JP2006299816A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2006299816A
JP2006299816A JP2005118197A JP2005118197A JP2006299816A JP 2006299816 A JP2006299816 A JP 2006299816A JP 2005118197 A JP2005118197 A JP 2005118197A JP 2005118197 A JP2005118197 A JP 2005118197A JP 2006299816 A JP2006299816 A JP 2006299816A
Authority
JP
Japan
Prior art keywords
temperature
combustion
combustion chamber
chamber temperature
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005118197A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hokutou
宏之 北東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005118197A priority Critical patent/JP2006299816A/en
Publication of JP2006299816A publication Critical patent/JP2006299816A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for a direct injection engine representing a high-accuracy concrete structure for suppressing intermittent combustion at the time of transferring to a stratified combustion operation immediately after starting. <P>SOLUTION: This control device for a direct injection engine executes EGR (exhaust gas recirculation) in the stratified combustion operation by changing over homogeneous combustion operation and stratified combustion operation according to an engine operating condition. In starting, the homogeneous combustion operation as a first warming up operation is performed until a cooling water temperature reaches a reference temperature. Stratified combustion operation as a second warming up operation is performed until a combustion chamber temperature reaches a target combustion chamber temperature from a point of time when the cooling water temperature reaches the reference temperature. The stratified combustion operation as a steady operation is executed consecutively when the combustion chamber temperature reaches the target combustion temperature. During the second warming up operation, the control device corrects to an EGR rate lower than an EGR rate at the time of the steady operation according to the combustion chamber temperature. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関のEGR制御装置に関する。   The present invention relates to an EGR control device for an internal combustion engine.

エンジンの始動時に、エンジン本体や触媒を早く温めるために、均質燃焼運転をして多めの燃料を燃焼させ、エンジン本体や触媒が温まると、成層燃焼運転に切換えて少なめの燃料を燃焼させ、燃費の悪化を防止する直接噴射式ガソリンエンジンがある。エンジン本体や触媒を早く温める理由は、摩擦損失を低減させたり触媒を早く活性化させるためである。均質燃焼とは、燃焼室内全てを同じ空燃比(理論空燃比付近)にして燃焼させる方式を言い、成層燃焼とは、燃料の濃い層(理論空燃比程度)と薄い層を作り燃焼させる方式を言う。この形式のエンジンでは、成層燃焼運転時には、酸素リッチによりNOxが発生しやすくなる。このNOxは、リーンNOx触媒で吸蔵還元することになるが触媒容量に限界があるため、EGR(排ガス再循環)を実施し不活性ガスである排ガスを燃焼室に導入して、NOxの発生を抑止している。   When starting the engine, in order to warm up the engine body and catalyst quickly, perform homogeneous combustion operation to burn more fuel, and when the engine body and catalyst warm up, switch to stratified combustion operation to burn less fuel and fuel consumption There is a direct-injection gasoline engine that prevents the deterioration of the engine. The reason for warming the engine body and the catalyst quickly is to reduce friction loss and to activate the catalyst quickly. Homogeneous combustion refers to a method in which the entire combustion chamber is burned with the same air-fuel ratio (near the theoretical air-fuel ratio), and stratified combustion refers to a method in which a fuel rich layer (about the theoretical air-fuel ratio) and a thin layer are formed and burned To tell. In this type of engine, NOx is likely to be generated due to oxygen enrichment during stratified combustion operation. This NOx is occluded and reduced by a lean NOx catalyst, but the catalyst capacity is limited. Therefore, EGR (exhaust gas recirculation) is performed to introduce exhaust gas, which is an inert gas, into the combustion chamber, thereby reducing NOx generation. Suppressed.

しかし、始動直後の成層燃焼運転移行時に、定常運転時(暖機運転終了時)と同じEGR率でEGRを実施すると、燃焼室温度が定常運転時の温度まで上昇していないため、失火等により燃焼が不安定となり、間欠燃焼(いわゆる燃焼変動)により円滑な運転が阻害される。ちなみに間欠燃焼は、乗り心地も悪化させる。また、燃焼室温度が定常運転時の温度まで上昇しておらずNOx発生も少ないため、定常運転時と同じEGR率でEGRを実施する必要もない。
このため、始動直後の成層燃焼運転移行時には、定常運転時のEGR率より少ないEGRを実施することにより、間欠燃焼すなわち燃焼変動を抑止することが望まれる。
However, if the EGR is performed at the same EGR rate as during steady operation (when warm-up operation is completed) at the time of transition to stratified combustion operation immediately after startup, the combustion chamber temperature has not risen to the temperature during steady operation. Combustion becomes unstable and smooth operation is hindered by intermittent combustion (so-called combustion fluctuation). By the way, intermittent combustion also deteriorates ride comfort. Further, since the combustion chamber temperature does not rise to the temperature during steady operation and NOx generation is small, it is not necessary to perform EGR at the same EGR rate as during steady operation.
For this reason, at the time of transition to the stratified combustion operation immediately after the start, it is desired to suppress intermittent combustion, that is, combustion fluctuation, by performing EGR less than the EGR rate during steady operation.

このことに関連して、特許文献1では、段落番号〔0007〕で「低温の内燃機関の始動後に、内燃機関の、改善された暖機運転を達成する。特に、運転静粛性と排ガス特性とを、温度に関連した制御によって改善を達成する。」ことを目的として、段落番号〔0006〕で「エンジンが低温の場合に、制御装置により、成層燃焼運転が温度に関連して制御可能であるようにした」と、さらに段落番号〔0009〕で「本発明のさらに有利な変化形では、…排ガス戻し案内弁を介しての排ガス再循環率が温度に関連して制御される」と、記述されているが、それ以上の具体的構成は示されていない。   In this connection, Patent Document 1 states in paragraph [0007] “After the start of the low-temperature internal combustion engine, an improved warm-up operation of the internal combustion engine is achieved. In the paragraph [0006], the stratified combustion operation can be controlled in relation to the temperature by the controller when the engine is cold. In paragraph [0009], "In a further advantageous variant of the invention ... the exhaust gas recirculation rate through the exhaust gas return guide valve is controlled in relation to the temperature" However, no further specific configuration is shown.

さらに、特許文献2では、EGR補正量を燃焼方式に応じて可変とする手段を特徴としたEGR制御装置が開示されているが、該装置は内燃機関の機関温度が低くなるほどEGR量を減量側に補正するEGR制御装置がベース技術となっており、段落番号〔0049〕で、「EGR用補正係数を冷却水温(機関温度)に基づきマップ演算する」と記載されている。目的は、NOxおよび失火対策としてのEGR量の適正化である。   Further, Patent Document 2 discloses an EGR control device characterized by means for varying the EGR correction amount according to the combustion method. However, this device reduces the EGR amount as the engine temperature of the internal combustion engine decreases. The EGR control device that corrects to the above is the base technology, and paragraph [0049] states that “the map calculation is performed on the EGR correction coefficient based on the coolant temperature (engine temperature)”. The purpose is to optimize the amount of EGR as a countermeasure against NOx and misfire.

また特許文献3においても、類似した構成のEGR制御装置が開示されているが、目的が間欠燃焼対策ではなく、過渡状態におけるNOx制御であり、本願発明とは異なる。また、シリンダ壁温を基準としてEGR制御をしており、段落番号〔0017〕で「シリンダ壁温は、シリンダ壁温を検出するセンサの出力に基づいて特定してもよいし、シリンダ壁温と相関する物理量から推定しても良い。」としか記載されていない。   Also in Patent Document 3, an EGR control device having a similar configuration is disclosed, but the object is not countermeasures against intermittent combustion but NOx control in a transient state, which is different from the present invention. In addition, EGR control is performed based on the cylinder wall temperature. In paragraph [0017], “Cylinder wall temperature may be specified based on the output of a sensor that detects the cylinder wall temperature. It may only be estimated from correlated physical quantities. "

特開2001−164966号公報JP 2001-164966 A 特開2000−104627号公報JP 2000-104627 A 特開2004−036557号公報JP 2004-036557 A

従来、特許文献2に記載のごとく、始動直後の成層燃焼運転移行時のEGR補正は、本願発明における「第1暖機運転たる均質燃焼運転から第2暖機運転たる成層燃焼運転移行時への切換え基準」と同じ冷却水温度に基づき実行していた。(ただし特許文献2では、第1暖機運転と第2暖機運転の区別はされていない。)   Conventionally, as described in Patent Document 2, the EGR correction at the time of shifting to the stratified charge combustion operation immediately after the start is performed according to the present invention “from the homogeneous combustion operation that is the first warm-up operation to the shift to the stratified combustion operation that is the second warm-up operation It was executed based on the same coolant temperature as the “switching standard”. (However, Patent Document 2 does not distinguish between the first warm-up operation and the second warm-up operation.)

本願発明における、均質燃焼運転から成層燃焼運転移行時への切換え基準の冷却水温度は、例えば80℃であり、特に問題となることはない。
しかし、冷却水温度がさらに上昇すると、冷却水路系に配設されたサーモスタットが、例えば85℃付近で開弁し、温まった冷却水がラジエータにより空冷されるようになる。このため、水温上昇率カーブが収斂することにより、EGR補正を必要とする第2暖機運転からEGR補正を必要としない定常運転への切換え基準を例えば水温で90℃とした場合、切換え基準時(EGR補正ゼロの時点)とEGR補正を必要としない現実の定常運転移行時との明確な一致が困難となり、該一致精度が非常に悪いという不具合があった。また、水温収斂後に、自動車が加速あるいは減速等を不規則に繰り返すと、水温は大きく乱れ、EGR補正の外乱要因となる不具合もあった。
The cooling water temperature on the basis of switching from the homogeneous combustion operation to the stratified combustion operation transition in the present invention is, for example, 80 ° C., and there is no particular problem.
However, when the cooling water temperature further rises, the thermostat disposed in the cooling water channel system opens, for example, at about 85 ° C., and the heated cooling water is cooled by the radiator. For this reason, when the water temperature increase rate curve converges, when the standard for switching from the second warm-up operation that requires EGR correction to the steady operation that does not require EGR correction is, for example, 90 ° C. at the water temperature, There was a problem that it was difficult to clearly match (at the time of zero EGR correction) and the actual transition to steady operation that does not require EGR correction, and the matching accuracy was very poor. In addition, when the automobile repeatedly accelerates or decelerates irregularly after the water temperature is converged, the water temperature is greatly disturbed, and there is a problem that becomes a disturbance factor of EGR correction.

一方、エンジン燃焼に直接影響を及ぼすのは、燃焼室温度であり、EGR補正は本来燃焼室温度に基づき実行すべきものである。しかし、燃焼室温度は計測が困難であるため、上述のごとく、従来は水温に基づき該補正をしていた。水温は、第1暖機運転を終了する判定基準である水温(例えば80℃)を超えると、上記理由で水温上昇カーブが収斂するため、第2暖機運転を終了する判定基準水温(例えば90℃)により現実の定常運転移行時を判定することが困難となり、前記EGR補正は精度の悪いものとなっていた。   On the other hand, it is the combustion chamber temperature that directly affects engine combustion, and EGR correction should be performed based on the combustion chamber temperature. However, since it is difficult to measure the combustion chamber temperature, as described above, the correction is conventionally performed based on the water temperature. When the water temperature exceeds a water temperature (for example, 80 ° C.) that is a criterion for ending the first warm-up operation, the water temperature rise curve converges for the above-described reason. C)), it is difficult to determine the actual transition to steady operation, and the EGR correction is inaccurate.

本発明の目的は、始動直後の成層燃焼運転移行時の間欠燃焼を抑止する精度の良い具体的構成が示された直接噴射式エンジンの制御装置を提供することにある。   An object of the present invention is to provide a control device for a direct injection engine in which a specific configuration with high accuracy for suppressing intermittent combustion at the time of transition to a stratified combustion operation immediately after starting is shown.

請求項1に記載の発明によれば、
エンジンの運転条件に応じて均質燃焼運転と成層燃焼運転とを切換えて、成層燃焼運転時にはEGRを実行する直接噴射式エンジンの制御装置であって、
始動時には、冷却水温度が基準温度に達するまでは第1暖機運転としての均質燃焼運転をして、冷却水温度が基準温度に達した時点から燃焼室温度が目標燃焼室温度に達するまでは第2暖機運転としての成層燃焼運転をして、前記燃焼室温度が前記目標燃焼室温度に達すると引続き定常運転としての成層燃焼運転を実行して、
前記第2暖機運転中は、前記燃焼室温度に応じて定常運転時のEGR率よりも少ないEGR率に補正することを特徴とする、直接噴射式エンジンの制御装置が提供される。
According to the invention of claim 1,
A control device for a direct injection engine that switches between homogeneous combustion operation and stratified combustion operation according to the operating conditions of the engine, and executes EGR during stratified combustion operation,
At start-up, the homogeneous combustion operation as the first warm-up operation is performed until the cooling water temperature reaches the reference temperature, and from the time when the cooling water temperature reaches the reference temperature until the combustion chamber temperature reaches the target combustion chamber temperature. Stratified combustion operation as the second warm-up operation, and when the combustion chamber temperature reaches the target combustion chamber temperature, the stratified combustion operation as the steady operation is continuously executed,
During the second warm-up operation, there is provided a control device for a direct injection engine, wherein the EGR rate is corrected to be lower than the EGR rate during steady operation according to the combustion chamber temperature.

このように請求項1に記載の制御装置によれば、始動直後の成層燃焼運転移行時のEGR制御において、冷却水温度ではなく燃焼室温度に応じて定常運転時のEGR率よりも少ないEGR率に補正することにより、間欠燃焼を抑止している。これにより、具体的構成が示されかつ精度の良いEGR率補正制御装置が実現できる。
また、第1暖機運転終了基準に、燃焼室温度ではなく冷却水温度を採用している理由は、冷却水温度は、約100℃までは計測容易でかつ正確な温度値が取得でき、さらに冷却水温度は、エンジン摩擦損失に直接的に影響を及ぼすからである。ちなみに、エンジン摩擦損失に最も影響を及ぼすのは、潤滑油温度であるが、冷却水温度で代用しても精度はほぼ同じである。
なお、冷却水温度は、燃焼室温度よりも上昇率が高い。始動時は、冷却水路系に配設されているサーモスタットが閉弁しているため、ラジエータにより空冷されないことが理由の一つである。
Thus, according to the control device of the first aspect, in the EGR control at the time of transition to the stratified combustion operation immediately after the start, the EGR rate is smaller than the EGR rate in the steady operation according to the combustion chamber temperature, not the cooling water temperature. By correcting to, intermittent combustion is suppressed. Thereby, a specific configuration is shown, and an accurate EGR rate correction control apparatus can be realized.
In addition, the reason for adopting the cooling water temperature instead of the combustion chamber temperature as the first warm-up operation end criterion is that the cooling water temperature can be easily measured and an accurate temperature value can be obtained up to about 100 ° C. This is because the cooling water temperature directly affects the engine friction loss. Incidentally, it is the lubricating oil temperature that has the most influence on the engine friction loss, but the accuracy is almost the same even if the coolant temperature is substituted.
The cooling water temperature has a higher rate of increase than the combustion chamber temperature. One of the reasons is that since the thermostat disposed in the cooling water channel system is closed at the time of starting, it is not cooled by the radiator.

請求項2に記載の発明によれば、
前記燃焼室温度は、ピストン表面温度を代表値として採用することを特徴とする、請求項1に記載の制御装置が提供される。
このように請求項2に記載の制御装置によれば、燃焼に最も影響与えるピストン表面温度を燃焼室温度の代表値とするので、EGR率の補正精度がベストとなる。成層燃焼運転時には、燃料噴射が圧縮上死点付近で実行され燃料噴霧がピストン表面に衝突して燃焼するため、ピストン表面温度が燃焼に最も影響与えることとなる。
According to invention of Claim 2,
The control device according to claim 1, wherein the combustion chamber temperature employs a piston surface temperature as a representative value.
Thus, according to the control device of the second aspect, since the piston surface temperature that most affects the combustion is set as the representative value of the combustion chamber temperature, the correction accuracy of the EGR rate is the best. During stratified combustion operation, fuel injection is performed near the compression top dead center, and fuel spray collides with the piston surface and burns, so the piston surface temperature has the most influence on combustion.

請求項3に記載の発明によれば、
前記燃焼室温度を、初期燃焼室温度と積算噴射量の関数との和で推定することを特徴とする、請求項1または2に記載の制御装置が提供される。
このように請求項3に記載の制御装置によれば、燃焼室温度を推定する合理的でかつ具体的な手法が示される。燃焼室温度の初期温度からの上昇率は、その時点までに噴射され燃焼した燃料量の積算値と直接的に関連しており、該積算値燃料の燃焼エネルギによる熱伝達とヒートバランスにより決まるからである。
According to invention of Claim 3,
The control device according to claim 1 or 2, wherein the combustion chamber temperature is estimated as a sum of an initial combustion chamber temperature and a function of an integrated injection amount.
Thus, according to the control device of the third aspect, a rational and specific method for estimating the combustion chamber temperature is shown. The rate of increase of the combustion chamber temperature from the initial temperature is directly related to the integrated value of the amount of fuel injected and burned up to that point, and is determined by heat transfer and heat balance due to the combustion energy of the integrated value fuel. It is.

請求項4に記載の発明によれば、
前記初期燃焼室温度は、前記冷却水温度または潤滑油温度を代表値として採用することを特徴とする、請求項3に記載の制御装置が提供される。
このように請求項4に記載の制御装置によれば、初期燃焼室温度を推定する合理的でかつ具体的な手法が示される。初期燃焼室温度は、エンジンが起動していない時は、冷却水温度または潤滑油温度と同じ温度になっているからである。
According to invention of Claim 4,
The control device according to claim 3, wherein the initial combustion chamber temperature employs the cooling water temperature or the lubricating oil temperature as a representative value.
Thus, according to the control device of the fourth aspect, a rational and specific method for estimating the initial combustion chamber temperature is shown. This is because the initial combustion chamber temperature is the same as the coolant temperature or the lubricating oil temperature when the engine is not started.

本発明によれば、始動直後の成層燃焼運転移行時の間欠燃焼を抑止する精度の良い具体的構成が示された直接噴射式エンジンの制御装置を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the control apparatus of the direct injection type engine by which the specific structure with a sufficient precision which suppresses the intermittent combustion at the time of stratified combustion operation transfer immediately after a start was shown can be obtained.

以下、本発明の実施の形態を図面に基づいて説明する。図1は、本発明の制御装置及びそれにより制御されるエンジンの一実施形態を示している。エンジン1は、例えば自動車に搭載される直列式の4気筒ガソリンエンジンとして構成されている。エンジン1の吸気通路7には、スロットルバルブ11の開度に応じた空気(一次空気)がエアフィルタを介して吸入され、その空気は吸気通路7を介して各シリンダ3に取り込まれる。そしてシリンダ3内に燃料噴射弁12と点火プラグ10が設けられている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of a control device of the present invention and an engine controlled thereby. The engine 1 is configured as an in-line four-cylinder gasoline engine mounted on, for example, an automobile. Air (primary air) corresponding to the opening of the throttle valve 11 is sucked into the intake passage 7 of the engine 1 through an air filter, and the air is taken into each cylinder 3 through the intake passage 7. A fuel injection valve 12 and a spark plug 10 are provided in the cylinder 3.

シリンダ3内の燃焼により生成される排気ガスは排気通路8を経て触媒9に導かれて浄化され、さらに触媒15で浄化された後、不図示の消音器を経て大気へ排出される。触媒9はHC、COを酸化する一方で、NOxを還元する周知の三元触媒である。触媒15は、成層燃焼運転時に発生するNOxを吸蔵還元するリーンNOx触媒である。排気通路8には、触媒9を通過した排気ガスを吸気通路7に還流させるためのEGR通路13が接続される。EGR通路13を通過する排気ガスの流量はEGR弁14により制御される。   Exhaust gas generated by combustion in the cylinder 3 is guided to the catalyst 9 through the exhaust passage 8 and purified, and further purified by the catalyst 15, and then exhausted to the atmosphere through a silencer (not shown). The catalyst 9 is a well-known three-way catalyst that oxidizes HC and CO while reducing NOx. The catalyst 15 is a lean NOx catalyst that occludes and reduces NOx generated during the stratified combustion operation. Connected to the exhaust passage 8 is an EGR passage 13 for returning the exhaust gas that has passed through the catalyst 9 to the intake passage 7. The flow rate of the exhaust gas passing through the EGR passage 13 is controlled by the EGR valve 14.

吸気通路7には吸入空気流量に対応した信号を出力するエアフローメータ21、吸気温度に対応した信号を出力する吸気温センサ22、スロットルバルブ11の開度に対応した信号を出力するスロットル開度センサが、それぞれ設けられる。各センサの出力信号は制御装置としてのエンジンコントロールユニット(ECU)18に導かれる。   An air flow meter 21 that outputs a signal corresponding to the intake air flow rate, an intake air temperature sensor 22 that outputs a signal corresponding to the intake air temperature, and a throttle opening sensor that outputs a signal corresponding to the opening of the throttle valve 11 are provided in the intake passage 7. Are provided. The output signal of each sensor is led to an engine control unit (ECU) 18 as a control device.

ECU18はマイクロプロセッサ、及びその動作に必要なROM、RAM等の周辺回路を備えたコンピュータとして構成される。ECU18は各種のセンサからの入力信号19を参照して、エンジン1の運転制御に必要な各種の演算処理をして出力信号20を各種機器へ送信してその動作制御を実行する。例えば、ECU18はエアフローメータ21からの入力信号を参照して所定の空燃比の混合気が形成されるように燃料噴射弁12の燃料噴射量を制御し、クランク角センサおよび水温センサの出力信号を参照してEGR弁14の開度(デューティー比)を制御する。ECU18が参照するセンサとしては、上記のセンサの他にも、エンジン1の潤滑油温度に対応した信号を出力する油温センサがある。なお、水温センサは、エンジン1の冷却水温度に対応した信号を出力し、クランク角センサは、クランク軸の角度に対応した信号を出力する。
ECU18は所定のプログラムを実行することにより、EGR弁14の開度を制御する装置として機能する。
The ECU 18 is configured as a computer including a microprocessor and peripheral circuits such as ROM and RAM necessary for its operation. The ECU 18 refers to input signals 19 from various sensors, performs various arithmetic processes necessary for operation control of the engine 1, transmits an output signal 20 to various devices, and executes operation control thereof. For example, the ECU 18 refers to an input signal from the air flow meter 21 to control the fuel injection amount of the fuel injection valve 12 so that an air-fuel mixture having a predetermined air-fuel ratio is formed, and outputs output signals from the crank angle sensor and the water temperature sensor. Referring to, the opening degree (duty ratio) of the EGR valve 14 is controlled. As a sensor referred to by the ECU 18, there is an oil temperature sensor that outputs a signal corresponding to the lubricating oil temperature of the engine 1 in addition to the above sensor. The water temperature sensor outputs a signal corresponding to the coolant temperature of the engine 1, and the crank angle sensor outputs a signal corresponding to the crankshaft angle.
The ECU 18 functions as a device that controls the opening degree of the EGR valve 14 by executing a predetermined program.

図2は上述したECU18がEGR率補正量を算出するために適当な周期で実行するEGR率補正量算出ルーチンを示すフローチャートである。このルーチンにおいて、ステップS1でエンジンが均質燃焼運転で始動すると、ECU18は、ステップS2で初期燃焼室温度TC0を設定する。初期燃焼室温度TC0には、冷却水温あるいは油温を採用する。初期燃焼室温度は、エンジンが起動していない時は、冷却水温度または潤滑油温度と同じ温度になっているからである。ステップS3で始動時から現在に至るまでの燃料噴射量を積算した積算噴射量Qを算出する。 FIG. 2 is a flowchart showing an EGR rate correction amount calculation routine executed by the ECU 18 at an appropriate period in order to calculate the EGR rate correction amount. In this routine, when the engine is started in the homogeneous combustion operation in step S1, the ECU 18 sets the initial combustion chamber temperature T C0 in step S2. A cooling water temperature or an oil temperature is adopted as the initial combustion chamber temperature T C0 . This is because the initial combustion chamber temperature is the same as the coolant temperature or the lubricating oil temperature when the engine is not started. In step S3, an integrated injection amount Q obtained by integrating the fuel injection amount from the start to the present is calculated.

続くステップS4では燃焼室温度TCを以下の計算式により算出する。本実施形態では、燃焼室温度TCは、ピストン表面温度を代表値として採用しており、以下の計算式でピストン表面温度を演算する。燃焼に最も影響与えるピストン表面温度を燃焼室温度の代表値とするので、EGR率の補正精度がベストとなる。成層燃焼運転時には、燃料噴射が圧縮上死点付近で実行され燃料噴霧がピストン表面に衝突して燃焼するため、ピストン表面温度が燃焼に最も影響与えることとなる。
C=TC0+F(Q)
In the following step S4, the combustion chamber temperature T C is calculated by the following calculation formula. In the present embodiment, the combustion chamber temperature T C employs the piston surface temperature as a representative value, and the piston surface temperature is calculated by the following calculation formula. Since the piston surface temperature that most affects combustion is the representative value of the combustion chamber temperature, the correction accuracy of the EGR rate is the best. During stratified combustion operation, fuel injection is performed near the compression top dead center, and fuel spray collides with the piston surface and burns, so the piston surface temperature has the most influence on combustion.
T C = T C0 + F (Q)

ただし、F(Q)は、ピストン表面温度の、初期温度TC0からの上昇量であり、積算噴射量Qに関する関数となっている。該関数は、シミュレーション計算やピストン表面温度の計測結果等により求める。ピストン表面温度の初期温度からの上昇量は、その時点までに噴射され燃焼した燃料量の積算値と直接的に関連しており、該積算値燃料の燃焼エネルギによる熱伝達とヒートバランスにより決まるからである。 However, F (Q) is an increase amount of the piston surface temperature from the initial temperature T C0 and is a function related to the integrated injection amount Q. The function is obtained by simulation calculation or the measurement result of the piston surface temperature. The amount of increase in the piston surface temperature from the initial temperature is directly related to the integrated value of the amount of fuel injected and burned up to that point, and is determined by heat transfer and heat balance due to the combustion energy of the integrated value fuel. It is.

なお、燃焼室温度TCを、ピストン表面温度以外の燃焼室内の任意箇所の温度としても良い。この場合、F(Q)は該任意箇所の、初期温度TC0からの上昇量となる。 Note that the combustion chamber temperature T C may be a temperature at an arbitrary location in the combustion chamber other than the piston surface temperature. In this case, F (Q) is the amount of increase from the initial temperature T C0 at the arbitrary location.

ステップS5では、冷却水温TXが、成層燃焼への切替えをする基準温度TX1(例えば80℃)以上かどうかを比較する。冷却水温TXが、該基準温度以上であれば、ステップS6へ進む。そうでなければ、ステップS3へ戻り、積算噴射量Qを再算出する。ステップS1からステップS5までが第1暖機運転となる。
ステップS6では、エンジン運転を成層燃焼運転に切換える。すなわち、燃料噴射の吸気行程における実行から、圧縮行程における実行へ切換える。ステップS7では、第2暖機運転を終了する基準となる目標燃焼室温度TC1(例えば150℃)と推定燃焼室温度TCとの差ΔTCを演算しステップS8へ進む。ステップS8では、ΔTCが正であるかどうかを判別し、正であればステップS9へ進み、ゼロまたは負であればステップS10へ進む。
In step S5, it is compared whether or not the cooling water temperature T X is equal to or higher than a reference temperature T X1 (for example, 80 ° C.) for switching to stratified combustion. Coolant temperature T X is equal to or the reference temperature or more, the process proceeds to step S6. Otherwise, the process returns to step S3, and the integrated injection amount Q is recalculated. Steps S1 to S5 are the first warm-up operation.
In step S6, the engine operation is switched to the stratified combustion operation. That is, the execution is switched from the execution in the intake stroke of the fuel injection to the execution in the compression stroke. In step S7, a difference ΔT C between a target combustion chamber temperature T C1 (for example, 150 ° C.) serving as a reference for ending the second warm-up operation and the estimated combustion chamber temperature T C is calculated, and the process proceeds to step S8. In step S8, it is determined whether or not ΔT C is positive. If it is positive, the process proceeds to step S9, and if it is zero or negative, the process proceeds to step S10.

ステップS9では、ΔTC、エンジン回転数、負荷に基づいてEGR率補正量ΔEGRを演算する。前記四つのパラメータはマップとなっており、このマップからΔEGRを読取ることとなる。ΔTCが小さければ、ΔEGRも小さくなる。
ΔTCがゼロまたは負になっている場合は、第2暖機運転は終了し定常運転状態となっていることを示しているので、ステップS10へ進みΔEGRをゼロに設定する。すなわち補正しないと言うことである。
In step S9, an EGR rate correction amount ΔEGR is calculated based on ΔT C , engine speed, and load. The four parameters form a map, and ΔEGR is read from this map. If [Delta] T C is small, DerutaEGR also reduced.
If ΔT C is zero or negative, it indicates that the second warm-up operation is finished and the steady operation state is reached, so that the process proceeds to step S10 and ΔEGR is set to zero. That is, no correction is made.

ステップS9またはステップS10からは、ステップS11へ進み、成層燃焼運転に切換え直後の要求EGR率EGR1を以下の計算式により演算し、ステップS12へ進む。
EGR1 =EGR0−ΔEGR
ここで EGR0=定常運転時のEGR率
EGR1=第2暖機運転時のEGR率
なお、定常運転とは、第2暖機運転が終了した後の成層燃焼運転、すなわちピストン表面温度が目標燃焼室温度(例えば150℃)以上になっている状態での成層燃焼運転を言う。第2暖機運転とは、第1暖機運転終了後、ピストン表面温度が目標燃焼室温度(例えば150℃)に達するまでの成層燃焼運転を言う。第1暖機運転とは、始動時から水温が基準温度(例えば80℃)に達するまでの均質燃焼運転を言う。
From step S9 or step S10, the process proceeds to step S11, the required EGR rate EGR 1 immediately after switching to the stratified combustion operation is calculated by the following formula, and the process proceeds to step S12.
EGR 1 = EGR 0 −ΔEGR
Where EGR 0 = EGR rate during steady operation
EGR 1 = EGR rate during the second warm-up operation Note that the steady operation is a stratified combustion operation after the second warm-up operation is completed, that is, the piston surface temperature is equal to or higher than the target combustion chamber temperature (for example, 150 ° C.). The stratified combustion operation in the state where it is. The second warm-up operation refers to a stratified combustion operation until the piston surface temperature reaches a target combustion chamber temperature (for example, 150 ° C.) after completion of the first warm-up operation. The first warm-up operation refers to a homogeneous combustion operation from when the engine is started until the water temperature reaches a reference temperature (for example, 80 ° C.).

ステップS12では、EGR制御弁の開度をEGR1に基づき制御する。その後ステップS13へ進み、ステップS3へリターンする。ステップS6からステップS13までが第2暖機運転となる。これにより図2の処理を終える。 In step S12, the control based on the opening degree of the EGR control valve in EGR 1. Thereafter, the process proceeds to step S13 and returns to step S3. Steps S6 to S13 are the second warm-up operation. This completes the process of FIG.

以上の制御フローにより、始動直後の成層燃焼運転移行時には、定常運転時のEGR率より少ないEGRを実施することにより、該移行時における間欠燃焼を抑止できる。また、該移行時には、燃焼室温度が定常運転時の温度まで上昇しておらずNOx発生も少ないため、定常運転時のEGR率より少ないEGRを実施することによるNOx発生の弊害も少ない。   With the above control flow, intermittent combustion at the time of transition can be suppressed by performing EGR less than the EGR rate during steady operation at the time of transition to stratified combustion operation immediately after startup. Further, at the time of the transition, the combustion chamber temperature does not rise to the temperature at the time of steady operation and the generation of NOx is small, so that the harmful effects of NOx generation due to performing EGR less than the EGR rate at the time of steady operation are also small.

本発明の実施形態に係るエンジンの制御装置である。1 is an engine control device according to an embodiment of the present invention. 本発明の実施形態に係る制御装置のフローチャートを示す。The flowchart of the control apparatus which concerns on embodiment of this invention is shown.

符号の説明Explanation of symbols

C 燃焼室温度
C0 初期燃焼室温度
C1 目標燃焼室温度
X 水温
X1 成層燃焼への切換えに関する基準水温
EGR0 定常運転時のEGR率
EGR1 暖機運転時のEGR率
ΔEGR EGR率補正量
1 エンジン
2 ピストン
3 シリンダ
4 燃焼室
5 吸気弁
6 排気弁
7 吸気通路
8 排気通路
9 触媒
10 点火プラグ
11 スロットルバルブ
12 燃料噴射弁
13 EGR通路
14 EGR弁
15 リーンNOx触媒
18 エンジンコントロールユニット(ECU)
19 入力信号
20 出力信号
T C Combustion chamber temperature T C0 Initial combustion chamber temperature T C1 Target combustion chamber temperature T X Water temperature T X1 Reference water temperature for switching to stratified combustion EGR 0 EGR rate during steady operation EGR 1 EGR rate during warm-up operation ΔEGR EGR rate Correction amount 1 Engine 2 Piston 3 Cylinder 4 Combustion chamber 5 Intake valve 6 Exhaust valve 7 Intake passage 8 Exhaust passage 9 Catalyst 10 Spark plug 11 Throttle valve 12 Fuel injection valve 13 EGR passage 14 EGR valve 15 Lean NOx catalyst 18 Engine control unit ( ECU)
19 Input signal 20 Output signal

Claims (4)

エンジンの運転条件に応じて均質燃焼運転と成層燃焼運転とを切換えて、成層燃焼運転時にはEGRを実行する直接噴射式エンジンの制御装置であって、
始動時には、冷却水温度が基準温度に達するまでは第1暖機運転としての均質燃焼運転をして、冷却水温度が基準温度に達した時点から燃焼室温度が目標燃焼室温度に達するまでは第2暖機運転としての成層燃焼運転をして、前記燃焼室温度が前記目標燃焼室温度に達すると引続き定常運転としての成層燃焼運転を実行して、
前記第2暖機運転中は、前記燃焼室温度に応じて定常運転時のEGR率よりも少ないEGR率に補正することを特徴とする、直接噴射式エンジンの制御装置。
A control device for a direct injection engine that switches between homogeneous combustion operation and stratified combustion operation according to the operating conditions of the engine, and executes EGR during stratified combustion operation,
At start-up, the homogeneous combustion operation as the first warm-up operation is performed until the cooling water temperature reaches the reference temperature, and from the time when the cooling water temperature reaches the reference temperature until the combustion chamber temperature reaches the target combustion chamber temperature. Stratified combustion operation as the second warm-up operation, and when the combustion chamber temperature reaches the target combustion chamber temperature, the stratified combustion operation as the steady operation is continuously executed,
During the second warm-up operation, the EGR rate is corrected to be lower than the EGR rate during steady operation according to the combustion chamber temperature.
前記燃焼室温度は、ピストン表面温度を代表値として採用することを特徴とする、請求項1に記載の制御装置。   The control device according to claim 1, wherein the combustion chamber temperature employs a piston surface temperature as a representative value. 前記燃焼室温度を、初期燃焼室温度と積算噴射量の関数との和で推定することを特徴とする、請求項1または2に記載の制御装置。   The control device according to claim 1, wherein the combustion chamber temperature is estimated as a sum of an initial combustion chamber temperature and a function of an integrated injection amount. 前記初期燃焼室温度は、前記冷却水温度または潤滑油温度を代表値として採用することを特徴とする、請求項3に記載の制御装置。   The control device according to claim 3, wherein the initial combustion chamber temperature employs the cooling water temperature or the lubricating oil temperature as a representative value.
JP2005118197A 2005-04-15 2005-04-15 Control device for internal combustion engine Pending JP2006299816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118197A JP2006299816A (en) 2005-04-15 2005-04-15 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118197A JP2006299816A (en) 2005-04-15 2005-04-15 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006299816A true JP2006299816A (en) 2006-11-02

Family

ID=37468431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118197A Pending JP2006299816A (en) 2005-04-15 2005-04-15 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006299816A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183583A (en) * 2015-03-26 2016-10-20 ダイハツ工業株式会社 Control device of internal combustion engine
KR20170124606A (en) * 2015-04-20 2017-11-10 닛산 지도우샤 가부시키가이샤 Engine control device and engine control method
US9945297B2 (en) 2015-04-16 2018-04-17 Nissan Motor Co., Ltd. Engine controller and engine control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108926A (en) * 1992-09-25 1994-04-19 Mazda Motor Corp Controller of engine
JPH10274073A (en) * 1997-03-31 1998-10-13 Mazda Motor Corp Cylinder injection type engine
JP2000104627A (en) * 1998-09-29 2000-04-11 Toyota Motor Corp Exhaust gas recirculation control device for internal combustion engine
JP2000205019A (en) * 1999-01-12 2000-07-25 Toyota Motor Corp Control device for internal combustion engine
JP2000220504A (en) * 1999-01-27 2000-08-08 Mazda Motor Corp Idle speed control device for cylinder fuel injection engine
JP2002285886A (en) * 2002-01-10 2002-10-03 Mitsubishi Motors Corp Cylinder injection type internal combustion engine
JP2003083128A (en) * 2001-09-12 2003-03-19 Nissan Motor Co Ltd Control device for direct injection type spark ignition engine
JP2003106187A (en) * 2001-09-28 2003-04-09 Mazda Motor Corp Control system for spark ignition type direct injection engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108926A (en) * 1992-09-25 1994-04-19 Mazda Motor Corp Controller of engine
JPH10274073A (en) * 1997-03-31 1998-10-13 Mazda Motor Corp Cylinder injection type engine
JP2000104627A (en) * 1998-09-29 2000-04-11 Toyota Motor Corp Exhaust gas recirculation control device for internal combustion engine
JP2000205019A (en) * 1999-01-12 2000-07-25 Toyota Motor Corp Control device for internal combustion engine
JP2000220504A (en) * 1999-01-27 2000-08-08 Mazda Motor Corp Idle speed control device for cylinder fuel injection engine
JP2003083128A (en) * 2001-09-12 2003-03-19 Nissan Motor Co Ltd Control device for direct injection type spark ignition engine
JP2003106187A (en) * 2001-09-28 2003-04-09 Mazda Motor Corp Control system for spark ignition type direct injection engine
JP2002285886A (en) * 2002-01-10 2002-10-03 Mitsubishi Motors Corp Cylinder injection type internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183583A (en) * 2015-03-26 2016-10-20 ダイハツ工業株式会社 Control device of internal combustion engine
US9945297B2 (en) 2015-04-16 2018-04-17 Nissan Motor Co., Ltd. Engine controller and engine control method
KR20170124606A (en) * 2015-04-20 2017-11-10 닛산 지도우샤 가부시키가이샤 Engine control device and engine control method
KR101894693B1 (en) * 2015-04-20 2018-09-04 닛산 지도우샤 가부시키가이샤 Engine control device and engine control method
US10280858B2 (en) 2015-04-20 2019-05-07 Nissan Motor Co., Ltd. Engine control device and engine control method

Similar Documents

Publication Publication Date Title
JP3815006B2 (en) Control device for internal combustion engine
JP7087609B2 (en) Engine control unit
EP2620626B1 (en) Control device for internal combustion engine
JP2008101591A (en) Ignition timing control device of internal combustion engine
US20100305832A1 (en) Engine Control Device
JP6363742B1 (en) Catalyst deterioration judgment device
JP5124522B2 (en) Control device for compression self-ignition internal combustion engine
US9976508B2 (en) Internal combustion engine
JPWO2018066328A1 (en) Internal combustion engine control system
US20160312733A1 (en) Engine controlling apparatus
JP2006299816A (en) Control device for internal combustion engine
JP2018115555A (en) Control device of internal combustion engine
JP2015048791A (en) Catalyst temperature estimating device for internal combustion engine
JP2004076668A (en) Control unit for internal combustion engine
JP6536299B2 (en) Internal combustion engine control method and internal combustion engine control device
JP2007040219A (en) Control device of internal combustion engine
JP2008075633A (en) Combustion control device for internal combustion engine
JP6267280B2 (en) Control device for internal combustion engine
JP2017020417A (en) Control device of internal combustion engine
JP2008157208A (en) Control device of internal combustion engine
JP5610979B2 (en) Control device for internal combustion engine
JP2011144721A (en) Ignition timing control device of internal combustion engine
JP2007211766A (en) Control device for internal combustion engine
JP2009167871A (en) Control device of internal combustion engine
JP5886002B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406