JP2006297285A - Low alkali hardner for water-containing soil and hardening treatment method - Google Patents

Low alkali hardner for water-containing soil and hardening treatment method Download PDF

Info

Publication number
JP2006297285A
JP2006297285A JP2005122823A JP2005122823A JP2006297285A JP 2006297285 A JP2006297285 A JP 2006297285A JP 2005122823 A JP2005122823 A JP 2005122823A JP 2005122823 A JP2005122823 A JP 2005122823A JP 2006297285 A JP2006297285 A JP 2006297285A
Authority
JP
Japan
Prior art keywords
mass
soil
low alkali
water
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005122823A
Other languages
Japanese (ja)
Other versions
JP4837936B2 (en
Inventor
Yukio Tasaka
行雄 田坂
Mototaka Egawa
本隆 江川
Osamu Yoneda
修 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Ube Corp
Original Assignee
Mitsubishi Materials Corp
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Ube Industries Ltd filed Critical Mitsubishi Materials Corp
Priority to JP2005122823A priority Critical patent/JP4837936B2/en
Publication of JP2006297285A publication Critical patent/JP2006297285A/en
Application granted granted Critical
Publication of JP4837936B2 publication Critical patent/JP4837936B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low alkali hardner for water-containing soil capable of hardening the water-containing soil so as to indicate low alkali having a pH of 9 to 10 of a hardened body and have sufficient strength, and a hardening treatment method using it. <P>SOLUTION: The low alkali hardner for the water-containing soil is made by including magnesium oxide of more than 15 mass% and 60 mass% or less, water hardening alumina of 30 to 82 mass% heated until constant weight is obtained at 50 to 400°C of amorphous aluminum hydroxide hydrate, having the top of a broad peak at 2θ=22±5°of a powder x-ray diffraction spectrum in a wave length of 1.5405 Å and having a half-value width of 6 to 20° based on a base line having the broad peak, and lithium carbonate of 2 to 15 mass%. This hardner of 50 to 200 kg/m<SP>3</SP>is loaded per the water-containing soil of 1 m<SP>3</SP>, thereby enabling highly strengthened hardening treatment at a pH of 9 to 10 suitable for heavy metal insolubilization. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、浚渫底泥や建設汚泥、汚染土壌等の含水土を固化・不溶化するために適した含水土用低アルカリ固化材およびそれを用いた固化処理方法に関する。   The present invention relates to a low alkali solidification material for hydrous soil suitable for solidifying and insolubilizing hydrous soil such as dredged bottom mud, construction sludge, and contaminated soil, and a solidification treatment method using the same.

軟弱土の土質改良には、固化材を使用する固化処理が施される。また、土木工事等に伴って発生する建設汚泥等を搬出する際、流動性が高くそのままでの搬送が困難な場合があるので、固化材を使用して固化処理した後、搬出するという方法が採用される。何れの目的においても、固化材には、固化処理後の土が目的に合った十分な強度を有していること、適度の固化速度を有していること、固化材が化学的に安定であり有害物質が溶出しないこと等の特性が要求される。   To improve the soil quality of soft soil, a solidification process using a solidifying material is performed. In addition, when carrying out construction sludge, etc. generated by civil engineering work, etc., there are cases where it is difficult to carry it as it is because of its high fluidity. Adopted. For any purpose, the solidified material should have sufficient strength that suits the purpose of the soil after solidification, a suitable solidification rate, and the solidified material is chemically stable. Certain characteristics such as no toxic substances eluting are required.

これら複数の特性が要求される固化材に関し、既に多くの技術が開示されている。このうちセメントを主成分とするセメント系固化材では高強度は得られるものの、セメント自体のアルカリにより固化処理土のpH値が11〜12程度となる。このアルカリによる動植物への影響、アンモニアの発生、近年では、鉛などの両性重金属汚染土の処理時に鉛の再溶出が問題となる場合がある。   Many techniques have already been disclosed for solidifying materials that require a plurality of properties. Among them, a cement-based solidified material mainly composed of cement can provide high strength, but the pH value of the solidified soil becomes about 11 to 12 due to the alkali of the cement itself. The effects of alkali on animals and plants, the generation of ammonia, and, in recent years, re-elution of lead may be a problem during the treatment of amphoteric heavy metal contaminated soil such as lead.

これらの問題を解決するために、マグネシア系固化材が提案されている。特許文献1〜3では、酸化マグネシウムとpH調整剤として硫酸アルミニウムなどの酸性材料や強度改良材としての高炉スラグ、せっこう、燐酸塩などを組合せたマグネシア系固化材が開示されている。   In order to solve these problems, a magnesia-based solidifying material has been proposed. Patent Documents 1 to 3 disclose a magnesia-based solidified material in which magnesium oxide and an acidic material such as aluminum sulfate as a pH adjusting agent and blast furnace slag, gypsum, and phosphate as a strength improving material are combined.

一方、非特許文献1に示すpHと各種重金属の溶解度の関係から、特に鉛の不溶化性能面で固化処理土のpHは9〜10が望ましいと推定される。しかし、酸化マグネシウム自体のpHはこれよりやや高く、このpH調整のために、酸性材料を添加すると固化強度が低下するなどの問題もある。   On the other hand, from the relationship between the pH shown in Non-Patent Document 1 and the solubility of various heavy metals, it is presumed that the pH of the solidified soil is preferably 9 to 10 particularly in terms of insolubilization performance of lead. However, the pH of magnesium oxide itself is slightly higher than this, and there is a problem that the solidification strength decreases when an acidic material is added to adjust the pH.

特開2000−239660号公報JP 2000-239660 A 特開2001−200252号公報Japanese Patent Laid-Open No. 2001-200252 特開2003−193050号公報JP 2003-193050 A 田中 勝、「廃棄物学入門」、第1版、中央法規出版株式会社、1993年12月、p.64〜82Masaru Tanaka, “Introduction to Waste Science”, 1st edition, Central Law Publishing Co., Ltd., December 1993, p. 64-82

本発明は、動植物への影響などの環境負荷が比較的小さく、固化処理土のpHが、鉛汚染土壌を効果的に不溶化可能なpH9〜10程度の低アルカリとなり、且つ、十分な強度を有するように、含水土を固化することができる含水土用低アルカリ固化材およびそれを用いた固化処理方法に関する。   The present invention has a relatively low environmental load such as an effect on animals and plants, and the pH of the solidified soil becomes a low alkali of about pH 9 to 10 that can effectively insolubilize lead-contaminated soil, and has sufficient strength. Thus, it is related with the low alkali solidification material for hydrous soil which can solidify hydrous soil, and the solidification processing method using the same.

本発明に係る含水土用低アルカリ固化材は、酸化マグネシウムを15質量%を超えて60質量%以下、波長1.5405Åにおける粉末X線回折スペクトルが、2θ=22±5°にブロードなピークの頂点を有し、該ブロードなピークのベースラインを基準とした半値幅が6°〜20°である水硬性アルミナを30質量%〜82質量%、及び炭酸リチウムを2質量%〜15質量%含むことを特徴とする。   The low alkali solidification material for hydrous soil according to the present invention has a broad peak at 2θ = 22 ± 5 ° with a powder X-ray diffraction spectrum at a wavelength of 1.5405 mm, exceeding 15% by mass of magnesium oxide. 30% to 82% by mass of hydraulic alumina having a peak and a half width of 6 ° to 20 ° with respect to the baseline of the broad peak, and 2% to 15% by mass of lithium carbonate It is characterized by that.

この含水土用低アルカリ固化材によれば、含水土中で酸化マグネシウム、水硬性アルミナおよび炭酸リチウムが相互に反応し、低アルカリで高い強度が得られる。ここで、酸化マグネシウムの添加量が15質量%より小さいと、十分な固化強度が得られないか、あるいは処理土のpHが低くなりすぎる。一方、60質量%より多くても、固化強度が低下するか、pHが高くなりすぎる。また、水硬性アルミナの添加量が30質量%より小さいと、十分な固化強度が得られないか、処理土のpHが高くなる。一方、82質量%より多い場合、処理土のpHが低くなりすぎる。また、炭酸リチウムの添加量が2質量%より小さいと、十分な固化強度が得られず、一方、炭酸リチウムを15質量%より多く添加しても、コストに見合う強度増進効果が得られず、経済的にも好ましくない。   According to this low alkali solidifying material for hydrous soil, magnesium oxide, hydraulic alumina and lithium carbonate react with each other in the hydrous soil, and high strength can be obtained with low alkali. Here, when the addition amount of magnesium oxide is less than 15% by mass, sufficient solidification strength cannot be obtained, or the pH of the treated soil becomes too low. On the other hand, even if it exceeds 60 mass%, solidification intensity | strength falls or pH becomes high too much. Moreover, when the addition amount of hydraulic alumina is smaller than 30% by mass, sufficient solidification strength cannot be obtained or the pH of the treated soil becomes high. On the other hand, when it is more than 82% by mass, the pH of the treated soil becomes too low. In addition, when the amount of lithium carbonate added is less than 2% by mass, sufficient solidification strength cannot be obtained. On the other hand, even if lithium carbonate is added in an amount of more than 15% by mass, an effect of increasing the strength commensurate with the cost cannot be obtained. It is not economically preferable.

本発明に係る水硬性アルミナは、アルミニウムの陽極酸化処理工程の中和・凝集により副生した非晶質の水酸化アルミニウム化合物を、50℃〜400℃で恒量となるまで加熱することにより得られたものであることが好ましい。なお、この方法によって得られる生成物は、厳密にはアルミナではないが、本発明では水硬性アルミナと称する。   The hydraulic alumina according to the present invention is obtained by heating an amorphous aluminum hydroxide compound by-produced by neutralization / aggregation in an anodizing treatment step of aluminum until a constant weight is obtained at 50 ° C. to 400 ° C. It is preferable that The product obtained by this method is not strictly alumina, but is called hydraulic alumina in the present invention.

ここで、加熱温度が50℃よりも低いと、水硬性アルミナの反応性が十分でなく、固化材とした場合、十分な固化強度を得ることができない。また、恒量(乾燥する)となるまでに長時間がかかり、製造コストの増加を招くことになる。一方、400℃よりも高い温度で長時間加熱すると、同様に水硬性アルミナの反応性が低下し、固化強度が低下する。   Here, when the heating temperature is lower than 50 ° C., the reactivity of the hydraulic alumina is not sufficient, and when the solidified material is used, sufficient solidification strength cannot be obtained. Moreover, it takes a long time to reach a constant weight (drying), resulting in an increase in manufacturing cost. On the other hand, when heated at a temperature higher than 400 ° C. for a long time, similarly, the reactivity of hydraulic alumina is lowered, and the solidification strength is lowered.

また、本発明に係る固化処理方法は、含水土1m当たり、上記の含水土用低アルカリ固化材を50kg〜200kg混合することを特徴とする。この方法により、処理土がpH9〜10の低アルカリで、且つ、十分な固化強度を得ることが出来る。 Moreover, the solidification processing method according to the present invention is characterized in that 50 kg to 200 kg of the above-mentioned low alkali solidification material for hydrous soil is mixed per 1 m 3 of hydrous soil. By this method, the treated soil is a low alkali having a pH of 9 to 10, and sufficient solidification strength can be obtained.

本発明によれば、動植物への影響などの環境負荷が小さく、また、含水土を鉛の不溶化に適したpH9〜10の低アルカリで、且つ、十分な強度を有するように固化処理することができる。   According to the present invention, the environmental load such as the influence on animals and plants is small, and the hydrous soil is solidified so as to have a low alkali of pH 9 to 10 suitable for lead insolubilization and sufficient strength. it can.

以下、本発明に係る含水土用低アルカリ固化材およびそれを用いた固化処理方法について説明する。   Hereinafter, the low alkali solidification material for hydrous soil according to the present invention and the solidification treatment method using the same will be described.

<含水土用低アルカリ固化材>
本発明に係る含水土用低アルカリ固化材の好適な実施形態について説明する。含水土用低アルカリ固化材は、酸化マグネシウムが15質量%を超えて60質量%以下、好ましくは25質量%〜50質量%、水硬性アルミナが30質量%〜82質量%、好ましくは35質量%〜75質量%、炭酸リチウムが2質量%〜15質量%、好ましくは2.5質量%〜5質量%の割合で混合されている。
<Low alkali solidifying material for hydrous soil>
A preferred embodiment of the low alkali solidifying material for hydrous soil according to the present invention will be described. The low-alkali solidified material for hydrous soil has magnesium oxide in excess of 15% by mass and 60% by mass or less, preferably 25% by mass to 50% by mass, and hydraulic alumina by 30% by mass to 82% by mass, preferably 35% by mass. -75 mass% and lithium carbonate are mixed in a proportion of 2 mass% to 15 mass%, preferably 2.5 mass% to 5 mass%.

この含水土用低アルカリ固化材によれば、含水土中で酸化マグネシウム、水硬性アルミナおよび炭酸リチウムが相互に反応し、低アルカリで高い強度が得られる。ここで、酸化マグネシウムの添加量が15質量%以下であると、十分な固化強度が得られないか、あるいは処理土のpHが低くなりすぎる。一方、60質量%より多くても、固化強度が低下するか、pHが高くなりすぎる。また、水硬性アルミナの添加量が30質量%より小さいと、十分な固化強度が得られないか、処理土のpHが高くなる。一方、82質量%より多い場合、処理土のpHが低くなりすぎる。また、炭酸リチウムの添加量が2質量%より小さいと、十分な固化強度が得られず、一方、炭酸リチウムを15質量%より多く添加しても、コストに見合う強度増進効果が得られず、経済的にも好ましくない。   According to this low alkali solidifying material for hydrous soil, magnesium oxide, hydraulic alumina and lithium carbonate react with each other in the hydrous soil, and high strength can be obtained with low alkali. Here, when the addition amount of magnesium oxide is 15% by mass or less, sufficient solidification strength cannot be obtained, or the pH of the treated soil becomes too low. On the other hand, even if it exceeds 60 mass%, solidification intensity | strength falls or pH becomes high too much. Moreover, when the addition amount of hydraulic alumina is smaller than 30% by mass, sufficient solidification strength cannot be obtained or the pH of the treated soil becomes high. On the other hand, when it is more than 82% by mass, the pH of the treated soil becomes too low. In addition, when the amount of lithium carbonate added is less than 2% by mass, sufficient solidification strength cannot be obtained. On the other hand, even if lithium carbonate is added in an amount of more than 15% by mass, an effect of increasing the strength commensurate with the cost cannot be obtained. It is not economically preferable.

固化材の主成分の1つとして用いられる酸化マグネシウムは、か焼温度により軽焼マグネシアと硬焼マグネシアの2種に大別できるが、本発明においては、軽焼マグネシアを使用するのが好ましい。硬焼マグネシアは水和活性に乏しいことから、非晶質な水硬性アルミナの固化助剤として使用した場合に目標強度への到達に時間がかかるためである。この軽焼マグネシアは、粒度の細かいものが好ましく、そのBET比表面積は20〜50m/g程度である。なお、ハンドリング性を悪化させない範囲で更に粒度の細かい軽焼マグネシアを使用するとより好ましい結果が得られる。 Magnesium oxide used as one of the main components of the solidifying material can be roughly classified into two types, light-burned magnesia and hard-burned magnesia, depending on the calcination temperature. In the present invention, it is preferable to use light-burned magnesia. This is because hard-fired magnesia is poor in hydration activity, so that it takes time to reach the target strength when used as a solidification aid for amorphous hydraulic alumina. The light-burned magnesia preferably has a fine particle size, and its BET specific surface area is about 20 to 50 m 2 / g. It should be noted that more preferable results can be obtained by using lightly-burned magnesia with a finer particle size within a range not deteriorating handling properties.

また、固化材のもう一つの主成分である水硬性アルミナは、波長1.5405Åにおける粉末X線回折スペクトルが、2θ=22±5°、そのブロードなピークのベースラインを基準とした半値幅が6°〜20°である特性をもつものである。このような特性を有すると、酸化マグネシウムと炭酸リチウムと好適に反応して高い強度が得られるとともに、pHを適切に調整できる。   In addition, hydraulic alumina, which is another main component of the solidified material, has a powder X-ray diffraction spectrum at a wavelength of 1.5405 mm, 2θ = 22 ± 5 °, and a half-value width based on the baseline of the broad peak. It has the characteristic which is 6 degrees-20 degrees. With such characteristics, magnesium oxide and lithium carbonate react appropriately to obtain high strength, and the pH can be adjusted appropriately.

水硬性アルミナの反応性は粒度に影響されるため、レーザー回折式粒度分布計により測定される水硬性アルミナの平均粒径は1μm〜20μmのものが好ましく、2μm〜15μmものの使用は更に望ましい。平均粒径が20μmより大きい場合、十分な固化強度が得られにくく材料分離を生じる傾向がある。1μmより小さいと、粉体流動性が好ましくなく輸送時のハンドリング性や固化助剤との混合性に問題が生じる場合がある。   Since the reactivity of hydraulic alumina is affected by particle size, the average particle size of hydraulic alumina measured by a laser diffraction particle size distribution meter is preferably 1 μm to 20 μm, and more preferably 2 μm to 15 μm. When the average particle size is larger than 20 μm, sufficient solidification strength is difficult to obtain, and there is a tendency to cause material separation. If it is smaller than 1 μm, the powder flowability is not preferred, and there may be a problem in handling properties during transportation and mixing with the solidification aid.

固化材の補助成分として使用する炭酸リチウムは、純度90質量%以上のものが望ましい。90質量%未満の製品も使用可能であるが、その場合、水硬性アルミナに対する割合を調整する必要がある。また、その粒度は平均粒径で2μm〜20μmのものが好ましく、2μm〜15μmのものが更に好ましい。20μmより大では十分な促進効果が得られないか、材料分離を生じる傾向があり、また、2μmより小では、上述の水硬性アルミナと同様に、粉体流動性が好ましくなく輸送時のハンドリング性や固化助剤との混合性に問題が生じる場合がある。なお、固化助剤として、炭酸リチウムの他に、塩化リチウム、硝酸リチウム等の無機塩等も使用可能である。ただし、入手の容易さで炭酸リチウムの使用が最も好ましい。   The lithium carbonate used as an auxiliary component of the solidifying material preferably has a purity of 90% by mass or more. Although a product of less than 90% by mass can be used, in that case, it is necessary to adjust the ratio relative to the hydraulic alumina. The average particle size is preferably 2 μm to 20 μm, more preferably 2 μm to 15 μm. If it is larger than 20 μm, a sufficient accelerating effect is not obtained or there is a tendency to cause material separation, and if it is smaller than 2 μm, like the above-mentioned hydraulic alumina, the powder fluidity is not preferable, and handling property during transportation In some cases, there is a problem in the mixing property with the solidification aid. In addition to lithium carbonate, inorganic salts such as lithium chloride and lithium nitrate can be used as the solidification aid. However, it is most preferable to use lithium carbonate because of its availability.

固化材として混合されたこれらの材料、すなわち酸化マグネシウム、水硬性アルミナ、及び炭酸リチウムは何れも粉末状であればよく、その調製に当たっては特別な機器、手段を必要とせず、ミキサー等公知の粉体混合用の機器を使った公知の粉体混合方法が適用できる。更に好ましくは、これらの粉体の混合と粉砕をボールミル等公知の粉砕機で同時に行うことで、より固化特性に優れた混合物を得ることが出来る。   These materials mixed as a solidifying material, that is, magnesium oxide, hydraulic alumina, and lithium carbonate may all be in the form of powder, and no special equipment or means is required for the preparation, and known powder such as a mixer is used. A known powder mixing method using a body mixing device can be applied. More preferably, these powders can be mixed and pulverized simultaneously with a known pulverizer such as a ball mill to obtain a mixture with more excellent solidification characteristics.

本発明に用いる水硬性アルミナは、次の方法によって好適に得られる。すなわち、水硬性アルミナを製造するに当たっては、アルミニウム製造産業の副産物として生成する非晶質の水酸化アルミニウム含水物等(アルミニウムの陽極酸化処理工程の中和・凝集により副生する水酸化アルミニウム)を主成分とするスラッジを原料とする。このスラッジを50℃〜400℃、好ましくは110℃〜350℃で恒量になるまで加熱する。これにより、水硬性アルミナが得られる。加熱温度が50℃よりも低いと、水硬性アルミナの反応性が十分でなく、固化材とした場合、十分な固化強度を得ることができない。また、恒量(乾燥する)となるまでに長時間がかかり、製造コストの増加を招くことになる。一方、400℃よりも高い温度で長時間加熱すると、同様に水硬性アルミナの反応性が低下し、固化強度が低下する。なお、水硬性アルミナの製造装置としては、通常の各種の電気加熱式、熱風式乾燥機、或いはロータリーキルン等の加熱装置を好適に使用することができる。   The hydraulic alumina used in the present invention is suitably obtained by the following method. In other words, in producing hydraulic alumina, amorphous aluminum hydroxide hydrates and the like produced as a by-product of the aluminum manufacturing industry (aluminum hydroxide by-produced by neutralization / aggregation of the anodizing process of aluminum) are produced. The main ingredient is sludge. The sludge is heated at 50 ° C. to 400 ° C., preferably 110 ° C. to 350 ° C. until a constant weight is obtained. Thereby, hydraulic alumina is obtained. When the heating temperature is lower than 50 ° C., the reactivity of the hydraulic alumina is not sufficient, and sufficient solidification strength cannot be obtained when the solidified material is used. Moreover, it takes a long time to reach a constant weight (drying), resulting in an increase in manufacturing cost. On the other hand, when heated at a temperature higher than 400 ° C. for a long time, similarly, the reactivity of hydraulic alumina is lowered, and the solidification strength is lowered. In addition, as a manufacturing apparatus of hydraulic alumina, heating apparatuses, such as a normal various electric heating type, a hot air dryer, or a rotary kiln, can be used conveniently.

<固化処理方法>
次に、本発明に係る含水土の固化処理方法の好適な実施形態について説明する。上記方法により得られた低アルカリ固化材は目標強度、処理コストなどを考慮して、含水土1m当たりに50kg〜200kg、好ましくは50kg〜150kg添加して混合する。固化材の混合には、バックホウ、クラムシェル、プラント混合装置などの一般的な混合装置を用いることが出来る。
<Solidification method>
Next, a preferred embodiment of the method for solidifying hydrous soil according to the present invention will be described. The low alkali solidified material obtained by the above method is added and mixed in an amount of 50 kg to 200 kg, preferably 50 kg to 150 kg per 1 m 3 of hydrous soil in consideration of target strength, processing cost, and the like. For mixing the solidifying material, a general mixing apparatus such as a backhoe, a clam shell, a plant mixing apparatus, or the like can be used.

以下に実施例を示し本発明を具体的に詳細に説明するが、本発明は、下記実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples.

(1)水硬性アルミナの製造
アルミニウムの陽極酸化処理工程の中和・凝集により副生した非晶質の水酸化アルミニウム含水物をPasolina(株)製(TYO-300)乾燥機またはヤマト科学(株)製の電気炉を用いて、JIS R 5202 「ポルトランドセメントの化学分析方法」 8.強熱減量の定量方法 に則り、50〜400℃で15分間ずつ加熱を繰返し、恒量(最後の15分間の加熱前後の質量差が乾燥前の水酸化アルミニウム含有物の0.05質量%以下)になるまで加熱した後、通常のボールミルを用いて粉砕することにより、粉体状の水硬性アルミナを得た。そして、得られた水硬性アルミナを、(株)堀場製作所製レーザー回折式粒度分布測定装置LA−500Aによって測定したところ、非晶質な水硬性アルミナの平均粒径は15μmであった。
(1) Manufacture of hydraulic alumina Amorphous aluminum hydroxide hydrate produced as a by-product of neutralization and agglomeration in the anodizing process of aluminum is manufactured by Pasolina (TYO-300) dryer or Yamato Science Co., Ltd. ) JIS R 5202 "Chemical analysis method of Portland cement" using an electric furnace manufactured by Repeated heating at 50 to 400 ° C for 15 minutes in accordance with the quantitative method for loss on ignition, constant weight (mass difference before and after heating for the last 15 minutes is 0.05 mass% or less of the aluminum hydroxide-containing material before drying) After heating to pulverize, a powdery hydraulic alumina was obtained by pulverization using a normal ball mill. And when the obtained hydraulic alumina was measured by the laser diffraction type particle size distribution measuring device LA-500A made by Horiba, Ltd., the average particle diameter of the amorphous hydraulic alumina was 15 μm.

ここで、図1に、原料に使用した副生水酸化アルミニウムの自然乾燥(天日乾燥)におけるX線回折測定結果を示し、図2、図3および図4に、その副生水酸化アルミニウムを加熱温度110℃、200℃および400℃として得られた非晶質な水硬性アルミナのX線回折測定結果を示す。また、表1に、副生水酸化アルミニウムの110℃加熱後の化学分析結果、並びに強熱減量を示す。   Here, FIG. 1 shows the result of X-ray diffraction measurement in natural drying (sun drying) of by-product aluminum hydroxide used as a raw material, and FIGS. 2, 3 and 4 show the by-product aluminum hydroxide. The X-ray-diffraction measurement result of the amorphous hydraulic alumina obtained by heating temperature 110 degreeC, 200 degreeC, and 400 degreeC is shown. Table 1 shows the chemical analysis results of the by-product aluminum hydroxide after heating at 110 ° C. and the ignition loss.

Figure 2006297285
Figure 2006297285

なお、X線回折測定には、X線回折装置として理学電気(株)製RINT−2500Vを用いた。X線回折装置における測定条件は次の通りとした。   For the X-ray diffraction measurement, RINT-2500V manufactured by Rigaku Corporation was used as the X-ray diffraction apparatus. The measurement conditions in the X-ray diffractometer were as follows.

管球:Cu、管電流:130mA、管電圧:50kV、サンプリング幅:0.02°、走査速度:4°/min、波長:1.5405Å、測定回折角範囲(2θ):5°〜70°   Tube: Cu, tube current: 130 mA, tube voltage: 50 kV, sampling width: 0.02 °, scanning speed: 4 ° / min, wavelength: 1.5405 mm, measurement diffraction angle range (2θ): 5 ° to 70 °

図1に示すX線回折の結果、加熱前の副生水酸化アルミニウムには、少量のギブサイト(Al(OH)):Gi及びバイヤライト(Al):Baのピークが確認されるものの、副生水酸化アルミニウムの大半は非晶質のアルミニウム化合物であることが確認された。図2に示すX線回折の結果では、副生水酸化アルミニウム含水物を110℃で加熱することによって得られた水硬性アルミナには、2θ=約13°〜33°にブロードなピークが認められ、2θ=20°にその頂点を有している。さらに、このブロードなピークの左右のボトムにベースラインBを引き(ブロードなピークの裾野を線で結び)、このベースラインBからのブロードなピークの高さを基準にして半値幅を求めたところ、2θ=17°と2θ=26°で半値となり、半値幅は9°であった。図3に示すX線回折の結果でも、副生水酸化アルミニウム含水物を200℃の温度で加熱することによって得られた水硬性アルミナには、2θ=約14°〜38°にブロードなピークが認められ、2θ=22°にその頂点を有している。また、ベースラインBからのブロードなピークの高さを基準にして半値幅を求めたところ、2θ=18°と2θ=29°で半値となり、半値幅は11°であった。図4に示すX線回折の結果でも、副生水酸化アルミニウム含水物を400℃の温度で加熱することによって得られた水硬性アルミナには、2θ=約13°〜40°にブロードなピークが認められ、2θ=24°にその頂点を有している。また、ベースラインBからのブロードなピークの高さを基準にして半値幅を求めたところ、2θ=19°と2θ=31°で半値となり、半値幅は12°であった。 As a result of the X-ray diffraction shown in FIG. 1, a small amount of gibbsite (Al (OH) 3 ): Gi and bayerite (Al 2 O 3 ): Ba peaks are confirmed in the byproduct aluminum hydroxide before heating. However, most of the by-product aluminum hydroxide was confirmed to be an amorphous aluminum compound. As a result of X-ray diffraction shown in FIG. 2, a broad peak at 2θ = about 13 ° to 33 ° is recognized in hydraulic alumina obtained by heating the byproduct aluminum hydroxide hydrate at 110 ° C. It has its apex at 2θ = 20 °. Furthermore, the baseline B was drawn on the left and right bottoms of this broad peak (the broad peak skirt was connected by a line), and the half width was obtained based on the height of the broad peak from this baseline B. The half value was 2θ = 17 ° and 2θ = 26 °, and the half value width was 9 °. Also in the result of X-ray diffraction shown in FIG. 3, the hydraulic alumina obtained by heating the by-product aluminum hydroxide hydrate at a temperature of 200 ° C. has a broad peak at 2θ = about 14 ° to 38 °. Is recognized and has its apex at 2θ = 22 °. Further, when the half width was obtained based on the height of the broad peak from the baseline B, the half width was 2θ = 18 ° and 2θ = 29 °, and the half width was 11 °. Also in the result of X-ray diffraction shown in FIG. 4, the hydraulic alumina obtained by heating the byproduct aluminum hydroxide hydrate at a temperature of 400 ° C. has a broad peak at 2θ = about 13 ° to 40 °. Is recognized and has its apex at 2θ = 24 °. Further, when the full width at half maximum was determined based on the height of the broad peak from the baseline B, the full width at half maximum was 2θ = 19 ° and 2θ = 31 °, and the full width at half maximum was 12 °.

(2)固化材等の調製
中国産の軽焼マグネシアと、非晶質の副生水酸化アルミニウム含水物を表2に示す温度で恒量になるまで加熱することにより得られた水硬性アルミナ、そして、本荘ケミカル(株)製工業品の炭酸リチウムを用い、表2に示す割合で混合して調製した(実施例1〜24)。また、比較用として、水硬性アルミナ単味(比較例1、8)、酸化マグネシウムの添加量が少ない固化材(比較例2、9)、酸化マグネシウムの添加量の多い固化材(比較例3、10)、加熱温度が高すぎる水硬性アルミナを配合した固化材(比較例4、11)、加熱温度が低すぎる水硬性アルミナを用いた固化材(比較例5、12)さらに軽焼マグネシア(酸化マグネシウム)単味(比較例6、13)、宇部三菱セメント(株)製セメント系固化材ユースタビラー10(比較例7、14)をそれぞれ用意した。
(2) Preparation of solidified material, etc. Lightly burned magnesia made in China and hydraulic alumina obtained by heating amorphous by-product aluminum hydroxide hydrate to a constant weight at the temperature shown in Table 2, and The mixture was prepared by using lithium carbonate manufactured by Honjo Chemical Co., Ltd. at the ratio shown in Table 2 (Examples 1 to 24). In addition, as a comparative example, hydraulic alumina simple (Comparative Examples 1 and 8), solidified material with a small amount of magnesium oxide added (Comparative Examples 2 and 9), solidified material with a large amount of magnesium oxide added (Comparative Example 3, 10) Solidified material blended with hydraulic alumina whose heating temperature is too high (Comparative Examples 4 and 11), Solidified material using hydraulic alumina whose heating temperature is too low (Comparative Examples 5 and 12), and light calcined magnesia (oxidation) Magnesium) simple (Comparative Examples 6 and 13) and Ube Mitsubishi Cement Co., Ltd. cement-based solidified material youth tabiler 10 (Comparative Examples 7 and 14) were prepared.

Figure 2006297285
Figure 2006297285

Figure 2006297285
Figure 2006297285

Figure 2006297285
Figure 2006297285

(3)供試体の調製
固化試験用供試体の調整:表3および4に示すように、上記(2)において調製した固化材を2種類の試料土1mに対し100kgの割合で添加した後、ホバート型ミキサーで3分間混合して改良土壌を調製した。このとき、土質の異なる2種の試料土としては、表3の「試料土」の欄に示す試料土A(含水比50.0%、pH7.49),および表4の「試料土」の欄に示す試料土B(黒ぼく)(含水比96.7%、pH6.82)を対象とした。その後、セメント協会標準試験方法JCAS L−01−2003「セメント系固化材による安定処理土の試験方法」に則り、改良土壌から、直径5cm×高さ10cmの成型体を得た。成型体は、温度20℃、湿度96%の恒温恒湿槽内で7日間養生して供試体を得た。
(3) Specimen Preparation solidification test specimen Adjustment: As shown in Table 3 and 4, after the addition of solidified material prepared in the above (2) with respect to two samples soil 1 m 3 at a rate of 100kg The improved soil was prepared by mixing for 3 minutes with a Hobart mixer. At this time, as the two types of sample soils having different soil properties, sample soil A (water content ratio 50.0%, pH 7.49) shown in the column of “sample soil” in Table 3 and “sample soil” in Table 4 Sample soil B (Kuroboku) (water content ratio 96.7%, pH 6.82) shown in the column was used as a target. Thereafter, a molded body having a diameter of 5 cm and a height of 10 cm was obtained from the improved soil in accordance with the Cement Association Standard Test Method JCAS L-01-2003 “Test Method for Stabilized Soil Using Cement-Based Solidified Material”. The molded body was cured for 7 days in a constant temperature and humidity chamber at a temperature of 20 ° C. and a humidity of 96% to obtain a specimen.

(4)改良土壌の評価:一軸圧縮試験
上記(3)で得られた供試体を、JIS A1216:1998「土の一軸圧縮試験方法」に則り一軸圧縮試験を行った。一軸圧縮強さについては、第3種改良土相当であるコーン指数400kN/mを一軸圧縮強さに換算した値である160kN/m以上を目標とした。コーン指数の一軸圧縮強さへの換算は以下のとおりとした。表3及び表4の「一軸圧縮強さ」の欄に測定結果を示す。
〔一軸圧縮強さ換算値=400(コーン指数)/10(一軸換算係数)/0.5(現場室内強度比)/0.5(ときほぐし・締固めによる強度低下)〕
(4) Evaluation of improved soil: uniaxial compression test The specimen obtained in the above (3) was subjected to a uniaxial compression test in accordance with JIS A1216: 1998 "Soil uniaxial compression test method". About uniaxial compressive strength, 160 kN / m < 2 > or more which is the value which converted the corn index 400 kN / m < 2 > equivalent to 3rd type | mold improved soil into uniaxial compressive strength was aimed. Conversion to the uniaxial compressive strength of the cone index was as follows. The measurement results are shown in the column of “uniaxial compressive strength” in Tables 3 and 4.
[Uniaxial compressive strength conversion value = 400 (cone index) / 10 (uniaxial conversion coefficient) /0.5 (in-situ indoor strength ratio) /0.5 (strength reduction due to occasional loosening and compaction)]

(5)改良土壌の評価:pH測定
上記(3)で得られた改良土壌について材齢7日で、地盤工学会基準JGS0211−2000「土懸濁液のpH試験方法」に則りpHを測定した。pH値については、非特許文献1に示される鉛の溶解度が最も低い9〜10の範囲内に在ることを目標とした。表3および表4の「改良土のpH」の欄に測定結果を示す。
(5) Evaluation of improved soil: pH measurement The pH of the improved soil obtained in (3) above was measured in accordance with JGS0211-2000 “Ground test method for soil suspension” at the age of 7 days. . About pH value, it aimed at existing in the range of 9-10 in which the solubility of lead shown in nonpatent literature 1 is the lowest. The measurement results are shown in the column of “pH of improved soil” in Tables 3 and 4.

[固化試験について]
(3)で述べたように、水硬性アルミナ、炭酸リチウム及び酸化マグネシウムより成る固化材を調製し、土質の異なる2種の粘性土A,黒ぼくBを対象とした場合の固化試験結果を表3及び表4に示している。
[About solidification test]
As described in (3), the solidification test results when solidified material consisting of hydraulic alumina, lithium carbonate, and magnesium oxide was prepared and two types of clay soil A and blackboku B with different soil properties were used as a target. 3 and Table 4.

比較例1、8に示すように、水硬性アルミナ単独で構成される固化材を用いた供試体の一軸圧縮強さは、160N/m以下の低い値を示した。また、pHは9未満であった。また、比較例2、9及び比較例3、10に示すように、酸化マグネシウムの添加量が15質量%以下あるいは60質量%を超える量で構成される固化材を用いた供試体の一軸圧縮強さは、160kN/m以上の強度が得られるものの、pHが9未満となるか、または、pHが10を超える。 As shown in Comparative Examples 1 and 8, the uniaxial compressive strength of the specimen using the solidified material composed of hydraulic alumina alone showed a low value of 160 N / m 2 or less. Moreover, pH was less than 9. Further, as shown in Comparative Examples 2 and 9 and Comparative Examples 3 and 10, the uniaxial compressive strength of the specimen using the solidified material in which the amount of magnesium oxide added is 15% by mass or less or exceeds 60% by mass. Although the strength of 160 kN / m 2 or more can be obtained, the pH is less than 9 or the pH exceeds 10.

一方、実施例1〜24に示すように、酸化マグネシウム、水硬性アルミナおよび炭酸リチウムが所定量添加、混合された固化材を使用した場合、得られた供試体の一軸圧縮強さは、目標とする160kN/mを十分超えていた。そのうえ、pHは9〜10の低アルカリを示した。 On the other hand, as shown in Examples 1 to 24, when using a solidified material in which a predetermined amount of magnesium oxide, hydraulic alumina and lithium carbonate was added and mixed, the uniaxial compressive strength of the obtained specimen was the target and 160 kN / m 2 was sufficiently exceeded. Moreover, the pH showed a low alkali of 9-10.

これに対し、水硬性アルミナの製造(加熱)温度が、50℃以下、または400℃を超える場合、比較例4、5で示すように、供試体の強度は160kN/m以下の低い値を示す場合がある。また、比較例6、13および比較例7、14で示す、酸化マグネシウム単味およびセメント系固化材を用いた供試体は、pHは10を超える。 On the other hand, when the production (heating) temperature of the hydraulic alumina exceeds 50 ° C. or exceeds 400 ° C., as shown in Comparative Examples 4 and 5, the strength of the specimen has a low value of 160 kN / m 2 or less. May show. Moreover, the specimens using the magnesium oxide simple substance and the cement-based solidified material shown in Comparative Examples 6 and 13 and Comparative Examples 7 and 14 have a pH exceeding 10.

副生水酸化アルミニウムを自然乾燥(天日乾燥)した後のX線回折測定結果を示したグラフである。It is the graph which showed the X-ray-diffraction measurement result after carrying out natural drying (sun-drying) of byproduct aluminum hydroxide. 副生水酸化アルミニウムを110℃で加熱した後のX線回折測定結果を示したグラフである。It is the graph which showed the X-ray-diffraction measurement result after heating byproduct aluminum hydroxide at 110 degreeC. 副生水酸化アルミニウムを200℃で加熱した後のX線回折測定結果を示したグラフである。It is the graph which showed the X-ray-diffraction measurement result after heating byproduct aluminum hydroxide at 200 degreeC. 副生水酸化アルミニウムを400℃で加熱した後のX線回折測定結果を示したグラフである。It is the graph which showed the X-ray-diffraction measurement result after heating byproduct aluminum hydroxide at 400 degreeC.

符号の説明Explanation of symbols

Ba…バイヤライト(Al)、Gi…ギブサイト(Al(OH))、B…ベースライン。
Ba ... bayerite (Al 2 O 3), Gi ... gibbsite (Al (OH) 3), B ... baseline.

Claims (3)

酸化マグネシウムを15質量%を超えて60質量%以下、
波長1.5405Åにおける粉末X線回折スペクトルが、2θ=22±5°にブロードなピークの頂点を有し、該ブロードなピークのベースラインを基準とした半値幅が6°〜20°である水硬性アルミナを30質量%〜82質量%、
及び炭酸リチウムを2質量%〜15質量%、
含むことを特徴とする含水土用低アルカリ固化材。
Magnesium oxide more than 15% by mass and 60% by mass or less,
A powder X-ray diffraction spectrum at a wavelength of 1.5405 mm has a peak of a broad peak at 2θ = 22 ± 5 °, and water having a half width of 6 ° to 20 ° with reference to the baseline of the broad peak 30% by mass to 82% by mass of hard alumina,
And 2% to 15% by weight of lithium carbonate,
A low alkali solidifying material for hydrous soil characterized by containing.
前記水硬性アルミナが、アルミニウムの陽極酸化処理工程の中和・凝集により副生した非晶質の水酸化アルミニウム化合物を、50℃〜400℃で恒量となるまで加熱したものであることを特徴とする請求項1に記載の含水土用低アルカリ固化材。   The hydraulic alumina is obtained by heating an amorphous aluminum hydroxide compound by-produced by neutralization and agglomeration in an anodizing treatment step of aluminum to a constant weight at 50 ° C. to 400 ° C. The low alkali solidification material for hydrous soil according to claim 1. 含水土1m当たり、請求項1または2に記載の含水土用低アルカリ固化材を50kg〜200kg混合することを特徴とする固化処理方法。
Wet soil 1 m 3 per solidification method characterized by mixing 50kg~200kg hydrous doyo low alkali solidifying material according to claim 1 or 2.
JP2005122823A 2005-04-20 2005-04-20 Low alkali solidification material for hydrous soil and solidification treatment method Expired - Fee Related JP4837936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005122823A JP4837936B2 (en) 2005-04-20 2005-04-20 Low alkali solidification material for hydrous soil and solidification treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005122823A JP4837936B2 (en) 2005-04-20 2005-04-20 Low alkali solidification material for hydrous soil and solidification treatment method

Publications (2)

Publication Number Publication Date
JP2006297285A true JP2006297285A (en) 2006-11-02
JP4837936B2 JP4837936B2 (en) 2011-12-14

Family

ID=37466015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005122823A Expired - Fee Related JP4837936B2 (en) 2005-04-20 2005-04-20 Low alkali solidification material for hydrous soil and solidification treatment method

Country Status (1)

Country Link
JP (1) JP4837936B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020947A (en) * 2013-07-16 2015-02-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. Method of producing alumina powder for filler of printed circuit board, and resin compositions for printed circuit board containing the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142636A (en) * 1992-11-10 1994-05-24 Mitsubishi Materials Corp Method for reusing aluminum dross
JPH06191907A (en) * 1992-12-28 1994-07-12 Agency Of Ind Science & Technol Production of alumina cement
JPH1067571A (en) * 1996-08-23 1998-03-10 Sumitomo Chem Co Ltd Production of hydraulic alumina
JPH10273663A (en) * 1997-03-28 1998-10-13 Ube Ind Ltd Solidifying material for water-containing soil and solidification and improvement of water-containing soil
JP2000109831A (en) * 1998-10-01 2000-04-18 Ube Ind Ltd Solidifying material for moisture-containing soil and improvement of solidification of moisture-containing soil
JP2000239660A (en) * 1999-02-17 2000-09-05 Tousei Sangyo Kk Soil-solidifying agent
JP2001003463A (en) * 1999-06-22 2001-01-09 Tateyama Alum Ind Co Ltd Building humidity conditioning material
JP2003117532A (en) * 2001-10-09 2003-04-22 Taiheiyo Cement Corp Solidifying material and solidifying method for suppressing elution of heavy metal
JP2003205216A (en) * 2002-01-11 2003-07-22 Tateyama Alum Ind Co Ltd Humidity-controlling agent for building and humidity- controlling board for building
JP2003225640A (en) * 2001-11-30 2003-08-12 Matsuda Giken Kogyo Kk Solidifying and insolubilizing agent for contaminated soil
JP2005015698A (en) * 2003-06-27 2005-01-20 Ube Ind Ltd Neutral hardening material for watery soil, and suppressing method for heavy metal elution from soil and treating method for dehydration of soil using it
JP2006056989A (en) * 2004-08-19 2006-03-02 Mitsubishi Materials Corp Hydraulic alumina, neutral solidification material for water-containing soil obtained by using the same, method for producing hydraulic alumina, method for preventing heavy metal from being eluted, and method of dehydration and solidification treatment of highly water-containing soil

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142636A (en) * 1992-11-10 1994-05-24 Mitsubishi Materials Corp Method for reusing aluminum dross
JPH06191907A (en) * 1992-12-28 1994-07-12 Agency Of Ind Science & Technol Production of alumina cement
JPH1067571A (en) * 1996-08-23 1998-03-10 Sumitomo Chem Co Ltd Production of hydraulic alumina
JPH10273663A (en) * 1997-03-28 1998-10-13 Ube Ind Ltd Solidifying material for water-containing soil and solidification and improvement of water-containing soil
JP2000109831A (en) * 1998-10-01 2000-04-18 Ube Ind Ltd Solidifying material for moisture-containing soil and improvement of solidification of moisture-containing soil
JP2000239660A (en) * 1999-02-17 2000-09-05 Tousei Sangyo Kk Soil-solidifying agent
JP2001003463A (en) * 1999-06-22 2001-01-09 Tateyama Alum Ind Co Ltd Building humidity conditioning material
JP2003117532A (en) * 2001-10-09 2003-04-22 Taiheiyo Cement Corp Solidifying material and solidifying method for suppressing elution of heavy metal
JP2003225640A (en) * 2001-11-30 2003-08-12 Matsuda Giken Kogyo Kk Solidifying and insolubilizing agent for contaminated soil
JP2003205216A (en) * 2002-01-11 2003-07-22 Tateyama Alum Ind Co Ltd Humidity-controlling agent for building and humidity- controlling board for building
JP2005015698A (en) * 2003-06-27 2005-01-20 Ube Ind Ltd Neutral hardening material for watery soil, and suppressing method for heavy metal elution from soil and treating method for dehydration of soil using it
JP2006056989A (en) * 2004-08-19 2006-03-02 Mitsubishi Materials Corp Hydraulic alumina, neutral solidification material for water-containing soil obtained by using the same, method for producing hydraulic alumina, method for preventing heavy metal from being eluted, and method of dehydration and solidification treatment of highly water-containing soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020947A (en) * 2013-07-16 2015-02-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. Method of producing alumina powder for filler of printed circuit board, and resin compositions for printed circuit board containing the same

Also Published As

Publication number Publication date
JP4837936B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
KR900002819B1 (en) Hydraulic material composition having high strengh
JP5068245B2 (en) Insolubilized material
Hasnain et al. Eco-friendly utilization of rice husk ash and bagasse ash blend as partial sand replacement in self-compacting concrete
JP4775045B2 (en) Reducing gypsum composition, method for producing the same, cement-based solidifying material, and solidifying method
JP5931317B2 (en) Hydraulic composition and concrete using the hydraulic composition
KR102360147B1 (en) Magnesium oxide-containing spinel powder and manufacturing method thereof
Billong et al. Improving hydraulic properties of lime–rice husk ash (RHA) binders with metakaolin (MK)
JP2010131535A (en) Insolubilizing agent
JP4968390B1 (en) Cement composition and method for producing the same
JP5776749B2 (en) Cement-based solidified concrete sludge heat-dried powder and method for producing the same
WO2012120747A1 (en) Cement compositions and process for producing same
JP5500828B2 (en) Soil hardening material
JP5291333B2 (en) Insolubilizing material and insolubilizing method
JP4837936B2 (en) Low alkali solidification material for hydrous soil and solidification treatment method
CN113185216A (en) High-impermeability self-compacting concrete and preparation method thereof
JP4690729B2 (en) Hydraulic alumina composition for hydrous soil neutral solidifying material, method for producing the same, neutral solidifying material for hydrous soil, method for preventing heavy metal elution, and dehydration solidification method for highly hydrous soil
KR102202526B1 (en) Method for manufacturing coal ash and composition of coal ash and cement
JP4462853B2 (en) Neutral solidifying material for hydrous soil, soil heavy metal elution control method and dehydration method using the same
JP2017109906A (en) Slag powder and manufacturing method of slag powder
JP2020029502A (en) Solidification material and solidification method of soil
JP4680549B2 (en) Hydraulic alumina composition for hydrous soil neutral solidifying material, method for producing the same, neutral solidifying material for hydrous soil, method for preventing heavy metal elution, and dehydration solidification method for highly hydrous soil
JP6656912B2 (en) Sorting method of insolubilizing material
JP4630655B2 (en) Mixed solidification material for soil
JP2021017376A (en) Expandable composition for cement, and cement composition
JP6781958B2 (en) How to make improved soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4837936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees