JP2006296097A - Reverse power flow prevention system - Google Patents

Reverse power flow prevention system Download PDF

Info

Publication number
JP2006296097A
JP2006296097A JP2005114233A JP2005114233A JP2006296097A JP 2006296097 A JP2006296097 A JP 2006296097A JP 2005114233 A JP2005114233 A JP 2005114233A JP 2005114233 A JP2005114233 A JP 2005114233A JP 2006296097 A JP2006296097 A JP 2006296097A
Authority
JP
Japan
Prior art keywords
power
natural energy
reverse
generation device
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005114233A
Other languages
Japanese (ja)
Inventor
Kosuke Kobayashi
林 広 介 小
Haruyoshi Miyake
宅 治 良 三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2005114233A priority Critical patent/JP2006296097A/en
Publication of JP2006296097A publication Critical patent/JP2006296097A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reverse power flow prevention system, a system that interlinks a power generation device by natural energy and another power generation device by energy other than the natural energy, that can optionally prevent a reverse power flow from the power generation devices other than the natural energy to the commercial power side, and furthermore that can be applied to all distributed power supplies and structured at low cost without the need of modification to the power generation devices. <P>SOLUTION: This system is provided with the power generation device (9) by the natural energy, another power generation device (6) by the energy other than the natural energy, and a reverse power flow prevention system (11). The reverse power flow prevention system (11) is positioned in higher order of the power generation device (6) by the energy other than the natural energy and in lower order of the power generation device (9) by the natural energy. Electric power detection means (7A, 7B) that detect the reverse power flow from the power generation device (6) by the energy other than the natural energy to a commercial power source (1) side is provided in the higher and lower order of the reverse power flow prevention system (11), which is configured to close loads (31, 32, 33) if the electric power detection means (7A) positioned in higher order detects a reverse power flow from the power generation device by the energy other than the natural energy to the commercial power source (1) side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、商用電源から電力を供給され、且つ、自然エネルギーによる発電装置(例えば、太陽光発電装置,風力発電装置,波力発電装置,地熱発電装置等)と、自然エネルギー以外の発電装置(例えば燃料電池,ガスエンジン,マイクロガスタービン等)とを備えるシステムであって、自然エネルギー以外の発電装置から商用電源側への逆潮流を防止する機能を有する逆潮流防止システムに関する。   The present invention supplies power from a commercial power source and uses a natural energy generator (for example, a solar power generator, a wind power generator, a wave power generator, a geothermal power generator, etc.) and a generator other than natural energy ( For example, the present invention relates to a reverse power flow prevention system having a function of preventing a reverse power flow from a power generation device other than natural energy to a commercial power source side, including a fuel cell, a gas engine, a micro gas turbine, and the like.

係るシステムでは、需要家が、同一構内に自然エネルギーによる発電装置と自然エネルギー以外の発電装置を設置し、系統連系する場合に、自然エネルギー以外の発電装置のハード構成や制御に改造を加えることなく、自然エネルギー以外の発電装置からの逆潮流を防止し、系統への逆潮流を自然エネルギーによる発電装置からのみにすることが望まれる。   In such a system, when a consumer installs a power generator using natural energy and a power generator other than natural energy on the same premises and connects them to the grid, the hardware configuration and control of the power generator other than natural energy are modified. In addition, it is desirable to prevent reverse power flow from power generation devices other than natural energy and to make reverse power flow to the system only from power generation devices using natural energy.

分散電源の普及が進んでいる今日では、必要な系統連系保護要件を満たせば発電装置から商用電源側への逆潮流を認められた形での系統連系実施例が増えている。一般に分散電源が太陽光発電や風力発電等の自然エネルギーによる発電装置である場合、余剰電力として系統に逆潮流した電力量は、系統から購入する電力量と等価かそれに近い形で取引されている事例が多い。
一方、コージェネレーションシステムなど、自然エネルギー以外の分散電源からの逆潮流については、通常太陽光発電装置等と比べて低い価格で取引されることが多い。
自然エネルギー保護に関する法律、いわゆるRPS法では、自然エネルギーによる発電に対して法律的な優遇措置があり、電力会社に対して売電する際に、高価格で取引されている背景があるからである。
In today's widespread use of distributed power sources, there are an increasing number of grid interconnection examples in which a reverse power flow from the power generator to the commercial power source is recognized if the necessary grid interconnection protection requirements are met. In general, when the distributed power source is a power generation device using natural energy such as solar power generation or wind power generation, the amount of power that flows backward to the grid as surplus power is traded in a form that is equivalent to or close to the amount of power purchased from the grid. There are many cases.
On the other hand, reverse power flows from distributed power sources other than natural energy, such as cogeneration systems, are often traded at a lower price than solar power generation devices.
This is because the law on the protection of natural energy, the so-called RPS law, has legal preferential treatment for power generation by natural energy, and there is a background that it is traded at a high price when selling electricity to electric power companies. .

そのため、自然エネルギーによる発電装置と、自然エネルギー以外の発電装置とを設けている場合に、逆潮流が生じた場合には、自然エネルギーによる発電装置に由来するものか、或いは、自然エネルギー以外の発電装置に由来するものかが重要な問題となる。
すなわち、自然エネルギーにより発電された電力に対する優遇措置はそのまま享受して、安価に売電される燃料電池からの逆潮流のみを防止したいという要請が存在するのである。
Therefore, in the case where a power generation device using natural energy and a power generation device other than natural energy are provided, if a reverse power flow occurs, it may be derived from the power generation device using natural energy or power generation other than natural energy. What comes from the device is an important issue.
That is, there is a demand to enjoy the preferential treatment for the power generated by natural energy as it is and to prevent only the reverse power flow from the fuel cell sold at low cost.

分散電源を系統連系する場合であって、系統側への逆潮流を認められない場合、従来技術では、例えば図8で示す様に、受電点での電力潮流を監視し、逆潮流が発生した場合に、分散電源の出力を調整し、或いは、分散電源を停止している。
すなわち、図8において、電流制限器2と主幹ブレーカー3との間に電力検出手段7を設け、電力検出手段7が商用電源1側へ向う逆潮流状態を検出した場合に、制御装置8からの制御信号により、分散電源6の出力を低下し或いは停止している。
なお、図8において、符号4は分岐ブレーカーを示しており、分岐ブレーカー4は家庭の負荷等に接続されている。そして、符号5は分散電源連系用ブレーカーを示している。
When the distributed power source is connected to the grid, and no reverse power flow to the system side is recognized, the conventional technology monitors the power flow at the power receiving point, for example, as shown in FIG. In such a case, the output of the distributed power supply is adjusted or the distributed power supply is stopped.
That is, in FIG. 8, when the power detection means 7 is provided between the current limiter 2 and the main breaker 3 and the power detection means 7 detects the reverse power flow state toward the commercial power source 1 side, The output of the distributed power source 6 is reduced or stopped by the control signal.
In FIG. 8, reference numeral 4 denotes a branch breaker, and the branch breaker 4 is connected to a household load or the like. Reference numeral 5 denotes a distributed power supply breaker.

しかし、図8のような従来技術では、分散電源の出力の低下は、当該分散電源の出力調整能力に依存するので(図11参照)、急峻な出力調整が困難な分散電源(例えば燃料電池等)では、逆潮流状態に対して瞬時に対処出来ない。
また、分散電源を停止する制御を採用した場合には、頻繁な起動停止が発生することにより、機器寿命や省エネルギー性に悪影響を与えてしまうという問題がある。
However, in the prior art as shown in FIG. 8, the reduction in the output of the distributed power supply depends on the output adjustment capability of the distributed power supply (see FIG. 11), and thus a distributed power supply (for example, a fuel cell or the like) that makes it difficult to sharply adjust output ) Cannot deal with reverse power flow conditions instantaneously.
In addition, when the control for stopping the distributed power supply is adopted, there is a problem that the device life and energy saving are adversely affected by frequent start and stop.

図9で示す従来技術では、電力検出手段7で逆潮流を検出した場合に、制御手段8は、ダミー負荷9を投入することにより、逆潮流にかかる電力をダミー負荷で消費させて、商用電源1側へ分散電源6の電力が供給されない様に構成している。
しかし、図9の従来技術では、ダミー負荷9を投入して逆潮流を防止しても、受電点すなわち電力検出手段7が設けられた位置における電力情報だけでは、一般の負荷とダミー負荷とを判別することができない。よって分散電源6を一般の負荷に合わせて制御した場合に,有効電力を上げるべきか下げるべきかの判断ができない。そのため、図9の従来技術では、ダミー負荷9と分散電源6とを協調制御させる必要が生じ、分散電源6側にハード面及び/又はソフト面で改造を施して、システムを複雑化させなくてはならない。そして、係る改造に伴うコストの増大という問題が新たに発生してしまう。
In the prior art shown in FIG. 9, when the reverse flow is detected by the power detection means 7, the control means 8 causes the dummy load 9 to cause the power for the reverse flow to be consumed by the dummy load, thereby supplying the commercial power supply. It is configured so that the power of the distributed power supply 6 is not supplied to the one side.
However, in the prior art of FIG. 9, even if the dummy load 9 is turned on to prevent reverse power flow, a general load and a dummy load are determined only by the power information at the power receiving point, that is, the position where the power detection means 7 is provided. It cannot be determined. Therefore, when the distributed power source 6 is controlled in accordance with a general load, it cannot be determined whether the active power should be increased or decreased. Therefore, in the prior art of FIG. 9, it is necessary to coordinately control the dummy load 9 and the distributed power supply 6, and the system is not complicated by modifying the distributed power supply 6 side in hardware and / or software. Must not. And the problem of the increase in the cost accompanying such modification will generate | occur | produce newly.

図10で示す従来技術は、自然エネルギーによる発電装置9と自然エネルギー以外の発電装置6とを連系しており、いわゆる「複数台連系」に関する。図10において、自然エネルギー以外の発電装置6は、システムの末端(商用電源1から最も離隔した位置:最下位)に接続されている。そして、電力検出手段7によって自然エネルギー以外の発電装置6からの逆潮流を監視し、逆潮流発生時には、電力検出手段7からの検出信号に応答して、燃料電池6の出力を調整し、または停止させている(特許文献1参照)。
しかし、自然エネルギー以外の発電装置6側からの逆潮流が発生した場合には、逆潮流を回避するための手法として、自然エネルギー以外の発電装置6の出力を調整するか、或いは、自然エネルギー以外の発電装置6を停止させるしか無い。そのため、急峻な出力調整が困難な分散電源(例えば燃料電池等)では、逆潮流状態に対して有効に対処出来ない。また、発電装置の頻繁な起動停止は、一般に機器寿命や省エネルギー性に悪影響を与えてしまう。
それに加えて、図10で示す従来技術では、例えば燃料電池等の分散電源6を、必ず末端(商用電源1から最も遠い側:最下位)に連系する必要があり、連系方法或いはシステムのレイアウトに自由度が無いという問題を有している。
The prior art shown in FIG. 10 links the power generation device 9 using natural energy and the power generation device 6 other than natural energy, and relates to so-called “multiple vehicle connection”. In FIG. 10, the power generation device 6 other than the natural energy is connected to the end of the system (position farthest from the commercial power source 1: lowest position). Then, the reverse power flow from the power generation device 6 other than natural energy is monitored by the power detection means 7, and when the reverse power flow occurs, the output of the fuel cell 6 is adjusted in response to the detection signal from the power detection means 7, or It has stopped (refer patent document 1).
However, when a reverse power flow from the side of the power generation device 6 other than natural energy occurs, as a method for avoiding the reverse power flow, the output of the power generation device 6 other than natural energy is adjusted, or other than natural energy The power generation device 6 can only be stopped. For this reason, a distributed power source (for example, a fuel cell or the like) in which abrupt output adjustment is difficult cannot effectively cope with a reverse power flow state. In addition, frequent starting and stopping of the power generation device generally adversely affects the device life and energy saving.
In addition, in the prior art shown in FIG. 10, for example, the distributed power source 6 such as a fuel cell must be connected to the end (the side farthest from the commercial power source 1: the lowest). There is a problem that there is no degree of freedom in layout.

その他の従来技術としては、例えば、分散電源の出力調整及び停止と、ダミー負荷投入を組み合わせた例として、ダミー負荷をサイリスタ制御したもの(特許文献4参照)や、ダミー負荷をインバータ制御したもの(特許文献5参照)などが提案されている。
しかし、係る従来技術は、何れも、分散電源が単機で設置されている場合を対象としており、逆潮流防止の主目的が系統保護にある。従って、自然エネルギーによる発電装置と自然エネルギー以外の発電装置とが同一構内で連系されている場合に自然エネルギー以外の発電装置からの逆潮流のみを防止するのに、上述した従来技術を適用することは困難である。
さらに、分散電源側とダミー負荷との協調制御が要求されるので、分散電源側をハード面及び/又はソフト面で改造して、システムを複雑化する必要があり、そのためコスト増大という問題を有している。
Other conventional techniques include, for example, a combination of output adjustment and stop of a distributed power supply and dummy load input, in which a dummy load is thyristor-controlled (see Patent Document 4), or in which a dummy load is inverter-controlled (see FIG. (See Patent Document 5).
However, all of these prior arts are directed to the case where a distributed power supply is installed as a single machine, and the main purpose of preventing reverse power flow is to protect the system. Therefore, when the power generator using natural energy and the power generator other than natural energy are interconnected in the same premises, the above-described conventional technology is applied to prevent only reverse power flow from the power generator other than natural energy. It is difficult.
Furthermore, since cooperative control between the distributed power supply side and the dummy load is required, it is necessary to modify the distributed power supply side in terms of hardware and / or software to complicate the system. is doing.

また、分散電源がインバータを介して連系されており、インバータが出力する有効電力と無効電力を制御することで逆潮流を防止する従来技術が存在する(特許文献4)。しかし、無効電力によって受電点における力率を著しく悪化させるという問題点がある。
さらに、分散電源自身に逆潮流処理用ヒーターを内蔵した従来技術が存在する(特許文献5)。しかし、発電機単体では製造コストの増加に繋がり、また、当初からシステム仕様に組み込む必要があり、後からのヒーターを追加することが困難である、という問題を有している。
これに加えて、これ等の従来技術(特許文献4、特許文献5)では、分散電源が単機で設置されている場合を対象としているため、自然エネルギーによる発電装置と自然エネルギー以外の発電装置が同一構内で連系されている場合に自然エネルギー以外の発電装置による逆潮流のみを防止することに適用するのが困難である。
特開2004−328856号公報 特開2001−16783号公報 特開2002−218658号公報 特開2004−320868号公報 特開2004−95360号公報
In addition, there is a conventional technique in which a distributed power source is connected via an inverter, and reverse power flow is prevented by controlling active power and reactive power output from the inverter (Patent Document 4). However, there is a problem that the power factor at the power receiving point is significantly deteriorated by reactive power.
Furthermore, there is a conventional technique in which a reverse power flow heater is built in the distributed power supply itself (Patent Document 5). However, the generator alone has a problem that it leads to an increase in manufacturing cost, and it is necessary to incorporate it into the system specification from the beginning, and it is difficult to add a heater later.
In addition to this, these conventional technologies (Patent Document 4 and Patent Document 5) are targeted for the case where the distributed power source is installed as a single machine, and therefore, there are power generators using natural energy and power generators other than natural energy. It is difficult to apply to preventing only reverse power flow caused by power generation devices other than natural energy when they are interconnected in the same premises.
JP 2004-328856 A JP 2001-16783 A JP 2002-218658 A JP 2004-320868 A JP 2004-95360 A

本発明は上述した従来技術の問題点に鑑みて提案されたものであり、自然エネルギーによる発電装置(例えば太陽光発電装置等)と、自然エネルギー以外の発電装置(例えば燃料電池等)とを連系するシステムであって、自然エネルギー以外の発電装置から商用電源側への逆潮流を選択的に防止することが可能で、しかも、発電装置に改造を加える必要がなく、全ての分散電源に適用可能で、安価に構築可能な逆潮流防止システムの提供を目的としている。   The present invention has been proposed in view of the above-described problems of the prior art, and connects a power generator using natural energy (such as a solar power generator) and a power generator other than natural energy (such as a fuel cell). It is a system that can selectively prevent reverse power flow from a power generation device other than natural energy to the commercial power supply side, and it is not necessary to modify the power generation device and can be applied to all distributed power sources The purpose is to provide a reverse power flow prevention system that can be constructed at low cost.

本発明の逆潮流防止システムは、自然エネルギーによる発電装置(9)(例えば、太陽光発電装置,風力発電装置,波力発電装置,地熱発電装置等)と、自然エネルギー以外の発電装置(6)(例えば燃料電池,ガスエンジン,マイクロガスタービン等)と、逆潮流防止装置(11)とを備え、逆潮流防止装置(11)は自然エネルギー以外の発電装置(6)の上位(商用電源(1)に近い側)かつ自然エネルギーによる発電装置(9)の下位(商用電源(1)から離隔した側)に位置しており、逆潮流防止装置(11)の上位及び下位には自然エネルギー以外の発電装置(6)から商用電源(1)側への逆潮流を検出する電力検出手段(上位電力検出手段7A、下位電力検出手段7B)が設けられており、逆潮流防止装置(11)は負荷(ダミー負荷)を有しており、当該負荷(ダミー負荷)は、逆潮流防止装置(11)の上位に位置する電力検出手段(上位電力検出手段7A)が自然エネルギー以外の発電装置(6)から商用電源(1)側への逆潮流を検出し(て、信号伝達ラインCL1を介して、その旨が伝達され)た際に投入される様に構成されている(図1、図2、図3)。   The reverse power flow prevention system of the present invention includes a power generator (9) using natural energy (for example, a solar power generator, a wind power generator, a wave power generator, a geothermal power generator, etc.) and a power generator (6) other than natural energy. (For example, a fuel cell, a gas engine, a micro gas turbine, and the like) and a reverse power flow prevention device (11). The reverse power flow prevention device (11) is a high-order power generator (6) other than natural energy (commercial power supply (1 ) Near the power generation device (9) using natural energy (side away from the commercial power source (1)), and the reverse power flow prevention device (11) is located above and below the non-natural energy Power detection means (upper power detection means 7A, lower power detection means 7B) for detecting a reverse flow from the power generation device (6) to the commercial power supply (1) is provided, and the reverse flow prevention device (11) is a load ( The load (dummy load) is generated by the power detection means (upper power detection means 7A) positioned above the reverse power flow prevention device (11) from the power generation device (6) other than natural energy. It is configured to be turned on when a reverse power flow to the commercial power source (1) side is detected (and this is transmitted via the signal transmission line CL1) (FIGS. 1, 2, and FIG. 2). 3).

本発明において、自然エネルギー以外の発電装置(6)は、逆潮流防止装置(11)より下位に位置する電力検出手段(下位電力検出手段7B)が自然エネルギー以外の発電装置(6)から商用電源(1)側への逆潮流を検出し(て、信号伝達ラインCL2を介して、その旨が伝達され)た際に、出力電力を減少する様に構成されているのが好ましい(図1、図2)。   In the present invention, the power generation device (6) other than natural energy has a power detection means (lower power detection means 7B) positioned lower than the reverse power flow prevention device (11) from the power generation device (6) other than natural energy. (1) When a reverse power flow to the side is detected (and that fact is transmitted via the signal transmission line CL2), the output power is preferably reduced (FIG. 1, Figure 2).

前記逆潮流防止装置(11)は複数種類の負荷(ダミー負荷31、32、33)を投入可能に構成されており、逆潮流防止装置(11)よりも上位に位置する電力検出手段(上位電力検出手段7A)により自然エネルギー以外の発電装置(6)から商用電源(1)側への逆潮流が検出された際には、負荷を投入し、逆潮流が検出されなくなるまで順次負荷を投入する様に構成されているのが好ましい(図3〜図5)。   The reverse power flow prevention device (11) is configured to be able to input a plurality of types of loads (dummy loads 31, 32, 33), and power detection means (high power) located above the reverse power flow prevention device (11). When a reverse power flow from the power generation device (6) other than natural energy to the commercial power source (1) is detected by the detection means 7A), the load is applied and the load is sequentially applied until the reverse power flow is not detected. It is preferable to be configured in this manner (FIGS. 3 to 5).

また、本発明の逆潮流防止システムは、自然エネルギーによる発電装置(9)と、自然エネルギー以外の発電装置(6)と、逆潮流防止装置(11)とを備え、逆潮流防止装置(11)は自然エネルギー以外の発電装置(6)の上位かつ自然エネルギーによる発電装置(9)の下位に位置しており、逆潮流防止装置(11)の下位には自然エネルギー以外の発電装置(6)から商用電源(1)側への逆潮流を検出する電力検出手段(下位電力検出手段7B)が設けられており、逆潮流防止装置(11)は前記電力検出手段(下位電力検出手段7A)が自然エネルギー以外の発電装置(6)から商用電源(1)側への逆潮流を検出し(て、信号伝達ラインCL1を介して、その旨が伝達され)た際に負荷(ダミー負荷31、32、33)を投入する様に構成されている(図3,図6、図7)。   Moreover, the reverse power flow prevention system of this invention is equipped with the power generation device (9) by natural energy, the power generation devices (6) other than natural energy, and the reverse power flow prevention device (11), and the reverse power flow prevention device (11). Is located above the power generation device (6) other than natural energy and below the power generation device (9) using natural energy, and from the power generation device (6) other than natural energy below the reverse power flow prevention device (11). The power detection means (lower power detection means 7B) for detecting the reverse power flow to the commercial power source (1) side is provided, and the reverse power flow prevention device (11) has a natural power detection means (lower power detection means 7A). When a reverse power flow from the power generation device (6) other than energy to the commercial power source (1) is detected (and that fact is transmitted via the signal transmission line CL1), loads (dummy loads 31, 32, 33) And it is configured so as that (FIG. 3, FIG. 6, FIG. 7).

なお、電力は「流れる」パラメータではないが、本発明を説明する際の便宜上の要請から、本明細書においては、「電力が流れている」という表現を採用している。   Note that power is not a “flowing” parameter, but for the sake of convenience in describing the present invention, the expression “power is flowing” is used in this specification.

上述する構成(図1、図2,図3の構成)を具備する本発明によれば、自然エネルギー以外の発電装置(6)から商用電源(1)側への逆潮流が発生すれば、電力検出手段(上位電力検出手段7A、下位電力検出手段7B)がその旨を検知し、逆潮流防止装置(11)より上位に設けられた電力検出手段(上位電力検出手段7A)から逆潮流を検出した旨の検出信号が(信号伝達ラインCL1を介して)逆潮流防止装置(11)に伝達され、ダミー負荷(31、32、33)が投入される。その結果、自然エネルギー以外の発電装置(6)により逆潮流した電力は、逆潮流防止装置(11)のダミー負荷(31、32、33)に流入し、そこで消費される。その結果、自然エネルギー以外の発電装置(6)からの逆潮流は解消される。   According to the present invention having the above-described configuration (the configuration of FIGS. 1, 2 and 3), if a reverse power flow from the power generation device (6) other than natural energy to the commercial power source (1) occurs, The detection means (upper power detection means 7A, lower power detection means 7B) detects that fact, and detects the reverse power flow from the power detection means (upper power detection means 7A) provided above the reverse power flow prevention device (11). The detection signal to the effect is transmitted to the reverse power flow prevention device (11) (via the signal transmission line CL1), and the dummy loads (31, 32, 33) are input. As a result, the power reversely flowed by the power generation device (6) other than natural energy flows into the dummy loads (31, 32, 33) of the reverse flow prevention device (11) and is consumed there. As a result, reverse power flow from the power generation device (6) other than natural energy is eliminated.

一方、自然エネルギーによる発電装置(9)で余剰電力が発生して商用電源側に流れる場合には、逆潮流防止装置(11)は自然エネルギーによる発電装置(9)の下位に配置されているので、逆潮流防止装置(11)に流入すること無く商用電源(1)側に流れ、売電の対象となる。
このように、本発明によれば、自然エネルギー以外の発電装置(6)から商用電源(1)側への逆潮流のみを選択的に解消することが可能である。
On the other hand, when surplus power is generated in the power generator (9) using natural energy and flows to the commercial power supply side, the reverse power flow prevention device (11) is arranged below the power generator (9) using natural energy. It flows into the commercial power supply (1) side without flowing into the reverse power flow prevention device (11), and is a target for power sale.
Thus, according to the present invention, it is possible to selectively eliminate only the reverse power flow from the power generation device (6) other than natural energy to the commercial power source (1).

ここで、逆潮流防止装置(11)と、少なくとも上位における電力検出手段(下位電力検出手段7A)とは、外付けで簡単に取り付けることが出来るので、自然エネルギー以外の発電装置(6)からの逆潮流を防止することができ、自然エネルギー以外の発電装置(6)に改造を加える必要がない。そして、全ての分散電源に適用可能で、安価に構築可能である。   Here, since the reverse power flow prevention device (11) and at least the upper power detection means (lower power detection means 7A) can be easily attached externally, the power from the power generation device (6) other than natural energy is used. Reverse power flow can be prevented, and there is no need to modify the power generation device (6) other than natural energy. It can be applied to all distributed power sources and can be constructed at low cost.

自然エネルギー以外の発電装置(6)から商用電源(1)側への逆潮流が発生した場合には、逆潮流防止装置(11)より下位側の電力検出手段(7B)においても燃料電池(6)から商用電源(1)側への逆潮流が検知される。
本発明(図1、図2)において、自然エネルギー以外の発電装置(6)は、逆潮流防止装置(11)より下位に位置する電力検出手段(下位電力検出手段7B)が逆潮流を検出した際に、出力電力を減少する様に構成されていれば、下位の電力検出手段(7B)は逆潮流装置(11)には信号伝達は行わず、逆潮流装置(11)においてダミー負荷が投入された旨の情報は自然エネルギー以外の発電装置(6)には伝達されないので、逆潮流防止装置(11)と自然エネルギー以外の発電装置(6)とで協調制御を行う必要が無くなり、制御が複雑になることは無くなり、係る協調制御のために自然エネルギー以外の発電装置(6)を改造する必要も無くなる。
When a reverse power flow from the power generation device (6) other than natural energy to the commercial power source (1) occurs, the fuel cell (6) is also used in the power detection means (7B) on the lower side of the reverse power flow prevention device (11). ) To the commercial power source (1) side is detected.
In the present invention (FIGS. 1 and 2), in the power generation device (6) other than natural energy, the power detection means (lower power detection means 7B) positioned lower than the reverse power flow prevention device (11) detects the reverse power flow. In this case, if the output power is configured to decrease, the lower power detection means (7B) does not transmit a signal to the reverse flow device (11), and a dummy load is applied to the reverse flow device (11). Since the information to the effect is not transmitted to the power generation device (6) other than natural energy, it is not necessary to perform cooperative control between the reverse power flow prevention device (11) and the power generation device (6) other than natural energy. There is no complexity, and there is no need to remodel the power generation device (6) other than natural energy for such cooperative control.

以下、添付図面を参照して、本発明の実施形態について説明する。
図1は本発明の第1実施形態を示している。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows a first embodiment of the present invention.

図1において、全体を符号20で示すシステムは、商用電源1から電力を供給されているのに加えて、自然エネルギーによる発電装置9(例えば太陽光発電装置等)と、自然エネルギー以外の発電装置6(例えば燃料電池等)とを備えている。
一方、システム20においては、分岐ブレーカー4を介して、図示しない各家庭や一般ユーザー等の負荷が繋がっている。
自然エネルギーによる発電装置9及び/又は自然エネルギー以外の発電装置6における発電出力により図示しない負荷(各家庭や一般ユーザー等の負荷)を賄うことが出来て、且つ、余剰電力が発生する場合には、商用電源1側に、いわゆる「売電」が可能である。その際には、売電用電力量計13により、売電した電力を計測する様に構成されている。
In FIG. 1, the entire system denoted by reference numeral 20 is supplied with electric power from the commercial power source 1, and in addition to a power generator 9 using natural energy (for example, a solar power generator) and a power generator other than natural energy. 6 (for example, a fuel cell).
On the other hand, in the system 20, loads of households and general users (not shown) are connected via the branch breaker 4.
When the load (not shown) (load of each household, general user, etc.) can be covered by the power generation output of the power generation device 9 using natural energy and / or the power generation device 6 other than natural energy, and surplus power is generated So-called “power sale” is possible on the commercial power source 1 side. At that time, the sold electricity meter 13 is configured to measure the sold power.

商用電源1から供給される電力は、購入用電力量計12、売電用電力量計13を介して、システム20に供給され、電力ラインL1を流れる。
そして電力ラインL1は、電流制限器2を介して電力ラインL2を流れ、合流ポイント(自然エネルギーによる発電装置9からの発電出力と連系するポイント)G1、上位電力検出手段7A、ラインL4、分岐ポイントB1、下位電力検出手段7B、ラインL5、主幹ブレーカー3、ラインL6、図示しない家庭等の負荷に接続している分岐ブレーカー4、分散電源連系用ブレーカー5、ラインL7を介して、自然エネルギー以外の発電装置6に接続されている。
The electric power supplied from the commercial power source 1 is supplied to the system 20 via the purchase watt-hour meter 12 and the power sale watt-hour meter 13 and flows through the power line L1.
Then, the power line L1 flows through the power line L2 via the current limiter 2, and joins points (points linked to the power generation output from the power generation device 9 by natural energy) G1, upper power detection means 7A, line L4, branch Natural energy via the point B1, the lower power detection means 7B, the line L5, the main breaker 3, the line L6, the branch breaker 4 connected to the load of the household (not shown), the distributed power supply breaker 5, and the line L7 It is connected to other power generation devices 6.

前記合流ポイントG1では、ラインL3、自然エネルギー連系用ブレーカー8を介して、自然エネルギーによる発電装置9からの発電出力と連系する様に構成されている。
また、前記ポイントB1では、自然エネルギー以外の発電装置6或いはその他の発電出力が流れるラインL4が、ラインL8、ブレーカー10を介して、逆潮流防止装置11に接続されている。ここで、図1で示す逆潮流防止装置11は一定容量のダミー負荷(図1では図示せず)を有しており、係るダミー負荷は、後述する様に、自然エネルギー以外の発電装置6側から商用電源1側(上位側)への逆潮流を検知した場合に、係る逆潮流電力に対して投入される様に構成されている。
The junction point G1 is configured to be linked to the power generation output from the power generator 9 by natural energy via the line L3 and the breaker 8 for linkage with natural energy.
Further, at the point B1, a power generation device 6 other than natural energy or a line L4 through which other power generation output flows is connected to the reverse power flow prevention device 11 via a line L8 and a breaker 10. Here, the reverse power flow prevention device 11 shown in FIG. 1 has a dummy load (not shown in FIG. 1) having a certain capacity, and the dummy load is on the side of the power generation device 6 other than natural energy as will be described later. When a reverse power flow from the commercial power source 1 side (upper side) is detected, it is configured such that the reverse power flow is input.

上位電力検出手段7A及び下位電力検出手段7Bは、上位電力検出手段7AについてはラインL4、下位電力検出手段7BについてはラインL5を流れる電流が、上位側(商用電源1側)から下位側(分岐ブレーカー4に接続している図示しない家庭等の負荷側)へ流れているのか、或いは、その逆方向に流れている、すなわち「逆潮流」となっているのかを検出する様に構成されている。
そして、逆潮流の場合には、上位電力検出手段7Aは信号伝達ラインCL1を介して逆潮流防止装置11に検出信号を送り、下位電力検出手段7Aは信号伝達ラインCL2を介して自然エネルギー以外の発電装置6に検出信号を送る。
なお、上位電力検出手段7A及び下位電力検出手段7B自体は従来・公知の装置であり、市販品をそのまま使用可能である。
The upper power detection means 7A and the lower power detection means 7B are configured such that the current flowing through the line L4 for the upper power detection means 7A and the line L5 for the lower power detection means 7B is changed from the upper side (commercial power supply 1 side) to the lower side (branch). It is configured to detect whether it is flowing to the load side (not shown) connected to the breaker 4) or in the opposite direction, that is, “reverse power flow”. .
In the case of reverse power flow, the upper power detection means 7A sends a detection signal to the reverse power flow prevention device 11 via the signal transmission line CL1, and the lower power detection means 7A receives a signal other than natural energy via the signal transmission line CL2. A detection signal is sent to the power generator 6.
The upper power detection means 7A and the lower power detection means 7B themselves are conventional and known devices, and commercially available products can be used as they are.

システム20では、逆潮流防止装置11を自然エネルギー以外の発電装置6の上位(商用電源側)で且つ自然エネルギーによる発電装置9の下位に接続して、自然エネルギー以外の発電装置6から商用電源1側への電力潮流を監視している。
ここで、図1では自然エネルギー以外の発電装置6は家庭の負荷(図示せず:分岐ブレーカー4に接続されている)よりも下位側に接続されているが、図2で示す様に家庭の負荷の上位側に接続されていても良い(詳細は後述)。但し、自然エネルギー以外の発電装置6は、必ず逆潮流防止装置11より下位に接続する必要がある。後述する様に、自然エネルギー以外の発電装置6が逆潮流防止装置11よりも上位に接続されていると、自然エネルギー以外の発電装置6から商用電源1側に逆潮流が生じてダミー負荷が投入された際に、ダミー負荷と家庭の負荷とを区別することが出来ないからである。
In the system 20, the reverse power flow prevention device 11 is connected to a power generator 6 other than natural energy at a higher level (commercial power supply side) and lower than a power generator 9 using natural energy, and the commercial power source 1 is supplied from the power generator 6 other than natural energy. The power flow to the side is monitored.
Here, in FIG. 1, the power generation device 6 other than natural energy is connected to the lower side of the household load (not shown: connected to the branch breaker 4), but as shown in FIG. It may be connected to the upper side of the load (details will be described later). However, it is necessary to connect the power generation device 6 other than the natural energy lower than the reverse power flow prevention device 11. As will be described later, when the power generation device 6 other than natural energy is connected to a higher level than the reverse power flow prevention device 11, a reverse power flow is generated from the power generation device 6 other than natural energy to the commercial power source 1 and a dummy load is input. This is because it is impossible to distinguish the dummy load from the household load.

自然エネルギー以外の発電装置6の発電出力が、分岐ブレーカーに接続されている(図示しない)家庭における負荷を上回った場合には、余剰電力は商用電源1側の方向に流れ、電力の逆潮流が発生する。
係る場合には、電力検出手段7Aが自然エネルギー以外の発電装置6から商用電源1側への逆潮流を検知し、その旨を信号伝達ラインCL1を介して逆潮流防止装置11に伝達する。そして、逆潮流の検知信号が伝達された逆潮流防止装置11においては、ダミー負荷が投入される。
自然エネルギー以外の発電装置6の余剰電力は、逆潮流防止装置11のダミー負荷に流入し、そこで消費されるので、自然エネルギー以外の発電装置6の余剰電力が商用電源1側へ逆潮流されることはない。
When the power generation output of the power generation device 6 other than natural energy exceeds the load in the home (not shown) connected to the branch breaker, surplus power flows in the direction of the commercial power source 1 and the reverse power flow occurs. appear.
In such a case, the power detection means 7A detects a reverse power flow from the power generation device 6 other than natural energy to the commercial power source 1 side, and transmits that fact to the reverse power flow prevention device 11 via the signal transmission line CL1. In the reverse flow prevention device 11 to which the reverse flow detection signal is transmitted, a dummy load is input.
Surplus power of the power generation device 6 other than natural energy flows into the dummy load of the reverse power flow prevention device 11 and is consumed there, so surplus power of the power generation device 6 other than natural energy is reversely flowed to the commercial power source 1 side. There is nothing.

一方、自然エネルギーによる発電装置9で余剰電力が発生して商用電源1側に流れる場合には、逆潮流防止装置11は自然エネルギーによる発電装置9の下位に配置されているので、上位の商用電源1側に流れる自然エネルギーによる発電装置9の余剰電力は逆潮流防止装置11に流入すること無く商用電源1側に流れ、売電の対象となる。   On the other hand, when the surplus power is generated in the power generator 9 using natural energy and flows to the commercial power source 1 side, the reverse power flow preventing device 11 is arranged below the power generator 9 using natural energy. The surplus power of the power generation device 9 due to the natural energy flowing to the 1 side flows to the commercial power source 1 side without flowing into the reverse power flow prevention device 11 and becomes a target for power sale.

ここでダミー負荷は、例えば設定時間だけ投入されるが、後述する様に、複数段階に分けてダミー負荷を投入し、或いは、異なる設定時間で投入する様な工夫をすることが可能である。   Here, the dummy load is input only for a set time, for example, but as described later, it is possible to devise such that the dummy load is input in a plurality of stages or input at different set times.

余剰電力は商用電源1側に流れる場合には、電力検出手段7Bにおいても自然エネルギー以外の発電装置6から商用電源1側への逆潮流が検知される。そして、自然エネルギー以外の発電装置6から商用電源1側へ余剰電力が流れている旨の検出信号は、信号伝達ラインCL2を介して自然エネルギー以外の発電装置6に伝達される。係る検出信号(自然エネルギー以外の発電装置6から商用電源1側へ余剰の電力が流れている旨の検出信号)が伝達されると、自然エネルギー以外の発電装置6は、図示しない内蔵の制御装置に組み込まれた制御ルーチンに従って、発電出力を低下される。   When surplus power flows to the commercial power source 1 side, reverse power flow from the power generator 6 other than natural energy to the commercial power source 1 side is detected also in the power detection means 7B. Then, a detection signal indicating that surplus power is flowing from the power generation device 6 other than natural energy to the commercial power source 1 is transmitted to the power generation device 6 other than natural energy via the signal transmission line CL2. When such a detection signal (a detection signal indicating that surplus power is flowing from the power generation device 6 other than natural energy to the commercial power supply 1 side) is transmitted, the power generation device 6 other than natural energy has a built-in control device (not shown). The power generation output is reduced according to the control routine incorporated in

ここで、電力検出手段7Bは自然エネルギー以外の発電装置6のみに上述した検出信号(自然エネルギー以外の発電装置6から商用電源1側への逆潮流が検出された旨の検出信号)を伝達し、逆潮流装置11には信号伝達は行わない。
そして、逆潮流装置11においてダミー負荷が投入された旨の情報は、自然エネルギー以外の発電装置6には伝達されないので、従来技術における「ダミー負荷投入について、発電側(この場合は自然エネルギー以外の発電装置6側)との制御上のやり取りが必要であり、制御が複雑になる」という問題は解消される。
Here, the power detection means 7B transmits the above-described detection signal (a detection signal indicating that the reverse power flow from the non-natural energy power generation device 6 to the commercial power source 1) has been detected only to the non-natural energy power generation device 6. No signal is transmitted to the reverse power flow device 11.
Since the information indicating that the dummy load has been input in the reverse power flow device 11 is not transmitted to the power generation device 6 other than the natural energy, the “dummy load input in the prior art” (in this case, other than the natural energy) The problem that the control exchange with the power generation device 6 side is necessary and the control becomes complicated is solved.

家庭の負荷が増加し、及び/又は自然エネルギー以外の発電装置6の出力が減少して、自然エネルギー以外の発電装置6から商用電源1側へ電力が流れなくなり、逆潮流が解消したならば、その旨が電力検出手段7Bにより検出され、信号伝達ラインCL2を介して自然エネルギー以外の発電装置6に伝達される。そして、自然エネルギー以外の発電装置6では、その内部における制御ルーチンに従って、必要な処理が為される。
すなわち、図1で示す実施形態によれば、自然エネルギー以外の発電装置6は、逆潮流装置11においてダミー負荷が投入された旨の情報が伝達されなくても、電力検出手段7Bにおける検出信号を用いて、既存の設備により、好適に運転制御が為されるのである。
さらに換言すれば、自然エネルギー以外の発電装置6は逆潮流防止装置11より下位の潮流点である電力検出手段7Bの電力で制御されているため、自然エネルギー以外の発電装置6へ逆潮流防止装置11の状況(逆潮流防止装置11におけるダミー負荷の投入に関する情報)を入力する必要が無く、自然エネルギー以外の発電装置6の予め内蔵されている制御ルーチンにより、自動で家庭内負荷に合わせた運転を行うことができるのである。
If the load on the home increases and / or the output of the power generation device 6 other than natural energy decreases and power does not flow from the power generation device 6 other than natural energy to the commercial power source 1 side, and the reverse power flow is resolved, That effect is detected by the power detection means 7B and transmitted to the power generation device 6 other than natural energy via the signal transmission line CL2. And in the electric power generating apparatus 6 other than natural energy, a required process is performed according to the control routine in the inside.
That is, according to the embodiment shown in FIG. 1, the power generation device 6 other than the natural energy outputs the detection signal in the power detection means 7 </ b> B even if the information indicating that the dummy load is input is not transmitted in the reverse power flow device 11. By using the existing equipment, the operation control is suitably performed.
In other words, since the power generation device 6 other than natural energy is controlled by the power of the power detection means 7B, which is a lower current point than the reverse power flow prevention device 11, the reverse power flow prevention device is connected to the power generation device 6 other than natural energy. 11 (information regarding dummy load application in the reverse power flow prevention device 11) does not need to be input, and is automatically adjusted to the household load by a control routine built in the power generation device 6 other than natural energy in advance. Can be done.

ここで、図1において、電力検出手段7Bのみを設け、電力検出手段7Bが逆潮流を検出した場合に逆潮流防止装置11におけるダミー負荷を投入し且つ自然エネルギー以外の発電装置6の出力電力を低減する制御を実行する様に構成することも可能である(例えば、図6、図7を参照して後述する第3実施形態参照)。
しかし、電力検出手段7Bのみならず、電力検出手段7Aを設けることにより、電力検出手段7Bからの自然エネルギー以外の発電装置6へ検出信号を伝達する信号伝達ラインCL2を分岐して、当該検出信号を逆潮流防止装置11側へ分岐する必要が無くなる、という利点がある。
また、逆潮流防止装置11において投入される負荷の容量が一定(或いは単一)の場合には電力検出手段7Bのみで制御可能であるが、電力検出手段7Aを設けることにより、(図3〜図5を参照して後述する第2実施形態のように)投入される負荷の容量(負荷量)を、負荷の全体量と自然エネルギー以外の発電装置6の出力電力とに応答して、変動させる制御が可能になる。
Here, in FIG. 1, only the power detection means 7B is provided, and when the power detection means 7B detects the reverse power flow, the dummy load in the reverse power flow prevention device 11 is introduced and the output power of the power generation device 6 other than natural energy is supplied. It is also possible to perform a control to reduce (for example, refer to a third embodiment described later with reference to FIGS. 6 and 7).
However, by providing not only the power detection means 7B but also the power detection means 7A, the signal transmission line CL2 that transmits the detection signal to the power generation device 6 other than the natural energy from the power detection means 7B is branched, and the detection signal There is an advantage that it is not necessary to branch to the reverse power flow prevention device 11 side.
Further, when the capacity of the load input in the reverse power flow prevention device 11 is constant (or single), it can be controlled only by the power detection means 7B, but by providing the power detection means 7A (FIG. 3). As in the second embodiment described later with reference to FIG. 5, the capacity (load amount) of the input load varies in response to the total amount of load and the output power of the power generator 6 other than natural energy. Control is possible.

さらに、電力検出手段7Bのみを設けたのでは、逆潮流防止装置11においてダミー負荷を投入しても、依然として商用電源1側への逆潮流電力が計測されてしまうので、逆潮流防止装置11におけるダミー負荷の投入によって、商用電源1側への逆潮流が防止できたのか否かが分からない。
これに対して、電力検出手段7Aを設ければ、電力検出手段7Aで連系側への電力の流れを検出できなければ、自然エネルギー以外の発電装置6から商用電源1側への逆潮流が防止できたことが確認できるという利点が存在する。
Further, if only the power detection means 7B is provided, even if a dummy load is applied in the reverse power flow prevention device 11, the reverse power flow to the commercial power source 1 is still measured. It is not known whether reverse power flow to the commercial power source 1 side can be prevented by applying the dummy load.
On the other hand, if the power detection means 7A is provided, if the power detection means 7A cannot detect the flow of power to the interconnection side, a reverse power flow from the power generator 6 other than natural energy to the commercial power supply 1 side will occur. There is an advantage that it can be confirmed that it has been prevented.

逆潮流防止装置11におけるダミー負荷の総容量を自然エネルギー以外の発電装置6の発電出力よりも大きくすることで、自然エネルギー以外の発電装置6からの逆潮流を確実に防止することができる。
逆潮流防止装置11においてダミー負荷を投入した後は、自然エネルギー以外の発電装置6の発電出力の変化スピード(自然エネルギー以外の発電装置6の発電出力低減のスピード)に合わせて、十分に絞り込み可能な時間(発電出力がダミー負荷を合算した負荷合計を下回るのに必要な時間)を設定し、自動解列するようシステムを組むことが可能である。
By making the total capacity of the dummy loads in the reverse power flow prevention device 11 larger than the power generation output of the power generation device 6 other than natural energy, reverse power flow from the power generation device 6 other than natural energy can be reliably prevented.
After the dummy load is introduced in the reverse power flow prevention device 11, it can be sufficiently narrowed down according to the change speed of the power generation output of the power generation device 6 other than natural energy (speed of reduction of the power generation output of the power generation device 6 other than natural energy). It is possible to set up a system that automatically sets a certain time (the time required for the power generation output to fall below the total load including the dummy loads) and automatically disconnects.

図1の実施形態の変形例が、図2で示されている。
図1において、自然エネルギー以外の発電装置6が最末端(最下位の位置)にあるが、図2の変形例では、自然エネルギー以外の発電装置6は、図示しない家庭用負荷に接続している分岐ブレーカーよりも上位の位置に存在している。
図1の場合には、ラインL5の下位側は、主幹ブレーカー3、ラインL6、図示しない家庭等の負荷に接続している分岐ブレーカー4、分散電源連系用ブレーカー5、ラインL7を介して、自然エネルギー以外の発電装置6に接続されている。これに対して図2では、全体を符号20Aで示すシステムにおいて、ラインL5では分岐ポイント(潮流点)B2からラインL7が分岐しており、分散電源連系用ブレーカー5を介して自然エネルギー以外の発電装置6が接続されている。そして、ラインL5の下位側には、主幹ブレーカー3、ラインL6、図示しない家庭等の負荷に接続している分岐ブレーカー4が設けられている。
A variation of the embodiment of FIG. 1 is shown in FIG.
In FIG. 1, the power generation device 6 other than natural energy is at the lowest end (lowest position), but in the modification of FIG. 2, the power generation device 6 other than natural energy is connected to a household load (not shown). It exists at a higher position than the branch breaker.
In the case of FIG. 1, the lower side of the line L5 is connected to the main breaker 3, the line L6, the branch breaker 4 connected to a load such as a household (not shown), the distributed power supply breaker 5, and the line L7. It is connected to a power generator 6 other than natural energy. On the other hand, in FIG. 2, in the system generally indicated by reference numeral 20A, the line L5 branches from the branch point (tidal point) B2 to the line L7, and other than natural energy is distributed via the distributed power source breaker 5. A power generator 6 is connected. On the lower side of the line L5, a main breaker 3, a line L6, and a branch breaker 4 connected to a load such as a household (not shown) are provided.

図2で示すシステム20Aのその他の構成及び作用効果については、図1と同様である。
すなわち、図2で示すシステム20Aにおいても、自然エネルギー以外の発電装置6の余剰電力が商用電源1側に流れた場合には、電力検出手段7Aがその旨を検出して、自然エネルギー以外の発電装置6の余剰電力を逆潮流防止装置11へ供給するので、逆潮流が防止されるのである。
Other configurations and operational effects of the system 20A shown in FIG. 2 are the same as those in FIG.
That is, also in the system 20A shown in FIG. 2, when surplus power of the power generation device 6 other than natural energy flows to the commercial power source 1, the power detection means 7A detects that fact and generates power other than natural energy. Since the surplus power of the device 6 is supplied to the reverse power flow prevention device 11, the reverse power flow is prevented.

図1のシステム20と、図2のシステム20Aとは、自然エネルギー以外の発電装置6と家庭の負荷(分岐ブレーカーのみ図示)とのレイアウトが相違するのみである。
換言すれば、図1のシステム20と、図2のシステム20Aの何れのレイアウトを採用することが可能であり、図8で示す従来技術の問題点、すなわち、分散電源6を商用電源から最も遠い位置(最下位)に配置しなければならず、レイアウトの自由度が無いという問題点を、解消することが出来るのである。
The system 20 in FIG. 1 is different from the system 20A in FIG. 2 only in the layout of the power generation device 6 other than natural energy and the load at home (only the branch breaker is shown).
In other words, any layout of the system 20 of FIG. 1 and the system 20A of FIG. 2 can be adopted, and the problem of the prior art shown in FIG. 8, that is, the distributed power supply 6 is farthest from the commercial power supply. The problem of having to arrange at the position (lowest level) and lack of freedom in layout can be solved.

図1、図2では、ダミー負荷は図示されておらず、その容量の種類や数は特定されていない。
これに対して、図3〜図5の第2実施形態では、逆潮流防止装置11で投入されるダミー負荷を3種類にして、条件式で復帰条件を決める様に構成している。
1 and 2, the dummy load is not illustrated, and the type and number of capacities are not specified.
On the other hand, in the second embodiment of FIGS. 3 to 5, three types of dummy loads input by the reverse power flow prevention device 11 are used, and the return condition is determined by a conditional expression.

第2実施形態の全体の構成は、図1、図2で示すシステムと同様である。但し、第2実施形態では、逆潮流防止装置11が図3のブロック図で示す様に、具体的に限定されている。
図3において、逆潮流防止装置11は、3種類のダミー負荷31、32、33を有しており、ダミー負荷31、32、33の容量は、100W、200W、300Wとなっている。
The overall configuration of the second embodiment is the same as that of the system shown in FIGS. However, in the second embodiment, the reverse power flow prevention device 11 is specifically limited as shown in the block diagram of FIG.
In FIG. 3, the reverse power flow prevention device 11 has three types of dummy loads 31, 32, 33, and the capacity of the dummy loads 31, 32, 33 is 100 W, 200 W, and 300 W.

ラインL4の分岐ポイントB1から分岐した電力ラインL8を介して流れてきた自然エネルギー以外の発電装置6の余剰電力をダミー負荷31、32、33へ選択的に投入するのがスイッチング装置34であり、該スイッチング装置34は制御装置(コントロールユニット)36により切換制御される。
制御装置36は、信号伝達ラインCL1を介して伝達される電力検出手段7Aからの検出信号(逆潮流を検出した旨の信号)に応答して、信号伝達ラインCL11を介してスイッチング装置34に制御信号を送出して、ラインL8、ブレーカー10を介して流入する(自然エネルギー以外の発電装置6の)余剰電力をダミー負荷31、32、33へ選択的に投入せしめる。換言すれば、制御装置36は、スイッチング装置34に対して、何れのダミー負荷をラインL8に接続するのかを制御する負荷接続制御信号を伝達する。
係る制御の詳細については、図4を参照して後述する。
The switching device 34 selectively inputs surplus power of the power generation device 6 other than natural energy flowing through the power line L8 branched from the branch point B1 of the line L4 to the dummy loads 31, 32, 33. The switching device 34 is switched and controlled by a control device (control unit) 36.
The control device 36 controls the switching device 34 via the signal transmission line CL11 in response to the detection signal (signal indicating that the reverse power flow has been detected) from the power detection means 7A transmitted via the signal transmission line CL1. A signal is transmitted, and surplus power (of the power generation device 6 other than natural energy) flowing in via the line L8 and the breaker 10 is selectively supplied to the dummy loads 31, 32, and 33. In other words, the control device 36 transmits to the switching device 34 a load connection control signal for controlling which dummy load is connected to the line L8.
Details of such control will be described later with reference to FIG.

逆潮流防止装置11は、さらに計時装置(例えばタイマー)38と、図1のシステム20或いは図2のシステム20Aを停止させる指令を発生するシステム停止指令発生装置40とを有している。
ここで、システム停止指令発生装置40は、ダミー負荷31、32、33の合計が自然エネルギー以外の発電装置6の出力よりも小さい場合に有効である。換言すれば、システム停止指令発生装置40を設ければ、ダミー負荷31、32、33の合計が自然エネルギー以外の発電装置6の出力より小さくても良いので、逆潮流防止装置11全体をコンパクトにすることが出来る。
勿論、ダミー負荷31、32、33の合計が自然エネルギー以外の発電装置6の出力よりも大きくても、システム停止指令発生装置40を設けることは、タッチダウンの意味で有効である。
The reverse power flow prevention device 11 further includes a timing device (for example, a timer) 38 and a system stop command generation device 40 that generates a command to stop the system 20 of FIG. 1 or the system 20A of FIG.
Here, the system stop command generation device 40 is effective when the sum of the dummy loads 31, 32, and 33 is smaller than the output of the power generation device 6 other than natural energy. In other words, if the system stop command generation device 40 is provided, the total of the dummy loads 31, 32, and 33 may be smaller than the output of the power generation device 6 other than natural energy, so the reverse power flow prevention device 11 as a whole can be made compact. I can do it.
Of course, even if the total of the dummy loads 31, 32, and 33 is larger than the output of the power generator 6 other than natural energy, it is effective in terms of touchdown to provide the system stop command generator 40.

次に、図4をも参照して、電力検出手段7Aから逆潮流を検出した旨の信号が発生された際に、ラインL8を介して流入する自然エネルギー以外の発電装置6の余剰電力をダミー負荷31、32、33へ選択的に投入する制御について説明する。   Next, referring also to FIG. 4, when a signal indicating that the reverse power flow is detected is generated from the power detection means 7A, the surplus power of the power generator 6 other than the natural energy flowing in via the line L8 is dummy. Control that is selectively applied to the loads 31, 32, and 33 will be described.

制御において、先ず、電力検出手段7Aから逆潮流状態を検出したか否か、換言すれば、信号伝達ラインCL1を介して電力検出手段7Aから逆潮流状態を検出した旨の検出信号が制御装置36に送られたか否かを判定する(ステップS1:図4)。
逆潮流状態が検出されない場合には(ステップS1がNO)、そのまま、逆潮流状態であるか否かの判定を行う(ステップS1がNOのループ)。
逆潮流状態が検出された場合には(ステップS1がYES)、制御装置36からスイッチング装置34へ負荷接続制御信号を伝達して、先ず100Wの負荷31を接続し(ステップS2)、100Wの負荷31を接続した状態を、例えば3秒間維持する(ステップS3)。
In the control, first, whether or not the reverse flow state is detected from the power detection means 7A, in other words, a detection signal indicating that the reverse flow state is detected from the power detection means 7A via the signal transmission line CL1 is sent to the control device 36. (Step S1: FIG. 4).
When the reverse power flow state is not detected (NO in step S1), it is determined whether or not the reverse power flow state is maintained (a loop in which step S1 is NO).
When a reverse power flow state is detected (YES in step S1), a load connection control signal is transmitted from the control device 36 to the switching device 34, and a 100W load 31 is first connected (step S2). The state where 31 is connected is maintained for 3 seconds, for example (step S3).

ここで、100Wの負荷31を接続した状態を3秒間維持するにあたっては、制御装置36から信号伝達ラインCL13を介して計時装置38に計時開始信号を発生し、計時装置38で3秒間を計時したならば、(3秒間経過した旨の)計時信号を信号伝達ラインCL14経由で制御装置36に伝達して行う。
100Wの負荷31を接続して3秒間経過したならば、電力検出手段7Aから逆潮流状態を検出したか否かを判定する(ステップS4)。
Here, in maintaining the state in which the load 31 of 100 W is connected for 3 seconds, a timing start signal is generated from the control device 36 to the timing device 38 via the signal transmission line CL13, and the timing device 38 counts 3 seconds. If so, the timing signal (that 3 seconds have passed) is transmitted to the control device 36 via the signal transmission line CL14.
If 3 seconds have elapsed after connecting the load 31 of 100 W, it is determined whether or not a reverse power flow state is detected from the power detection means 7A (step S4).

ステップS4において逆潮流が検出されなければ(ステップS4がNO)、ステップS5に進む。
ステップS5においては、ステップS5〜ステップS7までのルーチン(ステップS7がNOのルーチン)の繰り返し回数がカウントされる。すなわち、最初に繰り返し回数nを「1」に設定し(ステップS5において、n=1)、ステップS6に進み(ステップS5のn≠20)、3秒間待機する。そして、電力検出手段7Aから逆潮流状態を検出したか否かを判定する(ステップS7)。
If no reverse power flow is detected in step S4 (NO in step S4), the process proceeds to step S5.
In step S5, the number of repetitions of the routine from step S5 to step S7 (the routine in which step S7 is NO) is counted. That is, first, the number of repetitions n is set to “1” (in step S5, n = 1), and the process proceeds to step S6 (n ≠ 20 in step S5) and waits for 3 seconds. And it is determined whether the reverse power flow state was detected from the electric power detection means 7A (step S7).

ステップS7で逆潮流が検出されなければ(ステップS7がNO)、ステップS5に戻り、繰り返し回数nを一つ増加させる(ステップS5において、n=n+1)。
係る繰り返しルーチンを、繰り返し回数nが20になるまで繰り返す。
係る繰り返し回数nが20回になれば、60秒間(=3秒間×20)に亘って逆潮流が生じていないことになり、ダミー負荷31を投入すれば逆潮流電力が消費される状態、或いは逆潮流自体が解消した状態の何れかが、60秒間に亘って継続していることとなる。係る場合には(ステップS5において、n=20)、制御装置36からスイッチング装置34へ負荷接続制御信号を伝達して、100Wの負荷31がラインL8と接続しているのを解除する(ステップS8)。そして、ステップS1に戻る。
If no reverse power flow is detected in step S7 (NO in step S7), the process returns to step S5, and the number of repetitions n is incremented by one (in step S5, n = n + 1).
Such a repetition routine is repeated until the number of repetitions n reaches 20.
If the number of repetitions n is 20, the reverse flow does not occur for 60 seconds (= 3 seconds × 20), and the reverse flow power is consumed if the dummy load 31 is turned on, or One of the states in which the reverse power flow itself has been eliminated continues for 60 seconds. In such a case (in step S5, n = 20), a load connection control signal is transmitted from the control device 36 to the switching device 34 to release the connection of the 100W load 31 to the line L8 (step S8). ). Then, the process returns to step S1.

ステップS4、ステップS7で逆潮流が検出されたならば(ステップS4、ステップS7がYES)、100Wのダミー負荷31のみでは逆潮流の電力が消費されない状態になっていることを意味している。係る状態(ステップS4、ステップS7がYES)であれば、制御装置36からスイッチング装置34へ負荷接続制御信号を伝達して、100Wのダミー負荷31に加えて、200Wのダミー負荷32をラインL8に接続する(ステップS9)。
そして、100Wのダミー負荷31に加えて、200Wのダミー負荷32をラインL8に接続した状態を3秒間維持して(ステップS10)、電力検出手段7Aから逆潮流状態を検出したか否かを判定する(ステップS11)。
If a reverse power flow is detected in steps S4 and S7 (YES in steps S4 and S7), it means that the power of the reverse power flow is not consumed only with the 100 W dummy load 31. If it is in such a state (YES in steps S4 and S7), a load connection control signal is transmitted from the control device 36 to the switching device 34, and in addition to the 100W dummy load 31, a 200W dummy load 32 is connected to the line L8. Connect (step S9).
Then, in addition to the 100 W dummy load 31, the state where the 200 W dummy load 32 is connected to the line L8 is maintained for 3 seconds (step S10), and it is determined whether or not the reverse power flow state is detected from the power detection means 7A. (Step S11).

ステップS11において逆潮流が検出されなければ(ステップS4がNO)、ステップS12に進む。
ステップS12においては、ステップS12〜ステップS15までのルーチン(ステップS14がNOのルーチン)の繰り返し回数をカウントする。最初に繰り返し回数nを「1」に設定し、ステップS13に進み(ステップS12のn≠20)、3秒間待機する。そして、電力検出手段7Aから逆潮流状態を検出したか否かを判定する(ステップS14)。
If no reverse power flow is detected in step S11 (NO in step S4), the process proceeds to step S12.
In step S12, the number of repetitions of the routine from step S12 to step S15 (the routine in which step S14 is NO) is counted. First, the number of repetitions n is set to “1”, and the process proceeds to step S13 (n ≠ 20 in step S12) and waits for 3 seconds. And it is determined whether the reverse power flow state was detected from the electric power detection means 7A (step S14).

ステップS14で逆潮流が検出されなければ(ステップS14がNO)、ステップS12に戻り、繰り返し回数nを一つ増加させる(ステップS12において、n=n+1)。
係る繰り返しルーチンを、繰り返し回数nが20になるまで繰り返す。
係る繰り返し回数nが20回になれば、60秒間(=3秒間×20)に亘って逆潮流が生じていないことになり、ダミー負荷31及びダミー負荷32を投入すれば、逆潮流電力が消費される状態、或いは逆潮流自体が解消した状態の何れかが、60秒間に亘って継続したことを意味する。係る場合には(ステップS12において、n=20)、制御装置36からスイッチング装置34へ負荷接続制御信号を伝達して、200Wの負荷32がラインL8と接続しているのを解除する(ステップS15)。そして、ステップS4に戻る。
If no reverse power flow is detected in step S14 (NO in step S14), the process returns to step S12, and the repeat count n is incremented by one (in step S12, n = n + 1).
Such a repetition routine is repeated until the number of repetitions n reaches 20.
If the number of repetitions n is 20, the reverse flow does not occur for 60 seconds (= 3 seconds × 20). If the dummy load 31 and the dummy load 32 are turned on, the reverse flow power is consumed. This means that the state where the reverse power flow itself is canceled continues for 60 seconds. In such a case (in step S12, n = 20), a load connection control signal is transmitted from the control device 36 to the switching device 34 to release the connection of the 200 W load 32 to the line L8 (step S15). ). Then, the process returns to step S4.

ステップS11、ステップS14で逆潮流が検出されたならば(ステップS11、ステップS14がYES)、100Wのダミー負荷31と200Wのダミー負荷32では、自然エネルギー以外の発電装置6の余剰電力(逆潮流の電力)が消費されない状態になっていると判断する。そして、制御装置36からスイッチング装置34へ負荷接続制御信号を伝達して、100Wのダミー負荷31、200Wのダミー負荷32、300Wのダミー負荷33をラインL8に接続する(ステップS16)。
そして、100Wのダミー負荷31、200Wのダミー負荷32、300Wのダミー負荷33をラインL8に接続した状態を3秒間維持して(ステップS17)、電力検出手段7Aから逆潮流状態を検出したか否かを判定する(ステップS18)。
If a reverse power flow is detected in steps S11 and S14 (YES in steps S11 and S14), the surplus power (reverse power flow) of the power generator 6 other than natural energy is generated in the dummy load 31 of 100 W and the dummy load 32 of 200 W. It is determined that the power is not consumed. Then, a load connection control signal is transmitted from the control device 36 to the switching device 34, and the 100W dummy load 31, the 200W dummy load 32, and the 300W dummy load 33 are connected to the line L8 (step S16).
Then, the state where the 100 W dummy load 31, the 200 W dummy load 32, and the 300 W dummy load 33 are connected to the line L8 is maintained for 3 seconds (step S17), and whether or not a reverse power flow state is detected from the power detection means 7A. Is determined (step S18).

ステップS18において逆潮流が検出されなければ(ステップS18がNO)、ステップS19に進み、100Wのダミー負荷31、200Wのダミー負荷32、300Wのダミー負荷33をラインL8に接続した状態を60秒間継続する(ステップS19)。
60秒間という時間は、上述した通り、計時装置38を用いて計測する。
そして、300Wのダミー負荷33をラインL8から接続解除して(ステップS20)、ステップS11に戻る。
ステップS18において逆潮流が検出されなければ(ステップS18がYES)、全ての負荷が投入されても逆潮流が検出されているということなので、自然エネルギー以外の発電装置6を停止させなければ自然エネルギー以外の発電装置6からの逆潮流が解消されないと判断して、システム停止指令発生装置からシステムの停止指令を発生する(ステップS21)。
If no reverse flow is detected in step S18 (NO in step S18), the process proceeds to step S19, and the state in which the 100W dummy load 31, the 200W dummy load 32, and the 300W dummy load 33 are connected to the line L8 is continued for 60 seconds. (Step S19).
The time of 60 seconds is measured using the time measuring device 38 as described above.
Then, the 300 W dummy load 33 is disconnected from the line L8 (step S20), and the process returns to step S11.
If no reverse power flow is detected in step S18 (YES in step S18), the reverse power flow is detected even when all loads are applied. Therefore, if the power generation device 6 other than natural energy is not stopped, the natural energy It is determined that the reverse power flow from the other power generation devices 6 is not eliminated, and a system stop command is generated from the system stop command generation device (step S21).

図4で説明した制御では、逆潮流の有無を常に条件としてダミー負荷の投入、解列を決定する為、電力が無駄に消費される恐れがなく、高機能なシステムを構築することが可能である。
また、自然エネルギー以外の発電装置6が稼動停止指令(図3のシステム停止指令発生装置40からのシステム停止指令)を受け付ける構成であれば、所定時間逆潮流が続いた場合に、逆潮流防止装置11から自然エネルギー以外の発電装置6へシステム停止指令を出力することにより、自然エネルギー以外の発電装置6からの逆潮流を確実に防止することができる。そして、自然エネルギー以外の発電装置6が稼動停止指令(図3のシステム停止指令発生装置40からのシステム停止指令)を受け付ける様に構成することは、図示しない自然エネルギー以外の発電装置6内蔵の制御装置を変更するのに比較して、軽微な変更で対応することが可能である。
In the control described with reference to FIG. 4, since the dummy load is turned on / off in accordance with the presence / absence of reverse power flow, there is no risk of wasted power, and a highly functional system can be constructed. is there.
In addition, if the power generation device 6 other than natural energy is configured to accept an operation stop command (system stop command from the system stop command generation device 40 in FIG. 3), the reverse power flow prevention device can be used when a reverse power flow continues for a predetermined time. By outputting a system stop command from the power generation device 11 other than natural energy to the power generation device 6 other than natural energy, reverse power flow from the power generation device 6 other than natural energy can be reliably prevented. And it is configured that the power generation device 6 other than natural energy receives an operation stop command (system stop command from the system stop command generation device 40 in FIG. 3). Compared to changing the device, it is possible to cope with minor changes.

なお、図3において、負荷のワット数、個数は限定するものではない。係る負荷については、自然エネルギー以外の発電装置6の仕様や、システムを製作する上における各種の要請(例えば、コスト、確実性、法制度上の制約、その他)に応じて、任意に複数組み合わせて実施することも可能である。
図示はされていないが、ダミー負荷として、同容量(例えば100ワット)の負荷を複数設け、負荷容量をリニアに変化する様に構成することも可能である。
In FIG. 3, the wattage and the number of loads are not limited. Regarding the load, any combination of power generators 6 other than natural energy can be arbitrarily combined according to various requirements (for example, cost, certainty, legal restrictions, etc.) in manufacturing the system. It is also possible to implement.
Although not shown, it is also possible to provide a plurality of loads with the same capacity (for example, 100 watts) as dummy loads so that the load capacity changes linearly.

これに加えて、逆潮流防止装置11におけるダミー負荷31、32、33の総容量を自然エネルギー以外の発電装置6の発電出力よりも大きくして、自然エネルギー以外の発電装置6からの逆潮流を確実に防止する様に構成した場合には、自然エネルギー以外の発電装置6に対する稼動停止信号の入力を省略することが可能である。
さらに、複数のダミー負荷を逆潮流発生時点から異なる時定数で投入し,各ダミー負荷投入時点から異なる時定数で自動復帰するようシステムを構築すれば、復帰ロジックが簡易なシステム構成とすることも可能である。
In addition to this, the total capacity of the dummy loads 31, 32, 33 in the reverse power flow prevention device 11 is made larger than the power generation output of the power generation device 6 other than natural energy, and the reverse power flow from the power generation device 6 other than natural energy is reduced. When it is configured to reliably prevent, it is possible to omit the input of the operation stop signal to the power generation device 6 other than natural energy.
In addition, if a system is constructed so that multiple dummy loads are input with different time constants from the time of reverse power flow and each time the dummy loads are applied, automatic recovery with different time constants is possible. Is possible.

次に、図4で説明した制御を、図5を参照してさらに説明する。
図5では、ダミー負荷31を接続しても逆潮流が解消しない(ステップS4がYES)ので、ダミー負荷32を接続して、逆潮流が解消した(ステップS11がNO)場合を例示している。なお,電力負荷(家庭)は家庭需要等の一般負荷を表し,電力負荷(合計)は電力負荷(家庭)とダミー負荷の合計値を意味している。
Next, the control described in FIG. 4 will be further described with reference to FIG.
FIG. 5 illustrates the case where the reverse power flow is not eliminated even if the dummy load 31 is connected (step S4 is YES), and the reverse power flow is resolved (step S11 is NO) because the dummy load 32 is connected. . The power load (household) represents a general load such as household demand, and the power load (total) means the total value of the power load (household) and the dummy load.

図5において、時刻t1以前の段階では、自然エネルギー以外の発電装置6の出力電力(図5では2点鎖線で示す)は電力負荷(家庭)を上回っていないので、ダミー負荷31、32、33は投入されない(図4のステップS1がNOのルーチン)。なお,ダミー負荷が投入されていない場合は,電力負荷(家庭)=電力負荷(合計)となる。
時刻t1で電力負荷(家庭)が急激に減少したと仮定する。燃料電池6の出力電力は、時刻t1の電力負荷(家庭)のレベルで制御されているので、時刻t1において燃料電池6の出力電力が電力負荷(家庭)を上回り、逆潮流状態となる。
In FIG. 5, since the output power (indicated by a two-dot chain line in FIG. 5) of the power generation apparatus 6 other than natural energy does not exceed the power load (household) before the time t1, the dummy loads 31, 32, 33 Is not input (the routine in which step S1 in FIG. 4 is NO). When no dummy load is input, power load (household) = power load (total).
Assume that the power load (household) suddenly decreases at time t1. Since the output power of the fuel cell 6 is controlled at the level of the power load (home) at the time t1, the output power of the fuel cell 6 exceeds the power load (home) at the time t1 and is in a reverse power flow state.

逆潮流状態となった旨は電力検出手段7Aで検出され(ステップS1がYES)、時刻t2でダミー負荷31が投入され(ステップS2)、電力負荷(合計)は図5の符号S3で示す領域のレベルまで上昇するが、依然として自然エネルギー以外の発電装置6の出力電力が電力負荷(合計)を上回っている。
時刻t3まで待機しても(ステップS3)、自然エネルギー以外の発電装置6の出力電力が電力負荷(合計)を上回っているので(ステップS4がYES)、ダミー負荷32が投入される(ステップS9)。ダミー負荷32が投入された結果、電力負荷(合計)は図5の符号S9で示す領域のレベルまで上昇し、自然エネルギー以外の発電装置6の出力電力を上回る。その結果、逆潮流は検出されなくなる(ステップS11がNO)。
The fact that the reverse power flow state has been detected is detected by the power detection means 7A (YES in step S1), the dummy load 31 is turned on at time t2 (step S2), and the power load (total) is a region indicated by symbol S3 in FIG. However, the output power of the power generation device 6 other than natural energy still exceeds the power load (total).
Even when waiting until time t3 (step S3), since the output power of the power generation device 6 other than natural energy exceeds the power load (total) (YES in step S4), the dummy load 32 is input (step S9). ). As a result of the introduction of the dummy load 32, the power load (total) rises to a level in the region indicated by reference numeral S9 in FIG. 5 and exceeds the output power of the power generator 6 other than natural energy. As a result, the reverse power flow is not detected (step S11 is NO).

図4のステップS12〜ステップS14の繰り返しルーチンを完了したならば(時刻t4:ステップS12でn=20)、ダミー負荷32を解除する(ステップS15)。
時刻t4の時点では、自然エネルギー以外の発電装置6の出力は既に減少しているので、ダミー負荷32を解除して電力負荷(合計)が図5の符号S15で示す領域のレベルまで下降しても、自然エネルギー以外の発電装置6の発電出力はそれ以下のレベルにあり、逆潮流は生じない(ステップS4がNO)。
そして、図4のステップS5〜ステップS7の繰り返しルーチンを完了したならば(時刻t5:ステップS5でn=20)、ダミー負荷31を解除する(ステップS8)。
時刻t5の時点では、自然エネルギー以外の発電装置6の出力は電力負荷(家庭)のレベルまで低下しているので、ダミー負荷31を解除して電力負荷(合計)を図5の符号S8で示す領域のレベルまで下降しても、逆潮流は生じない(ステップS1がNO)。
If the repetition routine of step S12 to step S14 in FIG. 4 is completed (time t4: n = 20 in step S12), the dummy load 32 is released (step S15).
At time t4, since the output of the power generation device 6 other than natural energy has already decreased, the dummy load 32 is released and the power load (total) decreases to the level of the region indicated by S15 in FIG. However, the power generation output of the power generation device 6 other than natural energy is below that level, and no reverse power flow occurs (NO in step S4).
And if the repetition routine of step S5-step S7 of FIG. 4 is completed (time t5: n = 20 in step S5), the dummy load 31 will be cancelled | released (step S8).
At time t5, since the output of the power generation device 6 other than natural energy has decreased to the level of the power load (household), the dummy load 31 is released and the power load (total) is indicated by reference numeral S8 in FIG. Even if it falls to the level of the region, no reverse power flow occurs (NO in step S1).

ここで、図5を参照した上述の説明から理解出来るように、図4のステップS5〜ステップS7の繰り返し回数及びステップS12〜ステップS14の繰り返し回数は、自然エネルギー以外の発電装置6における出力低下の速度に対応して決定されている。   Here, as can be understood from the above description with reference to FIG. 5, the number of repetitions of step S5 to step S7 and the number of repetitions of step S12 to step S14 in FIG. It is determined according to the speed.

次に、図6、図7を参照して、本発明の第3実施形態について説明する。
図1〜図5で説明した実施形態では、2つの電力検出装置7A、7Bが、逆潮流防止装置11への分岐ポイントB1の上位側と下位側とに各々設けられていたが、図6、図7の第3実施形態では、分岐ポイントB1の下位側に電力検出手段7Bのみが設けられている。
ここで、図6のシステム20Cは図1のシステム20と対応しており、図7のシステム20Dは図2のシステム20Aと対応している。
Next, a third embodiment of the present invention will be described with reference to FIGS.
In the embodiment described with reference to FIGS. 1 to 5, the two power detection devices 7 </ b> A and 7 </ b> B are provided on the upper side and the lower side of the branch point B <b> 1 to the reverse power flow prevention device 11. In the third embodiment of FIG. 7, only the power detection means 7B is provided on the lower side of the branch point B1.
Here, the system 20C in FIG. 6 corresponds to the system 20 in FIG. 1, and the system 20D in FIG. 7 corresponds to the system 20A in FIG.

ここで、図6及び図7において、電力検出手段7Bからは信号伝達ラインCL2により自然エネルギー以外の発電装置6へ逆潮流状態の検出信号が伝達されると共に、信号伝達ラインCL11を介して、逆潮流状態の検出信号が逆潮流防止装置11へ伝達される。
その他の構成については、図1、図2で示すのと同様である。
Here, in FIGS. 6 and 7, the detection signal of the reverse power flow state is transmitted from the power detection means 7B to the power generation device 6 other than the natural energy through the signal transmission line CL2, and reversely through the signal transmission line CL11. A tidal current state detection signal is transmitted to the reverse power flow prevention device 11.
Other configurations are the same as those shown in FIGS.

図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではない旨を付記する。
例えば、図示の実施形態では、3種類のダミー負荷が示されているが、その個数、容量は、これに限定されるものではない。
It should be noted that the illustrated embodiment is merely an example, and is not a description to limit the technical scope of the present invention.
For example, in the illustrated embodiment, three types of dummy loads are shown, but the number and capacity thereof are not limited thereto.

本発明の第1実施形態のブロック図。The block diagram of 1st Embodiment of this invention. 第1実施形態の変形例のブロック図。The block diagram of the modification of 1st Embodiment. 第2実施形態の要部を示すブロック図。The block diagram which shows the principal part of 2nd Embodiment. 第2実施形態における制御の詳細を示すフローチャート。The flowchart which shows the detail of control in 2nd Embodiment. 第2実施形態における制御の一例を示す時刻−発電出力・負荷特性図。The time-electric power generation output and load characteristic figure which shows an example of the control in 2nd Embodiment. 本発明の第3実施形態のブロック図。The block diagram of 3rd Embodiment of this invention. 第3実施形態の変形例のブロック図。The block diagram of the modification of 3rd Embodiment. 従来技術の1例を示すブロック図。The block diagram which shows an example of a prior art. 従来技術の別の例を示すブロック図。The block diagram which shows another example of a prior art. 従来技術のさらに別の例を示すブロック図。The block diagram which shows another example of a prior art. 従来技術における負荷パターンと負荷追随性の一例を示す特性図。The characteristic view which shows an example of the load pattern and load followability in a prior art.

符号の説明Explanation of symbols

1・・・商用電源
2・・・電流制限器
3・・・主幹ブレーカー
4・・・分岐ブレーカー
5・・・分散電源連系用ブレーカー
6・・・燃料電池
7・・・電力検出手段
7A・・・上位電力検出手段
7B・・・下位電力検出手段
8・・・自然エネルギー連系用ブレーカー
9・・・自然エネルギーによる発電装置
10・・・ブレーカー
11・・・逆潮流防止装置
12・・・購入用電力量計
13・・・売電用電力量計
20、20A、20C、20D・・・商用電源と複数の分散電源を有するシステム
B1・・・分岐ポイントB1
G1・・・合流ポイント
31、32、33・・・ダミー負荷
34・・・スイッチング装置
36・・・制御装置
38・・・計時装置
40・・・システム停止指令発生装置
DESCRIPTION OF SYMBOLS 1 ... Commercial power source 2 ... Current limiter 3 ... Main circuit breaker 4 ... Branch breaker 5 ... Distributed power source connection breaker 6 ... Fuel cell 7 ... Electric power detection means 7A .. Upper power detection means 7B... Lower power detection means 8... Natural energy interconnection breaker 9... Natural power generator 10... Breaker 11. Electricity meter 13 for purchase: Electricity meter 20, 20A, 20C, 20D for power sale: System B1 having a commercial power source and a plurality of distributed power sources: Branch point B1
G1 ... Junction points 31, 32, 33 ... Dummy load 34 ... Switching device 36 ... Control device 38 ... Timing device 40 ... System stop command generator

Claims (4)

自然エネルギーによる発電装置と、自然エネルギー以外の発電装置と、逆潮流防止装置とを備え、逆潮流防止装置は自然エネルギー以外の発電装置の上位かつ自然エネルギーによる発電装置の下位に位置しており、逆潮流防止装置の上位及び下位には自然エネルギー以外の発電装置から商用電源側への逆潮流を検出する電力検出手段が設けられており、逆潮流防止装置は負荷を有しており、当該負荷は、逆潮流防止装置の上位に位置する電力検出手段が自然エネルギー以外の発電装置から商用電源側への逆潮流を検出した際に投入される様に構成されていることを特徴とする逆潮流防止システム。   It has a power generation device using natural energy, a power generation device other than natural energy, and a reverse power flow prevention device, and the reverse power flow prevention device is located above the power generation device other than natural energy and below the power generation device using natural energy, Power detection means for detecting a reverse power flow from a power generation device other than natural energy to the commercial power source is provided at the upper and lower levels of the reverse power flow prevention device. The reverse power flow prevention device has a load, and the load Is configured so that the power detection means positioned above the reverse flow prevention device is turned on when detecting a reverse flow from a power generation device other than natural energy to the commercial power supply side. Prevention system. 自然エネルギー以外の発電装置は、逆潮流防止装置よりも下位に位置する電力検出手段が自然エネルギー以外の発電装置から商用電源側への逆潮流を検出した際に、出力電力を減少する様に構成されている請求項1の逆潮流防止システム。   The non-natural energy generator is configured to reduce the output power when the power detection means located below the reverse power flow prevention device detects a reverse power flow from the non-natural energy generator to the commercial power source. The reverse power flow prevention system according to claim 1. 前記逆潮流防止装置は容量の異なる複数種類の負荷を投入可能に構成されており、逆潮流防止装置よりも上位に位置する電力検出手段により自然エネルギー以外の発電装置から商用電源側への逆潮流が検出された際には、負荷を投入し、逆潮流が検出されなくなるまで順次負荷を投入する様に構成されている請求項1、2の何れかの逆潮流防止システム。   The reverse power flow prevention device is configured so that a plurality of types of loads having different capacities can be input, and the reverse power flow from the power generation device other than natural energy to the commercial power supply side by the power detection means positioned above the reverse power flow prevention device The reverse power flow prevention system according to any one of claims 1 and 2, wherein a load is applied when a load is detected, and the load is sequentially applied until no reverse power flow is detected. 自然エネルギーによる発電装置と、自然エネルギー以外の発電装置と、逆潮流防止装置とを備え、逆潮流防止装置は自然エネルギー以外の発電装置の上位で自然エネルギーによる発電装置の下位に位置しており、逆潮流防止装置の下位には自然エネルギー以外の発電装置から商用電源側への逆潮流を検出する電力検出手段が設けられており、逆潮流防止装置は前記電力検出手段が自然エネルギー以外の発電装置から商用電源側への逆潮流を検出した際に負荷を投入する様に構成されていることを特徴とする逆潮流防止システム。   It has a power generation device using natural energy, a power generation device other than natural energy, and a reverse power flow prevention device, and the reverse power flow prevention device is positioned above the power generation device other than natural energy and below the power generation device using natural energy, Power detection means for detecting a reverse power flow from a power generation device other than natural energy to the commercial power source is provided below the reverse power flow prevention device, and the reverse power flow prevention device is a power generation device whose power detection means is other than natural energy. The reverse power flow prevention system is configured so that a load is applied when a reverse power flow from the power source to the commercial power source is detected.
JP2005114233A 2005-04-12 2005-04-12 Reverse power flow prevention system Pending JP2006296097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114233A JP2006296097A (en) 2005-04-12 2005-04-12 Reverse power flow prevention system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114233A JP2006296097A (en) 2005-04-12 2005-04-12 Reverse power flow prevention system

Publications (1)

Publication Number Publication Date
JP2006296097A true JP2006296097A (en) 2006-10-26

Family

ID=37416056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114233A Pending JP2006296097A (en) 2005-04-12 2005-04-12 Reverse power flow prevention system

Country Status (1)

Country Link
JP (1) JP2006296097A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228697A (en) * 2006-02-22 2007-09-06 Osaka Gas Co Ltd Energy saving system
JP2013083508A (en) * 2011-10-07 2013-05-09 Enegate:Kk Watt-hour meter with inverse power flow detection function
CN103475030A (en) * 2013-09-27 2013-12-25 南车株洲电力机车研究所有限公司 Countercurrent prevention control method and device
JP2014014272A (en) * 2010-03-31 2014-01-23 Jx Nippon Oil & Energy Corp Power supply system
JP2014236521A (en) * 2013-05-30 2014-12-15 京セラ株式会社 Output control method and output control device
US9824409B2 (en) 2012-09-03 2017-11-21 Kabushiki Kaisha Toshiba Energy management system, server, energy management method, and storage medium
AU2021218154B2 (en) * 2020-08-24 2023-02-02 Ihi Corporation Power management system, power management method, and power management program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228697A (en) * 2006-02-22 2007-09-06 Osaka Gas Co Ltd Energy saving system
JP2014014272A (en) * 2010-03-31 2014-01-23 Jx Nippon Oil & Energy Corp Power supply system
JP2013083508A (en) * 2011-10-07 2013-05-09 Enegate:Kk Watt-hour meter with inverse power flow detection function
US9824409B2 (en) 2012-09-03 2017-11-21 Kabushiki Kaisha Toshiba Energy management system, server, energy management method, and storage medium
JP2014236521A (en) * 2013-05-30 2014-12-15 京セラ株式会社 Output control method and output control device
CN103475030A (en) * 2013-09-27 2013-12-25 南车株洲电力机车研究所有限公司 Countercurrent prevention control method and device
AU2021218154B2 (en) * 2020-08-24 2023-02-02 Ihi Corporation Power management system, power management method, and power management program
US11837870B2 (en) 2020-08-24 2023-12-05 Ihi Corporation Power management system, power management method, and power management program

Similar Documents

Publication Publication Date Title
JP2006296097A (en) Reverse power flow prevention system
JP2011507464A (en) Apparatus and method for connecting a power supply to a power system
Thomas et al. Flexible security-constrained optimal power flow
JP2014166114A (en) Power generation system with hot water storage function
JP6109209B2 (en) Power supply system
JP2004194485A (en) Energy system
JP6462369B2 (en) Power supply system
JP2008092767A (en) Power plant
JP6109380B2 (en) Distributed power system
JP6167438B2 (en) Power supply system
JP2010283942A (en) Cogeneration apparatus
JP6894866B2 (en) Power control system, power control device, and power control method
JP2008035619A (en) Determination method for individual operation of dispersed power system
JP5387145B2 (en) Cogeneration apparatus and method of operating cogeneration apparatus
JP2007318940A (en) Mutual power supplement controller and control method between distributed cogeneration plants for enterprise
JP2016093081A (en) Power supply system and controller
JP6289270B2 (en) Power supply system and power conditioner
JP2006280097A (en) Power generation system
JP6694930B2 (en) Power control system control method, power control system, and power control device
JP2018160950A (en) Power supply system
JP2015077050A (en) Output control device and power supply system
JP5799548B2 (en) Power generation system
JP6085785B2 (en) Power supply system
JP7379250B2 (en) Power monitoring and control device, power monitoring and control program
JP2001251766A (en) Power generation controller in private power generation facility