JP2006299983A - Method of manufacturing blade for generation of electricity by wind or water power - Google Patents

Method of manufacturing blade for generation of electricity by wind or water power Download PDF

Info

Publication number
JP2006299983A
JP2006299983A JP2005124561A JP2005124561A JP2006299983A JP 2006299983 A JP2006299983 A JP 2006299983A JP 2005124561 A JP2005124561 A JP 2005124561A JP 2005124561 A JP2005124561 A JP 2005124561A JP 2006299983 A JP2006299983 A JP 2006299983A
Authority
JP
Japan
Prior art keywords
metal
blade
girder
shape
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005124561A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kato
和広 加藤
Hakushin Izeki
博進 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2005124561A priority Critical patent/JP2006299983A/en
Publication of JP2006299983A publication Critical patent/JP2006299983A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of relatively inexpensively manufacturing a lightweight and highly-rigid blade for generation of electricity by wind or water power with metallic material. <P>SOLUTION: First, a hollow metallic girder 5 having a substantially quadrangular transverse section is prepared, and then the hollow metallic girder 5 is installed in a hollow metallic tubular material M4. Both ends of the hollow metallic tubular material M4 receiving the hollow metallic girder 5 therein are sealed by seal means (21, 31) and liquid is filled in the hollow metallic girder 5 and the metallic tubular material M4. By applying press working to the metallic tubular material M4 containing the metallic girder 5 and the liquid therein with press dies (12, 14), the metallic tubular material M4 is formed into an aerofoil shape the transverse section of which is approximate to a streamlined shape, without substantially changing the shape of the transverse section of the metallic girder 5. Thus, it is possible to obtain the aerofoil-shaped blade for generation of electricity by wind or water power, which incorporates the hollow metallic girder 5 therein. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、風力発電や水力発電などの風水力発電装置の風水車を構成するブレード(風水車の翼材又は羽根材)の製造方法に関するものである。   The present invention relates to a method of manufacturing a blade (a blade member or blade member of a wind turbine) that constitutes a wind turbine of a wind turbine generator such as wind power generation or hydropower generation.

一般に風力発電装置の風車を構成するブレードには、機械的強度及び軽量性の両立が求められる。このため、繊維強化樹脂(FRP)を構成材料とするブレード及びその製造方法が種々提案されている(例えば特許文献1,2)。しかしながら、FRPの特性を最大限に生かすためには、特許文献1及び2のように各種の樹脂層を複数層積層してブレードを構成する必要がある。それ故、FRP自体の材料コストが高いという事情に加えて、FRP製ブレードは生産性が低くて製造コストも高いという問題があり、風力発電装置の普及が進まない一因となっている。   In general, blades constituting a wind turbine of a wind turbine generator are required to satisfy both mechanical strength and light weight. For this reason, various blades using fiber reinforced resin (FRP) as a constituent material and manufacturing methods thereof have been proposed (for example, Patent Documents 1 and 2). However, in order to make the most of the characteristics of FRP, it is necessary to construct a blade by laminating a plurality of various resin layers as in Patent Documents 1 and 2. Therefore, in addition to the fact that the material cost of the FRP itself is high, FRP blades have a problem of low productivity and high manufacturing cost, which is one of the reasons why the spread of wind power generators does not progress.

他方、特許文献3のように、エアコンの室外機用のファンを構成する羽根を金属材料を用いて製造する試みもある。特許文献3では、袋状の板金製品(中間製品)を所定の内部形状を有する上下金型間に挟み込み、その袋状板金製品の内側に高圧エアを導入して当該製品を膨張させることで、上下金型間の内部形状に合致した外形状に袋状板金製品を塑性加工している。更には、塑性加工により羽根形状を付与された袋状板金製品の開口部にプレート(つまりシール手段)を配置して高圧エアを内部に封入した状態で羽根を完成させている。こうして羽根の内圧を大気圧よりも高くすることで、羽根の形状保持、剛性確保および軽量化を図っている。   On the other hand, as disclosed in Patent Document 3, there is also an attempt to manufacture blades constituting a fan for an outdoor unit of an air conditioner using a metal material. In Patent Document 3, a bag-shaped sheet metal product (intermediate product) is sandwiched between upper and lower molds having a predetermined internal shape, and the product is expanded by introducing high-pressure air into the bag-shaped sheet metal product. Bag-shaped sheet metal products are plastic processed into an outer shape that matches the inner shape between the upper and lower molds. Furthermore, the blade is completed in a state where a plate (that is, a sealing means) is arranged in the opening of the bag-shaped sheet metal product to which the blade shape is imparted by plastic processing and high-pressure air is sealed inside. In this way, the internal pressure of the blade is made higher than the atmospheric pressure, thereby maintaining the shape of the blade, ensuring the rigidity, and reducing the weight.

ところで、内部に高圧エアを封入したまま羽根を完成させるには、塑性加工によって羽根形状を付与された袋状板金製品の開口部を確実に閉塞して高い気密状態を実現する必要がある。しかし、高圧状況下で高い気密状態を作り出すには高度な技術や設備が必要になるため、特許文献3の手法もコスト低減にはつながらない。また、特許文献3の技術は、エアコンの室外機用ファンのように比較的小さな羽根物に適用することは可能かもしれないが、風力発電用ブレードのように巨大な翼型構造体に適用することは容易ではない。というのも、風力発電用ブレードは曲げや捩れに対する耐性を特に要求されるが、特許文献3のように内部に桁、裏骨あるいは区画枠などの補強構造を具備することなく、高圧エアの封入だけで必要な剛性を確保することは、現実には極めて困難だからである。   By the way, in order to complete the blade while enclosing the high-pressure air inside, it is necessary to reliably close the opening of the bag-shaped sheet metal product provided with the blade shape by plastic working to realize a high airtight state. However, in order to create a high airtight state under high pressure conditions, advanced technology and equipment are required, so the method of Patent Document 3 does not lead to cost reduction. Moreover, although the technique of patent document 3 may be applicable to a comparatively small blade | wing thing like the fan for outdoor units of an air conditioner, it applies to a huge airfoil structure like a blade for wind power generation. It is not easy. This is because wind power generation blades are particularly required to be resistant to bending and twisting, but do not have a reinforcing structure such as girders, back bones or partition frames as in Patent Document 3, and contain high-pressure air. This is because it is extremely difficult to secure the necessary rigidity by itself.

特開平6−66244号公報JP-A-6-66244 特開2002−137307号公報JP 2002-137307 A 特開2000−135534号公報(家電製品用のファン)JP 2000-135534 A (fan for home appliances)

本発明の目的は、金属材料を用いて軽量で高剛性な風水力発電用ブレードを比較的安価に製造する方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a lightweight and highly rigid blade for hydrodynamic power generation using a metal material at a relatively low cost.

請求項1の発明は、横断面が略四角形状の中空な金属桁材を準備する桁材準備工程と、前記中空な金属桁材を中空な金属管材の内部に収容配置する配置工程と、前記中空な金属桁材を収容した中空な金属管材の両端部をシールすると共に、これら中空な金属桁材及び金属管材の内部に流体を満たす流体充填工程と、前記金属桁材及び流体を内部に含んだ状態の金属管材に対してプレス型を用いてプレス加工を施すことにより、金属桁材の横断面形状に実質的な変更を強いることなく、金属管材に対して横断面が流線形状に近似した翼型形状を付与する流体圧プレス工程とを備えることを特徴とする風水力発電用ブレードの製造方法である。   The invention according to claim 1 is a girder preparation step of preparing a hollow metal girder having a substantially quadrangular cross section, an arrangement step of accommodating and arranging the hollow metal girder inside a hollow metal tube, Sealing both ends of the hollow metal girder containing the hollow metal girder, filling the hollow metal girder and metal pipe with fluid, and including the metal girder and fluid inside By pressing the metal pipe material in an open state using a press die, the cross section of the metal pipe material approximates the streamline shape without forcing a substantial change in the cross section shape of the metal beam. And a fluid pressure pressing step for imparting the airfoil shape to the blade for wind and hydroelectric power generation.

請求項2の発明は、請求項1に記載の風水力発電用ブレードの製造方法において、前記流体圧プレス工程では、前記中空な金属管材の内部に満たされた流体の圧力を、その流体圧力のみによって金属管材が膨張又は変形を起こし得ない程度の圧力値(P1)に保つことを特徴とする。   According to a second aspect of the present invention, in the method of manufacturing a blade for wind-hydraulic power generation according to the first aspect, in the fluid pressure pressing step, the pressure of the fluid filled in the hollow metal tube is changed only to the fluid pressure. Thus, the pressure is maintained at a pressure value (P1) at which the metal tube material cannot expand or deform.

請求項3の発明は、請求項1又は2に記載の風水力発電用ブレードの製造方法において、前記桁材準備工程では、出発材となる中空な金属素管の両端部をシールすると共に、その金属素管の内部に流体を満たす工程と、前記流体を内に含んだ状態の金属素管に対してプレス加工を施すことにより当該金属素管に対して横断面が略四角形状となる形状を付与する工程とを経て、前記横断面が略四角形状の中空な金属桁材を準備することを特徴とする。   According to a third aspect of the present invention, in the method for manufacturing a blade for wind-hydraulic power generation according to the first or second aspect, in the girder preparation step, both ends of a hollow metal base tube serving as a starting material are sealed, Filling the inside of the metal base tube with a fluid, and pressing the metal base tube containing the fluid into a shape so that the cross section of the metal base tube is a substantially square shape. A hollow metal girder having a substantially square cross section is prepared through a step of applying.

請求項4の発明は、請求項1〜3のいずれかに記載の風水力発電用ブレードの製造方法において、前記流体圧プレス工程では、前記翼型形状を付与されるブレード本体を構成する壁の一部に内向き突起又は突条を同時成形し、且つその内向き突起又は突条を前記金属桁材を構成する壁の一部に食い込ませることを特徴とする。   According to a fourth aspect of the present invention, in the method for manufacturing a blade for wind-hydraulic power generation according to any one of the first to third aspects, in the fluid pressure pressing step, a wall of the blade body that is provided with the airfoil shape is provided. Inward projections or ridges are simultaneously formed in a part, and the inward projections or ridges are bitten into a part of a wall constituting the metal beam member.

請求項5の発明は、請求項2〜4のいずれかに記載の風水力発電用ブレードの製造方法において、前記流体圧プレス工程の後に、前記翼型形状のブレード本体内の圧力を、前記金属管材が膨張又は変形を起こし得ない程度の圧力値(P1)よりも高い圧力値(P2)に高める再加圧工程を更に備えることを特徴とする。   According to a fifth aspect of the present invention, in the method for manufacturing a blade for wind-hydraulic power generation according to any one of the second to fourth aspects, after the fluid pressure pressing step, the pressure in the blade body having the airfoil shape is changed to the metal. It is further characterized by further comprising a re-pressurization step for increasing the pressure value (P2) to a pressure value (P2) higher than the pressure value (P1) to the extent that the pipe material cannot expand or deform.

請求項6の発明は、請求項1〜5のいずれかに記載の直線翼垂直軸型風水力発電用ブレードの製造方法において、前記流体圧プレス工程では、金属管材に対して横断面が流線形状に近似した直線翼型形状を付与することを特徴とする。   A sixth aspect of the present invention is the method of manufacturing a blade for a straight blade vertical axis wind-hydraulic power generation according to any one of the first to fifth aspects, wherein, in the fluid pressure pressing step, a cross section is a streamline with respect to the metal tube material. A straight airfoil shape approximate to the shape is given.

[作用]
本発明の方法によれば、ブレードの表皮部分を構成するための前駆体としての中空な金属管材の内部に中空な金属桁材と流体とを含んだ状態で金属管材に対してプレス加工を施すことで、当該金属管材を横断面が流線形状に近似した翼型形状に成形している。中空な金属管材の内部に流体を満たした状態でのプレス加工では、加圧時、パスカルの原理により流体が金属管材の内側全体に均等に圧力を及ぼすので、その中空な金属管材はシワやつぶれを生ずることなくプレス型の形状に合致した所望の翼型形状に成形される。また、中空な金属管材の内部に収容される中空な金属桁材の内外にも流体が満たされるため、加圧時、パスカルの原理により金属桁材の内面及び外面は同じ圧力を受ける。従って、プレス型が金属桁材にまで変形を強いるような形状でない限り、プレス型で金属管材をプレス加工しても、金属桁材の横断面形状に実質的な変更は加えられず、横断面が略四角形状の中空な金属桁材をそのまま内部に組み込んだ状態で、金属管材が所望の翼型形状に成形される。このように本発明の方法によれば、横断面が略四角形状の中空な金属桁材が補強材として内装されると共に翼型形状のブレード本体に一体化された風水力発電用ブレードを、流体圧プレス加工によって高精度且つ効率的に製造できる。
[Action]
According to the method of the present invention, a metal tube material is pressed in a state in which a hollow metal beam and a fluid are contained inside a hollow metal tube material as a precursor for constituting the skin portion of the blade. Thus, the metal tube material is formed into an airfoil shape whose cross section approximates a streamline shape. In press working in a state where a hollow metal tube is filled with fluid, during pressurization, the fluid uniformly applies pressure to the entire inside of the metal tube due to the Pascal principle, so that the hollow metal tube is wrinkled and crushed. In this way, the airfoil is formed into a desired airfoil shape that matches the shape of the press die. In addition, since the fluid is filled in and out of the hollow metal girder housed inside the hollow metal tube material, the inner and outer surfaces of the metal girder are subjected to the same pressure during pressurization due to Pascal's principle. Therefore, as long as the press die is not shaped to force deformation to the metal girders, even if the metal pipe is pressed with the press die, the cross-sectional shape of the metal girders will not be substantially changed. However, the metal tube material is formed into a desired airfoil shape with the substantially square hollow metal girder incorporated therein. As described above, according to the method of the present invention, a hollow metal girder having a substantially quadrangular cross section is provided as a reinforcing material, and a blade for wind and hydroelectric power generation integrated with a blade-shaped blade body is fluidized. It can be manufactured with high precision and efficiency by pressure pressing.

なお、請求項2によれば、金属管材の内部を満たす流体がプレス型による形状付与の阻害要因となることなく、金属管材がプレス型によって優れた精度で付形される。なお、流体圧力のみによって金属管材が膨張又は変形を起こし得ない程度の圧力値(P1)としては、0.1MPa〜30MPaが適切である。   According to claim 2, the fluid that fills the inside of the metal tube does not hinder the shape imparting by the press die, and the metal tube is shaped with excellent accuracy by the press die. In addition, as a pressure value (P1) of a grade which cannot raise | generate an expansion | swell or a deformation | transformation of a metal pipe material only by a fluid pressure, 0.1-30 MPa is suitable.

請求項3によれば、金属桁材を流体圧プレス加工法により、比較手入手の容易な中空な金属素管を出発材として簡単且つ確実に準備できる。請求項4によれば、ブレード本体を構成する壁の一部に同時成形された内向き突起又は突条が、それによって凹まされるところの金属桁材を構成する壁の一部に食い込む。その結果、ブレード本体の内向き突起又は突条と、金属桁材の凹んだ構成壁との間に緊密な係合関係が成立し、ブレード内部における金属桁材の固定が確実になる(図7参照)。   According to the third aspect of the present invention, it is possible to easily and surely prepare a hollow metal base tube that is easily available for comparison as a starting material by a fluid pressure pressing method. According to the fourth aspect, the inward projections or protrusions simultaneously formed on a part of the wall constituting the blade body bite into a part of the wall constituting the metal girder which is recessed by that. As a result, a close engagement relationship is established between the inward projections or ridges of the blade body and the concave constituent wall of the metal girder, and the fixing of the metal girder inside the blade is ensured (FIG. 7). reference).

請求項5によれば、流体圧プレス工程において、仮に例えば不本意な凹みが生じていたとしても、型外し前に、前記翼型形状のブレード本体内の圧力を初期の圧力値(P1)よりも高い圧力値(P2)に高める再加圧処理をすることで、不本意な凹みを解消してプレス型の本来の形状に合致した翼型形状が正確に付与される。なお、前記圧力値(P1)よりも高い圧力値(P2)としては、50MPa〜200MPaが適切である。   According to claim 5, in the fluid pressure pressing step, even if, for example, an unintentional dent is generated, the pressure in the blade body of the airfoil shape is determined from the initial pressure value (P1) before removing the mold. By performing the re-pressurizing process to increase the pressure value to a high pressure value (P2), the airfoil shape that exactly matches the original shape of the press die can be accurately given by eliminating the unintentional dent. In addition, as a pressure value (P2) higher than the said pressure value (P1), 50 MPa-200 MPa are suitable.

各請求項に記載の風水力発電用ブレードの製造方法によれば、翼型形状のブレード本体の内部には補強材としての中空な金属桁材が内装されるため、ブレードの軽量化を図りつつ剛性を高めることができる。また、流体圧プレスの過程において、金属桁材をブレード本体内に固定して両者を一体化できるため、壊れ難くてしかも形状及び寸法精度に優れたブレードを製造することができる。更に、ブレード本体及びその内部の桁材ともに金属で構成されるため、材料コストが比較的安価であると共に、プレス型を用いた塑性加工なので製造工数、製造時間及び製造コストを、FRPを使用する従来例に比べて大幅に低減することができる。   According to the method for manufacturing a blade for wind and hydroelectric power generation according to each claim, since a hollow metal girder material as a reinforcing material is embedded inside the airfoil-shaped blade body, the weight of the blade is reduced. Stiffness can be increased. Further, since the metal beam member can be fixed in the blade body and integrated together in the process of the fluid pressure press, it is possible to manufacture a blade that is not easily broken and has excellent shape and dimensional accuracy. Furthermore, since both the blade body and the internal girder are made of metal, the material cost is relatively low, and plastic processing using a press die makes it possible to use FRP for manufacturing man-hours, manufacturing time, and manufacturing cost. Compared to the conventional example, it can be greatly reduced.

以下、本発明を直線翼垂直軸型風力発電装置用のブレードの製造に適用した一実施形態を図面を参照しつつ説明する。   Hereinafter, an embodiment in which the present invention is applied to manufacture of a blade for a straight blade vertical axis wind power generator will be described with reference to the drawings.

図1に示すように、直線翼垂直軸型風力発電装置の風車は、設置面(例えば地面)に垂直に立設されたポール1の頂上に設けられている。ポール1の頂上には、図示しない発電機に作動連結された垂直ローター軸2が回転可能に設けられている。垂直ローター軸2の上部及び下部付近にはそれぞれ、水平方向に放射状に延びる三本のアーム3が設けられており、上下一対のアーム3,3間には直線翼型ブレード4がそれぞれ支持されている。これら三枚のブレード4が風を受けることで、垂直ローター軸2、アーム3及びブレード4からなる風車が一体回転し発電が行われる。なお、直線翼垂直軸型風力発電の原理等の詳細については、例えば特許第3368537号公報を参照されたし。   As shown in FIG. 1, the wind turbine of the straight blade vertical axis type wind turbine generator is provided on the top of a pole 1 that is erected vertically to an installation surface (for example, the ground). A vertical rotor shaft 2 operatively connected to a generator (not shown) is rotatably provided on the top of the pole 1. Three arms 3 extending radially in the horizontal direction are provided near the upper and lower portions of the vertical rotor shaft 2, and straight airfoil blades 4 are supported between the pair of upper and lower arms 3 and 3, respectively. Yes. When these three blades 4 receive wind, the wind turbine including the vertical rotor shaft 2, the arm 3, and the blade 4 rotates integrally to generate power. For details on the principle and the like of the straight blade vertical axis wind power generation, see, for example, Japanese Patent No. 3368537.

各ブレード4は、垂直方向に延びるやや長尺な金属製の構造体であり(図1参照)、その長手方向に対し直交する方向の断面(横断面)が流線型に似た翼断面形状に形成されている(図6参照)。特に図6に示すように、本実施形態のブレード4の表皮部分を構成するブレード本体4aの内部には、金属製の桁材5が設けられている。この金属桁材5は、ブレード本体4aの長手方向長とほぼ同じ長さを有するやや長尺な部材であって、その長手方向に対して直交する方向の断面(横断面)が、あたかも「ロ」の字のような略四角形状をなす中空な管状部材として構成されている。この金属桁材5は、ブレード本体4aの機械的強度などを補うための補強材として機能する。   Each blade 4 is a slightly long metal structure extending in the vertical direction (see FIG. 1), and a cross section (transverse cross section) in a direction orthogonal to the longitudinal direction is formed into a blade cross-sectional shape similar to a streamline type. (See FIG. 6). In particular, as shown in FIG. 6, a metal girder 5 is provided inside the blade body 4 a constituting the skin portion of the blade 4 of the present embodiment. This metal girder 5 is a slightly long member having substantially the same length in the longitudinal direction of the blade body 4a, and a cross section (transverse section) in a direction perpendicular to the longitudinal direction is as if It is configured as a hollow tubular member having a substantially quadrangular shape such as "". The metal beam 5 functions as a reinforcing material for supplementing the mechanical strength of the blade body 4a.

[ブレード製造装置]
図2及び図3は、本実施形態で使用するブレード製造装置の概要を示す。図2及び図3に示すように、この装置は、固定ベース11上に設置された固定プレス型としての下型12、並びに、これらの上方に配設された可動ベース13及びその下側に一体化された可動プレス型としての上型14を備えている。図示しない垂直駆動機構によって、上型14は可動ベース13と共に垂直方向に移動可能となっており、これにより上型14は下型12に対し接近離間可能となっている。下型12及び上型14は、加工対象物(ワーク)に対して所望の翼型形状を付与するための付形部12a,14aを有している。固定ベース11上には下型12の左右位置において、左右一対のワーク支持機構20,30が設けられている。
[Blade manufacturing equipment]
2 and 3 show an outline of a blade manufacturing apparatus used in the present embodiment. As shown in FIGS. 2 and 3, this apparatus is composed of a lower mold 12 as a fixed press mold installed on a fixed base 11, a movable base 13 disposed above them, and a lower part thereof. An upper die 14 as a movable press die is provided. The upper mold 14 can move in the vertical direction together with the movable base 13 by a vertical drive mechanism (not shown), so that the upper mold 14 can approach and separate from the lower mold 12. The lower mold 12 and the upper mold 14 have shaping portions 12a and 14a for imparting a desired airfoil shape to a workpiece (workpiece). A pair of left and right workpiece support mechanisms 20 and 30 are provided on the fixed base 11 at the left and right positions of the lower mold 12.

図2に示すように、左側のワーク支持機構20は、ワークとなる管状部材の一端をシールするための固定シール21と、その固定シール21を水平に支持するための左側調高支脚23とを具備している。固定シール21は概して円柱形状をなしており、その軸直交断面(横断面)は円形状である。そして、固定シール21の外周部には、ブレード本体4aを構成するための前駆体となる中空な金属管材M4の一端を外嵌するための環状段差21aが形成されている。更に固定シール21の先端部(図2では右端部)には、中空な金属桁材5の一端を外嵌するための嵌合凸部21bが設けられている。前記固定シール21の基端部(図2では左端部)を支える左側調高支脚23は、例えばコイルバネやダンパー等の弾性又は衝撃吸収性の部材で構成されており、ワーク及び固定シール21が垂直方向の外力を受けあるいはその外力が解除されたときに、それに応じてワーク及び固定シール21の全体が上下動するのを許容する。   As shown in FIG. 2, the work support mechanism 20 on the left side includes a fixed seal 21 for sealing one end of a tubular member serving as a work, and a left-hand leveling support leg 23 for horizontally supporting the fixed seal 21. It has. The fixed seal 21 has a generally cylindrical shape, and its axial orthogonal cross section (transverse cross section) is circular. An annular step 21a for fitting one end of a hollow metal tube M4, which is a precursor for constituting the blade body 4a, is formed on the outer periphery of the fixed seal 21. Further, a fitting convex portion 21 b for fitting one end of the hollow metal beam 5 is provided at the tip end portion (right end portion in FIG. 2) of the fixed seal 21. The left-hand leveling support pedestal 23 that supports the base end portion (the left end portion in FIG. 2) of the fixed seal 21 is made of an elastic or shock-absorbing member such as a coil spring or a damper, and the workpiece and the fixed seal 21 are vertical. When the external force in the direction is received or the external force is released, the workpiece and the entire fixed seal 21 are allowed to move up and down accordingly.

右側のワーク支持機構30は、ワークとなる管状部材の他端をシールするための可動シール31と、その可動シール31と水平連結された駆動シリンダ32と、これらを水平に支持するための右側調高支脚33とを具備している。前記固定シール21と同様、可動シール31は概して円柱形状をなしており、その軸直交断面(横断面)は円形状である。そして、可動シール31の外周部には、ブレード本体4aを構成するための前駆体となる中空な金属管材M4の他端を外嵌するための環状段差31aが形成されている。更に可動シール31の先端部(図2では左端部)には、中空な金属桁材5の他端を外嵌するための嵌合凸部31bが設けられている。駆動シリンダ32は、可動シール31をワークの軸方向に水平移動させるための駆動手段である。可動シール31及び駆動シリンダ32を支える右側調高支脚33は、前記左側調高支脚23と同様に構成されており、ワーク及び可動シール31が垂直方向の外力を受けあるいはその外力が解除されたときに、それに応じてワーク、可動シール31及び駆動シリンダ32の全体が上下動するのを許容する。   The right workpiece support mechanism 30 includes a movable seal 31 for sealing the other end of the tubular member serving as a workpiece, a drive cylinder 32 horizontally connected to the movable seal 31, and a right adjustment for horizontally supporting these. And a high support leg 33. Similar to the fixed seal 21, the movable seal 31 has a generally cylindrical shape, and its axial orthogonal cross section (transverse cross section) has a circular shape. An annular step 31a for fitting the other end of the hollow metal tube M4 serving as a precursor for constituting the blade body 4a is formed on the outer periphery of the movable seal 31. Further, a fitting convex portion 31b for fitting the other end of the hollow metal beam 5 is provided at the distal end portion (left end portion in FIG. 2) of the movable seal 31. The drive cylinder 32 is drive means for horizontally moving the movable seal 31 in the axial direction of the workpiece. The right-side height support leg 33 that supports the movable seal 31 and the drive cylinder 32 is configured in the same manner as the left-side height support leg 23, and when the workpiece and the movable seal 31 receive a vertical external force or the external force is released. In addition, the workpiece, the movable seal 31 and the entire drive cylinder 32 are allowed to move up and down accordingly.

更に、可動シール31の内部には流体通路34が設けられている。流体通路34は、左右一対をなす固定及び可動シール21,31間に保持される二種類の中空な管状部材(5,M4)の各々の内部を調圧ポンプ機構15につないでいる。調圧ポンプ機構15は、外部から中空な管状部材(5,M4)の各々の内部に液体を供給するのみならず、液体を追加供給したり逃がしたりしながら管状部材内部の液圧が所定の目標圧P1に保たれるように液圧のフィードバック制御を行う。   Further, a fluid passage 34 is provided inside the movable seal 31. The fluid passage 34 connects the inside of each of two types of hollow tubular members (5, M4) held between the fixed and movable seals 21 and 31 forming a pair of left and right to the pressure regulating pump mechanism 15. The pressure adjusting pump mechanism 15 not only supplies the liquid to the inside of each of the hollow tubular members (5, M4) from the outside, but also supplies the liquid to the inside of the tubular member (5, M4) while allowing the liquid pressure inside the tubular member to reach a predetermined level. Hydraulic pressure feedback control is performed so that the target pressure P1 is maintained.

[ブレード製造手順]
次に、金属製直線翼型ブレード4の製造手順について説明する。なお、以下に述べる金属桁材5やブレード本体4aを構成する金属としては、ステンレス鋼などの汎用の鉄系金属や、アルミニウム又はその合金などの軽金属を使用することができる。
[Blade manufacturing procedure]
Next, the manufacturing procedure of the metal straight airfoil blade 4 will be described. In addition, as a metal which comprises the metal girder material 5 and the blade body 4a described below, a general-purpose iron-based metal such as stainless steel, or a light metal such as aluminum or an alloy thereof can be used.

1.金属桁材の準備
先ず、ブレード本体4aの長さに相当する長さを有すると共に横断面が略四角形状(本実施形態では「ロ」の字形状)となる中空な金属桁材5を準備する(図4参照)。かかる金属桁材5は液圧プレス成形によって得られる。具体的には図4に示すように、比較的長尺で横断面形状が円形状の中空な金属素管(例えばストレート金属パイプ)M5を出発材として選択する。金属素管M5の肉厚は例えば0.2mmである。この金属素管M5の両端部を適切なシール材でシールすると共に、その内部に液体(例えば水)を満たす。そして、液体を内部に充填した状態の金属素管M5に対してプレス加工を施すことで、これに略四角形状の横断面形状を付与する。このような液圧プレス成形によれば、横断面が略四角形状となる中空な金属桁材5を優れた寸法精度で簡単に製造することができる。
1. Preparation of Metal Girder First, a hollow metal girder 5 having a length corresponding to the length of the blade body 4a and having a substantially square cross section (in the present embodiment, a “B” shape) is prepared. (See FIG. 4). Such a metal beam 5 is obtained by hydraulic press molding. Specifically, as shown in FIG. 4, a hollow metal element tube (for example, straight metal pipe) M5 having a relatively long and circular cross section is selected as a starting material. The thickness of the metal pipe M5 is, for example, 0.2 mm. Both ends of the metal base tube M5 are sealed with an appropriate sealing material, and a liquid (for example, water) is filled therein. And by pressing the metal base tube M5 in a state where the liquid is filled therein, a substantially square cross-sectional shape is imparted thereto. According to such a hydraulic press molding, the hollow metal girder 5 having a substantially rectangular cross section can be easily manufactured with excellent dimensional accuracy.

2.ブレード製造装置へのワーク取付け
次に図2に示すように、下型12から上型14を離間させた状態で上下型間に、前記金属桁材5と、実質的な変形加工対象物である中空な金属管材M4とを配置する。中空な金属管材M4は、比較的長尺で横断面形状が円形状のストレート金属パイプであり、余裕を持って金属桁材5を収容できる程度の内径を有している。この金属管材M4の肉厚は金属桁材5の肉厚にほぼ等しく、例えば0.2mmである。
2. Next, as shown in FIG. 2, the metal girder material 5 and the substantial deformation object are formed between the upper and lower molds in a state where the upper mold 14 is separated from the lower mold 12. A hollow metal tube M4 is disposed. The hollow metal tube M4 is a straight metal pipe that is relatively long and has a circular cross section, and has an inner diameter that can accommodate the metal beam 5 with a margin. The thickness of the metal tube M4 is substantially equal to the thickness of the metal beam 5, and is 0.2 mm, for example.

中空な金属桁材5及び金属管材M4は、金属桁材5を金属管材M4の内部に収容した状態で上下型14,12間に配置される。具体的には、金属桁材5及び金属管材M4の各左端部を固定シール21の嵌合凸部21b及び環状段差21aにそれぞれ外嵌した後、駆動シリンダ32により可動シール31を固定シール21に向けて移動させ、金属桁材5及び金属管材M4の各右端部を可動シール31の嵌合凸部31b及び環状段差31aにそれぞれ外嵌させる。こうして、金属桁材5及び金属管材M4の各々の両端部に固定及び可動シール21,31を装着して各端部開口をシールすることで、図5に示すように、金属桁材5が金属管材M4の内部に浮いた状態で両部材(5,M4)を水平に支持する。なお、その場合に、金属管材M4の下面側が下型12から若干浮いていても、下型12上に接触載置されていてもいずれでもよい。   The hollow metal beam 5 and the metal tube M4 are disposed between the upper and lower molds 14 and 12 in a state where the metal beam 5 is accommodated inside the metal tube M4. Specifically, the left end portions of the metal beam 5 and the metal tube M4 are externally fitted to the fitting convex portion 21b and the annular step 21a of the fixed seal 21, respectively, and then the movable seal 31 is fixed to the fixed seal 21 by the drive cylinder 32. The right end portions of the metal beam 5 and the metal tube material M4 are externally fitted to the fitting convex portion 31b and the annular step 31a of the movable seal 31, respectively. In this way, fixed and movable seals 21 and 31 are attached to both ends of each of the metal beam member 5 and the metal tube member M4 to seal each end opening, so that the metal beam member 5 is made of metal as shown in FIG. Both members (5, M4) are horizontally supported while floating inside the tube material M4. In this case, the lower surface side of the metal tube M4 may be slightly lifted from the lower mold 12 or may be placed in contact with the lower mold 12.

3.液圧プレス加工
ブレード製造装置に対する金属桁材5及び金属管材M4の取付け完了後、調圧ポンプ機構15から流体通路34を介して金属桁材5及び金属管材M4の内部に液体(例えば水)を充填すると共に、調圧ポンプ機構15によって金属桁材5及び金属管材M4の内部の液圧を大気圧を超える所定の目標圧P1に調節する。この目標圧P1は、金属管材M4の材質や肉厚を考慮しつつ液圧のみで金属管材M4の変形が起こり得ない程度の圧力値であって、例えば0.1MPa〜30MPaの範囲に設定される。なお、調圧ポンプ機構15は、下記プレス成形の最中においても、金属桁材5及び金属管材M4の内圧が前記目標圧P1を維持するように液圧制御を行う。
3. Hydraulic press working After the metal girder 5 and metal pipe M4 are attached to the blade manufacturing apparatus, a liquid (for example, water) is supplied from the pressure regulating pump mechanism 15 to the inside of the metal girder 5 and metal pipe M4 via the fluid passage 34. At the same time, the pressure control pump mechanism 15 adjusts the fluid pressure inside the metal beam 5 and the metal tube M4 to a predetermined target pressure P1 exceeding the atmospheric pressure. This target pressure P1 is a pressure value at which deformation of the metal tube M4 cannot occur only by liquid pressure while considering the material and thickness of the metal tube M4, and is set in a range of, for example, 0.1 MPa to 30 MPa. The The pressure adjusting pump mechanism 15 performs hydraulic pressure control so that the internal pressures of the metal beam 5 and the metal tube material M4 maintain the target pressure P1 even during the press forming described below.

続いて図3に示すように、下型12に向けて上型14を押し付けること(型閉じ)で、金属管材M4をプレス成形する。このときの両型によるプレス圧は50〜300MPaの範囲が好ましい。このプレス加工の結果、上下両型の付形部12a,14aによって固定及び可動シール21,31が装着された金属管材M4の長手方向両端付近を除く中央部位に、横断面が流線形状に近似した翼型形状が付与される(図6参照)。   Subsequently, as shown in FIG. 3, the metal pipe material M <b> 4 is press-molded by pressing the upper mold 14 toward the lower mold 12 (mold closing). At this time, the press pressure by both dies is preferably in the range of 50 to 300 MPa. As a result of this press work, the cross section approximates a streamline shape at the central portion excluding the vicinity of both ends in the longitudinal direction of the metal tube M4 to which the fixed and movable seals 21 and 31 are attached by the upper and lower shaped shaping portions 12a and 14a. The airfoil shape is applied (see FIG. 6).

なお、型閉じによって上下両型が接合又は最接近した場合でも、下型及び上型の各付形部12a,14aは、金属管材M4を所望の翼型形状にプレス成形するだけであり、金属管材M4内の金属桁材5に対しては成形作用をほとんど及ぼさない。但し、プレス加工によって所望の翼型形状に成形された後のブレード本体4aにあっては、それを構成する二つの対向壁41,42間に金属桁材5を狭着(又は圧着)することで、当該ブレード本体4a内における金属桁材5の位置決め及び固定が行われる(図6参照)。   Even when the upper and lower molds are joined or closest to each other by closing the mold, the shaped parts 12a and 14a of the lower mold and the upper mold only press-mold the metal tube M4 into a desired airfoil shape, Almost no forming action is exerted on the metal beam 5 in the tube M4. However, in the blade body 4a after being formed into a desired airfoil shape by press working, the metal girder 5 is tightly (or pressure-bonded) between the two opposing walls 41 and 42 constituting the blade body 4a. Thus, the positioning and fixing of the metal beam 5 in the blade body 4a is performed (see FIG. 6).

4.プレス加工後の処理
プレスによる付形が完了したら、成形品内から液体を排出すると共にブレード製造装置から成形品を取り外す(型外し)。そして、その成形品のうち、固定及び可動シール21,31が装着されていて実質的なプレス成形を受けていない両端部分を本体部分から切断除去する。これにより、最終製品としての直線翼型ブレード4が得られる。
4). Processing after press working When shaping by pressing is completed, the liquid is discharged from the molded product and the molded product is removed from the blade manufacturing apparatus (unmolding). Then, of the molded product, both end portions to which the fixed and movable seals 21 and 31 are attached and which have not undergone substantial press molding are cut off from the main body portion. Thereby, the straight airfoil blade 4 as the final product is obtained.

[本実施形態の作用及び効果]
本実施形態のブレード製造手順によれば、ブレード本体4aを構成するための前駆体としての中空な金属管材M4の内部に中空な金属桁材5と液体とを含んだ状態で金属管材M4に対してプレス加工を施すことにより、当該金属管材M4を所望の翼型形状に成形している。金属管材M4の内部に流体を満たした状態でのプレス加工では、液体が金属管材M4の内側全体に均等に圧力を及ぼすので、金属管材M4は、不本意なシワやつぶれを生ずることなくプレス型(12,14)の形状に合致した所望の翼型形状に成形される。
[Operation and effect of this embodiment]
According to the blade manufacturing procedure of the present embodiment, a hollow metal beam 5 and a liquid are contained in a hollow metal tube M4 as a precursor for constituting the blade body 4a. The metal tube material M4 is formed into a desired airfoil shape by pressing. In the press working in a state where the fluid is filled in the inside of the metal tube M4, the liquid uniformly applies pressure to the entire inside of the metal tube M4, so that the metal tube M4 can be pressed without causing unintentional wrinkles or crushing. A desired airfoil shape matching the shape of (12, 14) is formed.

また、金属管材M4の内部に収容される中空な金属桁材5の内外にも液体が満たされるため、プレス加工時には、金属桁材5の内面及び外面は同じ圧力を受ける。従って、プレス型(12,14)で金属管材M4をプレス加工しても、金属桁材5に対する実質的な変形は加えられず、横断面が略四角形状の中空な金属桁材5をそのまま内部に組み込んだ状態で、金属管材M4が所望の翼型形状に成形される。   Further, since the liquid is filled in and out of the hollow metal beam 5 housed inside the metal tube M4, the inner surface and the outer surface of the metal beam 5 are subjected to the same pressure during the press working. Accordingly, even if the metal pipe M4 is pressed by the press die (12, 14), the metal girder 5 is not substantially deformed, and the hollow metal girder 5 having a substantially rectangular cross section is directly inside. In a state of being incorporated into the metal tube M4, the metal tube material M4 is formed into a desired airfoil shape.

本実施形態によれば、ブレード本体4a内には補強材としての中空な金属桁材5が内装されるため、ブレード4の軽量化を図りつつ剛性を高めることができる。また、製造過程において、金属桁材5をブレード本体4a内に固定して両者を一体化できるため、壊れ難くてしかも形状及び寸法精度に優れたブレード4を製造することができる。   According to this embodiment, since the hollow metal girder 5 as a reinforcing material is internally provided in the blade body 4a, the rigidity of the blade 4 can be increased while reducing the weight. Further, in the manufacturing process, the metal beam 5 can be fixed in the blade body 4a and integrated with each other. Therefore, it is possible to manufacture the blade 4 which is not easily broken and has excellent shape and dimensional accuracy.

本実施形態によれば、ブレード本体4a及び金属桁材5ともに一般に繊維強化樹脂(FRP)よりも安価な金属材料で構成されている。また、FRP製ブレードの場合には、二つの対向壁41,42を接着で貼り合わせる必要があったが、本実施形態はプレス型(12,14)を用いた中空金属材料の塑性一体加工を基調とするので、製造工数、製造時間及び製造コストを、FRPを使用する従来例に比べて大幅に低減することができる。従って、本実施形態によれば、直線翼垂直軸型風力発電装置用のブレード4を従来よりも安価で効率的に製造することができる。   According to this embodiment, both the blade body 4a and the metal girder 5 are generally made of a metal material that is less expensive than fiber reinforced resin (FRP). Further, in the case of the FRP blade, it is necessary to bond the two opposing walls 41 and 42 together by bonding. However, in this embodiment, plastic integrated processing of a hollow metal material using a press die (12, 14) is performed. Since it is based, it is possible to significantly reduce the number of manufacturing steps, the manufacturing time, and the manufacturing cost as compared with the conventional example using FRP. Therefore, according to the present embodiment, the blade 4 for a straight blade vertical axis wind power generator can be manufactured at a lower cost and more efficiently than the conventional one.

以下、上記実施形態の変更例について種々言及する。   Hereinafter, various modifications of the embodiment will be described.

[変更例]:上記実施形態では、ブレード本体4aを構成する二つの対向壁41,42間に金属桁材5を単純狭着(又は単純圧着)することで、ブレード4内部における金属桁材5の位置決め及び固定を行った。これに代えて、図7に示すようなブレード本体4aと金属桁材5との係合構造を採用してもよい。図7は、図6の二点鎖線で囲んだ二つの部位の代替構造を拡大して示す。図7の構造は、前記液圧プレス加工の型閉じ時に同時成形することができる。つまり、下型の付形部12a及び上型の付形部14aの各々に対し、ブレード本体4aの各対向壁41,42の一部に内側に向けて突出する内向き突起又は突条43を付与するための突起部又は突条部を設けておく。かかる突起部又は突条部を有する上下両型12,14を用いて金属管材M4に液圧プレス加工を施すことで、図7に示すように、ブレード本体4aの対向壁41,42の各々には内向き突起又は突条43が付与されると共に、これらの内向き突起又は突条43が金属桁材5の構成壁に食い込み、当該構成壁が局部的に凹む。こうして、ブレード本体4aの各対向壁41,42の内向き突起又は突条43が、それによって凹まされた金属桁材5の構成壁の一部に密に係合する。内向き突起又は突条43と金属桁材5の凹んだ構成壁との緊密な係合関係により、ブレード内部における金属桁材5の固定が確実になって金属桁材5の位置ずれがほぼ恒久的に防止される。なお、図7の変更例でも、金属桁材5の横断面形状は終始一貫して略四角形状を維持し続ける。つまり、前記内向き突起又は突条43との係合目的のために金属桁材5の構成壁の一部が凹むことがあるとしても、かかる凹み(変形)は金属桁材5の横断面形状に実質的な変更を強いるものではない。   [Modification]: In the above embodiment, the metal girder 5 inside the blade 4 is simply narrowed (or simply crimped) between the two opposing walls 41 and 42 constituting the blade body 4a. Were positioned and fixed. Instead of this, an engagement structure between the blade body 4a and the metal beam 5 as shown in FIG. FIG. 7 is an enlarged view of an alternative structure of two portions surrounded by a two-dot chain line in FIG. The structure shown in FIG. 7 can be formed at the same time as the mold is closed in the hydraulic press. That is, for each of the lower mold shaped portion 12a and the upper mold shaped portion 14a, inward projections or ridges 43 projecting inwardly are formed on a part of the opposing walls 41 and 42 of the blade body 4a. Protrusions or ridges for application are provided. By applying hydraulic press processing to the metal tube M4 using the upper and lower molds 12, 14 having such protrusions or protrusions, as shown in FIG. Are provided with inward protrusions or ridges 43, and these inward protrusions or ridges 43 bite into the constituent walls of the metal girder 5, and the constituent walls are locally recessed. In this way, the inward projections or ridges 43 of the opposing walls 41 and 42 of the blade body 4a are closely engaged with a part of the constituent walls of the metal girder 5 that are recessed by the protrusions. Due to the close engagement relationship between the inward projections or ridges 43 and the concave constituent walls of the metal beam member 5, the metal beam member 5 is securely fixed inside the blade, and the displacement of the metal beam member 5 is almost permanent. Is prevented. In addition, also in the modified example of FIG. 7, the cross-sectional shape of the metal girder 5 is continuously maintained in a substantially square shape from beginning to end. That is, even if a part of the constituent wall of the metal beam member 5 may be recessed for the purpose of engaging with the inward projection or the protrusion 43, the recess (deformation) is the cross-sectional shape of the metal beam member 5. Is not forced to make substantial changes.

[変更例]:図8に示すように、ブレード本体4a内に複数個の金属桁材5を配設してもよい。   [Modification]: As shown in FIG. 8, a plurality of metal beams 5 may be disposed in the blade body 4a.

[変更例]:上記実施形態では、固定シール21及び可動シール31の各々に対して金属管材M4の各端部を外嵌したが、それにとどまらず更に、外嵌状態にある金属管材M4の各端部を、例えば帯状の締付け金具(図示略)を用いてその周囲から締付け固定してもよい。このような追加的な締付け固定を行うことで、金属管材M4内に液圧P1を付与したとき及び/又は型閉め時に、固定又は可動シール21,31から金属管材M4等が外れる事態を確実に防止できる。   [Modification]: In the above-described embodiment, each end of the metal tube M4 is externally fitted to each of the fixed seal 21 and the movable seal 31. However, the metal pipe M4 in an externally fitted state is not limited thereto. The end portion may be clamped and fixed from the periphery using, for example, a band-shaped clamp (not shown). By performing such additional tightening and fixing, it is ensured that the metal tube M4 and the like are detached from the fixed or movable seals 21 and 31 when the hydraulic pressure P1 is applied to the metal tube M4 and / or when the mold is closed. Can be prevented.

[変更例]:型閉じ操作で下型12及び上型14を接合又は最接近させた後に、型内に納められた製品の内圧をP1(P1=0.1〜30MPa)からP2(例えばP2=50〜200MPa)に一旦高め、その後に製品を型外しするようにしてもよい。型外し前に液圧をP2に高めることで、不本意な凹みが解消され、型形状に正確に合致した形状のブレード製品を確実に得ることができる。   [Modification]: After the lower mold 12 and the upper mold 14 are joined or brought closest to each other by the mold closing operation, the internal pressure of the product stored in the mold is changed from P1 (P1 = 0.1 to 30 MPa) to P2 (for example, P2 = 50 to 200 MPa), and then the product may be removed from the mold. By increasing the hydraulic pressure to P2 before removing the mold, the unintentional dent is eliminated, and a blade product having a shape that exactly matches the mold shape can be obtained with certainty.

[変更例]:横断面が略四角形状の中空な金属桁材5については、図9に示すように、その一つ又は複数の側面に強度補強用のリブ51が予め設けられていてもよい。補強用リブ51が金属桁材5の長手方向に沿って所定間隔おきに複数個配設されていることは好ましく、又、各補強用リブ51が金属桁材5の長手方向と直交する方向に延びるものであることは好ましい。かかる補強用リブ51の存在は、金属桁材5の曲げ剛性その他の強度特性を飛躍的に高める。なお、補強用リブ51は例えば、中空な金属素管5を液圧成形する際に併せて、当該金属素管5の管壁の一部を内から外に膨出させることで容易に形成することができる。   [Modification]: As for the hollow metal girder 5 having a substantially rectangular cross section, as shown in FIG. 9, ribs 51 for reinforcing strength may be provided in advance on one or a plurality of side surfaces thereof. . It is preferable that a plurality of reinforcing ribs 51 are arranged at predetermined intervals along the longitudinal direction of the metal beam member 5, and each reinforcing rib 51 is in a direction orthogonal to the longitudinal direction of the metal beam member 5. It is preferable that it extends. The presence of the reinforcing rib 51 dramatically increases the bending rigidity and other strength characteristics of the metal beam 5. The reinforcing rib 51 is easily formed by, for example, bulging a part of the tube wall of the metal base tube 5 from the inside together with the liquid metal forming of the hollow metal base tube 5. be able to.

直線翼垂直軸型風力発電装置の風車の概略を示す斜視図。The perspective view which shows the outline of the windmill of a linear wing | blade vertical axis type wind power generator. ブレード製造装置の型開き時の概略縦断面図。The schematic longitudinal cross-sectional view at the time of mold opening of a blade manufacturing apparatus. ブレード製造装置の型閉じ時の概略縦断面図。The schematic longitudinal cross-sectional view at the time of mold closing of a blade manufacturing apparatus. 金属桁材の作製手順の概要を示す概略横断面図。The schematic cross-sectional view which shows the outline | summary of the preparation procedure of a metal girder. プレス加工前の金属管材と金属桁材との配置関係を示す概略横断面図。The schematic cross-sectional view which shows the arrangement | positioning relationship between the metal pipe material before a press work, and a metal girder. プレス加工によって得られるブレードの概略横断面図。The schematic cross-sectional view of the braid | blade obtained by press work. 金属桁材とブレード本体との係合構造に関する変更例の部分拡大断面図。The partial expanded sectional view of the example of a change regarding the engagement structure of a metal girder and a braid | blade main body. 変更例を示す図6相当の概略横断面図。FIG. 7 is a schematic cross-sectional view corresponding to FIG. 6 showing a modification example. 金属桁材の変更例を示す部分斜視図。The fragmentary perspective view which shows the example of a change of a metal girder.

符号の説明Explanation of symbols

4…直線翼型ブレード、4a…ブレード本体、5…金属桁材、12…下型(固定プレス型)、14…上型(可動プレス型)、21,31…固定及び可動シール(シール手段)、41,42…ブレード本体を構成する対向壁、43…内向き突起又は突条、M4…中空な金属管材、M5…中空な金属素管。   4 ... Straight blade type blade, 4a ... Blade body, 5 ... Metal girder, 12 ... Lower die (fixed press die), 14 ... Upper die (movable press die), 21, 31 ... Fixed and movable seal (seal means) 41, 42 ... opposing walls constituting the blade body, 43 ... inward projections or protrusions, M4 ... hollow metal tube, M5 ... hollow metal element tube.

Claims (6)

横断面が略四角形状の中空な金属桁材を準備する桁材準備工程と、
前記中空な金属桁材を中空な金属管材の内部に収容配置する配置工程と、
前記中空な金属桁材を収容した中空な金属管材の両端部をシールすると共に、これら中空な金属桁材及び金属管材の内部に流体を満たす流体充填工程と、
前記金属桁材及び流体を内部に含んだ状態の金属管材に対してプレス型を用いてプレス加工を施すことにより、金属桁材の横断面形状に実質的な変更を強いることなく、金属管材に対して横断面が流線形状に近似した翼型形状を付与する流体圧プレス工程と
を備えることを特徴とする風水力発電用ブレードの製造方法。
A girder preparation process for preparing a hollow metal girder having a substantially rectangular cross section,
An arrangement step of accommodating and arranging the hollow metal girder inside a hollow metal tube,
A fluid filling step of sealing both ends of a hollow metal pipe containing the hollow metal beam and filling the fluid into the hollow metal beam and the metal pipe; and
By applying a pressing process to the metal pipe material containing the metal beam material and fluid inside using a press die, the metal pipe material can be formed without forcing a substantial change in the cross-sectional shape of the metal beam material. And a hydrostatic pressing step for providing a blade shape whose cross section is similar to a streamline shape.
前記流体圧プレス工程では、前記中空な金属管材の内部に満たされた流体の圧力を、その流体圧力のみによって金属管材が膨張又は変形を起こし得ない程度の圧力値(P1)に保つことを特徴とする請求項1に記載の風水力発電用ブレードの製造方法。   In the fluid pressure pressing step, the pressure of the fluid filled in the hollow metal tube is maintained at a pressure value (P1) at which the metal tube cannot be expanded or deformed only by the fluid pressure. The manufacturing method of the braid | blade for wind-hydraulic power generation of Claim 1. 前記桁材準備工程では、出発材となる中空な金属素管の両端部をシールすると共に、その金属素管の内部に流体を満たす工程と、前記流体を内に含んだ状態の金属素管に対してプレス加工を施すことにより当該金属素管に対して横断面が略四角形状となる形状を付与する工程とを経て、前記横断面が略四角形状の中空な金属桁材を準備することを特徴とする請求項1又は2に記載の風水力発電用ブレードの製造方法。   In the girder preparation step, both ends of a hollow metal base tube serving as a starting material are sealed, and a fluid is filled in the metal base tube, and the metal base tube in a state of containing the fluid is formed. And applying a press working to the metal base tube to provide a shape having a substantially square cross section, and preparing a hollow metal girder having a substantially square cross section. The method for manufacturing a blade for wind-hydraulic power generation according to claim 1 or 2. 前記流体圧プレス工程では、前記翼型形状を付与されるブレード本体を構成する壁の一部に内向き突起又は突条を同時成形し、且つその内向き突起又は突条を前記金属桁材を構成する壁の一部に食い込ませることを特徴とする請求項1〜3のいずれかに記載の風水力発電用ブレードの製造方法。   In the fluid pressure pressing step, inward projections or ridges are simultaneously formed on a part of a wall constituting the blade body to which the airfoil shape is imparted, and the inward projections or ridges are formed on the metal girder. The method for manufacturing a blade for wind-hydraulic power generation according to any one of claims 1 to 3, wherein a part of a wall to be configured is bitten. 前記流体圧プレス工程の後に、前記翼型形状のブレード本体内の圧力を、前記金属管材が膨張又は変形を起こし得ない程度の圧力値(P1)よりも高い圧力値(P2)に高める再加圧工程を更に備えることを特徴とする請求項2〜4のいずれかに記載の風水力発電用ブレードの製造方法。   After the fluid pressure pressing step, re-applying the pressure in the airfoil-shaped blade body to a pressure value (P2) higher than a pressure value (P1) that does not allow the metal tube material to expand or deform. The method for manufacturing a blade for wind-hydraulic power generation according to any one of claims 2 to 4, further comprising a pressing step. 前記流体圧プレス工程では、金属管材に対して横断面が流線形状に近似した直線翼型形状を付与することを特徴とする請求項1〜5のいずれかに記載の直線翼垂直軸型風水力発電用ブレードの製造方法。   6. The straight blade vertical axis feng shui according to any one of claims 1 to 5, wherein in the fluid pressure pressing step, a straight airfoil shape having a transverse cross section approximate to a streamline shape is imparted to the metal tube material. A method of manufacturing a blade for power generation.
JP2005124561A 2005-04-22 2005-04-22 Method of manufacturing blade for generation of electricity by wind or water power Pending JP2006299983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005124561A JP2006299983A (en) 2005-04-22 2005-04-22 Method of manufacturing blade for generation of electricity by wind or water power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005124561A JP2006299983A (en) 2005-04-22 2005-04-22 Method of manufacturing blade for generation of electricity by wind or water power

Publications (1)

Publication Number Publication Date
JP2006299983A true JP2006299983A (en) 2006-11-02

Family

ID=37468567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005124561A Pending JP2006299983A (en) 2005-04-22 2005-04-22 Method of manufacturing blade for generation of electricity by wind or water power

Country Status (1)

Country Link
JP (1) JP2006299983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514372A4 (en) * 2016-09-18 2019-09-18 Li, Yibo Shielding blade supporting piece type vertical axis wind turbine
WO2022059624A1 (en) * 2020-09-18 2022-03-24 Ntn株式会社 Vertical shaft wind turbine and vertical shaft wind turbine generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514372A4 (en) * 2016-09-18 2019-09-18 Li, Yibo Shielding blade supporting piece type vertical axis wind turbine
WO2022059624A1 (en) * 2020-09-18 2022-03-24 Ntn株式会社 Vertical shaft wind turbine and vertical shaft wind turbine generator
JP2022051055A (en) * 2020-09-18 2022-03-31 Ntn株式会社 Vertical axis wind turbine and vertical axis wind power generator

Similar Documents

Publication Publication Date Title
CN107073757B (en) Method of manufacturing a mould for a wind turbine blade shell
RU2568229C2 (en) Production of turbomachine blade metallic stiffness element
JP5424523B2 (en) Method for manufacturing a reinforced leading or trailing edge for a fan blade
CN105328020B (en) Front ring punch forming frock and its method of work in burner inner liner
JP5278790B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced resin composite material
JP2008531902A (en) Wind turbine blade manufacturing method, wind turbine blade manufacturing equipment, wind turbine blade, and use thereof
CN102834220A (en) Method for producing metal insert to protect leading edge made of composite material
CN104981305B (en) Multistage pipe fitting Hydroform process
CN108817194A (en) A kind of more swan necks prepare mold and its hydraulic preparation method
CN105437537A (en) Assembling method for airfoil total composite transonic flutter model
JP2006299983A (en) Method of manufacturing blade for generation of electricity by wind or water power
CN101318205A (en) Circumferential nature supercharging plate liquid filling deep-drawing forming method and apparatus
MX2018015788A (en) Blade mould for manufacturing a blade shell part of a wind turbine blade and related method.
CN107718603B (en) HSM manufacturing process of arm rod of carbon fiber mechanical arm
CN104443426B (en) A kind of Titanium Alloy Aircraft frame beam-like part manufacture method
WO2014044445A3 (en) Process for producing wind power plant rotor blades and for producing a mould core therefor
CN104985058B (en) A kind of plate system symmetrical half bent pipe parts drawing forming method and shaping dies
CN102962304A (en) Liquid filling shearing bending formation method for small bending radius rectangular tube
CN206911972U (en) A kind of new energy lithium battery thin-walled aluminum hull trimmer
CN107567381A (en) The method for manufacturing composite component
CN216182952U (en) Air bag type supporting device for preventing wind power blade root from contracting and deforming
CN204799791U (en) Compress bend position bending device , compression bending device in advance
JP2011229373A (en) Method and device for manufacturing rotor
CN216182953U (en) Sectional air bag tire type root circle fixing and supporting tool
JP6296010B2 (en) Molding device for internal parts fixing part of fuel tank

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070824

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20071210