JP2006299807A - Diesel engine - Google Patents

Diesel engine Download PDF

Info

Publication number
JP2006299807A
JP2006299807A JP2005117858A JP2005117858A JP2006299807A JP 2006299807 A JP2006299807 A JP 2006299807A JP 2005117858 A JP2005117858 A JP 2005117858A JP 2005117858 A JP2005117858 A JP 2005117858A JP 2006299807 A JP2006299807 A JP 2006299807A
Authority
JP
Japan
Prior art keywords
auxiliary chamber
engine
chamber
compression
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005117858A
Other languages
Japanese (ja)
Inventor
Yuugo Kudo
有吾 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2005117858A priority Critical patent/JP2006299807A/en
Publication of JP2006299807A publication Critical patent/JP2006299807A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To improve fuel economy and an exhaust gas characteristic by optimally controlling a temperature rise caused by compression of a diesel engine. <P>SOLUTION: Generation of NOx in combustion is restrained by preventing the cylinder inside temperature from becoming high more than necessary in response to compression, by arranging a combustion chamber 1, an auxiliary chamber 2, a normally closed valve 4 for communicating the auxiliary chamber 1 with the combustion chamber 2 only for a compression stroke latter stage from the compression stroke initial stage of the engine, and a control unit for controlling the valve 4 in an operation state and an unoperated state on the basis of an operation state of the engine in a switching system. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はディーゼルエンジンに係り、特に、圧縮にともなう温度の上昇を最適制御して燃費及び排ガス特性を改善することができるディーゼルエンジンに関するものである。   The present invention relates to a diesel engine, and more particularly, to a diesel engine capable of optimally controlling a temperature rise accompanying compression to improve fuel consumption and exhaust gas characteristics.

吸入行程初期から圧縮行程中期までの間に燃料の一部を燃焼室に予備的に噴射し、圧縮上死点の近傍において残りの燃料を主噴射するようにした予混合圧縮着火式のエンジンにあっては、燃焼にともなうNOxの生成を抑制しつつ黒煙の排出を防止して燃費を改善することができることはよく知られている。   A premixed compression ignition type engine in which a part of fuel is preliminarily injected into the combustion chamber from the beginning of the intake stroke to the middle of the compression stroke, and the remaining fuel is mainly injected near the compression top dead center. In this case, it is well known that the generation of NOx accompanying combustion can be suppressed and the emission of black smoke can be prevented to improve fuel efficiency.

しかしながら、斯かる予混合圧縮着火式のエンジンでは、エンジンの運転状態によっては、主噴射が行われる前に予備噴射された燃料が着火する可能性があるために、従来では特許文献1に見られるように、燃焼室に連通保持された可変容積の補助室を設け、あるいは、特許文献2に見られるように、弾性体で押圧付勢された圧力弁を有する補助室を設けることにより、予備噴射燃料自体による着火を抑制することが検討されてきた。 However, in such a premixed compression ignition type engine, depending on the operating state of the engine, the fuel preliminarily injected before the main injection may be ignited. Thus, by providing a variable volume auxiliary chamber communicated and held in the combustion chamber, or by providing an auxiliary chamber having a pressure valve pressed and urged by an elastic body as seen in Patent Document 2, preliminary injection is performed. It has been studied to suppress ignition by the fuel itself.

ところが、特許文献1に見られる発明のように燃焼室に連通保持された補助室を設けた場合は、補助室が高温の燃焼ガスに晒されてしまうために、エンジンの冷却負荷が高くなってしまい、しかも、補助室の容積が大きくなるにつれてシリンダヘッドが大型化してしまうという不具合があった。また、特許文献2の発明のように弾性体で押圧付勢された圧力弁を有する補助室を設けた場合は、燃焼圧力によって圧力弁が開かれてしまうために、膨張エネルギを必ずしも有効利用することができないという副次的な弊害を招く可能性があった。
特開平11−107792号公報 特開2000−230439号公報
However, when an auxiliary chamber communicated with the combustion chamber is provided as in the invention shown in Patent Document 1, the auxiliary chamber is exposed to high-temperature combustion gas, so that the cooling load on the engine increases. In addition, the cylinder head becomes larger as the volume of the auxiliary chamber increases. Further, when an auxiliary chamber having a pressure valve pressed and urged by an elastic body is provided as in the invention of Patent Document 2, the pressure valve is opened by the combustion pressure, so that the expansion energy is always effectively used. There was a possibility of incurring a side effect of being unable to do so.
Japanese Patent Application Laid-Open No. 11-107772 JP 2000-230439 A

解決しようとする問題点は、エンジンの冷却負荷の増加およびシリンダヘッドの大型化を阻止することができない点である。   The problem to be solved is that an increase in engine cooling load and an increase in the size of the cylinder head cannot be prevented.

本発明は、燃焼室および補助室と、エンジンの圧縮行程初期から圧縮行程後期の間に限って前記補助室を燃焼室に連通させる常閉のバルブと、エンジンの運転状態に基づいて前記バルブを稼働状態と非稼働状態とに切替制御する制御するコントロールユニットとを設けたことを最も主要な特徴としている。また、請求項2の発明は、圧縮行程が連続し合わない気筒の補助室を相互に連通保持させたことを特徴としており、請求項3の発明は、熱伝導性に富む多孔質材を補助室に装填したことを特徴としている。   The present invention includes a combustion chamber and an auxiliary chamber, a normally closed valve for communicating the auxiliary chamber with the combustion chamber only during an early stage of the compression stroke of the engine and a later stage of the compression stroke, and the valve based on the operating state of the engine. The main feature is that a control unit for controlling switching between an operating state and a non-operating state is provided. The invention of claim 2 is characterized in that the auxiliary chambers of the cylinders in which the compression strokes do not continue are mutually connected and held, and the invention of claim 3 supports the porous material rich in thermal conductivity. It is characterized by being loaded into the chamber.

本発明に係るディーゼルエンジンにおいては、エンジンの圧縮行程初期から圧縮行程後期の間に限って前記補助室を燃焼室に連通させて圧縮による温度の上昇を最適制御するようにしているために、高温の燃焼ガスが補助室に流入することがなく、補助室の温度が低く保たれるために、エンジンの冷却負荷が増加することがない。また、請求項2の発明によれば、圧縮行程が連続し合わない気筒の補助室を共有しているために、大容積の補助室を設けた場合にもシリンダヘッドの大型化を抑制することができるものであり、請求項3の発明のように熱伝導性に富む多孔質材を補助室に装填した場合は、補助室の冷却効率がより高くなるという利点がある。   In the diesel engine according to the present invention, the auxiliary chamber is communicated with the combustion chamber only during the period from the initial stage of the compression stroke to the latter stage of the compression stroke, so that the temperature rise due to compression is optimally controlled. The combustion gas does not flow into the auxiliary chamber, and the temperature of the auxiliary chamber is kept low, so that the cooling load of the engine does not increase. According to the invention of claim 2, since the auxiliary chambers of the cylinders in which the compression strokes do not continue are shared, even when a large-capacity auxiliary chamber is provided, an increase in the size of the cylinder head is suppressed. In the case where a porous material having a high thermal conductivity is loaded in the auxiliary chamber as in the invention of claim 3, there is an advantage that the cooling efficiency of the auxiliary chamber becomes higher.

図1は本発明に係るディーゼルエンジンの基本構造を示す概略構成図であり、燃焼室1に連接された補助室2をシリンダヘッド3に形成するとともに、熱伝導性に富む多孔質材(図示省略)を補助室2に充填している。そして、燃焼室1における補助室2の開口部に常閉のバルブ4を取り付けることにより、常時は補助室2を燃焼室1から切り離し、バルブ4が開かれたときに限って補助室2を燃焼室1に連通させるようにしている。5は頂面にキャビティを凹設したピストンであり、何れも図示しない吸気バルブ、排気バルブおよび燃料噴射弁などを燃焼室1に取り付けることにより、予混合圧縮着火方式のディーゼルエンジンを構成している。   FIG. 1 is a schematic configuration diagram showing a basic structure of a diesel engine according to the present invention, in which an auxiliary chamber 2 connected to a combustion chamber 1 is formed in a cylinder head 3 and a porous material having a high thermal conductivity (not shown). ) Is filled in the auxiliary chamber 2. The normally closed valve 4 is attached to the opening of the auxiliary chamber 2 in the combustion chamber 1 so that the auxiliary chamber 2 is normally disconnected from the combustion chamber 1 and the auxiliary chamber 2 is combusted only when the valve 4 is opened. Communication with the chamber 1 is made. Reference numeral 5 denotes a piston having a cavity formed on the top surface, and an intake valve, an exhaust valve, a fuel injection valve, etc. (not shown) are attached to the combustion chamber 1 to constitute a premixed compression ignition type diesel engine. .

前記バルブ4は、常時は補助室2を燃焼室1から遮断するが、エンジンが中高速域で運転されていることを図示しないコントロールユニットが検出したときにときは、圧縮行程初期から圧縮行程後期の間に限って開弁駆動されて補助室2を燃焼室1に連通させる。
すなわち、予混合圧縮着火式のエンジンにおいて、予備噴射燃料が圧縮行程中に着火する可能性がない状態での運転時には補助室2を燃焼室1から切り離して圧縮比を高くし、もって、主噴射燃料の着火をより確実に行わせる。
The valve 4 normally shuts off the auxiliary chamber 2 from the combustion chamber 1, but when a control unit (not shown) detects that the engine is operating in the middle / high speed range, it starts from the early stage of the compression stroke to the late stage of the compression stroke. During this period, the valve-opening drive is performed so that the auxiliary chamber 2 communicates with the combustion chamber 1.
That is, in the premixed compression ignition type engine, when the pre-injected fuel is not likely to be ignited during the compression stroke, the auxiliary chamber 2 is separated from the combustion chamber 1 to increase the compression ratio. Make fuel ignition more reliable.

一方、エンジンが中高速域で運転されていることをコントロールユニットが検出した場合は、圧縮行程初期から圧縮行程後期の間にわたってバルブ4が開弁駆動されて補助室2を燃焼室1に連通させる。すると、圧縮比が低下して温度の上昇が抑制されるために、主噴射が行われる前の段階で予備噴射燃料が着火して燃焼を開始してしまうことがなく、主噴射が行われた後においても燃焼にともなうNOxの生成が抑制される。
なお、図1において、(A)は圧縮行程開始の状態、(B)はバルブ4が開き始める圧縮行程初期の状態、(C)はバルブ4が閉じられる圧縮行程後期の状態、(D)は主噴射により着火・燃焼が開始された時点の状態、(E)は膨張行程を示している。
On the other hand, when the control unit detects that the engine is operating in the middle / high speed range, the valve 4 is driven to open from the initial stage of the compression stroke to the latter stage of the compression stroke, and the auxiliary chamber 2 communicates with the combustion chamber 1. . Then, since the compression ratio is reduced and the temperature rise is suppressed, the pre-injected fuel does not ignite and start combustion in the stage before the main injection is performed, and the main injection is performed. Even later, the generation of NOx accompanying combustion is suppressed.
In FIG. 1, (A) is the state of the compression stroke start, (B) is the initial state of the compression stroke where the valve 4 starts to open, (C) is the state of the late stage of the compression stroke where the valve 4 is closed, and (D) is A state at the time when ignition / combustion is started by main injection, (E) shows an expansion stroke.

上記のように圧縮行程初期から圧縮行程後期にわたってバルブ4が開かれると、圧縮された空気の一部が補助室2に流入し、シリンダヘッドとの間で熱交換されて温度低下した状態で次サイクルでの開弁時に燃焼室に戻される。このようにして燃焼室に戻される空気の温度が高いとエンジンの熱負荷が高くなって種々の弊害をもたらすことが予測される。しかしながら、補助室2には燃焼ガスが流入せず、しかも、多孔質材を充填している。従って、補助室2に流入した空気は多孔質材を介してシリンダヘッド3との間で効率よく熱交換されるために、高温の空気が燃焼室1に戻される懸念はない。   As described above, when the valve 4 is opened from the initial stage of the compression stroke to the latter stage of the compression stroke, a part of the compressed air flows into the auxiliary chamber 2 and heat exchange with the cylinder head is performed in a state where the temperature is lowered. When the valve is opened in the cycle, it is returned to the combustion chamber. If the temperature of the air returned to the combustion chamber in this way is high, it is predicted that the heat load of the engine increases and causes various adverse effects. However, the combustion gas does not flow into the auxiliary chamber 2 and is filled with a porous material. Therefore, since the air flowing into the auxiliary chamber 2 is efficiently heat-exchanged with the cylinder head 3 through the porous material, there is no concern that the high-temperature air is returned to the combustion chamber 1.

なお、バルブ4は圧縮行程初期から圧縮行程後期の間に限って開弁駆動されて他の領域では閉弁保持される。このために、万一にも高温の燃焼ガスが補助室2に流入することはなく、燃焼室内(筒内)に閉じこめられることになる。よって、通常のエンジンの場合と同等の出力を得ることができるとともに、補助室2に充填される多孔質材の選択の自由度が高いものとなる。   The valve 4 is driven to open only during the period from the initial stage of the compression stroke to the latter stage of the compression stroke, and is kept closed in other areas. For this reason, in the unlikely event that high-temperature combustion gas does not flow into the auxiliary chamber 2, it is confined in the combustion chamber (inside the cylinder). Therefore, an output equivalent to that of a normal engine can be obtained, and the degree of freedom in selecting a porous material filled in the auxiliary chamber 2 is high.

ところで、高圧縮エンジンにおいてバルブ4の開弁にともなう圧縮比低下の程度を大きくしようとするときは、補助室2の容積を大きくする必要性がある。従って、各気筒の補助室2を独立させた場合は補助室2の容積の拡大にともなってシリンダヘッドが大型化してしまう。しかしながら、例えば着火順序を1−4−2−3に設定したエンジンにおいては、例えば第1気筒と第4気筒のグループを、第2気筒と第3気筒のグループに分け、着火順序を1−3−5−2−6−4に設定したエンジンの場合は、第1気筒〜第3気筒のグループと第4気筒〜第6気筒のグループに、あるいは、第1,第2気筒のグループと、第3,第4気筒のグループと、第5,第6気筒のグループというように、圧縮行程が連続し合わない気筒のみによる複数の気筒グループを形成したうえで、気筒グループごとに共有の補助室2を形成することにより、大容積の補助室2を設けた場合に懸念されるシリンダヘッドの大型化を抑制することができる。図2は2つの気筒の補助室2を共有した例を示している。   By the way, in the high compression engine, when it is intended to increase the degree of reduction in the compression ratio caused by the opening of the valve 4, it is necessary to increase the volume of the auxiliary chamber 2. Therefore, when the auxiliary chambers 2 of the respective cylinders are made independent, the cylinder head is enlarged as the volume of the auxiliary chamber 2 is increased. However, for example, in an engine in which the ignition order is set to 1-4-2-3, for example, the group of the first cylinder and the fourth cylinder is divided into the group of the second cylinder and the third cylinder, and the ignition order is set to 1-3. In the case of an engine set to -5-2-6-4, the group of the first cylinder to the third cylinder and the group of the fourth cylinder to the sixth cylinder, or the group of the first and second cylinders, A plurality of cylinder groups are formed only by cylinders in which the compression strokes are not continuous, such as a group of 3 and 4 cylinders, and a group of 5 and 6 cylinders, and a common auxiliary chamber 2 for each cylinder group. By forming the cylinder head, it is possible to suppress the increase in size of the cylinder head, which is a concern when a large-capacity auxiliary chamber 2 is provided. FIG. 2 shows an example in which the auxiliary chamber 2 of two cylinders is shared.

なお、バルブ4は燃焼室1と補助室2の圧力差がほとんどない状態で開弁駆動される。従って、例えば実施例に示したように燃焼室1側から着座して閉弁される形式のバルブを設けた場合は、僅かな力でバルブ4を開弁作動させることができるために、機械的なアクチュエータを始めとして、電磁式のアクチュエータ、油圧あるいはエア圧を利用した流体式のアクチュエータ、もしくはそれらの複合型のアクチュエータなど、任意のアクチュエータでバルブ4を的確に開閉駆動させることができる。   The valve 4 is driven to open while there is almost no pressure difference between the combustion chamber 1 and the auxiliary chamber 2. Therefore, for example, as shown in the embodiment, when a valve of the type that is seated and closed from the combustion chamber 1 side is provided, the valve 4 can be opened with a slight force. The valve 4 can be accurately driven to open and close by an arbitrary actuator such as an electromagnetic actuator, a fluid actuator using hydraulic pressure or air pressure, or a composite actuator thereof.

また、上記実施形態では本発明を予混合圧縮着火方式のディーゼルエンジンに適用しているが、予混合を行わない通常の形式のディーゼルエンジンにも本発明を適用して圧縮上死点での温度が必要以上に高くなることを回避してNOxの生成を抑制することもできる。さらに、補助室2の熱交換効率を改善するために、上記実施形態では補助室2に耐熱性に富む多孔質材を充填しているが、補助室2の内面にブラシ状体あるいは、鞭毛状体を貼り付けても同様の熱交換効果を得ることができる。   In the above embodiment, the present invention is applied to a premixed compression ignition type diesel engine. However, the present invention is also applied to a normal type diesel engine that does not perform premixing, and the temperature at the compression top dead center is applied. NO can be suppressed by avoiding that it becomes higher than necessary. Furthermore, in order to improve the heat exchange efficiency of the auxiliary chamber 2, in the said embodiment, although the auxiliary chamber 2 is filled with the porous material which is rich in heat resistance, the inner surface of the auxiliary chamber 2 is a brush-like body or flagella-like. The same heat exchange effect can be obtained even if the body is attached.

本発明に係るディーゼルエンジンの基本構造を示す概略構成図である。It is a schematic block diagram which shows the basic structure of the diesel engine which concerns on this invention. 2つの気筒の補助室2を共有した例を示す概略平面図である。It is a schematic plan view which shows the example which shared the auxiliary chamber 2 of two cylinders.

符号の説明Explanation of symbols

1 燃焼室
2 補助室
3 シリンダヘッド
4 バルブ
1 Combustion chamber 2 Auxiliary chamber 3 Cylinder head 4 Valve

Claims (3)

燃焼室(1)および補助室(2)と、エンジンの圧縮行程初期から圧縮行程後期の間に限って前記補助室(2)を燃焼室(1)に連通させる常閉のバルブ(4)と、エンジンの運転状態に基づいて前記バルブを稼働状態と非稼働状態とに切替制御するコントロールユニットを備えてなるディーゼルエンジン。   A combustion chamber (1) and an auxiliary chamber (2), and a normally closed valve (4) for communicating the auxiliary chamber (2) with the combustion chamber (1) only from the early stage to the late stage of the compression stroke of the engine. A diesel engine comprising a control unit that switches the valve between an operating state and a non-operating state based on an operating state of the engine. 圧縮行程が連続し合わない気筒の補助室(2)を共有させたことを特徴とする請求項1に記載のディーゼルエンジン。   The diesel engine according to claim 1, wherein the auxiliary chamber (2) of the cylinders in which the compression strokes do not continue is shared. 熱伝導性に富む多孔質材を補助室(2)に装填したことを特徴とする請求項1または請求項2のいずれかに記載のディーゼルエンジン。
The diesel engine according to claim 1 or 2, wherein a porous material rich in thermal conductivity is loaded in the auxiliary chamber (2).
JP2005117858A 2005-04-15 2005-04-15 Diesel engine Pending JP2006299807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117858A JP2006299807A (en) 2005-04-15 2005-04-15 Diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117858A JP2006299807A (en) 2005-04-15 2005-04-15 Diesel engine

Publications (1)

Publication Number Publication Date
JP2006299807A true JP2006299807A (en) 2006-11-02

Family

ID=37468422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117858A Pending JP2006299807A (en) 2005-04-15 2005-04-15 Diesel engine

Country Status (1)

Country Link
JP (1) JP2006299807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196777A (en) * 2009-02-25 2010-09-09 Tokyo Institute Of Technology Rotary actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196777A (en) * 2009-02-25 2010-09-09 Tokyo Institute Of Technology Rotary actuator

Similar Documents

Publication Publication Date Title
US8682568B2 (en) Diesel engine and method of controlling the diesel engine
JP4814063B2 (en) Method for controlling intake and / or exhaust of at least one inactive cylinder of an internal combustion engine
US8607564B2 (en) Automobile-mount diesel engine with turbocharger and method of controlling the diesel engine
JP4893718B2 (en) Internal combustion engine control method and internal combustion engine control apparatus
JP4124224B2 (en) Control device for four-cycle premixed compression self-ignition internal combustion engine
US20120000441A1 (en) Diesel engine for vehicle
JP6098489B2 (en) Control unit for direct injection gasoline engine
JP6056989B2 (en) Control unit for direct injection gasoline engine
JP6172375B2 (en) Control unit for direct injection gasoline engine
JP5589906B2 (en) gasoline engine
JP2007077919A (en) Control device and control method for internal combustion engine
JP2013194622A (en) Control device of engine
JP2007177792A (en) Internal combustion engine equipped with compression ratio change mechanism and method for controlling internal combustion engine
JP2004308618A (en) Internal combustion engine equipped with compression ratio change mechanism and method for controlling internal combustion engine
JP2006299807A (en) Diesel engine
JP2005139994A (en) Diesel engine
JP2000073770A (en) Four-cycle internal combustion engine
JP2008223615A (en) Internal combustion engine
JP2006083762A (en) Control device of variable cylinder internal combustion engine
JP2006070869A (en) Control device for variable cylinder internal combustion engine
JP2008309145A (en) Oxygen injection type two-cycle diesel engine
JP4735625B2 (en) EGR device for internal combustion engine
JP6156204B2 (en) Control unit for direct injection gasoline engine
JP3663949B2 (en) Sub-chamber gas engine with fuel cooling device
JP5195588B2 (en) High expansion ratio internal combustion engine