magnification increases around the observation field.

このときの倍率色収差を補正する為に、比較的高分散で、かつ比較的異常部分分散の液体材料より成る光学部材を用いて色消しを行った光学系が提案されている(特許文献3)。   In order to correct the lateral chromatic aberration at this time, there has been proposed an optical system in which achromatization is performed using an optical member made of a liquid material having a relatively high dispersion and a relatively abnormal partial dispersion (Patent Document 3). .

特許文献3は、このような特殊な光学部材を用いて色収差を良好に補正し、高い光学性能を有する光学系を得ている。
特開平05−119273号公報 特開平08−005938号公報 特開平06−148534号公報 米国特許第5731907号
Patent Document 3 corrects chromatic aberration favorably using such a special optical member, and obtains an optical system having high optical performance.
JP 05-119273 A Japanese Patent Laid-Open No. 08-005938 Japanese Patent Laid-Open No. 06-148534 US Pat. No. 5,731,907

一般に接眼レンズは、観察視野が広視野になるほど、観察視野周辺の光学性能が劣化しやすくなる。   In general, the eye performance of an eyepiece lens tends to deteriorate as the observation field becomes wider.

特に観察視野周辺において倍率色収差の発生が多くなる。この倍率色収差を補正し、光学性能を良好にしようとすると接眼レンズが大型化し、レンズ構成が複雑化してくる。   In particular, the occurrence of lateral chromatic aberration increases around the observation field. If this lateral chromatic aberration is corrected to improve the optical performance, the eyepiece becomes larger and the lens configuration becomes complicated.

倍率色収差を補正する為に、高分散で異常分離性の光学材料よりなるレンズを用いることが有効である。しかしながら単に光学系中にこのような光学材料より成るレンズを設けただけでは、倍率色収差を補正し、良好なる光学性能が得られない。   In order to correct lateral chromatic aberration, it is effective to use a lens made of an optical material having high dispersion and abnormal separation. However, if a lens made of such an optical material is simply provided in the optical system, the lateral chromatic aberration is corrected and good optical performance cannot be obtained.

本発明は見掛け視界が広視野で高性能を実現することのできる接眼レンズ及びそれを用いた望遠鏡及び双眼鏡等の光学機器の提供を目的にする。   An object of the present invention is to provide an eyepiece capable of realizing high performance with a wide visual field and an optical apparatus such as a telescope and binoculars using the eyepiece.

本発明の接眼レンズは、
◎光入射側より順に、像面平坦化機能を有する前方レンズ群、複数のレンズ群から成る後方レンズ群とを有し、該前方レンズ群と後方レンズ群との間の中間結像面に形成した中間像を該後方レンズ群を介して観察する接眼レンズにおいて、g線、F線、d線、C線に対する材料の屈折率を順にNg、NF、Nd、NCとし、アッベ数をνd、部分分散比をθgFとし、
The eyepiece of the present invention is
◎ Sequentially from the light incident side, it has a front lens group having an image plane flattening function and a rear lens group composed of a plurality of lens groups, and is formed on an intermediate image plane between the front lens group and the rear lens group. In the eyepiece for observing the intermediate image through the rear lens group, the refractive indices of the materials for the g-line, F-line, d-line, and C-line are Ng, NF, Nd, and NC, and the Abbe number is νd. The dispersion ratio is θgF,

とするとき、光路中に、
―2.1×10−3・νd +0.693< θgF
0.555<θgF <0.9
なる条件を満足する固体材料の屈折光学素子を有していることを特徴としている。
When in the optical path,
―2.1 × 10 -3・ νd +0.693 <θgF
0.555 <θgF <0.9
It is characterized by having a refractive optical element made of a solid material that satisfies the following conditions.

◎対物レンズを介して、被写体を観察する接眼レンズであって、g線、F線、d線、C線に対する材料の屈折率を順にNg、NF、Nd、NCとし、アッベ数をνd、部分分散比をθgFとし、   ◎ An eyepiece for observing an object through an objective lens, wherein the refractive indices of materials for g-line, F-line, d-line, and C-line are Ng, NF, Nd, NC, and Abbe number is νd The dispersion ratio is θgF,

とするとき、光路中に、
―2.1×10−3・νd +0.693< θgF
0.555<θgF <0.9
なる条件を満足する固体材料の屈折光学素子を有していることを特徴としている。
When in the optical path,
―2.1 × 10 -3・ νd +0.693 <θgF
0.555 <θgF <0.9
It is characterized by having a refractive optical element made of a solid material that satisfies the following conditions.

本発明によれば、見掛け視界が広視野で高性能を実現することのできる接眼レンズが得られる。   According to the present invention, an eyepiece that can achieve high performance with a wide visual field of view can be obtained.

図1は、本発明の接眼レンズの実施例1のレンズ断面図、図2は本発明の接眼レンズの実施例1の収差図である。   FIG. 1 is a lens cross-sectional view of Example 1 of the eyepiece of the present invention, and FIG. 2 is an aberration diagram of Example 1 of the eyepiece of the present invention.

図3は、本発明の接眼レンズの実施例2のレンズ断面図、図4は本発明の接眼レンズの実施例2の収差図である。   FIG. 3 is a lens cross-sectional view of the eyepiece according to the second embodiment of the present invention, and FIG. 4 is an aberration diagram of the eyepiece according to the second embodiment of the present invention.

図5は、本発明の接眼レンズの実施例3のレンズ断面図、図6は本発明の接眼レンズの実施例3の収差図である。   FIG. 5 is a lens cross-sectional view of the eyepiece according to the third embodiment of the present invention, and FIG. 6 is an aberration diagram of the eyepiece according to the third embodiment of the present invention.

図7は、本発明の接眼レンズの実施例4のレンズ断面図、図8は本発明の接眼レンズの実施例4の収差図である。   FIG. 7 is a lens cross-sectional view of an eyepiece according to a fourth embodiment of the present invention. FIG. 8 is an aberration diagram of the eyepiece according to the fourth embodiment of the present invention.

各実施例の接眼レンズは、見掛け視界64度、瞳径4.1、アイレリーフ16mmである。レンズ断面図において、OCLは接眼レンズ、IPはアイポイント(観察位置)、MIPは中間結像位置、L1,L2は接眼レンズOCLの前方レンズ群FLを構成する第1、第2レンズ群,L3、L4,L5は接眼レンズOCLの後方レンズ群RLを構成する第3、第4,第5レンズ群である。   The eyepiece of each example has an apparent field of view of 64 degrees, a pupil diameter of 4.1, and an eye relief of 16 mm. In the lens cross-sectional view, OCL is an eyepiece lens, IP is an eye point (observation position), MIP is an intermediate image formation position, L1 and L2 are first and second lens groups L3 constituting the front lens group FL of the eyepiece lens OCL. , L4, and L5 are third, fourth, and fifth lens groups that form the rear lens group RL of the eyepiece lens OCL.

尚、各実施例において、レンズ群とは、単一又は複数のレンズより成っている。L3n、L3pは第3レンズ群L3を構成する負レンズ、正レンズ、L5n,L5pは第5レンズ群L5を構成する負レンズ、正レンズである。GITは異常分散性を有する固体材料からなる屈折光学素子であり、レンズ面に設けている。実施例1〜4ではそれぞれ屈折光学素子GITが配置されレンズ面が異なる。具体的には図1の実施例1では第2レンズ群L2の中間結像面HIP側(アイポイントIP側)の面、図3の実施例3では第3レンズ群L3の中間結像面MIP側の面、図5の実施例3では第3レンズ群L3中の接合面、図7の実施例4では第1レンズ群L1の中間結像面MIPから離れた面(光入射側の面)に屈折光学素子GIPが配置されている。   In each embodiment, the lens group includes a single lens or a plurality of lenses. L3n and L3p are a negative lens and a positive lens constituting the third lens group L3, and L5n and L5p are a negative lens and a positive lens constituting the fifth lens group L5. GIT is a refractive optical element made of a solid material having anomalous dispersion, and is provided on the lens surface. In Examples 1 to 4, the refractive optical element GIT is disposed and the lens surfaces are different. Specifically, in Example 1 of FIG. 1, the surface on the intermediate image plane HIP side (eye point IP side) of the second lens unit L2, and in Example 3 of FIG. 3, the intermediate image surface MIP of the third lens unit L3. 5 is a cemented surface in the third lens unit L3 in Example 3 of FIG. 5, and is a surface separated from the intermediate image formation surface MIP of the first lens unit L1 (surface on the light incident side) in Example 4 of FIG. The refractive optical element GIP is disposed on the surface.

縦収差図において単位は、球面収差と像面湾曲はデイオプトリー、歪曲は%、倍率色収差は度である。図中、d、F,C、gは波長d線、F線、C線、g線の収差を、M、Sはメリデイオナル像面、サジタル像面の収差を表す。   In the longitudinal aberration diagram, the unit is spherical aberration and curvature of field, diopter, distortion is%, and lateral chromatic aberration is degree. In the figure, d, F, C, and g represent the aberrations of the wavelength d-line, F-line, C-line, and g-line, and M and S represent the aberrations of the meridional image surface and the sagittal image surface.

次に各実施例のレンズ構成および各レンズの光学的作用を説明する。各実施例の接眼レンズOCLは入射側(光入射側)より順に、入射面(被写体側(対物レンズ側)からの光束が入射する面をいう。以下同じ)の屈折力の絶対値が射出面(入射面から入射した光束が出射する面をいう。以下同じ)のそれより強い両レンズ面が凹形状の負レンズより成る第1レンズ群L1、射出面の屈折力の絶対値が入射面のそれよりも強い射出面が凸形状の正の屈折力の第2レンズ群L2、中間像位置MIPを挟んで、射出面が凸でメニスカス形状で全体として正の屈折力の接合レンズより成る第3レンズ群L3、両レンズ面が凸形状の正の屈折力の第4レンズ群L4、入射面の屈折力の絶対値が、出射面のそれよりも強い接合レンズより成る正の屈折力の第5レンズ群L5より構成されている。第1レンズ群L1と第2レンズ群L2から成る前方レンズ群FLは像面平坦化レンズ群を構成し、対物レンズで発生する像面湾曲の拡大を防止し、かつ接眼レンズOCLの像面湾曲の発生を抑える作用を有する。前方レンズ群FLは1以上の負レンズと1以上の正レンズを有するように構成するのが収差補正に良い。負の屈折力の第1レンズ群L1で像面平坦化をはかり、第1レンズ群L1において発生する軸外収差を第2レンズ群L2により補正している。   Next, the lens configuration of each embodiment and the optical action of each lens will be described. The eyepiece lens OCL of each example has an absolute value of the refractive power of an incident surface (a surface on which a light beam from an object side (objective lens side) is incident in order from the incident side (light incident side). The first lens unit L1 in which both lens surfaces stronger than that (the surface from which the light beam incident from the incident surface exits, the same applies below) is a concave negative lens, and the absolute value of the refractive power of the exit surface is that of the incident surface. A third lens unit L2 having a positive refractive power having a convex positive refractive power and an intermediate image position MIP sandwiching the intermediate image position MIP, and a cemented lens having a positive meniscus shape and a positive refractive power as a whole. The lens unit L3, the fourth lens unit L4 having a positive refractive power whose both lens surfaces are convex, and the fifth lens having a positive refractive power made up of a cemented lens whose absolute value of the refractive power of the entrance surface is stronger than that of the exit surface. The lens unit L5 is configured. The front lens group FL composed of the first lens group L1 and the second lens group L2 constitutes an image plane flattening lens group, prevents the expansion of the field curvature generated by the objective lens, and the field curvature of the eyepiece lens OCL. Has the effect of suppressing the occurrence of The front lens group FL is preferably configured to have one or more negative lenses and one or more positive lenses for aberration correction. The first lens unit L1 having negative refractive power is used to flatten the image plane, and off-axis aberrations generated in the first lens unit L1 are corrected by the second lens unit L2.

さらに第1レンズ群L1を構成する両レンズ面が凹形状の負レンズと第2レンズ群L2とで形成される空気レンズにより視野周辺の像性能の劣化を緩和している。中間結像面MIPを介して第3レンズ群L3は第2レンズ群L2と対向する入射面を第2レンズ群L2の射出面と同等の曲率として全体の収差発生を抑えている。   Further, deterioration of image performance around the field of view is mitigated by an air lens formed by a negative lens having a concave shape on both lens surfaces constituting the first lens unit L1 and the second lens unit L2. Through the intermediate imaging plane MIP, the third lens unit L3 suppresses the generation of the entire aberration by setting the incident surface facing the second lens unit L2 to have the same curvature as the exit surface of the second lens unit L2.

接眼レンズOCLが広視野のため周辺視野の光束は周辺になるほど第3レンズ群L3と第4レンズ群L4の周辺部を通過し像面湾曲など収差が発生しやすくなる。そこで第3レンズ群L3と第4レンズ群L4と第5レンズ群L5をすべて正の屈折力として光束が徐々に屈折して、アイポイントIPに入射するように構成して収差の発生を抑えている。さらに第3レンズ群L3の正レンズL3pと第4レンズ群L4に高屈折率のガラスを使用して、像面湾曲の平坦化をはかっている。観察側にもっとも近い第5レンズ群L5は単一レンズでも接合レンズでもよい。倍率色収差をさらに良好に補正するため第5レンズ群L5を接合レンズとした場合、接合レンズの接合面を瞳位置に対しコンセントリックに近い曲率とするのが良い。これによれば周辺視野の光束に対する収差を発生を少なくすることができる。   Since the eyepiece OCL has a wide field of view, the light flux in the peripheral field of view passes through the peripheral portions of the third lens unit L3 and the fourth lens unit L4 and becomes more susceptible to aberrations such as field curvature. Therefore, the third lens unit L3, the fourth lens unit L4, and the fifth lens unit L5 are all configured to have positive refractive power so that the light beam is gradually refracted and incident on the eye point IP to suppress the occurrence of aberrations. Yes. Further, the positive lens L3p and the fourth lens unit L4 of the third lens unit L3 are made of glass having a high refractive index so as to flatten the field curvature. The fifth lens unit L5 closest to the observation side may be a single lens or a cemented lens. When the fifth lens unit L5 is a cemented lens in order to further correct lateral chromatic aberration, it is preferable that the cemented surface of the cemented lens has a curvature close to the concentric position with respect to the pupil position. According to this, it is possible to reduce the occurrence of aberration with respect to the light flux in the peripheral visual field.

接眼レンズを構成する屈折光学素子GITの固体材料は、アッベ数をνd、部分分散比をθgF、θgdとおいたとき、
−2.1×10−3・νd +0.693<θgf・・・・(1)
0.555<θgF<0.9・・・・(2)
−2.407×10−3・νd+1.420<θgd・・・・(3)
1.255<θgd<1.67・・・・(4)
νd<50・・・・(5)
のうち1以上の条件を満足している。
The solid material of the refractive optical element GIT constituting the eyepiece lens has an Abbe number of νd and partial dispersion ratios of θgF and θgd,
−2.1 × 10 −3 · νd +0.693 <θgf (1)
0.555 <θgF <0.9 (2)
-2.407 × 10 −3 · νd + 1.420 <θgd (3)
1.255 <θgd <1.67 (4)
νd <50 (5)
1 or more conditions are satisfied.

ここでアッベ数νd、部分分散比θgF,θgdは、g線(波長435.8nm),F線(486.1nm),d線(587.6nm),C線(656.3nm)に対する材料の屈折率をそれぞれNg,Nd,NF,NCとするとき、
νd=(Nd−1)/(NF−NC)
θgd=(Ng−Nd)/(NF−NC)
θgF=(Ng−NF)/(NF−NC)
である。
Here, Abbe number νd and partial dispersion ratios θgF and θgd are the refraction of the material with respect to g-line (wavelength 435.8 nm), F-line (486.1 nm), d-line (587.6 nm), and C-line (656.3 nm). When the rates are Ng, Nd, NF and NC, respectively
νd = (Nd−1) / (NF−NC)
θgd = (Ng−Nd) / (NF−NC)
θgF = (Ng−NF) / (NF−NC)
It is.

接眼レンズの観察視野が広視野の場合、材料を全てガラスで構成すると視野周辺で倍率色収差の補正が難しくなる。特に短波長側になると視野角が大きくなるにつれて倍率色収差の曲がりが増大する。そこで条件式(1)〜(5)を満足する固定材料を接眼レンズの一部の屈折光学素子に使用することによって視野周辺における倍率色収差の曲がりを補正している。この理由は、条件式(1)〜(5)を満足する固体材料で形成される屈折光学素子GITは、通常のガラス材より成るレンズで発生する倍率色収差の曲がりと逆の曲がりを発生できるためである。   When the viewing field of the eyepiece is a wide field of view, it is difficult to correct lateral chromatic aberration around the field of view if the entire material is made of glass. In particular, at the short wavelength side, the curvature of lateral chromatic aberration increases as the viewing angle increases. Therefore, the bending of the lateral chromatic aberration around the visual field is corrected by using a fixing material that satisfies the conditional expressions (1) to (5) for some refractive optical elements of the eyepiece. This is because the refractive optical element GIT formed of a solid material that satisfies the conditional expressions (1) to (5) can generate a curve opposite to the curve of the lateral chromatic aberration generated in a lens made of a normal glass material. It is.

屈折光学素子GITを接眼レンズの前方レンズ群内に配置する場合には、屈折光学素子GITの屈折力を負とし、屈折光学素子GITを後方レンズ群RL内に配置する場合には屈折力を正とするのがよい。   When the refractive optical element GIT is arranged in the front lens group of the eyepiece, the refractive power of the refractive optical element GIT is negative, and when the refractive optical element GIT is arranged in the rear lens group RL, the refractive power is positive. It is good to do.

接眼レンズを構成する屈折光学素子に、分散の小さな材料を用いると、必要な色収差を得るためのパワー変化量が大きくなり、それに伴って球面収差などの諸収差が大きく変化し、色収差の補正の独立性が弱まる。したがって、接眼レンズを構成する屈折光学素子の内、少なくとも1つの屈折光学素子を、高分散材料で形成することが収差補正上重要である。   When a material with small dispersion is used for the refractive optical element constituting the eyepiece, the amount of power change for obtaining the necessary chromatic aberration increases, and as a result, various aberrations such as spherical aberration change greatly, and correction of chromatic aberration is achieved. Independence weakens. Therefore, it is important for aberration correction that at least one refractive optical element constituting the eyepiece lens is formed of a high dispersion material.

また屈折光学素子GITは一般の光学材料と組み合わせて使用するため、屈折光学素子GITに用いられる固体材料の部分分散比は一般の光学材料の部分分散比と異なることが必要ではあるが、あまりかけ離れすぎては良くない。   In addition, since the refractive optical element GIT is used in combination with a general optical material, the partial dispersion ratio of the solid material used for the refractive optical element GIT needs to be different from the partial dispersion ratio of the general optical material. Too much is not good.

一般の光学材料と部分分散比が、大きくかけ離れた材料より成る屈折光学素子を用いた場合、そのレンズ面の色収差の短波長側の曲がりが特に大きくなる。その大きな曲がりをガラスより発生する色収差の曲がりで補正するのは困難である。   When a refractive optical element made of a material whose partial dispersion ratio is far from that of a general optical material is used, the curvature of the chromatic aberration of the lens surface on the short wavelength side is particularly large. It is difficult to correct the large bend by the chromatic aberration bend generated from the glass.

この為、屈折光学素子GITの材料としては、一般の光学材料に比べて部分分散比が大きな材料であること、かつ一般の光学材料と比べて部分分散比が大きくかけ離れていないことも重要である。条件式(1)〜(5)は、このような収差補正の原理に基づいて色収差を良好に補正するためのアッベ数νdと部分分散比θgF、θgdの関係を特定したものである。   For this reason, it is also important that the refractive optical element GIT is a material having a large partial dispersion ratio compared to a general optical material, and that the partial dispersion ratio is not significantly different from that of a general optical material. . Conditional expressions (1) to (5) specify the relationship between the Abbe number νd and the partial dispersion ratios θgF and θgd for satisfactorily correcting chromatic aberration based on the principle of aberration correction.

なお、条件式(1)の数値範囲は、以下の範囲とすることで更に良好な色収差の補正効果が期待できる。   It should be noted that a better chromatic aberration correction effect can be expected by setting the numerical range of conditional expression (1) to the following range.

−2.100×10−3・νd+0.693 < θgF <
−1.231×10−3・νd+0.900・・・(1a)
更に望ましくは、以下に示す範囲とするのが良い。
-2.100 × 10 −3 · νd + 0.693 <θgF <
-1.231 × 10 −3 · νd + 0.900 (1a)
More preferably, the range is as follows.

−2.100×10−3・νd+0.693 < θgF <
−1.389×10−3・νd+0.823・・・(1b)
更に望ましくは、以下に示す範囲とするのが良い。
-2.100 × 10 −3 · νd + 0.693 <θgF <
−1.389 × 10 −3 · νd + 0.823 (1b)
More preferably, the range is as follows.

−1.682×10−3・νd+0.700 < θgF <
−1.682×10−3・νd+0.756・・・(1c)
条件式(2)の数値範囲は、以下とすると更に良好な色収差補正効果が期待できる。
−1.682 × 10 −3 · νd + 0.700 <θgF <
−1.682 × 10 −3 · νd + 0.756 (1c)
If the numerical range of the conditional expression (2) is as follows, a further excellent chromatic aberration correction effect can be expected.

0.555 < θgF < 0.86・・・(2a)
更に望ましくは、以下に示す範囲とするのが良い。
0.555 <θgF <0.86 (2a)
More preferably, the range is as follows.

0.555 < θgF < 0.80・・・(2b)
条件式(3)の数値範囲は、以下とすると更に良好な色収差の補正効果が期待できる。
0.555 <θgF <0.80 (2b)
If the numerical range of the conditional expression (3) is as follows, a further excellent correction effect of chromatic aberration can be expected.

−2.407×10−3・νd+1.420 < θgd <
−1.152×10−3・νd+1.651・・・(3a)
更に望ましくは、以下に示す範囲とするのが良い。
-2.407 × 10 −3 · νd + 1.420 <θgd <
−1.152 × 10 −3 · νd + 1.651 (3a)
More preferably, the range is as follows.

−2.407×10−3・νd+1.420 < θgd <
−1.865×10−3・νd+1.572・・・(3b)
更に望ましくは、以下に示す範囲とするのが良い。
-2.407 × 10 −3 · νd + 1.420 <θgd <
−1.865 × 10 −3 · νd + 1.572 (3b)
More preferably, the range is as follows.

−2.076×10−3・νd+1.426 < θgd <
−2.076×10−3・νd+1.512・・・(3c)
条件式(4)の数値範囲は、以下とすると更に良好な色収差の補正効果が期待できる。
−2.076 × 10 −3 · νd + 1.426 <θgd <
-2.076 × 10 −3 · νd + 1.512 (3c)
If the numerical range of the conditional expression (4) is as follows, a further excellent correction effect of chromatic aberration can be expected.

1.255 < θgd < 1.61・・・(4a)
更に望ましくは、以下に示す範囲とするのが良い。
1.255 <θgd <1.61 (4a)
More preferably, the range is as follows.

1.255 < θgd < 1.54・・・(4b)
条件式(5)は、屈折光学素子GITのアッベ数を適切に設定し、色収差を良好に補正するためのものである。条件式(5)を外れると、広い視界にわたり、色収差を良好に補正するのが難しくなってくる。
1.255 <θgd <1.54 (4b)
Conditional expression (5) is for appropriately setting the Abbe number of the refractive optical element GIT and correcting chromatic aberration satisfactorily. If the conditional expression (5) is not satisfied, it becomes difficult to correct chromatic aberration well over a wide field of view.

条件式(5)の数値範囲は、以下の範囲とすることで更に良好な色収差補正効果が期待できる。   By setting the numerical range of conditional expression (5) to the following range, a further excellent chromatic aberration correction effect can be expected.

νd < 45・・・(5a)
更に望ましくは、以下に示す範囲とするのが良い。
νd <45 (5a)
More preferably, the range is as follows.

νd < 32・・・(5b)
各実施例に用いる屈折光学素子の光学材料としては、0℃〜40℃におけるd線の屈折率の温度変化の絶対値を|dn/dT|とするとき、
|dn/dT|< 2.5×10−4(1/℃)・・・(6)
なる条件を満足するのが良い。
νd <32 (5b)
As an optical material of the refractive optical element used in each example, when the absolute value of the temperature change of the refractive index of d-line at 0 ° C. to 40 ° C. is | dn / dT |
| Dn / dT | <2.5 × 10 −4 (1 / ° C.) (6)
It is good to satisfy the condition.

ここで条件式(6)の範囲をはずれると、0℃〜40℃の温度範囲で良好な光学性能を維持することが困難になる。   If the conditional expression (6) falls outside the range, it becomes difficult to maintain good optical performance in the temperature range of 0 ° C to 40 ° C.

各実施例の接眼レンズにおいて屈折光学素子GITを光学系中に設けるときは、hを近軸光線の軸上光線の高さ、   When the refractive optical element GIT is provided in the optical system in the eyepiece of each embodiment, h is the height of the on-axis ray of the paraxial ray,

は中間結像面に対する軸外光線の高さとするとき、 Is the height of the off-axis ray with respect to the intermediate image plane,

を満足するレンズ面に設けるのが良い。 It is good to provide on the lens surface which satisfies the above.

ここで条件式(7)に該当する面は像面の近傍であることを意味する。この条件(7)では中間結像面に結像する各光束は互いに屈折面において異なる高さに入射するため、倍率色収差の曲がりを補正しやすくなる。   Here, the surface corresponding to the conditional expression (7) means that it is in the vicinity of the image surface. Under this condition (7), each light beam that forms an image on the intermediate image plane is incident at different heights on the refracting surface, so that it becomes easy to correct the bending of the lateral chromatic aberration.

この屈折光学素子と空気などの雰囲気とで界面を形成すれば、界面の僅かな曲率変化で色収差を比較的大きく変化させることができるため倍率色収差を補正しやすくなる。
さらに屈折光学素子GITの空気に接している面に非球面を用いると、倍率色収差の曲がりを補正すると同時に広視界である場合に発生しやすい像面湾曲の曲がり、コマ収差を補正するのに効果がある。
If an interface is formed by the refractive optical element and an atmosphere such as air, the chromatic aberration can be changed relatively greatly by a slight change in curvature of the interface, so that it is easy to correct the lateral chromatic aberration.
Furthermore, using an aspherical surface for the surface of the refractive optical element GIT that is in contact with the air is effective in correcting the curvature of lateral chromatic aberration and at the same time correcting the curvature of field and the coma that are likely to occur in a wide field of view. There is.

尚、各実施例において、収差補正好ましくは、屈折光学素子GITの2つの面のうち、少なくとも一つの屈折面は非球面形状であること、屈折光学素子GITの2つの屈折面のうち、少なくとも一方の屈折面は空気に接すること、屈折光学素子GITの2つの屈折面は共にガラスに接していること、
の少なくとも1つを満足するのが良い。
In each of the embodiments, aberration correction is preferably performed, and at least one of the two surfaces of the refractive optical element GIT is aspheric, and at least one of the two surfaces of the refractive optical element GIT. The refractive surface of the refractive optical element GIT is in contact with air, the two refractive surfaces of the refractive optical element GIT are in contact with glass,
It is good to satisfy at least one of the following.

前述した条件式(1),(2)を満足する固体材料(以下「光学材料」ともいう。)の具体例としては、例えば樹脂がある。様々な樹脂の中でも特にUV硬化樹脂(Nd=1.635,νd=22.7,θgF=0.69)やN−ポリビニルカルバゾール(Nd=1.696,νd=17.7,θgF=0.69)は条件式(1),(2)を満足する光学材料である。尚、条件式(1),(2)を満足する樹脂であれば、これらの種類に限定するものではない。   As a specific example of the solid material (hereinafter also referred to as “optical material”) that satisfies the conditional expressions (1) and (2) described above, there is, for example, a resin. Among various resins, UV curable resin (Nd = 1.635, νd = 22.7, θgF = 0.69) and N-polyvinylcarbazole (Nd = 1.696, νd = 17.7, θgF = 0. 69) is an optical material satisfying conditional expressions (1) and (2). The resin is not limited to these types as long as it satisfies the conditional expressions (1) and (2).

また、一般の硝材とは異なる特性を持つ光学材料として、下記の無機酸化物ナノ微粒子を合成樹脂中に分散させた混合体がある。なお無機酸化物ナノ微粒子として、TiO(Nd=2.304,νd=13.8),Nb(Nd=2.367,νd=14.0),ITO(Nd=1.8581,νd=5.53),Cr(Nd=2.2178,νd=13.4),BaTiO(Nd=2.4362,νd=11.3)等がある。 Further, as an optical material having characteristics different from those of general glass materials, there is a mixture in which the following inorganic oxide nanoparticles are dispersed in a synthetic resin. As inorganic oxide nanoparticles, TiO 2 (Nd = 2.304, νd = 13.8), Nb 2 O 5 (Nd = 2.367, νd = 14.0), ITO (Nd = 1.8581, νd = 5.53), Cr 2 O 3 (Nd = 2.2178, νd = 13.4), BaTiO 3 (Nd = 2.4362, νd = 11.3), and the like.

これらの無機酸化物の中では、TiO(Nd=2.304,νd=13.8,θgF=0.87)微粒子を合成樹脂中に適切なる体積比で分散させた場合、上記条件式(1),(2)を満足する光学材料が得られる。
TiOは様々な用途で使われる材料であり、光学分野では反射防止膜などの光学薄膜を構成する蒸着用材料として用いられている。他にも光触媒、白色顔料などとして、またTiO微粒子は化粧品材料として用いられている。
Among these inorganic oxides, when TiO 2 (Nd = 2.304, νd = 13.8, θgF = 0.87) fine particles are dispersed in a synthetic resin at an appropriate volume ratio, the above conditional expression ( An optical material satisfying 1) and (2) can be obtained.
TiO 2 is a material used in various applications, and is used as an evaporation material for forming an optical thin film such as an antireflection film in the optical field. In addition, photocatalysts, white pigments and the like, and TiO 2 fine particles are used as cosmetic materials.

各実施例において樹脂に分散させるTiO微粒子の平均径は、散乱などの影響を考えると2nm〜50nm程度がよく、凝集を抑えるために分散剤などを添加しても良い。TiOを分散させる媒体材料としては、ポリマーが良く、成形型等を用いて光重合成形または熱重合成形することにより高い量産性を得ることができる。 In each example, the average diameter of the TiO 2 fine particles dispersed in the resin is preferably about 2 nm to 50 nm in consideration of the influence of scattering and the like, and a dispersant or the like may be added to suppress aggregation. The medium material for dispersing TiO 2 is preferably a polymer, and high mass productivity can be obtained by photopolymerization molding or thermal polymerization molding using a molding die or the like.

また、ポリマーの光学定数の特性としても、部分分散比が比較的大きいポリマー、あるいはアッベ数が比較的小さいポリマーか、両者を満たすポリマーが良く、N−ポリビニルカルバゾール、スチレン、ポリメタクリル酸メチル(アクリル)、などが適用できる。実施例ではTiO微粒子を分散させるホストポリマーとしてUV硬化樹脂を用いている。しかし、これに限定するものではない。ナノ微粒子を分散させた混合体の分散特性N(λ)は、良く知られたDrudeの式から導きだされた次式によって簡単に計算することができる。即ち、波長λにおける屈折率N(λ)は、
N(λ)=[1+V{NTiO (λ)−1}+(1−V){N (λ)−1}]1/2
である。
In addition, as a characteristic of the optical constant of the polymer, a polymer having a relatively large partial dispersion ratio or a polymer having a relatively small Abbe number, or a polymer satisfying both, is preferable. N-polyvinylcarbazole, styrene, polymethyl methacrylate (acrylic) ), Etc. are applicable. In the embodiment, a UV curable resin is used as a host polymer for dispersing TiO 2 fine particles. However, the present invention is not limited to this. The dispersion characteristic N (λ) of the mixture in which the nanoparticles are dispersed can be easily calculated by the following equation derived from the well-known Drude equation. That is, the refractive index N (λ) at the wavelength λ is
N (λ) = [1 + V {N TiO 2 (λ) -1} + (1-V) {N P 2 (λ) -1}] 1/2
It is.

ここで、λは任意の波長、NTiOはTiOの屈折率、Nはポリマーの屈折率、Vはポリマー体積に対するTiO微粒子の総体積の分率である。
次に条件式(1),(2)を満足する固体材料の光学特性を具体的に示す。
表−1は本発明の接眼レンズの実施例1,2,3,4に対応させて、UV硬化樹脂1,TiO微粒子をUV硬化樹脂2に体積比率10%、20%及び7%で混合した混合体のd線、g線、C線及びF線に対する屈折率及びアッベ数、部分分散比の値を示す。表−2は表1の混合体を構成するUV硬化樹脂2、TiO単体のd線、g線、C線及びF線に対する屈折率及びアッベ数、部分分散比を示している。
Here, lambda is an arbitrary wavelength, N TiO is the refractive index of TiO 2, N P is the refractive index of the polymer, V is the fraction of the total volume of the TiO 2 particles to the polymer volume.
Next, the optical characteristics of the solid material that satisfies the conditional expressions (1) and (2) will be specifically shown.
Table 1 shows that UV curable resin 1 and TiO 2 fine particles were mixed with UV curable resin 2 at a volume ratio of 10%, 20%, and 7% corresponding to Examples 1, 2, 3, and 4 of the eyepiece of the present invention. The values of the refractive index, Abbe number, and partial dispersion ratio for the d-line, g-line, C-line, and F-line of the obtained mixture are shown. Table 2 shows the refractive index, Abbe number, and partial dispersion ratio of the UV curable resin 2 and TiO 2 constituting the mixture of Table 1 with respect to d-line, g-line, C-line and F-line.

本発明の実施例1,2,3,4では屈折光学素子GITに採用した固体材料は、実施例1ではUV硬化樹脂1、実施例2ではTiO微粒子をUV硬化樹脂2に体積比で10%分散させた混合体、実施例3はTiO微粒子をUV硬化樹脂2に体積比で20%分散させた混合体、実施例4はTiO微粒子をUV硬化樹脂2に体積比で7%分散させた混合体である。 In Examples 1, 2, 3, and 4 of the present invention, the solid material used for the refractive optical element GIT is 10 in volume ratio of UV curable resin 1 in Example 1 and TiO 2 fine particles in UV curable resin 2 in Example 2. Example 3 is a mixture in which TiO 2 fine particles are dispersed 20% by volume in the UV curable resin 2, and Example 4 is 7% in TiO 2 fine particles by 7% by volume in the UV curable resin 2. It is made the mixture.

図14はアッベ数νdと部分分散比θgFについて、条件式(1),(2)の範囲と、表1,表2の物質及び一般の光学ガラスとの関係を示したものである。図15はアッベ数νdと部分分散比θgdについて、条件式(3),(4)の範囲と、表1,表2の物質及び一般の光学ガラスとの関係を示したものである。   FIG. 14 shows the relationship between the ranges of the conditional expressions (1) and (2) and the substances shown in Tables 1 and 2 and general optical glass with respect to the Abbe number νd and the partial dispersion ratio θgF. FIG. 15 shows the relationship between the ranges of conditional expressions (3) and (4), the substances shown in Tables 1 and 2, and general optical glass with respect to the Abbe number νd and the partial dispersion ratio θgd.

各実施例の接眼レンズの一部には、前述した条件式(1)〜(7)の1以上を満足する光学材料を用いている。各実施例では、光学材料としてUV硬化樹脂1、TiO微粒子をUV硬化樹脂2に体積比で7−20%の範囲内で分散させた混合体を用いた例を示した。実施例1は接眼レンズOCLの前方レンズ群L1において中間結像面MIPにもっとも近接する面に前記光学材料を用いた例である。光学材料としてUV硬化樹脂1を用いている。実施例2は接眼レンズOCLの第2レンズ群L2において中間結像面MIPに最も近接した面に光学材料を用いた例である。光学材料としてTiO2微粒子をUV硬化樹脂2に体積比で10%分散させた混合体を用いている。 An optical material satisfying one or more of the conditional expressions (1) to (7) described above is used for a part of the eyepieces of each example. In each embodiment, an example of using the mixture dispersed in the range of 7-20% by volume of the UV curable resin 1, TiO 2 fine particles to the UV curable resin 2 as an optical material. Example 1 is an example in which the optical material is used on the surface closest to the intermediate image formation surface MIP in the front lens unit L1 of the eyepiece lens OCL. A UV curable resin 1 is used as an optical material. The second embodiment is an example in which an optical material is used on the surface closest to the intermediate imaging surface MIP in the second lens unit L2 of the eyepiece lens OCL. As the optical material, a mixture in which TiO 2 fine particles are dispersed in the UV curable resin 2 at a volume ratio of 10% is used.

実施例3は接眼レンズOCLの後方レンズ群RLにおいて中間結像面MIPに近い接合面に前記光学材料を用いた例である。光学材料としてTiO2微粒子をUV硬化樹脂2に体積比で20%分散させた混合体を用いている。 The third embodiment is an example in which the optical material is used for the cemented surface close to the intermediate image plane MIP in the rear lens group RL of the eyepiece OCL. As an optical material, a mixture in which 20% by volume of TiO 2 fine particles are dispersed in the UV curable resin 2 is used.

実施例4は接眼レンズOCLの第1レンズ群L1において最も中間結像面MIPから離れた面に用いた例である。光学材料としてはTiO微粒子をUV硬化樹脂2に体積比で7%分散させた混合体を用いている。実施例1−3は光学材料の屈折面は球面で構成されている。実施例4は光学材料の接合側の屈折面は球面、空気に接する屈折面は非球面である。実施例1,2、4は屈折光学素子GITが空気に接する面を有して収差補正に有効に機能するようにしている。実施例3は屈折光学素子GITを空気に接する面が生じないようにレンズの接合面に配置して環境耐久性に強い構成としている。 The fourth embodiment is an example in which the first lens unit L1 of the eyepiece OCL is used on the surface farthest from the intermediate image formation surface MIP. As the optical material, a mixture in which TiO 2 fine particles are dispersed in the UV curable resin 2 at a volume ratio of 7% is used. In Example 1-3, the refractive surface of the optical material is a spherical surface. In Example 4, the refractive surface on the bonding side of the optical material is a spherical surface, and the refractive surface in contact with air is an aspherical surface. In Examples 1, 2, and 4, the refractive optical element GIT has a surface in contact with air so that it effectively functions for aberration correction. In the third embodiment, the refractive optical element GIT is arranged on the cemented surface of the lens so that a surface in contact with air does not occur, and is configured to have high environmental durability.

異常分散性の光学材料を接眼レンズの適切な位置に配置することによって倍率色収差の曲がりが補正され、観察する全視野で色にじみのない像を観察できる。さらに光学材料の屈折面に非球面を用いると像面湾曲の曲がり及びコマ収差の補正に効果がある。   By arranging an anomalous dispersive optical material at an appropriate position of the eyepiece, the curvature of lateral chromatic aberration is corrected, and an image without color blur can be observed in the entire field of view. Furthermore, using an aspherical surface as the refractive surface of the optical material is effective in correcting curvature of field and coma.

図9は、本発明の実施例1の接眼レンズを用いた望遠端の実施例5のレンズ断面図である。   FIG. 9 is a lens cross-sectional view of Example 5 at the telephoto end using the eyepiece of Example 1 of the present invention.

図10は実施例5の収差図である。   FIG. 10 is an aberration diagram of Example 5.

図11は、本発明の実施例2の接眼レンズを用いた望遠端の実施例6のレンズ断面図である。   FIG. 11 is a lens cross-sectional view of Example 6 at the telephoto end using the eyepiece of Example 2 of the present invention.

図12は実施例6の収差図である。   FIG. 12 is an aberration diagram of Example 6.

実施例5,6はいずれも望遠鏡の倍率が10倍であり、かつ自動的に手ぶれ補正を有した光学系である。図中、OBJは対物レンズ、L6、L7は対物レンズOBJを構成する第6レンズ群、第7レンズ群、VAPは頂角可変プリズム、Pは正立プリズムである。VAPはプリズム頂角可変の特徴を生かして望遠鏡装置の振れ角に応じてプリズム頂角を変化させ観察像を見かけ上静止させる機能を持たせている。Pは対物レンズOBJで反転した像を正立像に変換し接眼レンズOCLでは正立像が観察できるようにするプリズムであり、図では展開系のガラスブロックで示している。望遠鏡の性能を確保するためには接眼レンズOCLの性能を良好にすると同時に対物レンズOBJの性能も良好にする必要がある。実施例では良好な光学性能を有する対物レンズを組み合わせて構成している。   Each of Examples 5 and 6 is an optical system in which the magnification of the telescope is 10 times and camera shake correction is automatically performed. In the figure, OBJ is an objective lens, L6 and L7 are a sixth lens group and a seventh lens group constituting the objective lens OBJ, VAP is a vertex angle variable prism, and P is an erecting prism. The VAP has a function of making the observation image appear to be stationary by changing the prism apex angle according to the deflection angle of the telescope device by utilizing the feature of the prism apex angle variable. P is a prism that converts an image inverted by the objective lens OBJ into an erect image, and allows the erect image to be observed by the eyepiece OCL. In order to ensure the performance of the telescope, it is necessary to improve the performance of the eyepiece lens OCL and the performance of the objective lens OBJ. In the embodiment, an objective lens having good optical performance is combined.

図13は図9の望遠鏡を1対用いた双眼鏡の実施例7の概略図である。図中、OBJR,VAPR、PR,OCLR,OARは順に、双眼鏡の右側に配置された対物レンズ、頂角可変プリズム、正立プリズム、接眼レンズ、対物レンズの光軸を表している。又OBJL、VAPL、PL、OCLL OALは順に、双眼鏡の左側に配置された対物レンズ、頂角可変プリズム、正立プリズム、接眼レンズ、対物レンズの光軸を表している。なお左右の対物レンズOBJL,OBJRに対し左右に配置された正立プリズムであるポロII型プリズムPL,PRと接眼レンズOCLL,OCLRを対物レンズの光軸OAL,OARを回転軸にして左右それぞれ一体的に回動することによって眼幅調整を行うことができる。図10の縦収差図で示したように図13の双眼鏡は10倍、64度の広視界にもかかわらず良好な性能を確保している。   FIG. 13 is a schematic diagram of Example 7 of binoculars using a pair of the telescopes of FIG. In the figure, OBJR, VAPR, PR, OCLR, and OAR represent the optical axes of the objective lens, the apex angle variable prism, the erecting prism, the eyepiece lens, and the objective lens, which are arranged on the right side of the binoculars in this order. OBJL, VAPL, PL, and OCLL OAL represent the optical axes of the objective lens, apex variable prism, erecting prism, eyepiece lens, and objective lens arranged on the left side of the binoculars in this order. The left and right objective lenses OBJL and OBJR are erecting prisms arranged on the left and right, respectively. The eye width can be adjusted by rotating the eye. As shown in the longitudinal aberration diagram of FIG. 10, the binoculars of FIG. 13 ensure good performance despite a wide field of view of 10 times and 64 degrees.

なお本発明の接眼レンズは顕微鏡にも使用できる。本発明の接眼レンズを用いた顕微鏡は画像周辺まで良好に色収差補正された画像の観察が可能となる。   The eyepiece of the present invention can also be used for a microscope. The microscope using the eyepiece lens of the present invention can observe an image that has been satisfactorily corrected for chromatic aberration up to the periphery of the image.

以上のように各実施例によれば、60度以上の広視界にもかかわらず視野周辺まで倍率色収差のきわめて少ない良好な性能を有する10倍程度の接眼レンズ及びそれを有する望遠鏡や双眼鏡を実現できる。   As described above, according to each embodiment, it is possible to realize an eyepiece of about 10 times having a good performance with very little magnification chromatic aberration up to the periphery of the visual field in spite of a wide field of view of 60 degrees or more, and a telescope and binoculars having the same. .

次に、本発明の接眼レンズ及びそれを望遠端に用いたときの数値実施例を示す。各数値実施例において、iは物体側からの面の順序を示し、Riはレンズ面の曲率半径、Diは第i面と第(i+1)面との間の間隔、Ni、νdiはそれぞれd線を基準とした屈折率、アッベ数を示す。θgF、θgdは部分分散比である。   Next, numerical examples when the eyepiece of the present invention is used at the telephoto end will be described. In each numerical example, i indicates the order of the surfaces from the object side, Ri is the radius of curvature of the lens surface, Di is the distance between the i-th surface and the (i + 1) -th surface, and Ni and νdi are d-lines, respectively. The refractive index and Abbe number are shown with reference to. θgF and θgd are partial dispersion ratios.

また、最も像側の1つの面はアイポイントである。   One surface closest to the image is an eye point.

また、非球面形状は、光の進行方向を正とし、xを光軸方向の面頂点からの変位量、hを光軸と垂直な方向の光軸からの高さ、Rを近軸曲率半径、kを円錐定数、B〜Eを非球面係数とするとき、
x=(h/R)/[1+{1−(1+k)(h/R)1/2
+Bh+Ch+Dh+Eh10
なる式で表している。
The aspherical shape is such that the light traveling direction is positive, x is the amount of displacement from the surface apex in the optical axis direction, h is the height from the optical axis in the direction perpendicular to the optical axis, and R is the paraxial radius of curvature. , K is a conic constant, and B to E are aspheric coefficients,
x = (h 2 / R) / [1+ {1− (1 + k) (h / R) 2 } 1/2 ]
+ Bh 4 + Ch 6 + Dh 8 + Eh 10
It is expressed by the following formula.

また「e−0X」は「×10−x」を意味している。fは焦点距離、ωは半画角を示す。 “E-0X” means “× 10 −x ”. f represents a focal length, and ω represents a half angle of view.

本発明の接眼レンズの実施例1,2,3、4の屈折光学素子の固体材料が条件式(1)〜(5)を満足することは後述する図14、図15で明確である。また条件式(6)に相当する数値は下記のとおりである。   It is clear in FIGS. 14 and 15 described later that the solid materials of the refractive optical elements of Examples 1, 2, 3, and 4 of the eyepiece of the present invention satisfy the conditional expressions (1) to (5). Numerical values corresponding to conditional expression (6) are as follows.

本発明の接眼レンズ実施例1のレンズ断面図Lens cross-sectional view of eyepiece Example 1 of the present invention 本発明の接眼レンズ実施例1の縦収差図Longitudinal aberration diagram of the eyepiece Example 1 of the present invention 本発明の接眼レンズ実施例2のレンズ断面図Lens cross section of the eyepiece Example 2 of the present invention 本発明の接眼レンズ実施例2の縦収差図Longitudinal aberration diagram of the eyepiece Example 2 of the present invention 本発明の接眼レンズ実施例3のレンズ断面図Lens cross section of the eyepiece Example 3 of the present invention 本発明の接眼レンズ実施例3の縦収差図Longitudinal aberration diagram of the eyepiece Example 3 of the present invention 本発明の接眼レンズ実施例4のレンズ断面図Lens cross-sectional view of eyepiece Example 4 of the present invention 本発明の接眼レンズ実施例4の縦収差図Longitudinal aberration diagram of the eyepiece Example 4 of the present invention 本発明の望遠鏡レンズの実施例5のレンズ断面図Lens sectional view of Example 5 of the telescope lens of the present invention 本発明の望遠鏡の実施例5の縦収差図Longitudinal aberration diagram of Example 5 of the telescope of the present invention 本発明の望遠端の実施例6のレンズ断面図Cross section of lens of Embodiment 6 at the telephoto end of the present invention 本発明の望遠鏡の実施例6の縦収差図Longitudinal aberration diagram of Example 6 of the telescope of the present invention 本発明の望遠鏡の実施例5を一対用いた双眼鏡の光学系を示す図The figure which shows the optical system of the binoculars which used Example 5 of the telescope of this invention one pair 本発明に係る条件式(1),(2)の範囲を説明する図The figure explaining the range of conditional expressions (1) and (2) according to the present invention 本発明に係る条件式(3),(4)の範囲を説明する図The figure explaining the range of conditional expressions (3) and (4) according to the present invention

符号の説明Explanation of symbols

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
L5 第5レンズ群
L6 第6レンズ群
L7 第7レンズ群
GIT 屈折光学素子
MIP 中間結像面
OBJ,OBJR,OBJL 対物レンズ
VAP、VAPR、VAPL 頂角可変プリズム
P、PR,PL 正立プリズム
OCL,OCLR,OCLL 接眼レンズ
OAR,OAL 対物レンズ光軸
FL 前方レンズ群
RL 後方レンズ群
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group L5 5th lens group L6 6th lens group L7 7th lens group GIT refractive optical element MIP intermediate image plane OBJ, OBJR, OBJL Objective Lens VAP, VAPR, VAPL Vertical angle variable prism P, PR, PL Erecting prism OCL, OCLR, OCLL Eyepiece OAR, OAL Objective lens optical axis FL Front lens group RL Rear lens group

Claims (14)

光入射側より順に、像面平坦化機能を有する前方レンズ群、複数のレンズ群から成る後方レンズ群とを有し、該前方レンズ群と後方レンズ群との間の中間結像面に形成した中間像を該後方レンズ群を介して観察する接眼レンズにおいて、g線、F線、d線、C線に対する材料の屈折率を順にNg、NF、Nd、NCとし、アッベ数をνd、部分分散比をθgFとし、
とするとき、光路中に、
―2.1×10−3・νd +0.693< θgF
0.555<θgF <0.9
なる条件を満足する固体材料の屈折光学素子を有していることを特徴とする接眼レンズ。
In order from the light incident side, a front lens group having an image plane flattening function and a rear lens group composed of a plurality of lens groups are formed on an intermediate imaging plane between the front lens group and the rear lens group. In an eyepiece that observes an intermediate image through the rear lens group, the refractive indexes of materials for g-line, F-line, d-line, and C-line are Ng, NF, Nd, and NC in this order, Abbe number is νd, and partial dispersion Let the ratio be θgF,
When in the optical path,
―2.1 × 10 -3・ νd +0.693 <θgF
0.555 <θgF <0.9
An eyepiece having a refractive optical element made of a solid material that satisfies the following conditions.
前記屈折光学素子の部分分散比をθgdとし、
とするとき、
−2.407×10−3・νd+1.420<θgd
1.255<θgd<1.67
なる条件を満足することを特徴とする請求項1の接眼レンズ。
The partial dispersion ratio of the refractive optical element is θgd,
And when
-2.407 × 10 −3 · νd + 1.420 <θgd
1.255 <θgd <1.67
The eyepiece according to claim 1, wherein the following condition is satisfied.
前記前方レンズ群は、1枚以上の負レンズと、1枚以上の正レンズから成ることを特徴とする請求項1又は2の接眼レンズ。   The eyepiece according to claim 1 or 2, wherein the front lens group includes one or more negative lenses and one or more positive lenses. 前記屈折光学素子は、負の屈折力を有し、前記前方レンズ群に配置されていることを特徴とする請求項1、2又は3の接眼レンズ。   The eyepiece according to claim 1, wherein the refractive optical element has a negative refractive power and is disposed in the front lens group. 前記屈折光学素子は、正の屈折力を有し、前記後方レンズ群に配置されていることを特徴とする請求項1、2、3又は4の接眼レンズ。   5. The eyepiece according to claim 1, wherein the refractive optical element has a positive refractive power and is disposed in the rear lens group. 前記屈折光学素子は、前記中間結像面を通過する近軸光線の軸上光線の高さをh、軸外光線の高さを
とするとき、
なる条件を満足する面に設けられていることを特徴とする請求項1から5のいずれか1項の接眼レンズ。
The refractive optical element has a height h of an on-axis ray of a paraxial ray passing through the intermediate imaging plane and a height of an off-axis ray.
And when
The eyepiece lens according to claim 1, wherein the eyepiece lens is provided on a surface that satisfies the following condition.
前記固体材料は0°C〜40°Cの温度範囲におけるd線の屈折率の温度に対する変化率の絶対値を|dn/dT|とするとき
|dn/dT| < 2.5×10−4 /°C
なる条件を満足することを特徴とする請求項1から6のいずれか1項の接眼レンズ。
When the absolute value of the rate of change of the refractive index of the d-line with respect to the temperature is | dn / dT | in the temperature range of 0 ° C. to 40 ° C., | dn / dT | <2.5 × 10 −4 / ° C
The eyepiece according to claim 1, wherein the following condition is satisfied.
前記屈折光学素子の光入射側と光出射側の2つの面のうち、少なくとも一つの面は非球面形状であることを特徴とする請求項1から7のいずれか1項の接眼レンズ。   The eyepiece according to any one of claims 1 to 7, wherein at least one of the two surfaces of the refractive optical element on the light incident side and the light emitting side has an aspherical shape. 前記屈折光学素子の光入射側と光出射側の2つの面のうち、少なくとも一方の面は空気に接していることを特徴とする請求項1から8のいずれか1項の接眼レンズ。   9. The eyepiece according to claim 1, wherein at least one of two surfaces of the refractive optical element on the light incident side and the light emitting side is in contact with air. 前記屈折光学素子の光入射側と光出射側の2つの面は共にガラス材より成る面に接していることを特徴とする請求項1から8のいずれか1項の接眼レンズ。   The eyepiece lens according to any one of claims 1 to 8, wherein the two surfaces of the refractive optical element on the light incident side and the light emitting side are in contact with a surface made of a glass material. 対物レンズを介して、被写体を観察する接眼レンズであって、g線、F線、d線、C線に対する材料の屈折率を順にNg、NF、Nd、NCとし、アッベ数をνd、部分分散比をθgFとし、
とするとき、光路中に、
―2.1×10−3・νd +0.693< θgF
0.555<θgF <0.9
なる条件を満足する固体材料の屈折光学素子を有していることを特徴とする接眼レンズ。
An eyepiece for observing a subject via an objective lens, wherein the refractive indices of materials for g-line, F-line, d-line, and C-line are Ng, NF, Nd, and NC in this order, Abbe number is νd, and partial dispersion Let the ratio be θgF,
When in the optical path,
―2.1 × 10 -3・ νd +0.693 <θgF
0.555 <θgF <0.9
An eyepiece having a refractive optical element made of a solid material that satisfies the following conditions.
前記屈折光学素子の部分分散比をθgdとし、
とするとき、
−2.407×10−3・νd+1.420<θgd
1.255<θgd<1.67
なる条件を満足することを特徴とする請求項11の接眼レンズ。
The partial dispersion ratio of the refractive optical element is θgd,
And when
-2.407 × 10 −3 · νd + 1.420 <θgd
1.255 <θgd <1.67
The eyepiece according to claim 11, wherein the following condition is satisfied.
νd<50
なる条件を満足することを特徴とする請求項1から12のいずれか1項の接眼レンズ。
νd <50
The eyepiece according to claim 1, wherein the following condition is satisfied.
対物レンズと、請求項1から13のいずれか1項の接眼レンズとを用いて被写体を観察することを特徴とする光学機器。   An optical apparatus characterized by observing a subject using an objective lens and the eyepiece according to any one of claims 1 to 13.
JP2005126492A 2005-04-25 2005-04-25 Eyepiece lens and optical instrument using the same Expired - Fee Related JP4756901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005126492A JP4756901B2 (en) 2005-04-25 2005-04-25 Eyepiece lens and optical instrument using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005126492A JP4756901B2 (en) 2005-04-25 2005-04-25 Eyepiece lens and optical instrument using the same

Publications (3)

Publication Number Publication Date
JP2006301508A true JP2006301508A (en) 2006-11-02
JP2006301508A5 JP2006301508A5 (en) 2008-06-05
JP4756901B2 JP4756901B2 (en) 2011-08-24

Family

ID=37469827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126492A Expired - Fee Related JP4756901B2 (en) 2005-04-25 2005-04-25 Eyepiece lens and optical instrument using the same

Country Status (1)

Country Link
JP (1) JP4756901B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108490589A (en) * 2018-06-14 2018-09-04 宁波永新光学股份有限公司 A kind of fixed-focus optical system
CN109085694A (en) * 2017-06-13 2018-12-25 新巨科技股份有限公司 Five chip broad angle lens groups
WO2019116569A1 (en) * 2017-12-15 2019-06-20 株式会社ニコン Optical system, optical equipment, and method for manufacturing optical system
WO2019116566A1 (en) * 2017-12-15 2019-06-20 株式会社ニコン Optical system, optical equipment, and optical-system manufacturing method
WO2019116568A1 (en) * 2017-12-15 2019-06-20 株式会社ニコン Optical system, optical equipment, and optical system manufacturing method
WO2019116567A1 (en) * 2017-12-15 2019-06-20 株式会社ニコン Optical system, optical equipment, and method for manufacturing optical system
WO2019116565A1 (en) * 2017-12-15 2019-06-20 株式会社ニコン Optical system, optical equipment, and optical-system manufacturing method
CN109946817A (en) * 2019-04-24 2019-06-28 威海世高光电子有限公司 A kind of ultra-wide angle high-pixel mobile phone Built-in lens
CN110658608A (en) * 2019-08-29 2020-01-07 福建福光股份有限公司 12mm large-aperture day and night dual-purpose prime lens
CN114051590A (en) * 2019-06-26 2022-02-15 京瓷株式会社 Imaging lens and imaging device
CN114442263A (en) * 2020-11-02 2022-05-06 佳能企业股份有限公司 Optical lens
WO2023236176A1 (en) * 2022-06-10 2023-12-14 深圳纳德光学有限公司 Eyepiece optical system and head-mounted display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109261A (en) * 1997-08-07 1999-04-23 Olympus Optical Co Ltd Ocular lens
JP2001074901A (en) * 1999-07-01 2001-03-23 Canon Inc Optical material and optical system using the same
JP2001166226A (en) * 1999-12-07 2001-06-22 Canon Inc Eyepiece and telescope and binoculars using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109261A (en) * 1997-08-07 1999-04-23 Olympus Optical Co Ltd Ocular lens
JP2001074901A (en) * 1999-07-01 2001-03-23 Canon Inc Optical material and optical system using the same
JP2001166226A (en) * 1999-12-07 2001-06-22 Canon Inc Eyepiece and telescope and binoculars using the same

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109085694B (en) * 2017-06-13 2021-08-13 新巨科技股份有限公司 Five-piece type wide-angle lens group
CN109085694A (en) * 2017-06-13 2018-12-25 新巨科技股份有限公司 Five chip broad angle lens groups
CN111512203B (en) * 2017-12-15 2022-04-12 株式会社尼康 Optical system and optical apparatus
JPWO2019116569A1 (en) * 2017-12-15 2020-12-03 株式会社ニコン Optical systems, optical instruments, and methods of manufacturing optical systems
WO2019116568A1 (en) * 2017-12-15 2019-06-20 株式会社ニコン Optical system, optical equipment, and optical system manufacturing method
WO2019116567A1 (en) * 2017-12-15 2019-06-20 株式会社ニコン Optical system, optical equipment, and method for manufacturing optical system
WO2019116565A1 (en) * 2017-12-15 2019-06-20 株式会社ニコン Optical system, optical equipment, and optical-system manufacturing method
JPWO2019116568A1 (en) * 2017-12-15 2020-12-17 株式会社ニコン Optical systems, optical instruments, and methods of manufacturing optical systems
JP2021105746A (en) * 2017-12-15 2021-07-26 株式会社ニコン Optical system and optical apparatus
CN111465881A (en) * 2017-12-15 2020-07-28 株式会社尼康 Optical system, optical apparatus, and method of manufacturing optical system
CN111480103A (en) * 2017-12-15 2020-07-31 株式会社尼康 Optical system, optical apparatus, and method of manufacturing optical system
CN111512203A (en) * 2017-12-15 2020-08-07 株式会社尼康 Optical system, optical apparatus, and method of manufacturing optical system
JPWO2019116566A1 (en) * 2017-12-15 2020-11-19 株式会社ニコン Optical systems, optical instruments, and methods of manufacturing optical systems
CN111465881B (en) * 2017-12-15 2022-05-03 株式会社尼康 Optical system and optical apparatus
JPWO2019116565A1 (en) * 2017-12-15 2020-12-03 株式会社ニコン Optical systems, optical instruments, and methods of manufacturing optical systems
JPWO2019116567A1 (en) * 2017-12-15 2020-12-03 株式会社ニコン Optical systems, optical instruments, and methods of manufacturing optical systems
US11971540B2 (en) 2017-12-15 2024-04-30 Nikon Corporation Optical system, optical apparatus, and method of manufacturing optical system
US20210072520A1 (en) * 2017-12-15 2021-03-11 Nikon Corporation Optical system, optical apparatus, and method of manufacturing optical system
US11686926B2 (en) * 2017-12-15 2023-06-27 Nikon Corporation Optical system, optical apparatus, and method of manufacturing optical system
JP2021105747A (en) * 2017-12-15 2021-07-26 株式会社ニコン Optical system and optical apparatus
CN111480103B (en) * 2017-12-15 2022-09-09 株式会社尼康 Optical system and optical apparatus
WO2019116569A1 (en) * 2017-12-15 2019-06-20 株式会社ニコン Optical system, optical equipment, and method for manufacturing optical system
CN114859507A (en) * 2017-12-15 2022-08-05 株式会社尼康 Optical system and optical apparatus
JP7036124B2 (en) 2017-12-15 2022-03-15 株式会社ニコン Optical system and optical equipment
WO2019116566A1 (en) * 2017-12-15 2019-06-20 株式会社ニコン Optical system, optical equipment, and optical-system manufacturing method
CN108490589A (en) * 2018-06-14 2018-09-04 宁波永新光学股份有限公司 A kind of fixed-focus optical system
CN108490589B (en) * 2018-06-14 2023-11-24 宁波永新光学股份有限公司 Fixed-focus optical system
CN109946817B (en) * 2019-04-24 2023-11-28 威海世高光电子有限公司 Ultra-wide-angle high-pixel mobile phone built-in lens
CN109946817A (en) * 2019-04-24 2019-06-28 威海世高光电子有限公司 A kind of ultra-wide angle high-pixel mobile phone Built-in lens
CN114051590A (en) * 2019-06-26 2022-02-15 京瓷株式会社 Imaging lens and imaging device
CN110658608B (en) * 2019-08-29 2021-08-03 福建福光股份有限公司 12mm large-aperture day and night dual-purpose prime lens
CN110658608A (en) * 2019-08-29 2020-01-07 福建福光股份有限公司 12mm large-aperture day and night dual-purpose prime lens
CN114442263A (en) * 2020-11-02 2022-05-06 佳能企业股份有限公司 Optical lens
WO2023236176A1 (en) * 2022-06-10 2023-12-14 深圳纳德光学有限公司 Eyepiece optical system and head-mounted display device

Also Published As

Publication number Publication date
JP4756901B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4756901B2 (en) Eyepiece lens and optical instrument using the same
JP4630645B2 (en) Optical system
JP4956062B2 (en) Optical system
JP5388446B2 (en) Optical system and optical apparatus having the same
JP4776988B2 (en) Optical system and optical apparatus having the same
JP5074790B2 (en) Zoom lens and imaging apparatus having the same
JP4745707B2 (en) Optical system
JP4898307B2 (en) Optical system and optical apparatus having the same
JP5224894B2 (en) Optical system and optical apparatus having the same
JP5553566B2 (en) Optical element, optical system, and optical instrument
JP5039393B2 (en) Optical system and optical apparatus having the same
JP4944586B2 (en) Optical system and optical apparatus having the same
JP2004333768A (en) Zoom lens and imaging device having the same
JP4997845B2 (en) Viewfinder optical system and optical apparatus having the same
JP6635250B2 (en) Imaging optical system and imaging apparatus having the same
JP2012022105A (en) Optical system and optical equipment including the same
JPH11305126A (en) Optical lens system
KR100837483B1 (en) Optical system and optical apparatus including the same
JP2009015026A (en) Imaging optical system and optical equipment
JP2017219645A (en) Imaging optical system and imaging apparatus having the same
JP2020042221A (en) Wide-angle lens system
JP5046746B2 (en) Optical system and optical apparatus having the same
JP5063226B2 (en) Optical system and optical apparatus having the same
JP2010039321A (en) Eyepiece
JP2004126395A (en) Telescopic optical system and objective system used for the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent or registration of utility model

Ref document number: 4756901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees