JP2006296019A - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JP2006296019A
JP2006296019A JP2005110225A JP2005110225A JP2006296019A JP 2006296019 A JP2006296019 A JP 2006296019A JP 2005110225 A JP2005110225 A JP 2005110225A JP 2005110225 A JP2005110225 A JP 2005110225A JP 2006296019 A JP2006296019 A JP 2006296019A
Authority
JP
Japan
Prior art keywords
battery
circuit
remaining capacity
capacitor
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005110225A
Other languages
Japanese (ja)
Inventor
Fumiaki Maejima
史明 前嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005110225A priority Critical patent/JP2006296019A/en
Publication of JP2006296019A publication Critical patent/JP2006296019A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply in which residual capacity of unit battery is detected accurately, while controlling the effect of voltage fluctuation between battery terminals by rapid current variation. <P>SOLUTION: The power supply comprises a series circuit of a switch circuit 102 and a capacitor 103 being connected in parallel with a power supply battery 101, circuits 105 and 110 for detecting the residual capacity of the power supply battery 101, and a control circuit 110 for turning the switch circuit 102 off when the residual capacity of the power supply battery 101 is detected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電池の残容量を検知する残容量検知回路を有する電源装置に関するものである。   The present invention relates to a power supply apparatus having a remaining capacity detection circuit that detects a remaining capacity of a battery.

現在、携帯電話や携帯音響機器といった、電池(一次電池、二次電池、又はこれらに類似する蓄電素子)を電源として使用する携帯電子機器には、使用者の利便性向上を目的として、該電池の消耗の程度を残容量検知機構によって測定し、その結果を元に使用可能時間を表示する機能が搭載されている。   Currently, portable electronic devices that use a battery (a primary battery, a secondary battery, or a storage element similar to these) as a power source, such as a mobile phone or a portable audio device, are provided with the purpose of improving the convenience of the user. It is equipped with a function that measures the degree of wear of the battery using a remaining capacity detection mechanism and displays the usable time based on the result.

残容量検知手法としては、電池の端子間電圧を測定して電圧値から電池の消耗度合いを判断する電圧測定式(特許文献1〜4)と、未使用時の容量値(二次電池においては充電時の充電電流積算値)をメモリに記憶し、その値から放電電流の積算値を差し引くことで残容量を判断する容量積算式(特許文献5〜7)があるが、検知回路の簡易性から、電圧測定式が多くの携帯電子機器において採用されている。   As a remaining capacity detection method, a voltage measurement formula (Patent Documents 1 to 4) that determines a battery consumption degree from a voltage value by measuring a voltage between terminals of the battery, and a capacity value when not in use (in a secondary battery) There is a capacity integration formula (Patent Documents 5 to 7) that stores a charge current integrated value at the time of charging in a memory and determines the remaining capacity by subtracting the integrated value of the discharge current from the value. Therefore, the voltage measurement formula is adopted in many portable electronic devices.

以下、特許文献4に開示された電圧測定式の残容量検知機能を有する電源装置について、図4及び図5を用いて簡単に説明する。   Hereinafter, a power supply device having a voltage measurement type remaining capacity detection function disclosed in Patent Document 4 will be briefly described with reference to FIGS. 4 and 5.

電源装置は、図4に示すように、電池部101、コイル102aとリードスイッチ102bを具備する電流検知部102、電池部101の消耗度を表示するダイオードD1〜D4を具備する残容量表示部103、分圧抵抗R1,R2及びコンパレータIC104aを具備する電流検知部104、アラーム表示を行うダイオードD0を具備するアラーム表示部105により構成される。106は負荷である。また、上記コンパレータIC104aは、図5に示すように、入力端子V1,V2、基準電圧源104b、分圧抵抗r1〜r4、コンパレータCP1〜CP5、トランジスタT1〜T5及び出力端子Q1〜Q5を具備している。   As shown in FIG. 4, the power supply apparatus includes a battery unit 101, a current detection unit 102 including a coil 102a and a reed switch 102b, and a remaining capacity display unit 103 including diodes D1 to D4 that display the degree of wear of the battery unit 101. The current detection unit 104 includes voltage dividing resistors R1 and R2 and a comparator IC 104a, and the alarm display unit 105 includes a diode D0 that displays an alarm. 106 is a load. As shown in FIG. 5, the comparator IC 104a includes input terminals V1 and V2, a reference voltage source 104b, voltage dividing resistors r1 to r4, comparators CP1 to CP5, transistors T1 to T5, and output terminals Q1 to Q5. ing.

上記構成において、負荷106が動作すると、コイル102aに電流が流れ、リードスイッチ102bがオンし、電池部101、負荷106、残容量検知部103が並列接続される。電池部101の端子間電圧は、分圧抵抗R1,R2によって分圧されてコンパレータIC104aの入力端子V1に入力される。コンパレータIC104aには基準電圧源104bの電圧を基に分圧して得た電圧レベルが各コンパレータCP1〜CP5の一方の入力端子に供給されており、これらの各基準電圧を前記入力電圧V1が上回っていれば、各コンパレータCP1〜CP5の出力側に接続されるトランジスタT1〜T5がオンし、残容量表示部103内のダイオードD1〜D4が点灯することとなる。ダイオードD1〜D4に着目すると、使用前の電池部101ではダイオードD1〜D4のすべてが点灯しているが、電池部101が消耗するに従ってダイオードD4→D3→D2→D1と不点灯になり、最終的にはダイオードD1〜D4のすべてが不点灯となる。
特開平7−98367号公報 特開平6−150981号公報 特開平4−134279号公報 特開平1−235169号公報 特開平7−241039号公報 特開平7−105985号公報 特開平6−223879号公報
In the above configuration, when the load 106 operates, a current flows through the coil 102a, the reed switch 102b is turned on, and the battery unit 101, the load 106, and the remaining capacity detection unit 103 are connected in parallel. The voltage between the terminals of the battery unit 101 is divided by the voltage dividing resistors R1 and R2 and input to the input terminal V1 of the comparator IC 104a. A voltage level obtained by dividing the comparator IC 104a based on the voltage of the reference voltage source 104b is supplied to one input terminal of each of the comparators CP1 to CP5, and the input voltage V1 exceeds these reference voltages. Then, the transistors T1 to T5 connected to the output sides of the comparators CP1 to CP5 are turned on, and the diodes D1 to D4 in the remaining capacity display unit 103 are turned on. Focusing on the diodes D1 to D4, all of the diodes D1 to D4 are lit in the battery unit 101 before use. However, as the battery unit 101 is consumed, the diodes D4 → D3 → D2 → D1 are not lit. Specifically, all of the diodes D1 to D4 are not lit.
JP-A-7-98367 Japanese Patent Application Laid-Open No. 6-150981 JP-A-4-134279 JP-A-1-235169 Japanese Patent Laid-Open No. 7-241039 Japanese Patent Laid-Open No. 7-105985 JP-A-6-223879

負荷の動作時に急激な電流変動が発生する電子機器においては、電流変動の影響により電圧測定式による電源の残容量検知が正確に行えないという課題がある。例えば、カメラの場合、内臓ストロボの充電開始時、フィルムの巻き上げ開始時、及び、フィルムの巻き上げ開始時などに一時的に急峻な負荷電流が流れる危険があり、これによって、電子機器内の電子素子等が破壊されるだけでなく、残容量の誤検知をも引き起こしてしまう。これは、従来の残容量検知技術では、ラッシュ電流等のパルス大電流が発生する回路において瞬間的に電池の内部抵抗での電圧降下が極めて大きくなるため、電池の端子間電圧は負荷の非動作時や安定動作時に比べて極めて低い電圧値となってしまうためである。既に説明した様に、従来の電圧測定式の残容量検知機能を備えた電源装置では、電池の端子間電圧と予め設定した電圧レベルとを比較しているだけであるため、瞬間的でも電池の端子間電圧が消耗を決定する電圧レベルを下回れば、消耗した電池であると判定されてしまう。   In an electronic device in which a sudden current fluctuation occurs during the operation of a load, there is a problem that the remaining capacity of the power source cannot be accurately detected by a voltage measurement formula due to the influence of the current fluctuation. For example, in the case of a camera, there is a risk that a steep load current may flow temporarily at the start of charging of a built-in strobe, at the start of film winding, and at the start of film winding. Not only is destroyed, but also misdetection of the remaining capacity is caused. This is because in the conventional remaining capacity detection technology, the voltage drop across the battery's internal resistance instantaneously becomes extremely large in a circuit that generates a large pulse current such as a rush current. This is because the voltage value becomes extremely lower than that at the time of stable operation. As already explained, in a power supply device equipped with a conventional voltage measurement type remaining capacity detection function, the voltage between the terminals of the battery is only compared with a preset voltage level. If the inter-terminal voltage falls below the voltage level that determines consumption, the battery is determined to be exhausted.

この対策として、電池、負荷、残容量検知の電圧測定部と並列にコンデンサを接続する方法がある。負荷の非動作時や安定動作時に該コンデンサを充電し、モータの動作時など負荷側のインピーダンスが極めて低くなって急激な電流変動が発生した時にこの電流をコンデンサに蓄えられた電荷から供給することで電池からの電流を安定させ、電池の端子間電圧の変動を小さくできるため、急激な電流変動の発生時の残容量誤検知を防ぐことができる。   As a countermeasure, there is a method of connecting a capacitor in parallel with the voltage measuring unit for detecting the battery, the load, and the remaining capacity. The capacitor is charged when the load is not operating or when it is in stable operation, and this current is supplied from the charge stored in the capacitor when the impedance on the load side becomes extremely low, such as when the motor is operating, causing sudden current fluctuations. Thus, the current from the battery can be stabilized and the fluctuation of the voltage between the terminals of the battery can be reduced, so that it is possible to prevent erroneous detection of the remaining capacity when a sudden current fluctuation occurs.

しかしながら、このような構成であっても、負荷の非動作時や安定動作時に残容量検知を行う電圧測定部で検出される電池の端子間電圧は、コンデンサのインピーダンスの影響により正確な値ではない。よって、急激な電流変動の発生する虞のある電子機器において正確な残容量検知を行う為には、急激な電流変動を低減する手段と残容量を正確に検知できる手段を両立させた技術が必要となる。   However, even with such a configuration, the voltage between the terminals of the battery detected by the voltage measuring unit that detects the remaining capacity when the load is not operating or when the stable operation is performed is not an accurate value due to the influence of the impedance of the capacitor. . Therefore, in order to accurately detect the remaining capacity in an electronic device that may cause a sudden current fluctuation, it is necessary to have a technology that combines a means for reducing sudden current fluctuation and a means for accurately detecting the remaining capacity. It becomes.

(発明の目的)
本発明の目的は、急激な電流変動による電池端子間電圧変動の影響を抑制しつつ、電池単体についての正確な残容量検知を行うことのできる電源装置を提供しようとするものである。
(Object of invention)
An object of the present invention is to provide a power supply apparatus capable of accurately detecting the remaining capacity of a single battery while suppressing the influence of voltage fluctuation between battery terminals due to sudden current fluctuation.

上記目的を達成するために、本発明によれば、電源電池と並列に接続される、スイッチ回路とコンデンサの直列回路と、前記電源電池の残容量を検知する残容量検知回路と、前記電源電池の残容量検知を行う際は、前記スイッチ回路をオフにする制御回路とを有する電源装置とするものである。   To achieve the above object, according to the present invention, a series circuit of a switch circuit and a capacitor connected in parallel with a power battery, a remaining capacity detection circuit for detecting the remaining capacity of the power battery, and the power battery When the remaining capacity is detected, the power supply device includes a control circuit that turns off the switch circuit.

本発明によれば、急激な電流変動による電池端子間電圧変動の影響を抑制しつつ、電池単体についての正確な残容量検知を行うことができる電源装置を提供できるものである。   ADVANTAGE OF THE INVENTION According to this invention, the power supply device which can perform the exact remaining capacity detection about a battery single-piece | unit can be provided, suppressing the influence of the voltage fluctuation between battery terminals by rapid current fluctuation.

本発明を実施するための最良の形態は、以下に記載の実施例1ないし実施例3に示す通りである。   The best mode for carrying out the present invention is as shown in Examples 1 to 3 described below.

図1は本発明の実施例1に係る電子機器の回路構成を示すブロック図である。本実施例1における電子機器は、電源電池101、スイッチ回路102、ラッシュ電流軽減用コンデンサ103、スイッチ回路104、残容量検知用の分圧抵抗105、定電圧回路106、機器本体回路107、及び、負荷の一例であるモータを具備している。上記機器本体回路107内には、A/D変換回路108、残容量表示部及びアラーム表示部を備えた表示回路109、制御回路110が具備されている。   FIG. 1 is a block diagram showing a circuit configuration of an electronic apparatus according to Embodiment 1 of the present invention. The electronic device according to the first embodiment includes a power battery 101, a switch circuit 102, a rush current reducing capacitor 103, a switch circuit 104, a voltage dividing resistor 105 for detecting remaining capacity, a constant voltage circuit 106, a device main body circuit 107, and A motor which is an example of a load is provided. In the device main body circuit 107, an A / D conversion circuit 108, a display circuit 109 having a remaining capacity display unit and an alarm display unit, and a control circuit 110 are provided.

電池101には、スイッチ回路102とラッシュ電流軽減用コンデンサ103の直列回路、スイッチ回路104と残容量検知用の分圧抵抗105の直列回路、定電圧回路106、機器本体回路107、及び、モータ111がそれぞれ並列接続されている。   The battery 101 includes a series circuit of a switch circuit 102 and a rush current reducing capacitor 103, a series circuit of a switch circuit 104 and a voltage dividing resistor 105 for detecting remaining capacity, a constant voltage circuit 106, a device main body circuit 107, and a motor 111. Are connected in parallel.

機器本体回路107に具備される制御回路110は、スイッチ回路102,104のオン/オフ制御を行う他、電子機器全体の制御を行う。   The control circuit 110 provided in the device main body circuit 107 controls the entire electronic device in addition to the on / off control of the switch circuits 102 and 104.

具体的には、制御回路110は、電子機器の非動作及び動作を管理すると同時に、定電圧回路106の動作を制御している状態で、電子機器が非動作状態の時、定電圧回路106及びモータ111への電源供給がなされないように制御する。更に、制御回路110は、モータ111の非駆動時にはコンデンサ103のリーク電流を軽減する為にスイッチ回路102をオフさせる。また、残容量検知を行う際には、電池101単体についての正確な残容量検知を行う為に、スイッチ回路102をオフさせて、コンデンサ103と残容量検知用の分圧抵抗105との接続を断つ。さらに、負荷であるモータ111の駆動時には、スイッチ回路102をオンさせて電池101とコンデンサ103からモータ111に電源が供給されるようにして、該モータ111での消費電流の急激な変化があった場合にもコンデンサ103によって補償することで電池101の負荷変動を軽減する。定電圧回路106は電池101から電子機器の一部に安定化した出力電圧を供給するものである。   Specifically, the control circuit 110 manages the non-operation and operation of the electronic device, and at the same time controls the operation of the constant voltage circuit 106, and when the electronic device is in the non-operation state, Control is performed so that power is not supplied to the motor 111. Further, the control circuit 110 turns off the switch circuit 102 in order to reduce the leakage current of the capacitor 103 when the motor 111 is not driven. Further, when detecting the remaining capacity, in order to accurately detect the remaining capacity of the battery 101 alone, the switch circuit 102 is turned off to connect the capacitor 103 and the voltage dividing resistor 105 for detecting the remaining capacity. cut off. Further, when the motor 111 as a load is driven, the switch circuit 102 is turned on so that power is supplied from the battery 101 and the capacitor 103 to the motor 111, so that the current consumption in the motor 111 changes rapidly. Even in this case, the load variation of the battery 101 is reduced by compensating with the capacitor 103. The constant voltage circuit 106 supplies a stabilized output voltage from the battery 101 to a part of the electronic device.

機器本体回路107に具備されるA/D変換回路108は、分圧抵抗105を介して入力される電池101の電圧値をディジタル値に変換する。また、表示回路109は、残容量検知結果に応じて残容量をイラスト又はテキストで表示する他、電子機器本体の操作に関する情報を表示する。   The A / D conversion circuit 108 provided in the device main body circuit 107 converts the voltage value of the battery 101 input via the voltage dividing resistor 105 into a digital value. In addition, the display circuit 109 displays the remaining capacity as an illustration or text according to the remaining capacity detection result, and also displays information related to the operation of the electronic device main body.

次に、上記構成における電子機器の主要部分の動作について説明する。制御回路110に電子機器の動作開始を示す信号が入力されると、制御回路110からスイッチ回路102,104に制御信号が送られ、スイッチ回路102がオン、スイッチ回路104がオフされる。スイッチ回路102がオンされると、電池101とコンデンサ103が接続される。この状態下では、電池101、コンデンサ103、定電圧回路106、機器本体回路107、負荷であるモータ111がそれぞれ並列接続され、定電圧回路106、機器本体回路107、モータ111には、電源101及びコンデンサ103から電源が供給されることとなる。   Next, the operation of the main part of the electronic device having the above configuration will be described. When a signal indicating the start of operation of the electronic device is input to the control circuit 110, a control signal is sent from the control circuit 110 to the switch circuits 102 and 104, and the switch circuit 102 is turned on and the switch circuit 104 is turned off. When the switch circuit 102 is turned on, the battery 101 and the capacitor 103 are connected. Under this state, the battery 101, the capacitor 103, the constant voltage circuit 106, the device main body circuit 107, and the motor 111 as a load are connected in parallel, and the constant voltage circuit 106, the device main body circuit 107, and the motor 111 are connected to the power source 101 and Power is supplied from the capacitor 103.

電子機器が動作を開始した後、制御回路110に負荷動作開始信号を示す信号が入力されないまま一定時間が経過した場合は、制御回路110からスイッチ回路102,104に制御信号が送られ、スイッチ回路102がオフ、スイッチ回路104がオフされる。これにより、コンデンサ103と機器本体回路107や負荷であるモータ111との接続が断たれる為に、コンデンサ103のリーク電流が軽減される。   After a certain period of time has passed without the signal indicating the load operation start signal being input to the control circuit 110 after the electronic device has started to operate, a control signal is sent from the control circuit 110 to the switch circuits 102 and 104, and the switch circuit 102 is turned off and the switch circuit 104 is turned off. Thereby, since the connection between the capacitor 103 and the device main body circuit 107 and the motor 111 as a load is disconnected, the leakage current of the capacitor 103 is reduced.

制御回路110に残容量検知の開始を示す信号が入力されると、制御回路110からスイッチ回路102,104に制御信号が送られ、スイッチ回路102がオフ、スイッチ回路104がオンされる。これにより、残容量検知用の分圧抵抗105によって分圧された電池101の端子間電圧値がA/D変換回路108に入力し、ここでA/D変換されてディジタルの電圧値データが制御回路110に送られる。すると、制御回路110では、この測定された電圧値データと内部メモリにあらかじめ設定されている動作禁止電圧値とを比較し、残容量に関する情報を表示回路109に出力し、残容量表示部に表示させる。更に、測定された電圧値データが動作禁止電圧以下である場合は、表示回路109のアラーム表示部に動作禁止を示すアラームを表示させ、同時にモータ111の駆動を禁止する。   When a signal indicating the start of remaining capacity detection is input to the control circuit 110, a control signal is sent from the control circuit 110 to the switch circuits 102 and 104, the switch circuit 102 is turned off, and the switch circuit 104 is turned on. As a result, the voltage value between the terminals of the battery 101 divided by the voltage dividing resistor 105 for detecting the remaining capacity is input to the A / D conversion circuit 108, where it is A / D converted and the digital voltage value data is controlled. Sent to circuit 110. Then, the control circuit 110 compares the measured voltage value data with the operation prohibition voltage value set in advance in the internal memory, outputs information on the remaining capacity to the display circuit 109, and displays it on the remaining capacity display section. Let Further, when the measured voltage value data is equal to or lower than the operation prohibition voltage, an alarm indicating the operation prohibition is displayed on the alarm display portion of the display circuit 109, and at the same time, the driving of the motor 111 is prohibited.

上記のように、電圧測定式の残容量検知を行う際には、電池101に並列接続されたコンデンサ103の接続をスイッチ回路102によって断つことで、電源101単体についての端子間電圧の測定が可能となり、正確な電圧測定式の残容量検知を行うことが可能になる。   As described above, when the remaining capacity detection of the voltage measurement type is performed, it is possible to measure the voltage between the terminals of the power source 101 alone by disconnecting the capacitor 103 connected in parallel to the battery 101 by the switch circuit 102. Thus, the remaining capacity can be detected accurately using the voltage measurement method.

制御回路110にモータ111の駆動開始を示す信号が入力されると、制御回路110からスイッチ回路102,104に制御信号が送られ、スイッチ回路102がオン、スイッチ回路104がオフされ、この状態でモータ111が駆動される。この際、該モータ111においてラッシュ電流のように消費電流に急激な変化があった場合、その電流はコンデンサ103によって補償され、電池101の負荷変動が抑えられる。   When a signal indicating the start of driving of the motor 111 is input to the control circuit 110, a control signal is sent from the control circuit 110 to the switch circuits 102 and 104, the switch circuit 102 is turned on, and the switch circuit 104 is turned off. The motor 111 is driven. At this time, if there is a sudden change in current consumption such as a rush current in the motor 111, the current is compensated by the capacitor 103, and the load fluctuation of the battery 101 is suppressed.

また、制御回路110に電子機器の動作終了を示す信号が入力されると、制御回路110からスイッチ回路102,104に制御信号が送られ、スイッチ回路102,104がオフされる。これにより、コンデンサ103と機器本体回路107及びモータ111との接続が断たれる為に、コンデンサ103のリーク電流が軽減される。   When a signal indicating the end of the operation of the electronic device is input to the control circuit 110, a control signal is sent from the control circuit 110 to the switch circuits 102 and 104, and the switch circuits 102 and 104 are turned off. Thereby, since the connection between the capacitor 103 and the device main body circuit 107 and the motor 111 is disconnected, the leakage current of the capacitor 103 is reduced.

なお、図1では、負荷の例としてモータを挙げたが、他の誘導性、容量性の負荷においても本発明は適用可能である。具体的な例を当該電子機器がカメラとすると、フィルム駆動回路におけるフィルム給送モータ、シャッタ動作回路におけるシャッタ駆動モータ等の誘導性負荷、ストロボ充電回路での比較的大容量のコンデンサ等の容量性負荷等に対しても、本実施例1は適用可能である。   In FIG. 1, a motor is used as an example of a load. However, the present invention can be applied to other inductive and capacitive loads. When a specific example is a camera, the electronic device is a film feeding motor in a film driving circuit, an inductive load such as a shutter driving motor in a shutter operation circuit, or a capacitive such as a relatively large capacitor in a strobe charging circuit. The first embodiment can also be applied to a load or the like.

上記実施例1によれば、電源である電池101に並列に接続された、スイッチ回路102とコンデンサ103の直列回路と、電池101の残容量を検知する分圧抵抗105と、電池101の残容量の検知を行う際に前記スイッチ回路102をオフにする制御回路110とを有する電源装置を具備した電子機器としている。   According to the first embodiment, the series circuit of the switch circuit 102 and the capacitor 103 connected in parallel to the battery 101 that is a power source, the voltage dividing resistor 105 that detects the remaining capacity of the battery 101, and the remaining capacity of the battery 101. The electronic device includes a power supply device having a control circuit 110 that turns off the switch circuit 102 when detecting the above.

このように、残容量検知を行う際には、コンデンサ103に直列に接続されたスイッチ回路102をオフするようにしているので、電池101単体についてその端子間電圧を測定することが可能となり、電池101についての正確な残容量検知が可能となる。つまり、急激な電流変動による電池端子間電圧変動の影響を抑制しつつ、電池単体についての正確な電圧測定式残容量検知が可能となる。   As described above, when the remaining capacity is detected, the switch circuit 102 connected in series to the capacitor 103 is turned off, so that the voltage between the terminals of the battery 101 alone can be measured, and the battery Accurate remaining capacity detection for 101 is possible. That is, it is possible to accurately detect the remaining capacity of the voltage measurement type for a single battery while suppressing the influence of voltage fluctuation between battery terminals due to sudden current fluctuation.

さらに、コンデンサ103を電池101に並列に接続することにより、負荷であるモータ111の非動作時や安定動作時に該コンデンサ103に電荷を蓄積しておき、急激な電流変動発生時には該コンデンサ103から電荷を供給することで、急激な電流変動発生時でも電池端子間電圧の変動を小さくすることができる。   Further, by connecting the capacitor 103 in parallel to the battery 101, electric charge is accumulated in the capacitor 103 when the motor 111 as a load is not operating or stable operation, and the electric charge from the capacitor 103 is generated when sudden current fluctuation occurs. By supplying, the fluctuation of the voltage between the battery terminals can be reduced even when a sudden current fluctuation occurs.

更に、電池101及びコンデンサ103に並列に接続される負荷であるモータ111の駆動時に、スイッチ回路102をオンにするようにしている。つまり、モータ111が非駆動時にはコンデンサ103と該モータ111との接続を断ち、モータ111の駆動開始と同時にコンデンサ102と該モータ111とを接続するようにしているので、該モータ111の非駆動時におけるコンデンサ103からのリーク電流を軽減することが可能になる。   Furthermore, the switch circuit 102 is turned on when the motor 111 that is a load connected in parallel to the battery 101 and the capacitor 103 is driven. That is, when the motor 111 is not driven, the capacitor 103 is disconnected from the motor 111, and the capacitor 102 and the motor 111 are connected simultaneously with the start of driving of the motor 111. The leakage current from the capacitor 103 can be reduced.

図2は本発明の実施例2に係わる電子機器の回路構成を示すブロック図であり、図1と同じ構成部分は同一符号を付し、その詳細は省略する。   2 is a block diagram showing a circuit configuration of an electronic apparatus according to Embodiment 2 of the present invention. The same components as those in FIG.

上記実施例1のように、電池と並列に接続される、スイッチ回路とコンデンサの直列回路を具備した構成において、図1のコンデンサ103の代わりに、電気二重層コンデンサ103aを使用した場合、低インピーダンス大容量という特性の為に、負荷であるモータ111での消費電流の急激な変化に対する補償の効果は大きくなる。一方で、電気二重層コンデンサが全く充電されていない状態で電池に接続されると、充電開始の瞬間に過電流が流れる為に、該電気二重層コンデンサや電池を破壊してしまう虞がある。その為、スイッチ回路102には充電・放電電流を調整する機能が必要となる。   When the electric double layer capacitor 103a is used instead of the capacitor 103 of FIG. 1 in the configuration including the series circuit of the switch circuit and the capacitor connected in parallel with the battery as in the first embodiment, a low impedance Due to the characteristic of large capacity, the effect of compensation for a sudden change in current consumption in the motor 111 as a load is increased. On the other hand, if the electric double layer capacitor is connected to the battery in a state where it is not charged at all, an overcurrent flows at the moment of the start of charging, which may destroy the electric double layer capacitor or the battery. Therefore, the switch circuit 102 needs a function for adjusting the charging / discharging current.

そこで、本発明の実施例2においては、図2に示すように、コンデンサに電気二重層コンデンサ103aを使用した場合に、充電・放電電流の調節を可能とするスイッチ回路102を組み込ませたものである。つまり、本発明の実施例2における電子機器は、電池101と、該電池101に並列に接続される、電気二重層コンデンサ103aとNPN型のFETトランジスタ102aによって構成される直列回路とを有する電源装置を具備している。   Therefore, in the second embodiment of the present invention, as shown in FIG. 2, when an electric double layer capacitor 103a is used as a capacitor, a switch circuit 102 that allows adjustment of charging / discharging current is incorporated. is there. That is, the electronic apparatus according to the second embodiment of the present invention includes a battery 101 and a power supply device including a series circuit including an electric double layer capacitor 103a and an NPN FET transistor 102a connected in parallel to the battery 101. It has.

次に、上記構成の電子機器において、電気二重層コンデンサ103aと該電気二重層コンデンサ103aに直列に接続されたスイッチ回路102(FETトランジスタ102a)の動作に限って説明する。   Next, only the operation of the electric double layer capacitor 103a and the switch circuit 102 (FET transistor 102a) connected in series to the electric double layer capacitor 103a in the electronic apparatus having the above configuration will be described.

制御回路110からFETトランジスタ102aのゲート端子にオフ信号が送られて、スイッチ回路102がオフしている状態では、FETトランジスタ102aの寄生容量による微弱な電流が流れつづける為に電気二重層コンデンサ103aを小電流によって充電することが可能となる。   When the OFF signal is sent from the control circuit 110 to the gate terminal of the FET transistor 102a and the switch circuit 102 is turned off, a weak current due to the parasitic capacitance of the FET transistor 102a continues to flow. It is possible to charge with a small current.

負荷であるモータ111の駆動開始と同時に、制御回路110からFETトランジスタ102aのゲート端子にオン信号が送られ、スイッチ回路102がオンすると、電気二重層コンデンサ103aよりモータ111に電源が供給される。   Simultaneously with the start of driving of the motor 111 as a load, an ON signal is sent from the control circuit 110 to the gate terminal of the FET transistor 102a, and when the switch circuit 102 is turned on, power is supplied to the motor 111 from the electric double layer capacitor 103a.

上記の実施例2によれば、充電・放電電流を調節可能なスイッチ回路102(FETトランジスタ102a)を使用することで、電池101を装着した瞬間に電気二重層コンデンサ103aを充電する電流を規制でき、負荷であるモータ111の電流変動に対する補償効果が大きく、電池101の負荷変動の抑制効果が大きな電気二重層コンデンサ103aを使用可能で、かつ、上記実施例1と同様に正確な電圧測定式の残容量検知が可能となる。   According to the second embodiment, by using the switch circuit 102 (FET transistor 102a) capable of adjusting the charge / discharge current, the current for charging the electric double layer capacitor 103a can be regulated at the moment when the battery 101 is mounted. The electric double layer capacitor 103a having a large compensation effect for the current fluctuation of the motor 111 as a load and a large effect of suppressing the load fluctuation of the battery 101 can be used, and an accurate voltage measurement formula can be obtained as in the first embodiment. The remaining capacity can be detected.

図3は本発明の実施例3に係わる電子機器の回路構成を示すブロック図であり、図1及び図2と同じ構成部分は同一符号を付し、その詳細は省略する。   FIG. 3 is a block diagram showing a circuit configuration of an electronic apparatus according to Embodiment 3 of the present invention. The same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and details thereof are omitted.

上記の実施例2で述べたように、コンデンサに電気二重層コンデンサを使用する場合、充電初期の過電流を防ぐ為に充電・放電電流の調節を可能とするスイッチ回路が必要となる。本発明の実施例3においては、図3に示すように、スイッチ回路に関して、実施例2とは異なる構成のスイッチ回路102とした点のみ変更している。   As described in the second embodiment, when an electric double layer capacitor is used as a capacitor, a switch circuit that enables adjustment of charging / discharging current is required in order to prevent overcurrent at the initial stage of charging. In the third embodiment of the present invention, as shown in FIG. 3, the switch circuit is changed only in that the switch circuit 102 has a configuration different from that of the second embodiment.

次に、上記構成の電子機器において、スイッチ回路102の動作に限って説明する。   Next, only the operation of the switch circuit 102 in the electronic apparatus having the above configuration will be described.

負荷回路であるモータ111が非動作状態にある時、制御回路110からNPN型のFETトランジスタ102bのゲート端子にはオン信号が、同じくNPN型のFETトランジスタ102cのゲート端子にはオフ信号が、それぞれ送られ、FETトランジスタ102bと電流制限抵抗102dのラインが導通となる。この時、電気二重層コンデンサ103aの充電電流は電流制限抵抗102dによって十分微弱な電流である為に、該電気二重層コンデンサ103aに過電流が流れることなく充電することが可能となる。   When the motor 111 which is a load circuit is in a non-operating state, an ON signal is output from the control circuit 110 to the gate terminal of the NPN FET transistor 102b, and an OFF signal is applied to the gate terminal of the NPN FET transistor 102c. Then, the line between the FET transistor 102b and the current limiting resistor 102d becomes conductive. At this time, since the charging current of the electric double layer capacitor 103a is sufficiently weak due to the current limiting resistor 102d, the electric double layer capacitor 103a can be charged without an overcurrent flowing.

モータ111の駆動開始と同時に、制御回路110からFETトランジスタ102bのゲート端子にはオフ信号が、FETトランジスタ102cのゲート端子にはオン信号が、それぞれ送られ、FETトランジスタ102cのラインが導通となり、モータ111には電源101と電気二重層コンデンサ103aから電源が供給されることとなる。   Simultaneously with the start of driving of the motor 111, an OFF signal is sent from the control circuit 110 to the gate terminal of the FET transistor 102b, and an ON signal is sent to the gate terminal of the FET transistor 102c, and the line of the FET transistor 102c becomes conductive. Power is supplied to 111 from the power supply 101 and the electric double layer capacitor 103a.

上記の実施例3によれば、充電・放電電流を調節可能なスイッチ回路102(FETトランジスタ102b,102c、電流制限抵抗102d)を使用することで、電池101を装着した瞬間に電気二重層コンデンサ103aを充電する電流を規制でき、負荷であるモータ111の電流変動に対する補償効果が大きく、電池101の負荷変動の抑制効果が大きな電気二重層コンデンサ103aを使用可能で、かつ、上記実施例1及び2と同様に正確な電圧測定式の残容量検知が可能となる。   According to the above-described third embodiment, by using the switch circuit 102 (FET transistors 102b and 102c, current limiting resistor 102d) capable of adjusting the charging / discharging current, the electric double layer capacitor 103a is instantly attached to the battery 101. The electric double layer capacitor 103a which can regulate the current for charging the battery, has a large compensation effect for the current fluctuation of the motor 111 as a load, and has a large effect of suppressing the load fluctuation of the battery 101 can be used. As with, it is possible to accurately detect the remaining capacity of the voltage measurement type.

本発明の実施例1に係わる電子機器の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the electronic device concerning Example 1 of this invention. 本発明の実施例2に係わる電子機器の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the electronic device concerning Example 2 of this invention. 本発明の実施例3に係わる電子機器の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the electronic device concerning Example 3 of this invention. 従来の残容量検知機能を有する電源装置を示すブロック図である。It is a block diagram which shows the power supply device which has the conventional remaining capacity detection function. 図4のコンパレータICの詳細を示す回路図である。FIG. 5 is a circuit diagram illustrating details of the comparator IC in FIG. 4.

符号の説明Explanation of symbols

101 電池
102 スイッチ回路
102a NPN型FET
102b NPN型FET
102c NPN型FET
102d 充電電流制限用抵抗
103 コンデンサ
103a 電気二重層コンデンサ
104 スイッチ回路
105 残容量検知用分圧抵抗
106 定電圧回路
107 機器本体回路
110 制御回路
111 負荷であるモータ
101 battery 102 switch circuit 102a NPN type FET
102b NPN FET
102c NPN FET
102d Charging current limiting resistor 103 Capacitor 103a Electric double layer capacitor 104 Switch circuit 105 Voltage dividing resistor for remaining capacity detection 106 Constant voltage circuit 107 Device main body circuit 110 Control circuit 111 Motor as load

Claims (3)

電源電池と並列に接続される、スイッチ回路とコンデンサの直列回路と、
前記電源電池の残容量を検知する残容量検知回路と、
前記電源電池の残容量検知を行う際は、前記スイッチ回路をオフにする制御回路と、
を有することを特徴とする電源装置。
A series circuit of a switch circuit and a capacitor connected in parallel with the power battery,
A remaining capacity detection circuit for detecting the remaining capacity of the power battery;
When performing the remaining capacity detection of the power battery, a control circuit that turns off the switch circuit;
A power supply device comprising:
前記制御回路は、前記電源電池に並列に接続された負荷を駆動する際は、前記スイッチ回路をオンにすることを特徴とする請求項1に記載の電源装置。   The power supply device according to claim 1, wherein the control circuit turns on the switch circuit when driving a load connected in parallel to the power supply battery. 前記スイッチ回路は、充電・放電電流を調節可能なスイッチ回路であり、前記コンデンサは、電気二重層コンデンサであることを特徴とする請求項1または2に記載の電源装置。
The power supply apparatus according to claim 1, wherein the switch circuit is a switch circuit capable of adjusting a charge / discharge current, and the capacitor is an electric double layer capacitor.
JP2005110225A 2005-04-06 2005-04-06 Power supply Pending JP2006296019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005110225A JP2006296019A (en) 2005-04-06 2005-04-06 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110225A JP2006296019A (en) 2005-04-06 2005-04-06 Power supply

Publications (1)

Publication Number Publication Date
JP2006296019A true JP2006296019A (en) 2006-10-26

Family

ID=37415983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110225A Pending JP2006296019A (en) 2005-04-06 2005-04-06 Power supply

Country Status (1)

Country Link
JP (1) JP2006296019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118828A (en) * 2006-11-08 2008-05-22 Meidensha Corp Electric double layer capacitor charging apparatus
JP2013026489A (en) * 2011-07-22 2013-02-04 Nuflare Technology Inc Temperature adjusting mask and method for adjusting temperature of charged particle beam lithography apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118828A (en) * 2006-11-08 2008-05-22 Meidensha Corp Electric double layer capacitor charging apparatus
JP2013026489A (en) * 2011-07-22 2013-02-04 Nuflare Technology Inc Temperature adjusting mask and method for adjusting temperature of charged particle beam lithography apparatus

Similar Documents

Publication Publication Date Title
KR100849646B1 (en) Charging circuit, method of controlling operation of charging circuit, and power supply unit
KR100941044B1 (en) Overvoltage protection circuit and electronic device
JP4889398B2 (en) Constant voltage power circuit
US20100259856A1 (en) Power supply control device, method for controlling power supply, program and power supply device
TWI500232B (en) Multi-purpose power management chip, and power path control circuit
US20060076928A1 (en) Charger and integrated circuit
JP3416952B2 (en) Power supply residual capacity measuring device and power supply device with power residual capacity measuring circuit
JP2005253128A (en) Battery connection detecting circuit
JP2005071320A (en) Power supply circuit and semiconductor integrated circuit device
JP5040673B2 (en) 2-wire transmitter
JP2009178004A (en) Power supply circuit
US9553461B2 (en) Charge control circuit, charge circuit, and mobile device
US7259597B2 (en) Low-voltage detection circuit
US6922151B2 (en) Battery remaining amount warning circuit
US7701178B2 (en) Charge control that keeps constant input voltage supplied to battery pack
JP2006296019A (en) Power supply
US7525282B2 (en) Battery-operated equipment including a microcomputer
KR20080098323A (en) Charger comprising function for analyzing capacity of battery
TWI301936B (en) Voltage regulator with prevention from overvoltage at load transients and its method
JP2005050055A (en) Power source supply device
US8411419B2 (en) Electronic apparatus to which AC adaptor can be connected
JP7379124B2 (en) Charging circuits and electrical equipment
JP4522738B2 (en) Power-on reset device and electronic device
JP2004234596A (en) Portable apparatus
JP2000354366A (en) Dc-dc converter and electronic apparatus with this built- in dc-dc converter