JP2006299528A - Water supply method - Google Patents

Water supply method Download PDF

Info

Publication number
JP2006299528A
JP2006299528A JP2005118372A JP2005118372A JP2006299528A JP 2006299528 A JP2006299528 A JP 2006299528A JP 2005118372 A JP2005118372 A JP 2005118372A JP 2005118372 A JP2005118372 A JP 2005118372A JP 2006299528 A JP2006299528 A JP 2006299528A
Authority
JP
Japan
Prior art keywords
water
vacuum
reservoir
vacuum tower
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005118372A
Other languages
Japanese (ja)
Other versions
JP4033869B2 (en
Inventor
Akira Taguchi
晃 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU JOHO SYSTEMS KK
Original Assignee
KAGAKU JOHO SYSTEMS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU JOHO SYSTEMS KK filed Critical KAGAKU JOHO SYSTEMS KK
Priority to JP2005118372A priority Critical patent/JP4033869B2/en
Priority to CNB2005100692249A priority patent/CN100467725C/en
Publication of JP2006299528A publication Critical patent/JP2006299528A/en
Application granted granted Critical
Publication of JP4033869B2 publication Critical patent/JP4033869B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water supply method which enables water to be easily and inexpensively supplied even from a water source away from a reservoir by a distance of no less than several dozen kilometers to several thousand kilometers. <P>SOLUTION: A vacuum tower 2, the bottom of which is opened in the reservoir 1, and the water sources 8a, 8b and 8c in various places are connected together via a pipeline 3; the water is sucked into the vacuum tower from the water sources 8a, 8b and 8c through the pipeline 3 by using a vacuum suction force of an absolute vacuum section 2a which is formed in the vacuum tower 2; and the sucked water is supplied to the reservoir 1. This enables the water to be easily and inexpensively supplied even from the water sources 8 and 8a away from the reservoir 1 by a distance of no less than several dozen kilometers to several thousand kilometers, even if a driving source such as a pump is not used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、位置エネルギーの法則やトリチェリの絶対真空の原理を利用して、各地に散在する複数の水源から貯水池に水を集約させる給水方法に関するものである。   The present invention relates to a water supply method that aggregates water from a plurality of water sources scattered in various places into a reservoir using the principle of potential energy and the principle of Torricelli's absolute vacuum.

広大な地域において、水を一箇所に集約させたい場合がある。その場合の給水方法として、水を集約させたい貯水池と広範囲に亘って点在する各地の複数の水源とをパイプラインで接続した給水施設が提案される。   In a vast area, you may want to concentrate water in one place. As a water supply method in such a case, a water supply facility is proposed in which a reservoir in which water is to be concentrated and a plurality of water sources scattered throughout a wide area are connected by a pipeline.

この給水施設において、貯水池に水を集約させるには、水源に吸引ポンプを設置し、また、パイプラインが長い場合は、その途中に送水ポンプを設置し、これらのポンプの駆動力により、各地の水源の水を貯水池に集約させる必要があった。   In this water supply facility, in order to condense water in the reservoir, a suction pump is installed in the water source, and if the pipeline is long, a water supply pump is installed in the middle of the pipeline, The water from the water source had to be concentrated in the reservoir.

しかしながら、このような水源から所定の箇所(貯水池)に水を集約させる場合に、各地の水源に水圧を付与する手段(ポンプ)を設けると、水圧付与手段の設置費用が嵩み、給水施設自体にコストがかかる。特に、水源が貯水池から数十kmも離れている場合、パイプラインの途中に送水ポンプを設置する必要もあり、さらにコスト高となるといった問題点があった。   However, when water is concentrated from such a water source to a predetermined location (reservoir), providing a means (pump) for applying water pressure to each water source increases the installation cost of the water pressure applying means, and the water supply facility itself Cost. In particular, when the water source is a few tens of kilometers away from the reservoir, it is necessary to install a water pump in the middle of the pipeline, which increases the cost.

本発明は、上記課題に鑑み、遠距離にある水源からでも簡単かつ安価に水を集約して貯水池に給水することができる給水方法の提供を目的としている。   In view of the above problems, an object of the present invention is to provide a water supply method capable of collecting water easily and inexpensively and supplying water to a reservoir even from a water source located at a long distance.

上記目的を達成するため、本発明者は、トリチェリの真空の原理に着目し、そこに形成される絶対真空部の真空吸引力を利用し、この吸引力で遠隔地の水源からでも瞬時に水を吸引することができる給水方法を案出した。   In order to achieve the above-mentioned object, the present inventor pays attention to the principle of Trichelli's vacuum and utilizes the vacuum suction force of the absolute vacuum part formed there, and this suction force instantly allows water from a remote water source. Devised a water supply method that can suck in water.

トリチェリの真空は、1気圧の下で1m程度の密封した筒に水銀を詰め、水銀で満たした皿の上で筒をひっくり返すと、筒の中の水銀は徐々に下がってきて、高さが760mmになったところで止まる。これは、大気圧と水銀とがつり合ったことにより起こる現象であるが、水銀を詰めた筒は、水銀が下がることによって上の部分が真空状態となる。   Toricelli's vacuum is filled with mercury in a sealed tube of about 1 m under 1 atm. When the tube is turned over on a plate filled with mercury, the mercury in the tube gradually falls and the height is 760 mm. It stops when it becomes. This is a phenomenon that occurs due to the balance between atmospheric pressure and mercury. However, in the cylinder filled with mercury, the upper part is in a vacuum state when mercury falls.

本発明では、上記トリチェリの真空の原理を利用し、筒に代わるものとして真空塔を、水銀に代わるものとして水を、そして、皿に代わるものとして貯水池を設けたものである。   In the present invention, the above-mentioned Torricelli's vacuum principle is utilized, and a vacuum tower is provided as an alternative to a cylinder, water is provided as an alternative to mercury, and a reservoir is provided as an alternative to a dish.

すなわち、本発明は、貯水池に各地に存在する水源から水を集約したい場合に、底部が貯水池中に開放した真空塔と各地の水源とをパイプラインを介して接続して給水路を構成し、真空塔内に形成した絶対真空部における真空吸引力を利用して各地の水源からパイプラインを通して水を吸引し、吸引した水を貯水池に供給するようにしたことを特徴としている。   That is, in the present invention, when collecting water from water sources existing in various locations in the reservoir, a water tower is constructed by connecting a vacuum tower whose bottom is opened in the reservoir and the water sources in various locations via a pipeline, It is characterized by using the vacuum suction force in the absolute vacuum section formed in the vacuum tower to suck water through the pipeline from various water sources and supply the sucked water to the reservoir.

上記構成においては、今まで実用化については思考の埒外にあったトリチェリの絶対真空の原理を水の吸引手段として利用するもので、現代の高度な建設技術を組合わせて大規模で高度な真空状態を形成し、その吸引力によりグローバルスタンダードで広範囲にわたって大量の水の給配を可能とする。   In the above configuration, Torricelli's absolute vacuum principle, which was far beyond the idea of practical use until now, is used as a means of water suction, and combined with modern advanced construction technology, a large-scale advanced vacuum A state is formed, and the suction force makes it possible to distribute a large amount of water over a wide range with a global standard.

この真空塔内に絶対真空部を形成するには、トリチェリの実験のように、筒に代わる真空塔をひっくり返すことができないので、代わりに真空塔の頂部に頂部弁を設け、この頂部弁の開閉により、内部に水を充填させると共に、真空塔の内部の空気を追い出させ、その後、頂部弁を閉じて大気圧と真空塔内の水柱との釣り合わせることにより、真空塔内の上部に絶対真空部を形成する。   In order to form an absolute vacuum section in this vacuum tower, it is not possible to turn over the vacuum tower instead of the cylinder as in Tricelli's experiment. Instead, a top valve is provided at the top of the vacuum tower. By filling the inside with water and expelling the air inside the vacuum tower, and then closing the top valve and balancing the atmospheric pressure with the water column in the vacuum tower, an absolute vacuum is created at the top of the vacuum tower. Forming part.

別の方法として、一側を開口し他側を閉塞した真空塔を、水平状態にして一側から真空塔内に給水し、真空塔内を満水にした後、真空塔の開放側を下にするように貯水池に垂直に立てる方法もある。この場合、上記の方法と同様に、真空塔内の水が底部から下方に追い出されて水位が下降し、大気圧と真空塔内の水柱とが釣り合った位置で水位が停止し、真空塔内の上部に絶対真空部が形成される。   As another method, a vacuum tower that is open on one side and closed on the other side is placed in a horizontal state, and water is supplied into the vacuum tower from one side to fill the vacuum tower. There is also a way to stand vertically to the reservoir. In this case, as in the above method, the water in the vacuum tower is expelled downward from the bottom, the water level drops, the water level stops at a position where the atmospheric pressure and the water column in the vacuum tower are balanced, An absolute vacuum portion is formed on the top of the substrate.

絶対真空部は理論的に圧力がゼロであり、その容積が大きくなるほど強力な吸引力を得ることができるので、真空塔は半径方向および高さ方向で大きければ大きいほどよい。その真空塔の形状は、特に限定されるものではなく、円筒状や球状を例示することができる。   The absolute vacuum part has theoretically zero pressure, and the larger the volume, the stronger the suction force can be obtained. Therefore, the larger the vacuum tower in the radial direction and the height direction, the better. The shape of the vacuum tower is not particularly limited, and a cylindrical shape or a spherical shape can be exemplified.

ここで、真空塔内に吸引した水は、真空塔の底部から貯水池に供給されるが、貯水池の水面と真空塔内の水柱の高さとの関係は、理論的には常に一定の水位(10m30cm)であるため、貯水池の水面が上昇すれば真空塔内の水柱の水面も上昇することになり、上部に形成されている絶対真空部の容積が小さくなり、水の吸引力が減少することになる。   Here, the water sucked into the vacuum tower is supplied to the reservoir from the bottom of the vacuum tower, but the relationship between the water level of the reservoir and the height of the water column in the vacuum tower is theoretically always constant (10 m30 cm). Therefore, if the water level of the reservoir rises, the water level of the water column in the vacuum tower will also rise, and the volume of the absolute vacuum part formed in the upper part will become smaller and the water suction force will decrease. Become.

絶対真空部の容積を確保するためには、真空塔内の水柱の高さを調整しなければならない。この水柱の高さの調整は、トリチェリの真空の原理から貯水池の水面を調節することで行うことができる。   In order to ensure the absolute vacuum volume, the height of the water column in the vacuum tower must be adjusted. The height of the water column can be adjusted by adjusting the water surface of the reservoir based on the Torricelli vacuum principle.

そこで、本発明では、貯水池の水位を水位調節手段により調節することにより、真空塔内の水位を所定レベルに調節するようにしている。水位調節手段としては、貯水池に設けられた水位調節弁や、貯水池に側壁に形成されたオーバーフロー穴を例示することができる。   Therefore, in the present invention, the water level in the vacuum tower is adjusted to a predetermined level by adjusting the water level of the reservoir by the water level adjusting means. Examples of the water level adjusting means include a water level adjusting valve provided in the reservoir and an overflow hole formed in the side wall of the reservoir.

この水位調節手段により、真空塔内の水柱の高さを所定レベルに調節することができ、絶対真空部の容積を確保して、ポンプなどの駆動源を使用しなくても、常時、グローバルスタンダードで各地の水源から水を自動的に吸引することができる。   With this water level adjustment means, the height of the water column in the vacuum tower can be adjusted to a predetermined level, ensuring the absolute vacuum volume and always using the global standard without using a pump or other drive source. Can automatically draw water from various water sources.

以上のとおり、本発明によると、底部が貯水池中に開放した真空塔と別の水源とをパイプラインを介して接続して給水路を構成し、真空塔内に形成した絶対真空部における真空吸引力を利用して別の水源からパイプラインを通して水を吸引し、吸引した水を貯水池に供給するので、ポンプなどの駆動源を使用しなくても、貯水池から数十km〜数千kmも離れた水源からでも簡単かつ安価に給水を行うことができる。   As described above, according to the present invention, a vacuum tower whose bottom is opened in the reservoir and another water source are connected via a pipeline to form a water supply path, and vacuum suction in an absolute vacuum section formed in the vacuum tower. Using force, water is sucked from another water source through the pipeline, and the sucked water is supplied to the reservoir, so even if you do not use a drive source such as a pump, it is several tens to thousands of kilometers away from the reservoir. Water can be easily and inexpensively supplied from a water source.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明に係る給水方法を実施するための給水施設を示す概略図、図2は同じく貯水池と水源とのパイプライン敷設状態を示す概略図、図3に給水設備のパイプラインを網目状に張り巡らせた状態を示す概略図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a water supply facility for carrying out the water supply method according to the present invention, FIG. 2 is a schematic view showing a pipeline laying state between a reservoir and a water source, and FIG. It is the schematic which shows the state extended in the shape.

図に示すように、給水施設は、水を集約させる貯水池1と、該貯水池に立設した真空塔2と、貯水池1と各地に点在する水源8a,8b,8cとを接続するパイプライン3とを備えている。   As shown in the figure, the water supply facility has a reservoir 3 for concentrating water, a vacuum tower 2 standing in the reservoir, and a pipeline 3 connecting the reservoir 1 and water sources 8a, 8b, 8c scattered in various places. And.

貯水池1は、水を集約させたい場所に形成する。貯水池1は、上側が大気に開放した天然池あるいは人工池のいずれであってもよい。この貯水池1に隣接して、それよりも低い位置に第2の貯水池7を設置し、さらに、適宜、第2の貯水池7よりも低い位置に第3の貯水池12を設置する。これら各貯水池1,7,12間は、水路9,10によって連通させ、各水路に貯水池1、7の水位を調節するために水位調節弁6を設ける。第2の貯水池7あるいは第3の貯水池12に貯えられた水は、図示しないパイプラインを通して各需要先に配給される。   The reservoir 1 is formed in a place where water is to be concentrated. The reservoir 1 may be either a natural pond or an artificial pond whose upper side is open to the atmosphere. Adjacent to the reservoir 1, a second reservoir 7 is installed at a position lower than that, and a third reservoir 12 is installed at a position lower than the second reservoir 7 as appropriate. These reservoirs 1, 7, 12 are communicated with each other by water channels 9, 10, and a water level adjusting valve 6 is provided in each channel to adjust the water level of the reservoirs 1, 7. The water stored in the second reservoir 7 or the third reservoir 12 is distributed to each demand destination through a pipeline (not shown).

真空塔2は、頂部が半円球状で、本体部が円筒状に形成されており、開放した底部を貯水池1に浸した状態で立設する。この真空塔2は、内部が気密状態となっており、上部に絶対真空部2aを形成し、この絶対真空部2aの真空吸引力を利用して各水源8a,8b,8cから水を真空塔2内に吸引できるようにしている。   The vacuum tower 2 has a semi-spherical top and a cylindrical main body, and is erected with its open bottom immersed in the reservoir 1. The vacuum tower 2 has an airtight state inside, and an absolute vacuum part 2a is formed in the upper part, and water is supplied from each water source 8a, 8b, 8c to the vacuum tower using the vacuum suction force of the absolute vacuum part 2a. 2 can be sucked into.

絶対真空部2aは、トリチェリの真空の原理を利用して形成する。トリチェリの真空は、前述したとおり、1気圧の下で1m程度の密封した筒に水銀を詰め、水銀で満たした皿の上で筒を上下逆転させると、筒の中の水銀は徐々に下がってきて、高さが760mmになったところで止まる。これは、大気圧と水銀とがつり合ったことにより起こる現象であり、水銀を詰めた筒は、水銀が下がることによって上の部分が真空状態となる。この真空部は絶対真空になる。   The absolute vacuum portion 2a is formed by utilizing the Trichelli vacuum principle. As described above, the Torricelli vacuum is filled with mercury in a sealed tube of about 1 meter under 1 atm. When the tube is turned upside down on a plate filled with mercury, the mercury in the tube gradually falls. And stops when the height reaches 760 mm. This is a phenomenon that occurs due to the balance between atmospheric pressure and mercury. In the cylinder filled with mercury, the upper part is in a vacuum state when mercury falls. This vacuum part becomes an absolute vacuum.

本発明では、上記トリチェリの真空の原理を利用し、筒に代わるものとして真空塔2を、水銀に代わるものとして水を、皿に代わるものとして貯水池1を設けたものである。真空塔2では、筒のように、反転させるのが困難であるので、代わりに頂部弁4を設け、この頂部弁4の開閉により、内部に絶対真空部2aを形成するようにしている。   In the present invention, the above-mentioned Torricelli's vacuum principle is used, and a vacuum tower 2 is provided as an alternative to a cylinder, water is provided as an alternative to mercury, and a reservoir 1 is provided as an alternative to a dish. Since the vacuum tower 2 is difficult to reverse like a cylinder, a top valve 4 is provided instead. By opening and closing the top valve 4, an absolute vacuum part 2a is formed inside.

つまり、貯水池1の水を真空塔2内に押し上げて充填する際に頂部弁4を開放し、真空塔2内で押し上ってくる水によって、内部の空気を頂部弁4から外部に逃がし、頂部弁4から外部に水が放出されたならば閉弁して、真空塔2内に水を充填する。そして、頂部弁4の閉鎖により、貯水池の水面を押し大気圧と、真空塔内の圧力(絶対真空部2aの圧力+真空塔下部の水柱の圧力)とが均衡し、貯水池の水面からの水柱の高さ(水位)が一定(理論的には10m33cm)の位置で停止し、その上部に絶対真空部2aを形成する。   That is, when the water in the reservoir 1 is pushed up into the vacuum tower 2 and filled, the top valve 4 is opened, and the water pushed up in the vacuum tower 2 causes the internal air to escape from the top valve 4 to the outside. If water is discharged from the top valve 4 to the outside, the valve is closed and the vacuum tower 2 is filled with water. Then, by closing the top valve 4, the water pressure of the reservoir is pushed, and the atmospheric pressure and the pressure in the vacuum tower (the pressure of the absolute vacuum section 2a + the pressure of the water column below the vacuum tower) are balanced, and the water column from the water surface of the reservoir Is stopped at a position where the height (water level) is constant (theoretically 10 m33 cm), and an absolute vacuum part 2a is formed on the top.

また、貯水池1には、真空塔2内に水を充填するために揚水ポンプ13が設置される。この揚水ポンプ13は、その吐出側が真空塔2の底部に接続され、揚水ポンプ13によって真空塔2内の頂部まで水を押し上げることができるようになっている。揚水の高さが高く、1個の揚水ポンプでは賄えない場合、複数個の揚水ポンプにより効率的に真空塔内に水を充填するようにすればよい。   In addition, a pump 1 is installed in the reservoir 1 in order to fill the vacuum tower 2 with water. The discharge side of the pump 13 is connected to the bottom of the vacuum tower 2, and the pump can pump water up to the top of the vacuum tower 2. If the height of the pumping water is high and cannot be covered by a single pumping pump, the vacuum tower may be efficiently filled with water by using a plurality of pumping pumps.

なお、真空塔2は、基本的に底部が開放した状態となっているが、図1に示すように、閉塞した底部に揚水ポンプ13と接続される位置と、貯水池1に開放する位置とに切換可能な三方弁からなる底部弁5を設けるとよい。   The vacuum tower 2 is basically in a state where the bottom is open, but as shown in FIG. 1, the vacuum tower 2 is located at a position where the pumped pump 13 is connected to the closed bottom and a position where the reservoir 1 is opened. A bottom valve 5 consisting of a switchable three-way valve may be provided.

また、真空塔2の塔壁には、絶対真空部2aと水源8a,8b,8cとが連通して、水源8a,8b,8cの水を絶対真空部2aに吸引することができるように、パイプライン接続口2bが形成される。この接続口2bには、パイプライン3が接続されると共に、真空塔2内に絶対真空部2aを形成するときにパイプライン3を閉塞する開閉弁3aが設けられる。   Moreover, the absolute vacuum part 2a and the water sources 8a, 8b, 8c communicate with the tower wall of the vacuum tower 2 so that water from the water sources 8a, 8b, 8c can be sucked into the absolute vacuum part 2a. Pipeline connection port 2b is formed. The connection port 2 b is connected to the pipeline 3 and is provided with an on-off valve 3 a that closes the pipeline 3 when the absolute vacuum part 2 a is formed in the vacuum tower 2.

水源8a,8b,8cは、広範囲な地域に点在する湖沼、溜池、さらには河川を例示することができる。パイプライン3は、図2及び図3に示すように、ほぼ水平線上に配置され、放射状あるいは網目状(ウェブ状)に張り巡らして、各地の水源8a、8b、8cと接続し、真空塔2の接続口2bに集約できるようになっている。   Examples of the water sources 8a, 8b, and 8c may include lakes, reservoirs, and rivers scattered in a wide area. As shown in FIGS. 2 and 3, the pipeline 3 is arranged on a substantially horizontal line, extends radially or in a mesh shape (web shape), and is connected to the water sources 8a, 8b, 8c in various places, and the vacuum tower 2 The connection port 2b can be consolidated.

上記構成の給水施設において、各水源8a、8b、8cから貯水池1に水を集約するために、真空塔2内に絶対真空部2aを形成し、この絶対真空部2aの真空吸引力を利用して水を吸引する。そのためには、真空塔2内に絶対真空部2aを形成しなければならない。   In the water supply facility having the above configuration, in order to collect water from the water sources 8a, 8b, 8c into the reservoir 1, an absolute vacuum part 2a is formed in the vacuum tower 2, and the vacuum suction force of the absolute vacuum part 2a is used. Aspirate water. For that purpose, the absolute vacuum part 2 a must be formed in the vacuum tower 2.

絶対真空部2aを形成するには、トリチェリの真空を真空塔2の上部に形成する。これには、まず、パイプライン3の開閉弁3aを閉じ、頂部弁4を開放し、揚水ポンプ13により貯水池1の水を真空塔2内に充填する。真空塔2内に水を充填する際に、貯水池1の水量では賄えない場合、隣接する第2の貯水池7あるいは第3の貯水池12から水を供給すればよい。   In order to form the absolute vacuum part 2 a, a Trichelli vacuum is formed at the top of the vacuum tower 2. For this, first, the on-off valve 3 a of the pipeline 3 is closed, the top valve 4 is opened, and the water in the reservoir 1 is filled into the vacuum tower 2 by the pumping pump 13. When filling the vacuum tower 2 with water, if the amount of water in the reservoir 1 cannot cover the water, the water may be supplied from the adjacent second reservoir 7 or third reservoir 12.

真空塔2内に水が充填された時点で揚水ポンプ13を停止して頂部弁4を閉じる。そうすると、真空塔2内の水位が徐々に下がって、上部にいわゆるトリチェリの真空と呼ばれる絶対真空部2aが形成され、また、真空塔2内の水柱15は貯水池1の水面を押す大気圧と釣り合って停止する。この状態で、貯水池1の水面には大気圧が作用し、また、絶対真空部2aは理論的には絶対真空になるので、真空塔2内の水柱15の水位は、貯水池1の水面から10m33cmの高さとなる。   When the vacuum tower 2 is filled with water, the pumping pump 13 is stopped and the top valve 4 is closed. As a result, the water level in the vacuum tower 2 is gradually lowered to form an absolute vacuum portion 2a called a so-called Torricelli vacuum, and the water column 15 in the vacuum tower 2 is balanced with the atmospheric pressure pushing the water surface of the reservoir 1. And stop. In this state, atmospheric pressure acts on the water surface of the reservoir 1, and the absolute vacuum part 2 a theoretically becomes an absolute vacuum, so that the water level of the water column 15 in the vacuum tower 2 is 10 m33 cm from the water surface of the reservoir 1. Of height.

一方、絶対真空部2aは、水柱15の上方に形成されることになり、その容積が大きいほど真空吸引力が大きくなり、パイプライン3の開閉弁3aを開放すると、水源8,8aから大量の水を瞬時に吸引することができる。   On the other hand, the absolute vacuum portion 2a is formed above the water column 15. The larger the volume, the larger the vacuum suction force. When the on-off valve 3a of the pipeline 3 is opened, a large amount of water is supplied from the water sources 8 and 8a. Water can be sucked in instantly.

本実施形態における真空塔2を、半径17m、高さ140.33mの円筒状とすると、絶対真空部2aの容積は、
(140.33m−10.33m)×17m×17m×π(円周率)=117,970m
となる。
If the vacuum tower 2 in the present embodiment is cylindrical with a radius of 17 m and a height of 140.33 m, the volume of the absolute vacuum part 2 a is
(140.33 m-10.33 m) × 17 m × 17 m × π (circumferential ratio) = 117,970 m 3
It becomes.

今、絶対真空部2aと水源8a、8b、8cとをパイプライン3で接続すると、絶対真空部2aの圧力(理論的には圧力=0)と水源8a,8b,8cの水面を押す圧力(大気圧)との差により、絶対真空部2a側に水が吸引されることになる。この関係は、パイプライン3の長さに関係しない。そのため、貯水池1から遠隔地にある水源8a、8b、8cからでも貯水池1に水を集約して給水することができる。   Now, when the absolute vacuum part 2a and the water sources 8a, 8b, 8c are connected by the pipeline 3, the pressure of the absolute vacuum part 2a (theoretically pressure = 0) and the pressure pushing the water surface of the water sources 8a, 8b, 8c ( Due to the difference from the atmospheric pressure, water is sucked to the absolute vacuum part 2a side. This relationship is not related to the length of the pipeline 3. Therefore, water can be collected and supplied to the reservoir 1 even from the water sources 8a, 8b, and 8c that are remote from the reservoir 1.

ここで、パイプライン3は、水平線上に張り巡らす例を示したが、図2に示すように、実際に敷設する場合には多少の高低差がある。水平線上のパイプライン3を基準に考えた場合、水平線よりも高い位置にある水源8bは、その位置エネルギーを利用して水平線上のパイプライン3に送水することができる。   Here, the example in which the pipeline 3 is stretched on the horizontal line is shown, but as shown in FIG. 2, there is a slight difference in height when actually laid. Considering the pipeline 3 on the horizon as a reference, the water source 8b located at a position higher than the horizon can supply water to the pipeline 3 on the horizon using its potential energy.

水平線よりも低い位置の水源8a、8cは、絶対真空部2aの圧力(理論的には圧力=0)と水源8a,8cの水面を押す圧力(大気圧)との差により、絶対真空部2a側に水が吸引されることになるから、理論的には10m33cmの高低差があったとしても吸引することができる。   The water sources 8a and 8c at a position lower than the horizon line have absolute vacuum portions 2a due to the difference between the pressure of the absolute vacuum portion 2a (theoretically pressure = 0) and the pressure (atmospheric pressure) pushing the water surface of the water sources 8a and 8c. Since water is sucked to the side, it is theoretically possible to suck even if there is a height difference of 10 m33 cm.

実際には、絶対真空部2aの吸引力は、水に気泡が混入して絶対真空部2aに供給されることで、絶対真空部2aの圧力が上がることも想定されるので、貯水池1と水源8との高低差は3m程の許容値を持たせて7m以内とするのが理想的である。そして、水源8の位置がこれに満たない場合は、水源8の水をポンプアップするなどして、許容範囲に入るように設定すればよい。   Actually, the suction force of the absolute vacuum part 2a is assumed to be that the pressure of the absolute vacuum part 2a is increased when bubbles are mixed into the water and supplied to the absolute vacuum part 2a. Ideally, the height difference from 8 is within 7 m with a tolerance of about 3 m. And when the position of the water source 8 is less than this, the water of the water source 8 may be set so as to fall within the allowable range by pumping up.

例えば、図2に示すように、水深6mの水源8aの場合、その許容値(7m)を考慮したとしても、全量の水を吸引して貯水池に給水することができる。また、水深15mで、水面が水平線よりも3mだけ下側にある水源8cの場合でも、絶対真空部2aの圧力(理論的には圧力=0)と水源8cの水面を押す圧力(大気圧)との差により吸引するので、実用的にも問題なく水源8cの水を貯水池1側に吸引して供給することができる。   For example, as shown in FIG. 2, in the case of a water source 8a having a water depth of 6 m, even if the allowable value (7 m) is taken into account, the entire amount of water can be sucked and supplied to the reservoir. Even in the case of the water source 8c having a water depth of 15 m and a water surface that is 3 m below the horizon, the pressure of the absolute vacuum portion 2a (theoretically pressure = 0) and the pressure that pushes the water surface of the water source 8c (atmospheric pressure) Therefore, the water from the water source 8c can be sucked and supplied to the reservoir 1 side without any problem practically.

このように、本発明においては、真空塔2内に絶対真空部2aを形成し、この絶対真空部2aの真空吸引力を利用して各地の水源8a,8b,8cから水を吸引して貯水池1に集約することができる。このとき、絶対真空部2aをトリチェリの真空の原理を利用して真空塔2の上部に一旦形成すれば、その後、何ら動力を用いる必要もなく、各地の水源8a,8b,8cの水を効率よく吸引することができ、コスト面でも大幅に低減することができる。   Thus, in the present invention, the absolute vacuum portion 2a is formed in the vacuum tower 2, and water is sucked from the water sources 8a, 8b, 8c in various places using the vacuum suction force of the absolute vacuum portion 2a. 1 can be aggregated. At this time, once the absolute vacuum portion 2a is formed on the upper portion of the vacuum tower 2 using the Torricelli vacuum principle, the power from the water sources 8a, 8b, and 8c in various places is efficiently used without any power thereafter. Suction can be performed well, and the cost can be greatly reduced.

次に、パイプライン3を通って真空塔2の接続口2bから真空塔2内に吸引された水は、真空塔2内の水位を上昇させつつ、一部は貯水池1側に流れることになるが、この場合でも、トリチェリの真空の原理が作用しており、真空塔2内の水柱2の水位Aは常に一定を保とうとする。そのため、貯水池1の水面の上昇に伴い、真空塔2の水柱の絶対水位も上昇することになる。絶対真空部2aの容積は常に一定に確保しておくことが好ましく、その基準としては、接続口2bが水柱15によって閉塞されない程度が好ましい。   Next, the water sucked into the vacuum tower 2 from the connection port 2b of the vacuum tower 2 through the pipeline 3 increases the water level in the vacuum tower 2 and partly flows to the reservoir 1 side. However, even in this case, the principle of Trichelli's vacuum is acting, and the water level A of the water column 2 in the vacuum tower 2 always tries to keep constant. Therefore, as the water level of the reservoir 1 rises, the absolute water level of the water column of the vacuum tower 2 also rises. It is preferable to always keep the volume of the absolute vacuum part 2a constant, and as a standard, it is preferable that the connection port 2b is not blocked by the water column 15.

このような絶対真空部2aの容積を確保するためには、貯水池1の水面高さを調節する必要がある。それには、水源8a、8b、8cから貯水池1に供給された水の増加によって貯水池1の水位が上昇したときに、水位調節弁6を開弁して貯水池1の水を第2の貯水池7側に落水させ、貯水池1の水位を所定のレベルに調節すればよい。   In order to ensure such a volume of the absolute vacuum part 2a, it is necessary to adjust the water surface height of the reservoir 1. For this purpose, when the water level of the reservoir 1 rises due to the increase in the water supplied to the reservoir 1 from the water sources 8a, 8b, 8c, the water level control valve 6 is opened to supply the water in the reservoir 1 to the second reservoir 7 side. The water level of the reservoir 1 may be adjusted to a predetermined level.

このように、底部が貯水池中に開放した真空塔と各地の水源とをパイプラインを介して接続して給水路を構成し、真空塔内に形成した絶対真空部における真空吸引力を利用して水源からパイプラインを通して水を吸引し、吸引した水を貯水池に供給するので、ポンプなどの駆動源を使用しなくても、貯水池から数十km〜数千kmも離れた水源からでも簡単かつ安価に給水を行うことができる。   In this way, a water supply channel is constructed by connecting a vacuum tower whose bottom is opened in the reservoir and water sources in various places through a pipeline, and utilizing the vacuum suction force in the absolute vacuum part formed in the vacuum tower. Since water is sucked from the water source through the pipeline and the sucked water is supplied to the reservoir, it is easy and inexpensive even from a water source several tens to several thousand kilometers away from the reservoir without using a drive source such as a pump. Water can be supplied.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の範囲内で多くの修正・変更を加えることができるのは勿論である。例えば、上記実施形態では円筒状の真空塔を例示したが、これに限らず球状の真空塔であってもよい。また、貯水池の水位を調節する手段として水位調節弁を例示したが、貯水池の側壁にオーバーフロー用の穴を形成し、貯水池の水位が一定以上にならないように調節することもできる。   Note that the present invention is not limited to the above-described embodiment, and it is needless to say that many modifications and changes can be made within the scope of the present invention. For example, although the cylindrical vacuum tower is illustrated in the above embodiment, the present invention is not limited to this, and a spherical vacuum tower may be used. Moreover, although the water level control valve was illustrated as a means for adjusting the water level of the reservoir, an overflow hole is formed in the side wall of the reservoir, and the water level of the reservoir can be adjusted so as not to exceed a certain level.

以上のとおり、本発明に係る給水方法によると、貯水池から数十km〜数千kmも離れた水源からでも簡単かつ安価に給水を行うことができ、その給水方法を灌漑用あるいは砂漠の緑化用として利用することができる。   As described above, according to the water supply method of the present invention, water can be supplied easily and inexpensively even from a water source several tens to several thousand km away from the reservoir, and the water supply method can be used for irrigation or desert greening. Can be used as

本発明の給水方法を実施するための給水施設を示す概略図Schematic showing a water supply facility for carrying out the water supply method of the present invention 貯水池と水源とのパイプライン敷設状態を示す概略側面図Schematic side view showing pipeline laying state between reservoir and water source 貯水池と水源とのパイプラインを網目状に張り巡らせた状態を示す平面図Plan view showing a state where the pipeline between the reservoir and the water source is stretched around in a mesh pattern

符号の説明Explanation of symbols

1 貯水池
2 真空塔
2a 絶対真空部
3 パイプライン
4 頂部弁
5 底部弁
6 水位調節弁
7 第2の貯水池
8a、8b、8c 水源
9、10 水路
A 真空塔内の水位
B 高低差
DESCRIPTION OF SYMBOLS 1 Reservoir 2 Vacuum tower 2a Absolute vacuum part 3 Pipeline 4 Top valve 5 Bottom valve 6 Water level control valve 7 Second reservoir 8a, 8b, 8c Water source 9, 10 water channel A Water level in the vacuum tower B Height difference

Claims (3)

底部が貯水池中に開放した真空塔と各地に存在する水源とをパイプラインを介して接続する給水路を構成し、前記真空塔内に形成した真空部における真空吸引力を利用して前記各地の水源からパイプラインを通して水を吸引し、貯水池に供給することを特徴とする給水方法。 A water supply channel connecting a vacuum tower whose bottom is open in the reservoir and a water source existing in various places through a pipeline, and using the vacuum suction force in the vacuum section formed in the vacuum tower, A water supply method, wherein water is sucked from a water source through a pipeline and supplied to a reservoir. 前記真空塔の頂部に頂部弁を設け、前記頂部弁の開放状態で前記真空塔内に水を充填した後、頂部弁を閉じ、真空塔内と貯水池とを連通することにより、前記真空塔内にトリチェリの真空の原理により絶対真空部を形成することを特徴とする請求項1記載の給水方法。 A top valve is provided at the top of the vacuum tower, and after filling the vacuum tower with water in an open state of the top valve, the top valve is closed, and the inside of the vacuum tower is communicated with the inside of the vacuum tower. The water supply method according to claim 1, wherein an absolute vacuum portion is formed according to the Trichelli vacuum principle. 前記貯水池の水位を水位調節手段により調節することにより、真空塔内の水位を所定レベルに調節することを特徴とする請求項1又は2記載の給水方法。 The water supply method according to claim 1 or 2, wherein the water level in the vacuum tower is adjusted to a predetermined level by adjusting the water level of the reservoir by a water level adjusting means.
JP2005118372A 2005-04-15 2005-04-15 Water supply method Expired - Fee Related JP4033869B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005118372A JP4033869B2 (en) 2005-04-15 2005-04-15 Water supply method
CNB2005100692249A CN100467725C (en) 2005-04-15 2005-05-12 Water feeding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118372A JP4033869B2 (en) 2005-04-15 2005-04-15 Water supply method

Publications (2)

Publication Number Publication Date
JP2006299528A true JP2006299528A (en) 2006-11-02
JP4033869B2 JP4033869B2 (en) 2008-01-16

Family

ID=37077244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118372A Expired - Fee Related JP4033869B2 (en) 2005-04-15 2005-04-15 Water supply method

Country Status (2)

Country Link
JP (1) JP4033869B2 (en)
CN (1) CN100467725C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2780237C1 (en) * 2021-10-12 2022-09-21 Юрий Степанович Дятлов Method for water supply

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4640527B1 (en) * 2009-12-28 2011-03-02 徳雄 緑 Negative pressure device
CN102807257A (en) * 2012-08-30 2012-12-05 张家港市三星净化设备制造有限公司 Vacuum water diversion device for sewage treatment equipment
CN107178089A (en) * 2017-06-01 2017-09-19 中建八局浙江建设有限公司 Drainage arrangement and its water discharge method for building foundation engineering

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2780237C1 (en) * 2021-10-12 2022-09-21 Юрий Степанович Дятлов Method for water supply

Also Published As

Publication number Publication date
CN100467725C (en) 2009-03-11
CN1847530A (en) 2006-10-18
JP4033869B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP4608598B1 (en) Sphere circulation device
JP2013164074A (en) Hydroelectric pumped-storage
CN104420499B (en) Water fetching apparatus for adjusting water depth to selectively fetch water
CN104674784B (en) Side slope tidal level regulation device when hypergravity
CN101798822B (en) Sinking or floating control method and device of multi-chamber barrel-shaped base
JP4033869B2 (en) Water supply method
US20070090202A1 (en) Methods and means to collect water vapors
CN106286427A (en) Siphon trigger
CN113950884A (en) System for accelerating soil salt washing and water drainage based on negative pressure
CN104255396A (en) Automatic paddy field irrigation device and system
CN106103856A (en) Start method and the drainage arrangement of the drainage arrangement for siphon liquid
CN202486127U (en) Analog device for confined aquifer test
KR101483113B1 (en) Open type Underground Heat Exchanger due to Fluid Direction Switch in Cooling and Heating Mode
CN110259164B (en) Water-saving concrete drip irrigation maintenance system
CN203534939U (en) Soil water infiltration experiment device
CN108589695B (en) A kind of automatic starting formula has both the side slope siphon drainge system and method for flow monitoring function
US20110070027A1 (en) System for draining land areas through the use of a venturi apparatus from a permeable catch basin
CN2503247Y (en) Pumping device
CN101502230B (en) Dispersed type underground uniform speed drip irrigation device for fruit tree
US3303649A (en) Hydraulic system having a natural dieference of level, to be used as driving power or for obtaining other benefits
CN201056732Y (en) Automatic pollution discharging device
CN103940629B (en) Surface aeration equipment detection cell
CN105518290A (en) Plant for recovering energy from fluids
CN219865316U (en) Hydraulic energy storage system
RU2377367C1 (en) Arrangement of diversion work

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071023

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20111102

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20111102

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees