JP2006299354A - Method for producing metal nanoparticulate by high energy electron beam - Google Patents

Method for producing metal nanoparticulate by high energy electron beam Download PDF

Info

Publication number
JP2006299354A
JP2006299354A JP2005123648A JP2005123648A JP2006299354A JP 2006299354 A JP2006299354 A JP 2006299354A JP 2005123648 A JP2005123648 A JP 2005123648A JP 2005123648 A JP2005123648 A JP 2005123648A JP 2006299354 A JP2006299354 A JP 2006299354A
Authority
JP
Japan
Prior art keywords
electron beam
producing metal
metal nanoparticles
produced
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005123648A
Other languages
Japanese (ja)
Inventor
Teruhiro Iwase
彰宏 岩瀬
Ryoichi Taniguchi
良一 谷口
Fuminobu Hori
史説 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Prefecture University
Original Assignee
Osaka University NUC
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Prefecture University filed Critical Osaka University NUC
Priority to JP2005123648A priority Critical patent/JP2006299354A/en
Publication of JP2006299354A publication Critical patent/JP2006299354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method where hyperfine metal nanoparticulates with a uniform particle diameter of about 10 nm can be produced at high reproducibility in a short time. <P>SOLUTION: An Au ion-containing sodium tetraaurate (III) aqueous solution is prepared, so as to be an original liquid, further, using a surfactant (produced utilizing 4 m mol of a polyethylene glycol monosterate solution as an original liquid) and ultrapure water, so as to be a raw material solution, and electron beam energy of 10 MeV is emitted, thus metal nanoparticulates with a uniform particle diameter are produced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高エネルギー電子線による粒子の揃ったナノ微粒子の製造に関する。   The present invention relates to the production of nanoparticles having a uniform particle size using a high energy electron beam.

物質のサイズが小さくなり、ナノメートルサイズの超微粒子になると量子サイズ効果により、その電子状態、格子振動、磁気、光、比熱などでバルク状態とは全く異なる性質が発現することが知られている。   It is known that when the size of a material is reduced and nanometer-sized ultrafine particles are formed, properties that are completely different from the bulk state are manifested due to the quantum size effect in terms of its electronic state, lattice vibration, magnetism, light, specific heat, etc. .

ナノオーダーの超微粒子の優れた特性を利用することによって、各種材料の特性改善、各種デバイスや触媒などの機能材料への応用などが可能であることから、超微粒子の物性や応用に関する研究などが進められている。   By utilizing the excellent properties of nano-order ultrafine particles, it is possible to improve the properties of various materials and apply them to functional materials such as various devices and catalysts. It is being advanced.

金属の微粒子生成においては、従来の技術は物理的手法として、ガス中蒸発法、スパッタリング法、金属蒸発合成法、流動油上真空蒸発法などが例示される。また化学的手法においても、気相を利用した手法として、金属塩化物の還元・酸化・窒化法、水素中還元法、溶媒蒸発法などが例示される。一方、化学的手法において、液相を利用した製造方法としては、たとえばアルコール還元とかが主流である。これらの方法はいずれもナノ微粒子を集合体として、すなわち超微粉体として得る方法であり、超微粒子単体としての性質や応用に関する研究には不向きである。   In the production of fine metal particles, examples of conventional techniques include physical methods such as gas evaporation, sputtering, metal evaporation synthesis, and fluid oil vacuum evaporation. Also in the chemical method, as a method using the gas phase, a metal chloride reduction / oxidation / nitridation method, a hydrogen reduction method, a solvent evaporation method, and the like are exemplified. On the other hand, in a chemical method, for example, alcohol reduction is the mainstream as a production method using a liquid phase. These methods are all methods for obtaining nano-particles as aggregates, that is, as ultrafine powders, and are not suitable for research on properties and applications as ultrafine particles alone.

また、電子顕微鏡のビームを使った方法は、その電子線強度が1020e/cm2・secオーダーで、実際はビームの直径が1μm以下の極狭いものであり、ナノ微粒子の生成効率は非常に小さいものと考えられる。電子顕微鏡を使うため、高真空中でのプロセスであり、脱ガスの少ない固体試料しか原材料としては使用できない。従来の電子顕微鏡を利用した高真空雰囲気中で電子線を照射する方法ではそのナノ微粒子の作製量はわずかであり、将来の産業上の利用性は困難である。 In addition, the method using the electron microscope beam has an electron beam intensity on the order of 10 20 e / cm 2 · sec, and the actual beam diameter is extremely narrow with a diameter of 1 μm or less. It is considered small. Since an electron microscope is used, the process is performed in a high vacuum, and only a solid sample with little degassing can be used as a raw material. In the conventional method of irradiating an electron beam in a high vacuum atmosphere using an electron microscope, the amount of nano-particles produced is small, and future industrial applicability is difficult.

簡単に短時間に、さらに粒子の径が均一な金属ナノ微粒子が生成できることを目的とする。さらに、将来の産業上の利用性に適した作製方法を視野に入れたものを目指す。   It is an object to easily produce metal nanoparticles having a uniform particle diameter in a short time. In addition, we aim to create a manufacturing method suitable for future industrial applicability.

本発明は、前記の目標を達成するために、超音波、放射線手法が、制御可能なパラメータが多く、再現性が得やすく、その中でも電子線照射は非常に短時間で微粒子生成を行うことができる。さらに、電子線は、単位時間当りでガンマ線に比べ、径の分散が少ない均一なものができる。   In the present invention, in order to achieve the above-mentioned target, the ultrasonic and radiation methods have many controllable parameters and are easy to obtain reproducibility. Among them, electron beam irradiation can generate fine particles in a very short time. it can. Furthermore, the electron beam can be uniform with less diameter dispersion per unit time compared to gamma rays.

加速器からの電子ビームを使うナノ微粒子生成方法は、ビーム径が1cmあるいはそれ以上と広い領域で還元反応が可能であり、生成効率に優れているといえる。また、ビームを一旦空気中に出し、再び原料に当てるため原料に関する制限が全くない。固体、液体、気体でよい。   The nanoparticle production method using an electron beam from an accelerator can perform a reduction reaction in a wide region with a beam diameter of 1 cm or more, and can be said to be excellent in production efficiency. Further, since the beam is once taken out into the air and again applied to the raw material, there is no restriction on the raw material. It may be solid, liquid or gas.

さらにビーム電流(1秒間の照射電子の個数)や照射電子の総量などを容易に変化することができ、ナノ微粒子生成の最適条件を得やすい。空気中で照射するため、原料の温度などを制御しやすい(温度コントロールした冷水で冷やしてやれば一定温度で照射できる)などの特徴がある。   Furthermore, the beam current (the number of irradiated electrons for one second), the total amount of irradiated electrons, and the like can be easily changed, and it is easy to obtain the optimum conditions for producing nano-particles. Since it is irradiated in the air, it has the feature that the temperature of the raw material can be easily controlled (it can be irradiated at a constant temperature if it is cooled with cold water controlled in temperature).

これに対して電子顕微鏡での照射は、試料が真空中に置かれているため、温度の制御が難しく、そのため微粒子最適条件が押さえにくい(例えばビーム量を増やすと温度が上がってしまう)という欠点がある。   On the other hand, irradiation with an electron microscope has the disadvantage that the temperature is difficult to control because the sample is placed in a vacuum, so that it is difficult to control the optimum conditions for fine particles (for example, increasing the amount of beam increases the temperature). There is.

本発明者らは、液体照射を考えた。   The present inventors considered liquid irradiation.

原料としては、遷移金属(貴金属を含む)、例えば工業的利用からチタン(光触媒)、銀(微細結線)、金(DNAセンサー)、さらに鉄、ニッケル、コバルト(磁性微粒子)などを使用することができる。   As raw materials, transition metals (including noble metals) such as titanium (photocatalyst), silver (fine connection), gold (DNA sensor), iron, nickel, cobalt (magnetic fine particles), etc. may be used for industrial use. it can.

再現よく毎回同じ微粒子(同じ粒径、同じ構造)で、短時間に大量生産できることが重要である。加速器からの高エネルギー電子ビームを用いた微粒子生成は、これらの条件を十分満たしている。   It is important that the same fine particles (the same particle size and the same structure) are reproducible and can be mass-produced in a short time. Fine particle generation using a high-energy electron beam from an accelerator sufficiently satisfies these conditions.

以上説明したように、本発明の電子線照射によると、粒子の形状はほとんどが球状に近いものであり、微粒子の粒子径はおよそ27nm以下の範囲であり、平均粒子径で12nmの大きさの粒子が揃っているので、粒度の均一な金属ナノ微粒子を生成することができる。   As described above, according to the electron beam irradiation of the present invention, the particle shape is almost spherical, the particle size of the fine particles is in the range of about 27 nm or less, and the average particle size is 12 nm. Since the particles are aligned, metal nanoparticles having a uniform particle size can be generated.

また、いろいろな照射パラメータ(エネルギー、照射量、線量率など)を変えると粒径などを制御できることが考えられる。   Further, it is conceivable that the particle size can be controlled by changing various irradiation parameters (energy, irradiation amount, dose rate, etc.).

(実施例)
原料としてまず始めに10mモルのAuイオンを含むテトラ金(III)酸ナトリウム水溶液を作製し原液とした。
(Example)
First, a sodium tetragold (III) aqueous solution containing 10 mmol of Au ions was prepared as a raw material, and used as a stock solution.

それをもとに、界面活性剤(ポリエチレングリコールモノステアラート(PEG−MS);4mモルの溶液を原液として作製)と大阪府立大学先端科学研究所で精製されている超純水(使用した状態では純水扱い)を用いて、0.5mモルのAuイオン、0.4mモルの界面活性剤を含む試料溶液を作製した。   Based on this, a surfactant (polyethylene glycol monostearate (PEG-MS); prepared as a stock solution of 4 mmole) and ultrapure water purified at the Institute of Advanced Science, Osaka Prefecture University Then, a sample solution containing 0.5 mmol of Au ions and 0.4 mmol of a surfactant was prepared.

次に、Arガスを用いて、10分間のバブリング処理を行った。これは、溶液中に不純物として存在する活性ガス原子を除外し、再現性のよいデータを得るためである。   Next, bubbling for 10 minutes was performed using Ar gas. This is to remove active gas atoms present as impurities in the solution and obtain data with good reproducibility.

作製した試料をポリスチレン製のモル(4面透明型;10×10×45mm3;吸光度測定にも使用可)に4mリットルずつ注入し、アルミ箔をし、照射用試料とした。 The prepared sample was poured into a polystyrene mole (4-sided transparent type; 10 × 10 × 45 mm 3 ; can also be used for absorbance measurement) in 4 ml aliquots, coated with aluminum foil, and used as a sample for irradiation.

照射条件としては、大阪府立大学先端科学研究所の線源棟内の電子線LINAC(線形加速器(4〜16MeVの高エネルギーの電子線照射が可能で、10MeVのエネルギーで平均ビーム電流50μAが標準的な条件。ビーム径は約10mmであり、電子線スキャナー(振れ幅30cm)とコンベアー装置を装備しており、比較的大きな試料に均一に照射することができる。これにより1分間に10kGyの照射が行える。))を利用し、一定の繰り返し数での電子線照射による還元反応場によるナノ微粒子生成を行う。   As irradiation conditions, an electron beam LINAC (linear accelerator (4-16 MeV high-energy electron beam irradiation is possible with an energy beam of 10 MeV and an average beam current of 50 μA is standard in the source building of Osaka Prefecture University Advanced Science Laboratory) The beam diameter is about 10mm, and it is equipped with an electron beam scanner (runout width 30cm) and a conveyor device, which can irradiate relatively large samples uniformly, thereby irradiating 10kGy per minute. )) Is used to generate nanoparticles by a reduction reaction field by electron beam irradiation with a certain number of repetitions.

LINACの電子照射エネルギーは非常に強力なため、試料溶液が突沸する可能性が考えられた。そこで、照射中は常に試料容器を冷却する必要性があった。そのため試料容器の固定の意味も兼ねて、水冷式の冷却盤2つで試料容器を挟み込んで固定し電子照射を行った。この冷却盤は銅製で、電子線が通る円形の穴が開いており、内部には水冷パイプが通っている。照射条件を下表に示す。   Since the electron irradiation energy of LINAC is very strong, there was a possibility that the sample solution might bump. Therefore, there has been a need to always cool the sample container during irradiation. For this reason, the sample container was sandwiched between two water-cooled cooling boards and fixed to perform electron irradiation. This cooling plate is made of copper, has a circular hole through which an electron beam passes, and a water-cooled pipe passes inside. The irradiation conditions are shown in the table below.

電子線の10MeVというエネルギーは、水溶液中を十分な距離を通過し、効率のよいナノ粒子を生産する。また照射時間はわずか1分であり、ガンマ線では100分を要することから飛躍的な高効率を達成することができる。   The energy of 10 MeV of the electron beam passes through a sufficient distance in the aqueous solution and produces efficient nanoparticles. In addition, the irradiation time is only 1 minute, and since gamma rays require 100 minutes, dramatically high efficiency can be achieved.

できた生成微粒子を見ると全体にほぼ均一な状態で分散している。粒子の形状はほとんどが球状に近いものであり、さらに平均で12nmの大きさの粒子が揃っているので、全体としてまとまった粒子であるといえる。   When the produced fine particles are seen, they are dispersed almost uniformly throughout. The shape of the particles is almost spherical, and on average there are particles with a size of 12 nm on average, so it can be said that the particles as a whole are collected.

本発明は、再現よく毎回同じナノ微粒子ができること(同じ直径、同じ構造等)、短時間で大量生産できる。   The present invention can reproducibly produce the same nanoparticle each time (same diameter, same structure, etc.), and can be mass-produced in a short time.

加速器からの高エネルギー電子ビームを用いたナノ微粒子生成は、これらの条件を十分に満たしている。   The production of nanoparticles using a high-energy electron beam from an accelerator sufficiently satisfies these conditions.

このような金属ナノ微粒子により、応用展開が大きく期待できる。ナノ微粒子の使用用途としては、触媒、微細結線、塗料・顔料などに応用できる。   With such metal nanoparticles, application development can be greatly expected. The nano fine particles can be used for catalysts, fine wiring, paints and pigments.

(a)本発明のAu粒子のナノ微粒子の作製状況を模式的に示す図である。 (b)本発明のAu粒子が電子線を照射されてAuナノ微粒子になって飛散する状態を模式的に示す図である。(A) It is a figure which shows typically the preparation condition of the nanoparticle of Au particle | grains of this invention. (B) It is a figure which shows typically the state which Au particle | grains of this invention are irradiated with an electron beam, become Au nanoparticle, and are scattered. 本発明の実施例でAu粒子に電子線を照射した後の電子顕微鏡写真の一部である。It is a part of electron micrograph after irradiating an electron beam to Au particle | grains in the Example of this invention. 本発明の実施例で作製したAuナノ微粒子の粒子径の測定結果を示す図である。It is a figure which shows the measurement result of the particle diameter of Au nanoparticle produced in the Example of this invention.

符号の説明Explanation of symbols

1 原料粒子
2 電子線
3 金属ナノ微粒子
4 界面活性剤
1 Raw Material Particle 2 Electron Beam 3 Metal Nanoparticle 4 Surfactant

Claims (5)

遷移金属(貴金属を含む)の塩、界面活性剤および超純水を含む混合液に電子線を照射して金属のナノ微粒子を得ることを特徴とする金属のナノ微粒子の製造方法。   A method for producing metal nanoparticles comprising irradiating a mixed solution containing a salt of a transition metal (including noble metal), a surfactant and ultrapure water with an electron beam to obtain metal nanoparticles. 遷移金属(貴金属を含む)が金、銀、チタン、鉄、ニッケル、またはコバルトである請求項1に記載の金属ナノ微粒子の製造方法。   The method for producing metal nanoparticles according to claim 1, wherein the transition metal (including noble metal) is gold, silver, titanium, iron, nickel, or cobalt. 金の塩がAuイオンを含むテトラ金(III)酸ナトリウムである請求項2に記載の金属ナノ微粒子の製造方法。   The method for producing metal nanoparticles according to claim 2, wherein the gold salt is sodium tetragold (III) acid containing Au ions. 電子線が高エネルギー電子線である請求項1〜3のいずれかに記載の金属ナノ微粒子の製造方法。   The method for producing metal nanoparticles according to any one of claims 1 to 3, wherein the electron beam is a high energy electron beam. 電子線の照射時間が0.06〜60秒間である請求項1〜4のいずれかに記載の金属ナノ微粒子の製造方法。   The method for producing metal nanoparticles according to any one of claims 1 to 4, wherein the irradiation time of the electron beam is 0.06 to 60 seconds.
JP2005123648A 2005-04-21 2005-04-21 Method for producing metal nanoparticulate by high energy electron beam Pending JP2006299354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005123648A JP2006299354A (en) 2005-04-21 2005-04-21 Method for producing metal nanoparticulate by high energy electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005123648A JP2006299354A (en) 2005-04-21 2005-04-21 Method for producing metal nanoparticulate by high energy electron beam

Publications (1)

Publication Number Publication Date
JP2006299354A true JP2006299354A (en) 2006-11-02

Family

ID=37468001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005123648A Pending JP2006299354A (en) 2005-04-21 2005-04-21 Method for producing metal nanoparticulate by high energy electron beam

Country Status (1)

Country Link
JP (1) JP2006299354A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013542A1 (en) * 2009-07-30 2011-02-03 国立大学法人京都大学 Metal nanoparticles, dispersion containing same, and process for production of same
JP2014514451A (en) * 2011-04-12 2014-06-19 コリア アトミック エナジー リサーチ インスティチュート Method for producing core-shell structured metal nanoparticles with excellent oxidation stability
CN104874812A (en) * 2015-05-26 2015-09-02 成都易创思生物科技有限公司 Preparation method of gold nanoparticles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013542A1 (en) * 2009-07-30 2011-02-03 国立大学法人京都大学 Metal nanoparticles, dispersion containing same, and process for production of same
JP5119362B2 (en) * 2009-07-30 2013-01-16 国立大学法人京都大学 Metal-based nanoparticles, dispersion containing the same, and method for producing the same
JP2014514451A (en) * 2011-04-12 2014-06-19 コリア アトミック エナジー リサーチ インスティチュート Method for producing core-shell structured metal nanoparticles with excellent oxidation stability
CN104874812A (en) * 2015-05-26 2015-09-02 成都易创思生物科技有限公司 Preparation method of gold nanoparticles

Similar Documents

Publication Publication Date Title
Cele Preparation of nanoparticles
Zeng et al. Nanomaterials via laser ablation/irradiation in liquid: a review
Kim et al. Synthesis of nanoparticles by laser ablation: A review
Lynch et al. Gas-bubble effects on the formation of colloidal iron oxide nanocrystals
Makarov Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography
Abedini et al. Recent advances in shape-controlled synthesis of noble metal nanoparticles by radiolysis route
Pang et al. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers
Lim et al. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly (vinyl pyrrolidone)
Yusof et al. Sonochemical synthesis of gold nanoparticles by using high intensity focused ultrasound
JP6121985B2 (en) Novel gold-platinum-based bimetallic nanocrystal suspension, its electrochemical production method, and use thereof
Grand et al. Nanoparticle alloy formation by radiolysis
Liu et al. Synthesis of X-ray amorphous silver nanoparticles by the pulse sonoelectrochemical method
Pastoriza‐Santos et al. Synthetic routes and plasmonic properties of noble metal nanoplates
Wu et al. Processing core/alloy/shell nanoparticles: tunable optical properties and evidence for self-limiting alloy growth
Chau et al. Femtosecond laser synthesis of bimetallic Pt–Au nanoparticles
Del Rosso et al. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers
Torrisi et al. Gold nanoparticles produced by laser ablation in water and in graphene oxide suspension
Kundu et al. Photochemical synthesis of shape-selective palladium nanocubes in aqueous solution
Xiang et al. L-cysteine-assisted self-assembly of complex PbS structures
JP2006299354A (en) Method for producing metal nanoparticulate by high energy electron beam
JP2008246394A (en) Method and apparatus for producing nanoparticle
Fu et al. Direct visualization of photomorphic reaction dynamics of plasmonic nanoparticles in liquid by four-dimensional electron microscopy
Watt et al. Formation of Metal Nanoparticles Directly from Bulk Sources Using Ultrasound and Application to E‐Waste Upcycling
Zhou et al. Formation of ultrafine uniform gold nanoparticles by sputtering and redeposition
Kranz et al. Size-Dependent Threshold of the Laser-Induced Phase Transition of Colloidally Dispersed Copper Oxide Nanoparticles