JP2006300553A - Inspection device - Google Patents

Inspection device Download PDF

Info

Publication number
JP2006300553A
JP2006300553A JP2005118627A JP2005118627A JP2006300553A JP 2006300553 A JP2006300553 A JP 2006300553A JP 2005118627 A JP2005118627 A JP 2005118627A JP 2005118627 A JP2005118627 A JP 2005118627A JP 2006300553 A JP2006300553 A JP 2006300553A
Authority
JP
Japan
Prior art keywords
imaging
image
test surface
inspection apparatus
imaging means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005118627A
Other languages
Japanese (ja)
Inventor
Hiroya Okuma
博也 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005118627A priority Critical patent/JP2006300553A/en
Publication of JP2006300553A publication Critical patent/JP2006300553A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection device making correct defect inspection even when the inspection surface is tilted greatly. <P>SOLUTION: This device is equipped with: an imaging means 13 for imaging collectively at least a part of a domain of the inspection surface 10A; setting means 11, 16 for setting a tilt angle of the inspection surface with respect to an optical axis 3A of the imaging means 13; and acquisition means 16, 14 for determining a plurality of focal positions to be imaged by the imaging means corresponding to the tilt angle set by the setting means, and for acquiring a plurality of images having different focal positions on the basis of an image signal outputted by imaging the domain by the imaging means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被検面の欠陥検査を行う検査装置に関する。   The present invention relates to an inspection apparatus that performs defect inspection of a surface to be measured.

カメラなどの撮像装置を用い、撮像装置の光軸に対して被検面を傾けた状態で、被検面の比較的広い領域(例えば全域など)の画像を一括取得し、この画像を利用して欠陥検査を行う装置が知られている(例えば特許文献1を参照)。
特開2001−289793号公報
Using an imaging device such as a camera, with the test surface tilted with respect to the optical axis of the imaging device, collect images of a relatively wide area (for example, the entire area) of the test surface and use this image. An apparatus for performing defect inspection is known (see, for example, Patent Document 1).
JP 2001-289793 A

しかし、上記の検査装置では、被検面の傾きが大きくなると、一括取得した画像の周辺にピントの外れた部分が現れることがあり、その場合には正しい欠陥検査を行うことができなくなってしまう。
本発明の目的は、被検面の傾きが大きくても正しい欠陥検査を行える検査装置を提供することにある。
However, in the above-described inspection apparatus, when the inclination of the surface to be measured becomes large, an out-of-focus portion may appear around the collectively acquired image, and in this case, correct defect inspection cannot be performed. .
An object of the present invention is to provide an inspection apparatus capable of performing a correct defect inspection even when the surface to be measured has a large inclination.

本発明の検査装置は、被検面の少なくとも一部の領域を一括して撮像する撮像手段と、前記撮像手段の光軸に対する前記被検面の傾き角を設定する設定手段と、前記設定手段が設定した前記傾き角に応じて前記撮像手段が撮像する複数の焦点位置を決定し、前記撮像手段が前記領域を撮像して出力する撮像信号に基づいて、前記焦点位置の異なる複数の画像を取得する取得手段とを備えたものである。   An inspection apparatus according to the present invention includes an imaging unit that collectively images at least a partial area of a test surface, a setting unit that sets an inclination angle of the test surface with respect to an optical axis of the imaging unit, and the setting unit A plurality of focal positions to be imaged by the imaging means are determined according to the tilt angle set by the imaging means, and a plurality of images having different focal positions are obtained based on imaging signals output by the imaging means by imaging the area. Acquisition means for acquiring.

また、前記取得手段が取得した前記複数の画像それぞれの中から合焦部分を切り出して合成し、前記領域に関わる合成画像を生成する生成手段を備えることが好ましい。さらに、前記取得手段は、前記撮像手段の焦点深度内に前記領域の全てが含まれる場合、前記焦点位置の切り替えを行わずに画像を取得することが好ましい。また、前記取得手段は、前記撮像手段の絞り径が予め定めた径より大きい場合、前記撮像手段の焦点深度内に前記領域の全てが含まれるように前記絞り径を縮小して、前記焦点位置の切り替えを行わずに画像を取得することが好ましい。   In addition, it is preferable that the image forming apparatus further includes a generation unit that cuts out and combines a focused portion from each of the plurality of images acquired by the acquisition unit and generates a composite image related to the region. Furthermore, it is preferable that the acquisition unit acquires an image without switching the focal position when the entire region is included in the focal depth of the imaging unit. Further, when the aperture diameter of the imaging means is larger than a predetermined diameter, the acquisition means reduces the aperture diameter so that the entire area is included in the focal depth of the imaging means, and the focal position It is preferable to acquire an image without switching.

さらに、本発明の他の検査装置は、被検面の少なくとも一部の領域を一括して撮像する撮像手段と、前記撮像手段の光軸に対する前記被検面の傾き角を設定する設定手段と、前記設定手段が設定した前記傾き角に応じて、前記撮像手段の焦点深度内に前記領域の全てが含まれるように前記撮像手段の絞り径を調整し、前記撮像手段が前記領域を撮像して出力する撮像信号に基づいて画像を取得する取得手段とを備えたものである。   Furthermore, another inspection apparatus according to the present invention includes an imaging unit that collectively images at least a part of a region of the test surface, and a setting unit that sets an inclination angle of the test surface with respect to the optical axis of the imaging unit. According to the tilt angle set by the setting means, the aperture diameter of the imaging means is adjusted so that the entire area is included within the depth of focus of the imaging means, and the imaging means images the area. Acquisition means for acquiring an image based on an imaging signal to be output.

本発明によれば、被検面の傾きが大きくても正しい欠陥検査を行うことができる。   According to the present invention, correct defect inspection can be performed even when the inclination of the surface to be inspected is large.

以下、図面を用いて本発明の実施形態を詳細に説明する。
本実施形態の検査装置10は、図1に示す通り、被検面10Aを有する例えば半導体ウエハや液晶ガラス基板などの物体を載置するチルトステージ11と、被検面10Aを照明する照明部12と、被検面10Aを撮像する撮像部13と、画像処理部14と、表示部15と、制御部16とで構成される。制御部16は、被検面10Aに対する欠陥検査の条件に応じてチルトステージ11を制御し、被検面10Aの傾き調整を行う。さらに、制御部16は、被検面10Aの傾き調整の結果に基づいて撮像部13を制御し、必要に応じて、撮像部13の焦点位置の切り替えを行う。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the inspection apparatus 10 of the present embodiment includes a tilt stage 11 on which an object such as a semiconductor wafer or a liquid crystal glass substrate having a test surface 10A is placed, and an illumination unit 12 that illuminates the test surface 10A. And an imaging unit 13 that images the test surface 10A, an image processing unit 14, a display unit 15, and a control unit 16. The control unit 16 controls the tilt stage 11 in accordance with the defect inspection conditions for the test surface 10A to adjust the tilt of the test surface 10A. Further, the control unit 16 controls the imaging unit 13 based on the result of the tilt adjustment of the test surface 10A, and switches the focal position of the imaging unit 13 as necessary.

照明部12からの照明光は、照明部12の光軸2Aに沿って被検面10Aの全域に入射して、被検面10Aの全域を斜め方向から照明する。このとき、被検面10Aの全域から所定方向に検査用の回折光(例えば1次回折光)が発生する。検査用の回折光を撮像部13の光軸3Aに沿って導き、撮像部13に入射させるために、チルトステージ11を用いて被検面10Aの傾き調整が行われる。   Illumination light from the illumination unit 12 is incident on the entire surface of the test surface 10A along the optical axis 2A of the illumination unit 12, and illuminates the entire region of the test surface 10A from an oblique direction. At this time, diffracted light for inspection (for example, first-order diffracted light) is generated in a predetermined direction from the entire surface of the test surface 10A. In order to guide inspection diffracted light along the optical axis 3 </ b> A of the imaging unit 13 and to enter the imaging unit 13, the tilt of the test surface 10 </ b> A is adjusted using the tilt stage 11.

この傾き調整により、撮像部13の光軸3Aに対する被検面10Aの傾き角が設定され、また同時に、照明部12の光軸2Aに対する被検面10Aの傾き角も設定される。そして、2つの傾き角の組み合わせに応じて、検査用の回折光を光軸3Aに沿って撮像部13に入射させることができる。
なお、被検面10Aの傾き調整の際には、照明光の波長に関する情報や、被検面10Aの繰り返しパターンのピッチに関する情報などが考慮される。被検面10Aを傾ける際の回転軸(不図示)は、撮像部13の光軸3Aに対して垂直であり、照明部12の光軸2Aに対しても垂直である。
By this tilt adjustment, the tilt angle of the test surface 10A with respect to the optical axis 3A of the imaging unit 13 is set, and at the same time, the tilt angle of the test surface 10A with respect to the optical axis 2A of the illumination unit 12 is also set. Then, diffracted light for inspection can be incident on the imaging unit 13 along the optical axis 3A in accordance with a combination of two inclination angles.
Note that when adjusting the inclination of the test surface 10A, information on the wavelength of the illumination light, information on the pitch of the repetitive pattern on the test surface 10A, and the like are considered. A rotation axis (not shown) when tilting the test surface 10A is perpendicular to the optical axis 3A of the imaging unit 13, and is also perpendicular to the optical axis 2A of the illumination unit 12.

撮像部13は、例えばカメラであり、光軸3Aに対して被検面10Aを傾けた状態(上記の傾き調整後の状態)で、被検面10Aからの検査用の回折光を取り込み、被検面10Aの全域を一括して撮像する。撮像部13の視野は被検面10Aの全域に対応する。撮像部13には、検査用の回折光に基づいて被検面10Aの全域の回折像を形成する結像レンズと、その回折像の形成面に配置されたイメージセンサとが設けられる。   The imaging unit 13 is a camera, for example, and captures the diffracted light for inspection from the test surface 10A in a state where the test surface 10A is tilted with respect to the optical axis 3A (the state after the tilt adjustment). The entire surface of the inspection surface 10A is imaged collectively. The field of view of the imaging unit 13 corresponds to the entire area of the test surface 10A. The imaging unit 13 is provided with an imaging lens that forms a diffracted image of the entire surface of the test surface 10A based on the diffracted light for inspection, and an image sensor disposed on the surface on which the diffracted image is formed.

そして撮像部13は、被検面10Aの全域を撮像すると、画像処理部14に撮像信号を出力する。画像処理部14は、撮像部13からの撮像信号に基づいて被検面10Aの全域の画像を一括取得し、必要に応じて表示部15に表示させる。なお、例えば被検面10Aが円形状で且つ撮像部13による撮像方向が斜めの場合、撮像部13からの撮像信号に基づく被検面10Aの画像は楕円形状となる。このため、楕円形状を円形状に変換するような補正処理を行って、円形状の画像5A(図1)を生成することが好ましい。   The imaging unit 13 outputs an imaging signal to the image processing unit 14 when imaging the entire area of the test surface 10A. The image processing unit 14 collects images of the entire area of the test surface 10A based on the imaging signal from the imaging unit 13 and displays the images on the display unit 15 as necessary. For example, when the test surface 10A is circular and the imaging direction by the imaging unit 13 is oblique, the image of the test surface 10A based on the imaging signal from the imaging unit 13 is elliptical. Therefore, it is preferable to generate a circular image 5A (FIG. 1) by performing a correction process that converts the elliptical shape into a circular shape.

ここで、図2(a)に示す通り、被検面10Aの傾き角Θが小さく、被検面10Aの全域の全てが撮像部13の焦点深度内に含まれる場合、上記のように一括取得した被検面10Aの画像5A(図1)は、その全域でピントが合っている。したがって、この画像5Aを利用して正しい欠陥検査を行うことができる。なお、図2(a)では撮像部13の焦点位置が被検面10Aの中心を含む回転軸上に位置する場合を示した。   Here, as shown in FIG. 2A, when the tilt angle Θ of the test surface 10A is small and the entire area of the test surface 10A is included within the focal depth of the imaging unit 13, the batch acquisition is performed as described above. The image 5A (FIG. 1) of the measured surface 10A is in focus throughout the entire area. Therefore, correct defect inspection can be performed using the image 5A. FIG. 2A shows a case where the focal position of the imaging unit 13 is located on the rotation axis including the center of the test surface 10A.

しかし、図2(b)に示す通り、被検面10Aの傾き角Θが大きく、被検面10Aの周辺が撮像部13の焦点深度から外れると、一括取得した被検面10Aの画像5A(図1)の周辺ではピントが外れてしまう。この場合、画像5Aを利用しても正しい欠陥検査を行うことができない。なお、図2(b)でも撮像部13の焦点位置が被検面10Aの中心を含む回転軸上に位置する場合を示した。   However, as shown in FIG. 2B, when the inclination angle Θ of the test surface 10A is large and the periphery of the test surface 10A deviates from the depth of focus of the imaging unit 13, an image 5A (10A) of the test surface 10A acquired collectively. The image is out of focus in the vicinity of FIG. In this case, even if the image 5A is used, correct defect inspection cannot be performed. FIG. 2B also shows the case where the focal position of the imaging unit 13 is located on the rotation axis including the center of the surface to be inspected 10A.

そこで、本実施形態の検査装置10では、図3に示すフローチャートの手順にしたがって被検面10Aの全域に関する画像の取得処理を行う。被検面10Aの傾き調整(ステップS1)が終わると、これによって設定された傾き角Θが所定値ΘA未満か否かを判断する(ステップS2)。所定値ΘAとは、図4(a)に示す通り、被検面10Aの回転軸に垂直な方向の直径Φを光軸3Aの方向に投影した長さLが、撮像部13の焦点深度と等しくなるような傾き角ΘAである。   Therefore, in the inspection apparatus 10 of the present embodiment, an image acquisition process for the entire area of the test surface 10A is performed according to the procedure of the flowchart shown in FIG. When the tilt adjustment (step S1) of the test surface 10A is completed, it is determined whether or not the tilt angle Θ set thereby is less than a predetermined value ΘA (step S2). As shown in FIG. 4A, the predetermined value ΘA is a length L obtained by projecting the diameter Φ in the direction perpendicular to the rotation axis of the test surface 10A in the direction of the optical axis 3A. The inclination angle ΘA is equal.

傾き調整によって設定された傾き角Θが所定値ΘA未満の場合(ステップS2がYES,図2(a)の状態)、つまり、被検面10Aの全域が撮像部13の焦点深度内に含まれる場合、制御部16は図3のステップS3の処理を行う。ステップS3では、撮像部13の焦点位置を被検面10Aの中心に合わせた状態で、そのまま被検面10Aの全域を一括撮像する。その結果、全域でピントの合った画像を取得することができ、この画像を解析することにより正しい欠陥検査を行うことができる。   When the tilt angle Θ set by the tilt adjustment is less than the predetermined value ΘA (step S2 is YES, the state of FIG. 2A), that is, the entire area of the test surface 10A is included in the depth of focus of the imaging unit 13. In this case, the control unit 16 performs the process of step S3 in FIG. In step S3, the entire area of the surface to be inspected 10A is imaged as it is, with the focus position of the imaging unit 13 being set to the center of the surface to be inspected 10A. As a result, an in-focus image can be acquired over the entire area, and a correct defect inspection can be performed by analyzing the image.

一方、傾き調整によって設定された傾き角Θが所定値ΘA以上の場合(ステップS2がNO,図2(b)の状態)、つまり、被検面10Aの周辺が撮像部13の焦点深度から外れた場合に、制御部16はステップS4の処理に進む。ステップS4では、傾き角Θが所定値ΘB未満か否かを判断する。所定値ΘBとは、図4(b)に示す通り、被検面10Aの回転軸に垂直な方向の直径Φを光軸3Aの方向に投影した長さLが、撮像部13の焦点深度の2倍と等しくなるような傾き角ΘBである。   On the other hand, when the inclination angle Θ set by the inclination adjustment is equal to or larger than the predetermined value ΘA (step S2 is NO, the state of FIG. 2B), that is, the periphery of the test surface 10A is out of the focal depth of the imaging unit 13. In the case where it is detected, the control unit 16 proceeds to the process of step S4. In step S4, it is determined whether the inclination angle Θ is less than a predetermined value ΘB. As shown in FIG. 4B, the predetermined value ΘB is a length L obtained by projecting the diameter Φ in the direction perpendicular to the rotation axis of the test surface 10A in the direction of the optical axis 3A. The inclination angle ΘB is equal to twice.

傾き調整によって設定された傾き角Θが所定値ΘA以上で所定値ΘB未満の場合(ステップS4がYES)、制御部16はステップS5の処理を行う。ステップS5では、被検面10Aを図5(a)に示す2つの領域(1),(2)に分け、一方の領域(1)の中心付近に撮像部13の焦点位置を合わせた状態(図5(b))で、被検面10Aの全域を一括撮像する。さらに、他方の領域(2)の中心付近に撮像部13の焦点位置を合わせた状態(図5(c))で、被検面10Aの全域を一括撮像する。   When the inclination angle Θ set by the inclination adjustment is not less than the predetermined value ΘA and less than the predetermined value ΘB (step S4 is YES), the control unit 16 performs the process of step S5. In step S5, the test surface 10A is divided into two areas (1) and (2) shown in FIG. 5A, and the focus position of the imaging unit 13 is set near the center of one area (1) ( In FIG. 5B, the entire area of the test surface 10A is imaged collectively. Further, the entire area of the test surface 10A is collectively imaged in a state where the focus position of the imaging unit 13 is set near the center of the other region (2) (FIG. 5C).

その結果、次のような2つの画像を順に取得することができる。1つ目の画像は、図5(b)の状態で取得した画像であり、被検面10Aの領域(1)に対応する部分ではピントが合っているが、被検面10Aの領域(2)に対応する部分ではピントが外れている。2つ目の画像は、図5(c)の状態で取得した画像であり、上記とは逆に、領域(1)に対応する部分ではピントが外れているが、領域(2)に対応する部分ではピントが合っている。   As a result, the following two images can be acquired in order. The first image is an image acquired in the state shown in FIG. 5B, and the portion corresponding to the region (1) of the test surface 10A is in focus, but the region of the test surface 10A (2 The part corresponding to) is out of focus. The second image is an image acquired in the state of FIG. 5C. Contrary to the above, the portion corresponding to the region (1) is out of focus, but corresponds to the region (2). The part is in focus.

このようにして取得された焦点位置の異なる2つの画像には、画像処理部14において、ステップS7の画像合成の処理が施される。画像処理部14では、2つの画像それぞれの中から合焦部分を切り出して合成し、つまり、図5(b)の状態で取得した画像の領域(1)に対応する部分と図5(c)の状態で取得した画像の領域(2)に対応する部分とを合成し、被検面10Aの全域に関わる1枚の合成画像を生成する。   The two images having different focal positions obtained in this way are subjected to the image composition processing in step S7 in the image processing unit. The image processing unit 14 cuts out the in-focus portion from each of the two images and combines them, that is, the portion corresponding to the region (1) of the image acquired in the state of FIG. 5 (b) and FIG. 5 (c). A portion corresponding to the region (2) of the image acquired in the state is combined to generate one composite image relating to the entire area of the test surface 10A.

上記のように、本実施形態の検査装置10では、傾き調整によって設定された傾き角Θが大きく、所定値ΘA以上で所定値ΘB未満の場合でも、撮像部13の焦点位置を2段階に切り替えて(図5参照)、焦点位置の異なる2つの画像を順に取得し、最後に合成することにより、全域でピントの合った合成画像を生成することができる。したがって、この合成画像を解析することにより正しい欠陥検査を行うことができる。   As described above, in the inspection apparatus 10 of the present embodiment, even when the inclination angle Θ set by the inclination adjustment is large and is greater than or equal to the predetermined value ΘA and less than the predetermined value ΘB, the focus position of the imaging unit 13 is switched in two stages. Thus (see FIG. 5), two images with different focal positions are acquired in order, and finally combined to generate a combined image in focus throughout the entire area. Therefore, a correct defect inspection can be performed by analyzing this composite image.

また、傾き調整によって設定された傾き角Θが所定値ΘB以上の場合(ステップS4がNO)、制御部16はステップS6の処理を行う。ステップS6では、被検面10Aを図6に示す3つの領域(1)〜(3)に分け、これらの領域(1)〜(3)のそれぞれに焦点位置を合わせた状態で順に被検面10Aの全域を一括撮像して、焦点位置の異なる3つの画像を取得する。その後、画像処理部14では、上記と同様の画像合成の処理(ステップS7)を行い、被検面10Aの全域に関わる1枚の合成画像を生成する。   When the inclination angle Θ set by the inclination adjustment is equal to or larger than the predetermined value ΘB (step S4 is NO), the control unit 16 performs the process of step S6. In step S6, the test surface 10A is divided into the three regions (1) to (3) shown in FIG. 6, and the test surfaces are sequentially arranged in the state where the focus positions are aligned with these regions (1) to (3). The entire area of 10A is imaged collectively to obtain three images with different focal positions. Thereafter, the image processing unit 14 performs the same image composition process (step S7) as described above, and generates one composite image relating to the entire area of the test surface 10A.

上記のように、本実施形態の検査装置10では、傾き調整によって設定された傾き角Θが大きく、所定値ΘB以上の場合でも、撮像部13の焦点位置を3段階に切り替えて(図6参照)、焦点位置の異なる3つの画像を順に取得し、最後に合成することにより、全域でピントの合った合成画像を生成することができる。したがって、この合成画像を解析することにより正しい欠陥検査を行うことができ、検査品質が向上する。   As described above, in the inspection apparatus 10 of the present embodiment, even when the inclination angle Θ set by the inclination adjustment is large and is equal to or larger than the predetermined value ΘB, the focus position of the imaging unit 13 is switched in three stages (see FIG. 6). ), Sequentially acquiring three images with different focal positions, and combining them at the end, it is possible to generate a combined image in focus throughout the entire area. Therefore, a correct defect inspection can be performed by analyzing this composite image, and the inspection quality is improved.

さらに、本実施形態の検査装置10では、被検面10Aの傾き角Θが所定値ΘA以上の場合、複数の画像それぞれの中から合焦部分を切り出して合成する場合に限らず、そのような画像合成の処理を行わなくても、正しい欠陥検査を行うことができる。画像合成しない場合には、複数の画像それぞれの中の合焦部分を利用して(非合焦部分を利用せずに)、順に欠陥検査を行えばよい。ただし、画像合成によって全域でピントの合った1枚の合成画像を生成する方が、検査時の作業がシンプルになるため効率良く欠陥検査を行うことができ、スループットが向上する。   Furthermore, in the inspection apparatus 10 according to the present embodiment, when the inclination angle Θ of the test surface 10A is equal to or larger than the predetermined value ΘA, the present invention is not limited to the case where the in-focus portion is cut out from each of the plurality of images and combined. A correct defect inspection can be performed without performing image synthesis processing. When the images are not combined, the defect inspection may be performed in order using the focused portion in each of the plurality of images (without using the non-focused portion). However, generating a single composite image that is in focus throughout the entire area by image composition simplifies the work at the time of inspection, enabling efficient defect inspection and improving throughput.

また、本実施形態の検査装置10では、被検面10Aの傾き角Θが小さく、所定値ΘA未満の場合には(図2(a))、撮像部13の焦点位置の切り替えを行わずに、1つの焦点位置のみで画像を取得する。このため、複数の画像を取得することに起因してスループットが低下する状況を最小限の場合に抑制できる。したがって、被検面10Aの傾き角Θに拘わらず正しい欠陥検査を効率良く行うことができる。   Further, in the inspection apparatus 10 of the present embodiment, when the inclination angle Θ of the test surface 10A is small and less than the predetermined value ΘA (FIG. 2A), the focus position of the imaging unit 13 is not switched. An image is acquired at only one focal position. For this reason, it is possible to suppress the situation in which the throughput is reduced due to the acquisition of a plurality of images to a minimum. Therefore, correct defect inspection can be efficiently performed regardless of the inclination angle Θ of the test surface 10A.

さらに、本実施形態の検査装置10では、撮像部13の視野が被検面10Aの全域に対応し、被検面10Aの全域の画像を一括取得するため、高スループットで欠陥検査を行うことができる。
(変形例)
なお、上記した実施形態では、撮像部13の焦点深度を変化させない例で説明したが、本発明はこれに限定されない。撮像部13の絞り径を可変とし、その絞り径に応じて撮像部13の焦点深度を変化させてもよい。焦点深度は、絞り径の2乗に反比例する。焦点深度を変化させる場合に、上記の焦点位置の切り替えを組み合わせる場合には、次のような処理を行うことが好ましい。
Furthermore, in the inspection apparatus 10 of the present embodiment, the field of view of the imaging unit 13 corresponds to the entire area of the test surface 10A, and images of the entire area of the test surface 10A are acquired at a time. it can.
(Modification)
In the above-described embodiment, the example in which the depth of focus of the imaging unit 13 is not changed has been described. However, the present invention is not limited to this. The aperture diameter of the imaging unit 13 may be variable, and the depth of focus of the imaging unit 13 may be changed according to the aperture diameter. The depth of focus is inversely proportional to the square of the aperture diameter. When changing the depth of focus, when combining the switching of the focus position, it is preferable to perform the following processing.

撮像部13の絞り径が予め定めた径(例えば所定の明るさを確保できる径)より大きい場合に限って、傾き角Θが所定値ΘA以上であれば、撮像部13の焦点深度内に被検面10Aの全域が含まれるように絞り径を縮小し、焦点位置の切り替えを行わずに画像を取得する。このような絞り径の調整を優先した処理を行うことにより、スループットが低下する状況をさらに抑制することができ、傾き角Θに拘わらず正しい欠陥検査を効率良く行うことができる。   Only when the aperture diameter of the imaging unit 13 is larger than a predetermined diameter (for example, a diameter that can ensure a predetermined brightness) and the inclination angle Θ is equal to or greater than the predetermined value ΘA, the depth of focus within the imaging unit 13 is reduced. The aperture diameter is reduced so that the entire surface 10A is included, and an image is acquired without switching the focal position. By performing such a process giving priority to the adjustment of the aperture diameter, it is possible to further suppress the situation in which the throughput is reduced, and it is possible to efficiently perform a correct defect inspection regardless of the inclination angle Θ.

また、撮像部13の焦点位置を固定とし(例えば被検面10Aの中心に焦点位置を合わせた状態とし)、傾き調整によって設定された傾き角Θに応じて、撮像部13の焦点深度内に被検面10Aの全域の全てが含まれるように撮像部13の絞り径を調整し、常に1枚の画像を取得するようにしてもよい。この場合、傾き角Θに拘わらず常に被検面10Aの全域が焦点深度内に含まれるため、傾き角Θが大きくても正しい欠陥検査を行える。   Further, the focus position of the imaging unit 13 is fixed (for example, the focus position is aligned with the center of the test surface 10A), and within the focal depth of the imaging unit 13 according to the tilt angle Θ set by tilt adjustment. The aperture diameter of the imaging unit 13 may be adjusted so that the entire area of the test surface 10A is included, so that one image is always acquired. In this case, the entire inspection surface 10A is always included in the focal depth regardless of the inclination angle Θ, so that correct defect inspection can be performed even when the inclination angle Θ is large.

さらに、上記した実施形態では、被検面10Aの全域を一括撮像する例を説明したが、本発明はこれに限定されない。被検面10Aの一部の領域を一括撮像する場合にも、本発明を適用できる。この場合、複数の撮像部を検査装置に設け、それぞれの撮像部で被検面10Aの異なる領域を分割して撮像し、被検面10Aの全域の画像を得るために合成することが好ましい。   Furthermore, in the above-described embodiment, an example in which the entire area of the test surface 10A is collectively imaged has been described, but the present invention is not limited to this. The present invention can also be applied to a case where a part of the surface to be inspected 10A is collectively imaged. In this case, it is preferable that a plurality of imaging units are provided in the inspection apparatus, and each imaging unit divides and captures different areas of the test surface 10A, and combines them to obtain an image of the entire area of the test surface 10A.

また、上記した実施形態では、被検面10Aからの回折光(例えば1次回折光)に基づいて欠陥検査を行う例で説明したが、本発明はこれに限定されない。その他、被検面10Aからの正反射光(0次回折光に相当)や散乱光や偏光光などの検査光に基づいて欠陥検査を行う場合にも、撮像部の光軸に対して被検面を傾けた状態で画像を取得するのであれば、本発明を適用して同様の効果を得ることができる。正反射光と偏光光の撮像部の光軸に対する被検面の傾き角は、照明部の光軸に対する被検面の傾き角が等しくなるように設定される。   In the above-described embodiment, the example in which the defect inspection is performed based on the diffracted light (for example, the first-order diffracted light) from the test surface 10A has been described, but the present invention is not limited to this. In addition, even when performing defect inspection based on inspection light such as specularly reflected light (corresponding to 0th-order diffracted light) from the surface to be detected 10A, scattered light, polarized light, etc., the surface to be tested with respect to the optical axis of the imaging unit If the image is acquired with the tilted, the same effect can be obtained by applying the present invention. The inclination angle of the test surface with respect to the optical axis of the imaging unit for specularly reflected light and polarized light is set so that the inclination angle of the test surface with respect to the optical axis of the illumination unit is equal.

本実施形態の検査装置10の全体構成を示す概略図である。It is the schematic which shows the whole structure of the test | inspection apparatus 10 of this embodiment. 撮像部13の焦点深度内に被検面10Aが含まれる場合(a)と、焦点深度から被検面10Aの周辺が外れた場合(b)を説明する図である。It is a figure explaining the case where 10 A of test surfaces are contained in the focal depth of the imaging part 13, and the case where the periphery of 10 A of test surfaces remove | deviate from the depth of focus (b). 検査装置10における画像の取得処理を説明するフローチャートである。4 is a flowchart for explaining image acquisition processing in the inspection apparatus 10; 被検面10Aの傾き角Θの所定値ΘA,ΘBを説明する図である。It is a figure explaining predetermined values ΘA and ΘB of the inclination angle Θ of the test surface 10A. 傾き角Θが所定値ΘA以上で所定値ΘB未満の場合の領域分割(a)と、焦点位置の切り替え(b),(c)とを説明する図である。It is a figure explaining the area | region division (a) in case inclination | tilt angle (THETA) is more than predetermined value (THETA) A and less than predetermined value (THETA) B, and the switching (b) and (c) of a focus position. 傾き角Θが所定値ΘB以上の場合の領域分割を説明する図である。It is a figure explaining the area | region division | segmentation in case inclination-angle (THETA) is more than predetermined value (THETA) B.

符号の説明Explanation of symbols

10 検査装置
10A 被検面
11 チルトステージ
12 照明部
13 撮像部
2A,3A 光軸
14 画像処理部
16 制御部
DESCRIPTION OF SYMBOLS 10 Inspection apparatus 10A Test surface 11 Tilt stage 12 Illumination part 13 Imaging part 2A, 3A Optical axis 14 Image processing part 16 Control part

Claims (5)

被検面の少なくとも一部の領域を一括して撮像する撮像手段と、
前記撮像手段の光軸に対する前記被検面の傾き角を設定する設定手段と、
前記設定手段が設定した前記傾き角に応じて前記撮像手段が撮像する複数の焦点位置を決定し、前記撮像手段が前記領域を撮像して出力する撮像信号に基づいて、前記焦点位置の異なる複数の画像を取得する取得手段とを備えた
ことを特徴とする検査装置。
Imaging means for collectively imaging at least a partial area of the surface to be examined;
Setting means for setting an inclination angle of the test surface with respect to the optical axis of the imaging means;
A plurality of focal positions to be imaged by the imaging means are determined according to the tilt angle set by the setting means, and a plurality of different focal positions are determined based on imaging signals that the imaging means images and outputs the area. An inspection apparatus comprising: an acquisition means for acquiring an image of the above.
請求項1に記載の検査装置において、
前記取得手段が取得した前記複数の画像それぞれの中から合焦部分を切り出して合成し、前記領域に関わる合成画像を生成する生成手段をさらに備えた
ことを特徴とする検査装置。
The inspection apparatus according to claim 1,
An inspection apparatus, further comprising: generating means for cutting out and synthesizing in-focus portions from each of the plurality of images acquired by the acquiring means to generate a composite image related to the region.
請求項1または請求項2に記載の検査装置において、
前記取得手段は、前記撮像手段の焦点深度内に前記領域の全てが含まれる場合、前記焦点位置の切り替えを行わずに画像を取得する
ことを特徴とする検査装置。
The inspection apparatus according to claim 1 or 2,
The said acquisition means acquires an image, without switching the said focus position, when all of the said area | region is contained in the focal depth of the said imaging means. The inspection apparatus characterized by the above-mentioned.
請求項3に記載の検査装置において、
前記取得手段は、前記撮像手段の絞り径が予め定めた径より大きい場合、前記撮像手段の焦点深度内に前記領域の全てが含まれるように前記絞り径を縮小して、前記焦点位置の切り替えを行わずに画像を取得する
ことを特徴とする検査装置。
The inspection apparatus according to claim 3,
When the aperture diameter of the imaging means is larger than a predetermined diameter, the acquisition means reduces the aperture diameter so that the entire area is included within the focal depth of the imaging means, and switches the focus position. An inspection apparatus characterized in that an image is acquired without performing the above.
被検面の少なくとも一部の領域を一括して撮像する撮像手段と、
前記撮像手段の光軸に対する前記被検面の傾き角を設定する設定手段と、
前記設定手段が設定した前記傾き角に応じて、前記撮像手段の焦点深度内に前記領域の全てが含まれるように前記撮像手段の絞り径を調整し、前記撮像手段が前記領域を撮像して出力する撮像信号に基づいて画像を取得する取得手段とを備えた
ことを特徴とする検査装置。
Imaging means for collectively imaging at least a partial area of the surface to be examined;
Setting means for setting an inclination angle of the test surface with respect to the optical axis of the imaging means;
According to the tilt angle set by the setting means, the aperture diameter of the imaging means is adjusted so that the entire area is included within the depth of focus of the imaging means, and the imaging means images the area. An inspection apparatus comprising: an acquisition unit that acquires an image based on an imaging signal to be output.
JP2005118627A 2005-04-15 2005-04-15 Inspection device Withdrawn JP2006300553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118627A JP2006300553A (en) 2005-04-15 2005-04-15 Inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118627A JP2006300553A (en) 2005-04-15 2005-04-15 Inspection device

Publications (1)

Publication Number Publication Date
JP2006300553A true JP2006300553A (en) 2006-11-02

Family

ID=37469035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118627A Withdrawn JP2006300553A (en) 2005-04-15 2005-04-15 Inspection device

Country Status (1)

Country Link
JP (1) JP2006300553A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054704A (en) * 2008-08-27 2010-03-11 Olympus Corp Observing device, method for controlling the same, and program
JP2010216974A (en) * 2009-03-17 2010-09-30 Dainippon Screen Mfg Co Ltd Apparatus and method for irregularity inspection and program
JP2010256724A (en) * 2009-04-27 2010-11-11 Olympus Corp Observation device
DE102013222295A1 (en) * 2013-11-04 2015-05-07 Carl Zeiss Microscopy Gmbh Digital microscope, method for calibration and method for automatic focus and image center tracking for such a digital microscope
JP2015158465A (en) * 2014-02-25 2015-09-03 株式会社ジェイ・パワーシステムズ Inspection device and detection method
WO2020044784A1 (en) * 2018-08-28 2020-03-05 株式会社Screenホールディングス Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method
JP7345077B1 (en) 2022-05-20 2023-09-14 株式会社アマダ Processing machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054704A (en) * 2008-08-27 2010-03-11 Olympus Corp Observing device, method for controlling the same, and program
JP2010216974A (en) * 2009-03-17 2010-09-30 Dainippon Screen Mfg Co Ltd Apparatus and method for irregularity inspection and program
JP2010256724A (en) * 2009-04-27 2010-11-11 Olympus Corp Observation device
DE102013222295A1 (en) * 2013-11-04 2015-05-07 Carl Zeiss Microscopy Gmbh Digital microscope, method for calibration and method for automatic focus and image center tracking for such a digital microscope
US9817223B2 (en) 2013-11-04 2017-11-14 Carl Zeiss Microscopy Gmbh Digital microscope comprising pivoting stand, method for calibration and method for automatic focus and image center tracking for such a digital microscope
JP2015158465A (en) * 2014-02-25 2015-09-03 株式会社ジェイ・パワーシステムズ Inspection device and detection method
WO2020044784A1 (en) * 2018-08-28 2020-03-05 株式会社Screenホールディングス Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method
JP7345077B1 (en) 2022-05-20 2023-09-14 株式会社アマダ Processing machine
WO2023224089A1 (en) * 2022-05-20 2023-11-23 株式会社アマダ Machining machine

Similar Documents

Publication Publication Date Title
TWI754086B (en) Overlay metrology using multiple parameter configurations
JP4260587B2 (en) Pattern defect inspection system
US9970883B2 (en) Multi-spot scanning collection optics
KR101976152B1 (en) Structured illumination for contrast enhancement in overlay metrology
JP2021521418A (en) Local telecentricity and focus optimization for overlay weighing
JP2006300553A (en) Inspection device
JP2008275612A (en) Device equipped with high resolution measurement structure on substrate for manufacturing semiconductor, and use of aperture in measuring device
JP5585615B2 (en) Inspection apparatus and inspection method
TW202208812A (en) Measurement modes for overlay
KR20200045573A (en) Multi-layer overlay metrology target and complimentary overlay metrology measurement systems
JP2006023221A (en) Visual inspection device and projection method
JP2006113020A (en) Inspection device and inspection method
JP5308934B2 (en) Substrate inspection method and substrate inspection apparatus
JP2022183309A (en) Wafer inspection system and apparatus
JP2006105780A (en) Method of observing microstructure, and flaw inspection device
JP3956942B2 (en) Defect inspection method and apparatus
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
JP4724411B2 (en) Confocal laser scanning microscope
JP3918840B2 (en) Defect inspection method and apparatus
JP2007101494A (en) Surface inspection device
JP2006313143A (en) Irregularity inspection device and method thereof
JP2006250843A (en) Surface inspection device
JP4622933B2 (en) Surface inspection method and surface inspection apparatus
JP2004219537A (en) Confocal microscope
JP6524357B1 (en) Wavefront sensor, wavefront measuring apparatus and wavefront measuring method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701