JP2006296096A - Regenerative resistor protection device - Google Patents

Regenerative resistor protection device Download PDF

Info

Publication number
JP2006296096A
JP2006296096A JP2005114155A JP2005114155A JP2006296096A JP 2006296096 A JP2006296096 A JP 2006296096A JP 2005114155 A JP2005114155 A JP 2005114155A JP 2005114155 A JP2005114155 A JP 2005114155A JP 2006296096 A JP2006296096 A JP 2006296096A
Authority
JP
Japan
Prior art keywords
switching element
regenerative
semiconductor switching
semiconductor
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005114155A
Other languages
Japanese (ja)
Inventor
Masanobu Tsuji
正伸 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005114155A priority Critical patent/JP2006296096A/en
Publication of JP2006296096A publication Critical patent/JP2006296096A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a regenerative resistor protection device whose regenerative capability is not affected by working conditions or surrounding environments, that makes it unnecessary to use an electromagnetic contactor or a fuse of large capacity, and that is cost effective and least affected by malfunction. <P>SOLUTION: This regenerative resistor protection device is provided with an abnormality detection means 2 that detects an abnormality of a regenerative power absorption circuit 1 that absorbs regenerative power generated from an inverter circuit 10 connected between DC bus bars, and a switching element control means 3 that stops conducting the regenerative power absorption circuit 1 with the abnormal signal detected by the abnormality detection means 2. The regenerative power absorption circuit 1, which is connected in series to a regenerative resistor 4 that absorbs the regenerative power, consists of a first semiconductor-switching element 5 that controls the conduction to the regenerative resistor 4 and a second semiconductor-switching element 6. In the normal operation, one of the semiconductor-switching elements is set to an open state, and the other to a closed one. If an abnormal signal is received, a switching element control means 3 controls the two semiconductor switching elements 5, 6 forcibly to the open state to stop conducting the regenerative resistor 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、サーボモータなどを駆動するモータ駆動装置のインバータ回路に接続された回生抵抗器の保護装置に関する。   The present invention relates to a protection device for a regenerative resistor connected to an inverter circuit of a motor drive device that drives a servo motor or the like.

従来、インバータ回路に接続された回生電力吸収回路のスイッチング素子が故障すると、回生抵抗器が常時通電状態となり、回生抵抗器の焼損につながる。これを防止するために、常時通電時には抵抗体が溶断するように抵抗体の耐量を選定する方法がある。   Conventionally, when a switching element of a regenerative power absorption circuit connected to an inverter circuit fails, the regenerative resistor is always energized, leading to burnout of the regenerative resistor. In order to prevent this, there is a method of selecting the resistance of the resistor so that the resistor is melted during normal energization.

また、温度検出器により回生抵抗器の温度を検出して、温度が異常に高くなれば電源を遮断する構成、回生抵抗器に温度ヒューズを直列に接続し、回生抵抗器の温度が異常に高くなったときにヒューズが溶断するように設定する方法がある。   In addition, the temperature of the regenerative resistor is detected by the temperature detector, and the power supply is cut off if the temperature becomes abnormally high. A temperature fuse is connected in series with the regenerative resistor, and the temperature of the regenerative resistor is abnormally high. There is a method to set the fuse to blow when it becomes.

さらに、回生抵抗器に容量の大きな電流ヒューズを直列に接続し、異常検出時には回生抵抗器とは別回路でサイリスタにより、その電流ヒューズを強制的に作動させるという方法が考案されている(例えば、特許文献1参照)。
特開平5−336758号公報
Further, a method has been devised in which a large-capacity current fuse is connected in series to the regenerative resistor, and the current fuse is forcibly operated by a thyristor in a separate circuit from the regenerative resistor when an abnormality is detected (for example, (See Patent Document 1).
JP-A-5-336758

解決しようとする問題点は、回生電力を吸収する抵抗体の耐量選定が困難な点であり、正常な使用状況において長時間にわたって抵抗体が溶断することのないように選定するには、周囲温度などの使用環境にも考慮する必要があり、耐量選定に課題があった。   The problem to be solved is that it is difficult to select the resistance of the resistor that absorbs the regenerative power.To select the resistor so that it does not melt for a long time under normal use conditions, the ambient temperature It was necessary to consider the usage environment, etc., and there was a problem in the tolerance selection.

また、回生抵抗器の温度異常を検出して電源を遮断するものでは、主回路の電源を遮断する必要があるため、大容量の電磁接触器などが必要となり、価格の面で課題があった。   In addition, if the power supply is cut off by detecting the temperature abnormality of the regenerative resistor, it is necessary to cut off the power supply of the main circuit, so a large-capacity electromagnetic contactor, etc. is required, which has a problem in terms of price. .

また、上述した回生抵抗器に温度ヒューズを直列接続するものでは、直流電流を切る必要があるため接点タイプのヒューズは使用に適さず、合金タイプの温度ヒューズは作動温度に限界があるため、どうしても回生抵抗器そのものの容量を大きくし、温度上昇を押さえるようにしなければ所用の回生能力が得られず、課題があった。   Also, in the case where a thermal fuse is connected in series to the regenerative resistor described above, it is necessary to cut the DC current, so a contact type fuse is not suitable for use, and an alloy type thermal fuse has a limit in operating temperature. If the capacity of the regenerative resistor itself is increased and the temperature rise is not suppressed, the required regenerative ability cannot be obtained and there is a problem.

さらに、異常時にサイリスタで強制的にヒューズを切る方法は、直流遮断用の大きな電流ヒューズが必要になるとともに、何らかの理由でサイリスタが誤点弧した場合、瞬時に電流ヒューズが溶断するため、電流ヒューズを交換しなければならず、課題があった。   In addition, the method of forcibly cutting the fuse with a thyristor in the event of an abnormality requires a large current fuse for DC interruption, and if the thyristor is accidentally fired for some reason, the current fuse is blown instantly, so the current fuse Had to be replaced.

本発明は上記従来の課題を解決するものであり、回生能力が使用条件や周囲環境に影響されず、大容量の電磁接触器やヒューズなどを用いる必要がなく、安価で誤動作の影響が少ない回生抵抗保護装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, the regenerative ability is not affected by the use conditions and the surrounding environment, it is not necessary to use a large-capacity electromagnetic contactor or fuse, etc. An object is to provide a resistance protection device.

上記課題を解決するために本発明は、インバータ回路に電力を供給する直流母線間に接続され、前記インバータ回路から発生する回生電力を吸収する回生電力吸収回路と、前記回生電力吸収回路の異常を検出する異常検出手段と、前記異常検出手段により検出された異常信号により前記回生電力吸収回路の通電を停止するスイッチング素子制御手段とを備え、前記回生電力吸収回路は、回生電力を吸収する回生抵抗器と、直列に接続された前記回生抵抗器への通電を制御する第一の半導体スイッチング素子と、前記回生抵抗器と第一
の半導体スイッチング素子に直列に接続された第二の半導体スイッチング素子とからなり、前記異常信号により第一の半導体スイッチング素子と第二の半導体スイッチング素子の両方あるいはどちらかを開状態にして前記回生抵抗器への通電を停止するもので、半導体スイッチング素子の故障により回生抵抗器が焼損するのを保護できる。
In order to solve the above-described problems, the present invention provides a regenerative power absorption circuit that is connected between DC buses that supply power to an inverter circuit and absorbs regenerative power generated from the inverter circuit, and an abnormality in the regenerative power absorption circuit. An abnormality detection means for detecting; and a switching element control means for stopping energization of the regenerative power absorption circuit by an abnormality signal detected by the abnormality detection means, wherein the regenerative power absorption circuit absorbs the regenerative power. A first semiconductor switching element for controlling energization to the regenerative resistor connected in series, and a second semiconductor switching element connected in series to the regenerative resistor and the first semiconductor switching element. The first semiconductor switching element and / or the second semiconductor switching element is opened by the abnormal signal. It intended to stop the current supply to the regenerative resistor by, protect from being burnout regenerative resistor by the failure of the semiconductor switching element.

本発明の回生抵抗保護装置によれば、回生電力吸収回路に2つの半導体スイッチング素子を直列に設け、少なくとも故障していない方の半導体スイッチング素子を開状態にするため、確実に回生抵抗器への通電を停止でき、焼損を防止できる。   According to the regenerative resistance protection device of the present invention, two semiconductor switching elements are provided in series in the regenerative power absorption circuit, and at least the semiconductor switching element that has not failed is opened. It can stop energization and prevent burning.

また、一方の半導体スイッチング素子は正常状態で常に閉状態とし、他方の半導体スイッチング素子を直流母線の線間電圧に応じて開閉させることで、閉状態の半導体スイッチング素子の故障発生確率を低減できるとともに、スイッチング損失を減らすことができ、半導体スイッチング素子の放熱も簡易なもので実現できる。   One semiconductor switching element is always closed in a normal state, and the other semiconductor switching element is opened and closed according to the line voltage of the DC bus, thereby reducing the probability of failure of the closed semiconductor switching element. The switching loss can be reduced, and the heat dissipation of the semiconductor switching element can be realized with a simple one.

また、正側半導体スイッチング素子を駆動する電源を、負側半導体スイッチング素子を駆動する電源の正側と、正側半導体スイッチング素子の負側の間に整流素子を通して接続されたコンデンサから供給することで、新たな電源を構成する必要がなく、安価に構成できる。   In addition, the power source for driving the positive semiconductor switching element is supplied from a capacitor connected through a rectifier element between the positive side of the power source for driving the negative semiconductor switching element and the negative side of the positive semiconductor switching element. Therefore, it is not necessary to configure a new power source, and it can be configured at low cost.

このように、半導体スイッチング素子の故障に影響されにくく、安価で確実に回生抵抗器を焼損から保護することができる回生抵抗保護装置が得られる。   In this way, it is possible to obtain a regenerative resistance protection device that is less susceptible to the failure of the semiconductor switching element and can reliably protect the regenerative resistor from burning.

インバータ回路に電力を供給する直流母線間に接続され、前記インバータ回路から発生する回生電力を吸収する回生電力吸収回路と、前記回生電力吸収回路の異常を検出する異常検出手段と、前記異常検出手段により検出された異常信号により前記回生電力吸収回路の通電を停止するスイッチング素子制御手段とを備え、前記回生電力吸収回路は、回生電力を吸収する回生抵抗器と、直列に接続された前記回生抵抗器への通電を制御する第一の半導体スイッチング素子と、前記回生抵抗器と第一の半導体スイッチング素子に直列に接続された第二の半導体スイッチング素子とからなり、前記異常信号により第一の半導体スイッチング素子と第二の半導体スイッチング素子の両方あるいはどちらかを開状態にして前記回生抵抗器への通電を停止する。   A regenerative power absorption circuit connected between DC buses for supplying power to the inverter circuit and absorbing regenerative power generated from the inverter circuit, an abnormality detection means for detecting an abnormality in the regenerative power absorption circuit, and the abnormality detection means Switching element control means for stopping energization of the regenerative power absorption circuit by an abnormal signal detected by the regenerative power absorption circuit, the regenerative power absorption circuit, and the regenerative resistor connected in series A first semiconductor switching element for controlling energization to the capacitor, and a second semiconductor switching element connected in series to the regenerative resistor and the first semiconductor switching element, and the first semiconductor by the abnormal signal Stop energization to the regenerative resistor by opening the switching element and / or the second semiconductor switching element. That.

実施例1は、回生抵抗器の異常検出手段にサーマルプロテクタを用いたものである。   In the first embodiment, a thermal protector is used as an abnormality detection means of the regenerative resistor.

図1において、回生電力吸収回路1は、回生抵抗器4と第一の半導体スイッチング素子5と第二の半導体スイッチング素子6の直列回路で構成されている。通常、回生抵抗器4に1つの半導体スイッチング素子が接続されるところを、2つの半導体スイッチング素子を直列接続した点がポイントである。   In FIG. 1, the regenerative power absorption circuit 1 is composed of a series circuit of a regenerative resistor 4, a first semiconductor switching element 5, and a second semiconductor switching element 6. Normally, the point where one semiconductor switching element is connected to the regenerative resistor 4 is that two semiconductor switching elements are connected in series.

この回生電力吸収回路1は、直流母線間に接続されており、後述する閾値を超えると、第一の半導体スイッチング素子5と第二の半導体スイッチング素子6を閉状態にして回生電力を吸収する。   The regenerative power absorption circuit 1 is connected between the DC buses, and when a threshold value described later is exceeded, the first semiconductor switching element 5 and the second semiconductor switching element 6 are closed to absorb the regenerative power.

異常検出手段2は、回生抵抗器4の温度の異常を検知するサーマルプロテクタ15とその信号を処理する異常判定回路16とで構成される。この異常判定回路16は、異常を検出したときに異常信号をスイッチング素子制御手段3に出力する。   The abnormality detection means 2 includes a thermal protector 15 that detects an abnormality in the temperature of the regenerative resistor 4 and an abnormality determination circuit 16 that processes the signal. The abnormality determination circuit 16 outputs an abnormality signal to the switching element control means 3 when an abnormality is detected.

スイッチング素子制御手段3は、異常検出手段2の出力または直流電圧検出手段14の出力を入力として、第一のゲート信号発生手段17と第二のゲート電圧発生手段18とにより、第一の半導体スイッチング素子5と第二の半導体スイッチング素子6のON,OFFを制御する。   The switching element control unit 3 receives the output of the abnormality detection unit 2 or the output of the DC voltage detection unit 14 as an input, and the first gate signal generation unit 17 and the second gate voltage generation unit 18 perform the first semiconductor switching. The ON / OFF of the element 5 and the second semiconductor switching element 6 is controlled.

一方、モータ駆動装置の主電源となる交流電源7を整流器8で整流し、平滑コンデンサ9で平滑した直流母線間(正側12と負側13)にインバータ回路10が接続され、上下のスイチング素子をON,OFF制御してモータ11が駆動される。   On the other hand, an inverter circuit 10 is connected between DC buses (positive side 12 and negative side 13) which is rectified by a rectifier 8 and is smoothed by a smoothing capacitor 9 as a main power source of a motor drive device, and upper and lower switching elements. The motor 11 is driven by controlling ON and OFF.

一般的に直流電圧検出手段14は、2つの閾値(第一の設定電圧値と第二の設定電圧値)を有しており、直流母線間に接続され、線間電圧の変化を監視して、スイッチング素子制御手段3に母線電圧情報を出力する。   In general, the DC voltage detection means 14 has two threshold values (a first set voltage value and a second set voltage value), and is connected between the DC buses to monitor changes in the line voltage. The bus voltage information is output to the switching element control means 3.

ここで、通常運転から回生運転に移行するまでの通常動作について説明する。直流電圧検出手段14により検出した電圧が、第一の設定電圧値以下(正常運転時)のときには、第一の半導体スイッチング素子5を開状態、第二の半導体スイッチング素子6は閉状態に設定する。   Here, the normal operation from the normal operation to the regenerative operation will be described. When the voltage detected by the DC voltage detection means 14 is equal to or lower than the first set voltage value (during normal operation), the first semiconductor switching element 5 is set in the open state and the second semiconductor switching element 6 is set in the closed state. .

そして、直流電圧検出手段14により検出した直流電圧が第一の設定電圧値を超えると、第一の半導体スイッチング素子5を閉状態にする。これにより、第一の半導体スイッチング素子5と第二の半導体スイッチング素子6の両方が閉状態となり、直流母線間に回生抵抗器4が直接接続された形となり、回生電力を回生抵抗器4が吸収する。回生電力の吸収によって直流電圧が第二の設定電圧より小さくなると、第一の半導体スイッチング素子5を通常運転時の開状態に戻して、回生抵抗器4への通電を停止する。   When the DC voltage detected by the DC voltage detection means 14 exceeds the first set voltage value, the first semiconductor switching element 5 is brought into a closed state. As a result, both the first semiconductor switching element 5 and the second semiconductor switching element 6 are closed, and the regenerative resistor 4 is directly connected between the DC buses, and the regenerative resistor 4 absorbs the regenerative power. To do. When the DC voltage becomes smaller than the second set voltage due to absorption of regenerative power, the first semiconductor switching element 5 is returned to the open state during normal operation, and energization to the regenerative resistor 4 is stopped.

このように、モータ11が回生領域で運転されれば、インバータ回路10から発生する回生電力は正常に吸収することができる。   Thus, if the motor 11 is operated in the regeneration region, the regenerative power generated from the inverter circuit 10 can be absorbed normally.

次に、回生電力吸収回路異常の検出から回生抵抗器保護までの動作について説明する。例えば、正常時には開状態の第一の半導体スイッチング素子5が、仮に短絡故障を起こして閉状態になると、第二の半導体スイチング素子は常時閉状態にしているため、回生運転ではないのに回生抵抗器4には常時電流が流れ、回生抵抗器4が高温になると異常判定回路16から異常信号が出力される。   Next, operations from detection of abnormality in the regenerative power absorption circuit to protection of the regenerative resistor will be described. For example, if the first semiconductor switching element 5 that is normally open is closed due to a short-circuit failure, the second semiconductor switching element is normally closed, so that the regenerative resistor is not in a regenerative operation. When the regenerative resistor 4 reaches a high temperature, an abnormality signal is output from the abnormality determination circuit 16.

スイッチング素子制御手段3は、異常判定回路16から異常信号を受けると、直流電圧検出手段14による電圧情報に関係なく、強制的に第一の半導体スイッチング素子5と第二の半導体スイッチ6を両方とも開状態に制御して、回生抵抗器4への通電を停止できるため、回生抵抗器4がそれ以上高温になるのを防止できる。   When the switching element control means 3 receives the abnormality signal from the abnormality determination circuit 16, both the first semiconductor switching element 5 and the second semiconductor switch 6 are forcibly set regardless of the voltage information by the DC voltage detection means 14. Since the energization to the regenerative resistor 4 can be stopped by controlling to the open state, the regenerative resistor 4 can be prevented from becoming further hot.

ところで、初期設定において2つの半導体スイッチング素子をともに開状態としても実施できるが、故障発生の確率が高くなるため、片方は閉状態とする方がよい。また、第一の半導体スイッチング素子と第二の半導体スイッチング素子の開閉を逆にしても同様に実施できる。   By the way, in the initial setting, the two semiconductor switching elements can be both opened. However, since the probability of occurrence of a failure increases, it is better to close one of them. Further, the first semiconductor switching element and the second semiconductor switching element can be similarly implemented even if the opening and closing are reversed.

しかしながら、通常において、第二の半導体スイッチング素子を閉状態に設定するとメリットがある。この点について、図2を用いて詳しく説明する。   However, it is usually advantageous to set the second semiconductor switching element in the closed state. This point will be described in detail with reference to FIG.

第二のゲート信号発生手段18は、電源21と第二のゲート回路23で構成され、第一のゲート信号発生手段17は、第一の半導体スイッチング素子5の負側と電源21の正側との間に、整流素子20を通して接続された電源としてのコンデンサ19と第一のゲート
回路22で構成される。
The second gate signal generating means 18 includes a power source 21 and a second gate circuit 23, and the first gate signal generating means 17 includes a negative side of the first semiconductor switching element 5, a positive side of the power source 21, and the like. Between the capacitor 19 and the first gate circuit 22 as a power source connected through the rectifying element 20.

通常において、第二の半導体スイッチング素子6を閉状態に設定することで、コンデンサ19は第二の半導体スイッチング素子6を通して電源21から充電される。異常時には第二の半導体スイッチング素子6を開状態にするが、このときに第一の半導体スイッチング素子5を閉状態にする必要はないため、第一のゲート信号発生手段17に新たな電源は不要となり、簡素で安価に構成できる。   Normally, the capacitor 19 is charged from the power source 21 through the second semiconductor switching element 6 by setting the second semiconductor switching element 6 in the closed state. Although the second semiconductor switching element 6 is opened when there is an abnormality, it is not necessary to close the first semiconductor switching element 5 at this time, so no new power source is required for the first gate signal generating means 17 Therefore, it can be configured simply and inexpensively.

さらに、第二の半導体スイッチング素子6をMOSFETで構成すれば、通常時に電源21から整流素子20の電圧降下分を差引いた値にコンデンサ19を充電でき、第二の半導体スイッチング素子6におけるON電圧の影響を排除できる。   Furthermore, if the second semiconductor switching element 6 is constituted by a MOSFET, the capacitor 19 can be charged to a value obtained by subtracting the voltage drop of the rectifying element 20 from the power source 21 at normal times, and the ON voltage of the second semiconductor switching element 6 is reduced. The influence can be eliminated.

また、サーマルプロテクタ15の動作温度を適切に設定すれば、半導体スイッチング素子の故障だけではなく、回生抵抗器4の耐量を超えて使用された場合でも、回生抵抗器4が異常に発熱するのを防止することができ、異常になる原因を取り除けば、半導体スイッチング素子などの部品を交換することなく、使用を継続することが可能となる。   Also, if the operating temperature of the thermal protector 15 is set appropriately, the regenerative resistor 4 will not generate heat abnormally even if it is used beyond the tolerance of the regenerative resistor 4 as well as the failure of the semiconductor switching element. If the cause of the abnormality can be eliminated, the use can be continued without replacing parts such as the semiconductor switching element.

実施例2は、回生抵抗器を流れる電流から異常を検出するもので、異常検出手段の構成およびスイッチング素子制御手段における信号処理が異なる以外は、実施例1と同様であり、同じ符号を用い説明を省略する。   The second embodiment detects an abnormality from the current flowing through the regenerative resistor. The second embodiment is the same as the first embodiment except that the configuration of the abnormality detection unit and the signal processing in the switching element control unit are different. Is omitted.

図3において、異常検出手段31は、電流検出手段32と、異常判定回路33とで構成される。この電流検出手段32により回生抵抗器4に流れる電流の有無を検出する。スイッチング素子制御手段34は、第一の半導体スイッチング素子5のスイッチング情報信号(開状態あるいは閉状態)を異常判定回路33に出力する。   In FIG. 3, the abnormality detection unit 31 includes a current detection unit 32 and an abnormality determination circuit 33. The current detection means 32 detects the presence or absence of current flowing through the regenerative resistor 4. The switching element control means 34 outputs the switching information signal (open state or closed state) of the first semiconductor switching element 5 to the abnormality determination circuit 33.

異常判定回路33は、第一の半導体スイッチング素子5のスイッチング情報信号が開状態であるにもかかわらず、電流検出値信号があるとき、第一の半導体スイッチング素子5に異常が発生していると判断し、スイッチング素子制御手段34に異常信号を出力する。   The abnormality determination circuit 33 indicates that an abnormality has occurred in the first semiconductor switching element 5 when there is a current detection value signal even though the switching information signal of the first semiconductor switching element 5 is open. Judgment is made and an abnormal signal is output to the switching element control means 34.

スイッチング素子制御手段34は、異常判定回路33から異常信号を受けると、直流電圧検出手段14による電圧情報に関係なく、強制的に第一の半導体スイッチング素子5と第二の半導体スイッチ6を両方とも開状態に制御する。これにより、回生抵抗器4への通電を停止できるため、回生抵抗器4がそれ以上高温になるのを防止できる。   When the switching element control unit 34 receives the abnormality signal from the abnormality determination circuit 33, both the first semiconductor switching element 5 and the second semiconductor switch 6 are forcibly set regardless of the voltage information by the DC voltage detection unit 14. Control to open state. Thereby, since the electricity supply to the regenerative resistor 4 can be stopped, it can prevent that the regenerative resistor 4 becomes high temperature further.

本発明の回生抵抗保護装置は、半導体スイッチング素子の故障にともなう回生抵抗器の焼損を防止するモータ駆動装置に最適であり、大きな回生能力を要求される用途、周囲温度が高い用途などにも有用である。   The regenerative resistance protection device of the present invention is optimal for a motor drive device that prevents burnout of a regenerative resistor due to a failure of a semiconductor switching element, and is also useful for applications that require a large regenerative capacity and high ambient temperature. It is.

本発明の実施例1における回生抵抗保護装置を有するモータ駆動装置のブロック構成図The block block diagram of the motor drive device which has a regeneration resistance protection apparatus in Example 1 of this invention. 本発明の実施例1における回生抵抗保護装置の説明図Explanatory drawing of the regeneration resistance protection apparatus in Example 1 of this invention 本発明の実施例2における回生抵抗保護装置を有するモータ駆動装置のブロック構成図The block block diagram of the motor drive device which has a regeneration resistance protection apparatus in Example 2 of this invention.

符号の説明Explanation of symbols

1回生電力吸収回路
2,31 異常検出手段
3,34 スイッチング素子制御手段
4 回生抵抗器
5 第一の半導体スイッチング素子
6 第二の半導体スイッチング素子
7 交流電源
8 整流器
9 平滑コンデンサ
10 インバータ回路
11 サーボモータ
12 直流母線(正側)
13 直流母線(負側)
14 直流電圧検出手段
15 サーマルプロテクタ
16,33異常判定回路
17 第一のゲート信号発生手段
18 第二のゲート信号発生手段
19 コンデンサ
20 整流素子
21 電源
22 第一のゲート回路
23 第二のゲート回路
32 電流検出手段
1 regenerative power absorption circuit 2, 31 abnormality detection means 3, 34 switching element control means 4 regenerative resistor 5 first semiconductor switching element 6 second semiconductor switching element 7 AC power supply 8 rectifier 9 smoothing capacitor 10 inverter circuit 11 servo motor 12 DC bus (positive side)
13 DC bus (negative side)
14 DC voltage detection means 15 Thermal protector 16, 33 abnormality determination circuit 17 First gate signal generation means 18 Second gate signal generation means 19 Capacitor 20 Rectifying element 21 Power supply 22 First gate circuit 23 Second gate circuit 32 Current detection means

Claims (3)

インバータ回路に電力を供給する直流母線間に接続され、前記インバータ回路から発生する回生電力を吸収する回生電力吸収回路と、前記回生電力吸収回路の異常を検出する異常検出手段と、前記異常検出手段により検出された異常信号により前記回生電力吸収回路の通電を停止するスイッチング素子制御手段とを備え、前記回生電力吸収回路は、回生電力を吸収する回生抵抗器と、直列に接続された前記回生抵抗器への通電を制御する第一の半導体スイッチング素子と、前記回生抵抗器と第一の半導体スイッチング素子に直列に接続された第二の半導体スイッチング素子とからなり、前記異常信号により第一の半導体スイッチング素子と第二の半導体スイッチング素子の両方あるいはどちらかを開状態にして前記回生抵抗器への通電を停止することを特徴とする回生抵抗保護装置。 A regenerative power absorption circuit connected between DC buses for supplying power to the inverter circuit and absorbing regenerative power generated from the inverter circuit, an abnormality detection means for detecting an abnormality in the regenerative power absorption circuit, and the abnormality detection means Switching element control means for stopping energization of the regenerative power absorption circuit by an abnormal signal detected by the regenerative power absorption circuit, the regenerative power absorption circuit, and the regenerative resistor connected in series A first semiconductor switching element for controlling energization to the capacitor, and a second semiconductor switching element connected in series to the regenerative resistor and the first semiconductor switching element, and the first semiconductor by the abnormal signal Stop energization to the regenerative resistor by opening the switching element and / or the second semiconductor switching element. Regenerative resistor protecting apparatus according to claim Rukoto. 第二の半導体スイッチング素子は、電源投入後の通常時は閉状態に設定されており、第一の半導体スイッチング素子は直流母線の電圧が高いときに閉状態にすることにより回生電力を吸収するものとし、異常検出手段により異常を検出した場合は、第一の半導体スイッチング素子を開状態にする請求項1記載の回生抵抗保護装置。 The second semiconductor switching element is normally set in a closed state after power-on, and the first semiconductor switching element absorbs regenerative power by being closed when the voltage of the DC bus is high. The regenerative resistance protection device according to claim 1, wherein when an abnormality is detected by the abnormality detection means, the first semiconductor switching element is opened. 回生抵抗器の一方は直流母線の正側に接続され、第一の半導体スイッチング素子の一方は前記回生抵抗器の他方に接続され、第二の半導体スイッチング素子は、第一の半導体スイッチング素子の他方と直流母線の負側に接続され、第一の半導体スイッチング素子を駆動する電源は、第一の半導体スイッチング素子の負側と第二の半導体スイッチング素子を駆動する電源の正側との間に整流素子を通して接続されたコンデンサにより供給される請求項1または請求項2記載の回生抵抗保護装置。 One of the regenerative resistors is connected to the positive side of the DC bus, one of the first semiconductor switching elements is connected to the other of the regenerative resistors, and the second semiconductor switching element is the other of the first semiconductor switching elements Is connected to the negative side of the DC bus, and the power source driving the first semiconductor switching element is rectified between the negative side of the first semiconductor switching element and the positive side of the power source driving the second semiconductor switching element. The regenerative resistance protection device according to claim 1 or 2, which is supplied by a capacitor connected through the element.
JP2005114155A 2005-04-12 2005-04-12 Regenerative resistor protection device Pending JP2006296096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114155A JP2006296096A (en) 2005-04-12 2005-04-12 Regenerative resistor protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114155A JP2006296096A (en) 2005-04-12 2005-04-12 Regenerative resistor protection device

Publications (1)

Publication Number Publication Date
JP2006296096A true JP2006296096A (en) 2006-10-26

Family

ID=37416055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114155A Pending JP2006296096A (en) 2005-04-12 2005-04-12 Regenerative resistor protection device

Country Status (1)

Country Link
JP (1) JP2006296096A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042788A1 (en) * 2010-10-01 2012-04-05 パナソニック株式会社 Motor control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279192U (en) * 1988-12-05 1990-06-18
JPH09135156A (en) * 1995-11-07 1997-05-20 Denso Corp Electric load driving device
JP2002374689A (en) * 2001-06-14 2002-12-26 Mitsubishi Electric Corp Motor drive gear and washing machine
JP2004228912A (en) * 2003-01-22 2004-08-12 Matsushita Electric Ind Co Ltd High-efficiency power amplifier
JP2005224031A (en) * 2004-02-06 2005-08-18 Nidec-Shimpo Corp Motor-driving device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279192U (en) * 1988-12-05 1990-06-18
JPH09135156A (en) * 1995-11-07 1997-05-20 Denso Corp Electric load driving device
JP2002374689A (en) * 2001-06-14 2002-12-26 Mitsubishi Electric Corp Motor drive gear and washing machine
JP2004228912A (en) * 2003-01-22 2004-08-12 Matsushita Electric Ind Co Ltd High-efficiency power amplifier
JP2005224031A (en) * 2004-02-06 2005-08-18 Nidec-Shimpo Corp Motor-driving device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042788A1 (en) * 2010-10-01 2012-04-05 パナソニック株式会社 Motor control device
CN103155397A (en) * 2010-10-01 2013-06-12 松下电器产业株式会社 Motor control device
JPWO2012042788A1 (en) * 2010-10-01 2014-02-03 パナソニック株式会社 Motor control device
CN103155397B (en) * 2010-10-01 2015-09-30 松下电器产业株式会社 Control device of electric motor
JP5938583B2 (en) * 2010-10-01 2016-06-22 パナソニックIpマネジメント株式会社 Motor control device

Similar Documents

Publication Publication Date Title
CN101277085B (en) Motor drive device
JP6436028B2 (en) Power supply device and switch control method thereof
JP2001238466A (en) System interconnection inverter device
JP2006262616A (en) Inverter device
JP5509752B2 (en) Dynamic brake circuit protection device
JP2008252967A (en) Motor control device
JP2009011042A (en) Method for protecting rush current prevention circuits, and inverter device
JP4955363B2 (en) Inverter device
JP2010233414A (en) Motor control device
JP2007116790A (en) Inverter apparatus
JP5938583B2 (en) Motor control device
JP7469036B2 (en) Motor drive device having a protection mechanism
JP2013192392A (en) Inverter device
KR100559955B1 (en) Electrical automatic transfer switch having thermal overload protection
JP2008228415A (en) Motor drive unit
JP2006352965A (en) Driving unit for motor and driving unit for elevator using its device
JP2006296096A (en) Regenerative resistor protection device
JP2015027127A (en) Power converter
TWI426688B (en) Inverter device
JP3473188B2 (en) Inverter device
JP4367341B2 (en) Dynamic brake circuit protection device
JP2007028754A (en) Power supply system switching unit
CN112350584A (en) Heat dissipation control device and method for power device and electrical equipment
WO2019187402A1 (en) Brake circuit and power conversion device
JP2007236103A (en) Power supply apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070820

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026