JP2006292674A - Method and device for monitoring optical power, and optical device - Google Patents

Method and device for monitoring optical power, and optical device Download PDF

Info

Publication number
JP2006292674A
JP2006292674A JP2005117032A JP2005117032A JP2006292674A JP 2006292674 A JP2006292674 A JP 2006292674A JP 2005117032 A JP2005117032 A JP 2005117032A JP 2005117032 A JP2005117032 A JP 2005117032A JP 2006292674 A JP2006292674 A JP 2006292674A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
monitoring
power
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005117032A
Other languages
Japanese (ja)
Inventor
Karai Ga
嘉磊 賀
Kazuhiro Kitabayashi
和大 北林
Tetsuya Sakai
哲弥 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005117032A priority Critical patent/JP2006292674A/en
Publication of JP2006292674A publication Critical patent/JP2006292674A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for monitoring optical power capable of reducing the number of part items and fused connection points to reduce a loss as the whole system, and also to provide a device therefor and an optical device incorporating the device therein. <P>SOLUTION: In this method for monitoring optical power, an optical fiber for monitoring is arranged in the vicinity of the fused connection point of a measured optical fiber to make scattered light emitted from the fused connection point get incident, and scattered light power is measured through the monitoring optical fiber to monitor the input and output optical powers of the measured optical fiber. This optical power monitoring device of the present invention has the monitoring optical fiber arranged to make the scattered light emitted from the fused connection point get incident, in the vicinity of the fused connection point of the measured optical fiber, and a light detecting means for measuring the scattered light power through the monitoring optical fiber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被測定光ファイバの光パワーを測定するための光パワーモニタ方法及び装置に関し、特に、部品点数を少なくし、かつ融着接続点を少なくすることによりシステム全体としての損失を低減することが可能な光パワーモニタ方法と光パワーモニタ装置及び該装置を組み込んだ光デバイスに関する。   The present invention relates to an optical power monitoring method and apparatus for measuring the optical power of an optical fiber to be measured, and in particular, the loss of the entire system is reduced by reducing the number of components and the number of fusion splicing points. The present invention relates to an optical power monitoring method, an optical power monitoring apparatus, and an optical device incorporating the apparatus.

光デバイス、特に光増幅作用又は非線形光学効果を高める機能性材料がドープされている光増幅特性のある光ファイバを用いた光デバイスにあっては、励起光、出射光、反射光の各光パワーが装置性能の重要なパラメータとなるため、これらの光が伝搬する光ファイバ、すなわち被測定光ファイバの伝搬光パワー(入射光(入力)、出射光(出力)及び反射光(反射戻り光))をモニタするのが一般的である(例えば、特許文献1参照。)。   For optical devices, particularly optical devices using optical fibers with optical amplification characteristics doped with functional materials that enhance optical amplification or nonlinear optical effects, the optical power of pumping light, outgoing light, and reflected light Is an important parameter for device performance, so the propagation power of the optical fiber through which these lights propagate, that is, the measured optical fiber (incident light (input), outgoing light (output), and reflected light (reflected return light)) Is generally monitored (see, for example, Patent Document 1).

従来の光パワーモニタ方法では、入力光、出力光及び反射光のそれぞれの一部をファイバカプラにより所定の分岐比で分岐し、この分岐光を光信号として、或いはフォトダイオード(以下、PDと記す。)で電気信号に変換してモニタするのが殆どである。
図2に従来の光パワーモニタ装置を例示する。この従来装置は、被測定光ファイバ1の接続部に光ファイバカプラ2を挿入、接続して、被測定光ファイバ1から所定の分岐比で光を取り出し可能とし、取り出される分岐光を図示していないPDに導いて光強度を測定するように構成されている。この図2中、符号3と4は融着接続点(以下、接続点と記す。)である。
特開平5−264344号公報
In the conventional optical power monitoring method, a part of each of input light, output light and reflected light is branched by a fiber coupler at a predetermined branching ratio, and this branched light is used as an optical signal or a photodiode (hereinafter referred to as PD). In most cases, it is converted to an electrical signal and monitored.
FIG. 2 illustrates a conventional optical power monitor device. In this conventional apparatus, an optical fiber coupler 2 is inserted into and connected to a connection portion of an optical fiber 1 to be measured so that light can be extracted from the optical fiber 1 to be measured with a predetermined branching ratio. It is configured to measure the light intensity by leading to no PD. In FIG. 2, reference numerals 3 and 4 denote fusion splice points (hereinafter referred to as connection points).
JP-A-5-264344

入出力側に光ファイバを用いる光デバイスは、各モジュール間を接続する場合に光ファイバ同士を融着接続することにより簡単に接続することができる。例えば、希土類添加光ファイバの光増幅特性を利用したファイバレーザの場合、励起光を希土類添加光ファイバに入射するためには励起光源の出力側ファイバと希土類添加光ファイバの入力側とを融着接続すれば良く、簡単に接続することができる。しかしながら、この種の光デバイスにおいて、被測定光ファイバ1の励起光パワー等をモニタする必要がある場合には、図2に示したように、光ファイバカプラ2を励起光の出射側と希土類添加光ファイバの入射側の間に挿入しなければならないため、2つの接続点3,4が必要となる。従って、モニタしなくても良い時に比べて、接続点が1つ増えるため、接続損失も2箇所で発生してしまう。   Optical devices using optical fibers on the input / output side can be easily connected by fusion-bonding the optical fibers when connecting the modules. For example, in the case of a fiber laser that uses the optical amplification characteristics of a rare earth-doped optical fiber, the output side fiber of the pump light source and the input side of the rare earth-doped optical fiber are fusion-spliced to make the pump light incident on the rare earth-doped optical fiber. It can be easily connected. However, in this type of optical device, when it is necessary to monitor the pumping light power or the like of the optical fiber 1 to be measured, as shown in FIG. Since it must be inserted between the incident sides of the optical fiber, two connection points 3 and 4 are required. Therefore, since one connection point is added as compared with the case where monitoring is not required, connection loss also occurs at two locations.

本発明は前記事情に鑑みてなされ、部品点数を少なくし、かつ融着接続点を少なくすることによりシステム全体としての損失を低減することが可能な光パワーモニタ方法と光パワーモニタ装置及び該装置を組み込んだ光デバイスの提供を目的とする。   The present invention has been made in view of the above circumstances, and an optical power monitoring method, an optical power monitoring apparatus, and the apparatus capable of reducing the loss of the entire system by reducing the number of components and the number of fusion splicing points. The purpose is to provide an optical device incorporating the above.

前記目的を達成するため、被測定光ファイバの融着接続点の近傍に、該融着接続点から発する散乱光を入射可能にモニタ用光ファイバを配置し、該光モニタ用光ファイバを通して前記散乱光パワーを測定することによって被測定光ファイバの伝搬光パワーをモニタすることを特徴とする光パワーモニタ方法を提供する。   In order to achieve the object, a monitoring optical fiber is disposed in the vicinity of the fusion splicing point of the optical fiber to be measured so that scattered light emitted from the splicing splicing point can be incident, and the scattering is transmitted through the optical monitoring optical fiber. There is provided an optical power monitoring method characterized by monitoring the propagation optical power of an optical fiber to be measured by measuring the optical power.

本発明の光パワーモニタ方法において、モニタ用光ファイバの受光パワーが適切になるように、前記融着接続点と前記モニタ用光ファイバの先端との距離を調整することが好ましい。   In the optical power monitoring method of the present invention, it is preferable to adjust the distance between the fusion splicing point and the tip of the monitoring optical fiber so that the light receiving power of the monitoring optical fiber is appropriate.

また本発明は、被測定光ファイバの融着接続点の近傍に、該融着接続点から発する散乱光を入射可能に配置されたモニタ用光ファイバと、該モニタ用光ファイバを通して送られる散乱光パワーを測定する光検出手段とを有することを特徴とする光パワーモニタ装置を提供する。   Further, the present invention provides a monitor optical fiber disposed so that scattered light emitted from the fusion splicing point can be incident in the vicinity of the fusion splicing point of the optical fiber to be measured, and scattered light transmitted through the monitoring optical fiber. There is provided an optical power monitoring device comprising a light detection means for measuring power.

本発明の光パワーモニタ装置において、前記モニタ用光ファイバの先端部が、前記被測定光ファイバの融着接続点と共に前記被測定光ファイバのクラッド屈折率より高い屈折率の接着剤で固定され、且つ該接着剤が熱収縮した補強スリーブで覆われて固定されていることが好ましい。   In the optical power monitoring device of the present invention, the tip of the monitoring optical fiber is fixed with an adhesive having a refractive index higher than the cladding refractive index of the optical fiber to be measured together with the fusion splicing point of the optical fiber to be measured. The adhesive is preferably covered and fixed with a heat-shrinkable reinforcing sleeve.

本発明の光パワーモニタ装置において、前記モニタ用光ファイバの先端部が、前記被測定光ファイバの融着接続点と共に、補強ロッドで覆われ、且つ該補強ロッドの内部で前記被測定光ファイバのクラッド屈折率より高い屈折率の接着剤によって固定されていることが好ましい。   In the optical power monitoring device of the present invention, the tip of the monitoring optical fiber is covered with a reinforcing rod together with a fusion splicing point of the optical fiber to be measured, and the optical fiber to be measured is inside the reinforcing rod. It is preferably fixed by an adhesive having a refractive index higher than the clad refractive index.

本発明の光パワーモニタ装置において、前記光検出手段が、モニタ用光ファイバを通して送られる光を電気信号に変換するPDであることが好ましい。   In the optical power monitoring apparatus of the present invention, it is preferable that the light detection means is a PD that converts light transmitted through a monitoring optical fiber into an electrical signal.

また本発明は、光増幅作用又は非線形光学効果を有する光デバイスであって、請求項3〜6のいずれかに記載の光パワーモニタ装置を有し、被測定光ファイバの伝搬光パワーを測定可能に構成されていることを特徴とする光デバイスを提供する。   Further, the present invention is an optical device having an optical amplification function or a nonlinear optical effect, and has the optical power monitor device according to any one of claims 3 to 6, and can measure the propagation optical power of the optical fiber to be measured. An optical device is provided.

本発明の光デバイスにおいて、光増幅作用を高める機能性材料がドープされている光増幅用光ファイバを含むことが好ましい。   The optical device of the present invention preferably includes an optical fiber for optical amplification doped with a functional material that enhances the optical amplification effect.

また、前記機能性材料が、エルビウム、イッテルビウム、ランタン、セリウム、プラセオジム、ネオジム等の希土類イオンからなる群から選択される少なくとも1種であることが好ましい。   The functional material is preferably at least one selected from the group consisting of rare earth ions such as erbium, ytterbium, lanthanum, cerium, praseodymium, and neodymium.

本発明の光パワーモニタ方法は、従来の分岐手段と異なって、被測定光ファイバに存在する接続点から漏れ出す接続損失に起因して生じた散乱光をモニタ用光ファイバで受光し、該光を光検出手段に導いて測定することによって、被測定光ファイバの入出力の光パワーをモニタすることができるので、光ファイバカプラを使わず、無駄な接続損失が発生することなく、安価且つ作業性の良い光パワーモニタ方法を提供することができる。
本発明は特に、入出力光パワーの高い光増幅特性のある光ファイバを用いた光ファイバレーザなどの光デバイスへの適用性が高い。
Unlike the conventional branching means, the optical power monitoring method of the present invention receives scattered light caused by the connection loss leaking from the connection point existing in the optical fiber to be measured by the monitoring optical fiber, and Since the optical power of the optical fiber under test can be monitored by guiding the light to the light detection means, an optical fiber coupler is not used, no wasteful connection loss occurs, and the work is inexpensive. A good optical power monitoring method can be provided.
The present invention is particularly applicable to an optical device such as an optical fiber laser using an optical fiber having an optical amplification characteristic with high input / output optical power.

以下、図面を参照して本発明の実施形態を説明する。
図1は、本発明に係る光パワーモニタ装置の一実施形態を示し、図1(a)は光パワーモニタ装置11の構成図、(b)はその要部拡大断面図である。本実施形態の光パワーモニタ装置11は、被測定光ファイバ10A,10Bの融着接続点12(以下、接続点と略記する。)の近傍に、接続点12から発する散乱光18を入射可能に配置されたモニタ用光ファイバ13と、このモニタ用光ファイバ13を通して送られた散乱光パワーを測定する光検出手段としてのPD16とを備えて構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A and 1B show an embodiment of an optical power monitor device according to the present invention, FIG. 1A is a configuration diagram of an optical power monitor device 11, and FIG. The optical power monitoring device 11 of the present embodiment is capable of making scattered light 18 emitted from the connection point 12 be incident in the vicinity of the fusion splicing point 12 (hereinafter abbreviated as a connection point) of the optical fibers 10A and 10B to be measured. The monitor optical fiber 13 is arranged, and a PD 16 is provided as a light detection means for measuring the scattered light power transmitted through the monitor optical fiber 13.

被測定光ファイバ10A,10Bは、接続点12において2本の光ファイバが融着接続され、該光ファイバに信号光、励起光、増幅された光などが伝搬され、且つその部分の光パワーのモニタが必要とされる光ファイバ部分であればよく、特に限定されない。例えば、ファイバレーザや光ファイバ増幅器などにおいて、励起光源からの出力用光ファイバと、増幅用の希土類添加光ファイバの入力側との接続部などが想定される。被測定光ファイバ10A,10Bの接続点12は、それぞれの光ファイバ端部の被覆を除去し、石英ガラスからなる光ファイバ裸線の端面同士を突き合わせ、光軸合わせした後に融着接続機を用いて融着接続して形成されている。   In the optical fibers 10A and 10B to be measured, two optical fibers are fusion-bonded at the connection point 12, and signal light, excitation light, amplified light, etc. are propagated to the optical fiber, and the optical power of the portion is measured. There is no particular limitation as long as it is an optical fiber portion that requires monitoring. For example, in a fiber laser, an optical fiber amplifier, or the like, a connection portion between an optical fiber for output from a pumping light source and an input side of a rare earth-doped optical fiber for amplification is assumed. The connection point 12 of the optical fibers 10A and 10B to be measured is obtained by removing the coating of each optical fiber end, butting the end faces of the optical fiber bare wires made of quartz glass, aligning the optical axes, and using a fusion splicer. Are formed by fusion splicing.

図1に示す例示では、被測定光ファイバ10A,10Bのうち、一方の被測定光ファイバ10Aが、励起光源であるレーザダイオード17(以下、LDと記す。)の出力側光ファイバであり、他方の被測定光ファイバ10Bが光増幅作用を有する希土類添加光ファイバなどの入力側光ファイバであり、LD17から他方の被測定光ファイバ10Bへの入力光の光パワーをモニタする場合を示している。   In the example shown in FIG. 1, one of the measured optical fibers 10A and 10B is one of the measured optical fibers 10A that is an output side optical fiber of a laser diode 17 (hereinafter referred to as LD) that is an excitation light source, and the other. The optical fiber 10B to be measured is an input side optical fiber such as a rare earth doped optical fiber having an optical amplification function, and the optical power of the input light from the LD 17 to the other optical fiber 10B to be measured is shown.

この光パワーモニタ装置11においては、モニタ用光ファイバ13の先端部を、被測定光ファイバ10A,10Bの接続点12に隣接配置し、該接続点12近傍部分とモニタ用光ファイバ13の先端部とを被測定光ファイバ10A,10Bのクラッド屈折率より高い屈折率を有する接着剤15で包囲固定し、さらにその接着剤15に熱収縮性の補強スリーブを被せ、これを熱収縮することによって覆うことによって固定されている。   In this optical power monitor device 11, the distal end portion of the monitoring optical fiber 13 is disposed adjacent to the connection point 12 of the optical fibers 10 A and 10 B to be measured, and the vicinity of the connection point 12 and the distal end portion of the monitoring optical fiber 13. Are surrounded and fixed by an adhesive 15 having a refractive index higher than the clad refractive index of the optical fibers 10A and 10B to be measured, and a heat-shrinkable reinforcing sleeve is placed on the adhesive 15 and is covered by heat shrinkage. It is fixed by that.

光デバイスにおいて、各モジュールの接続は、光ファイバ同士の融着接続により行われている。従来の技術では、融着接続条件を調整し、接続損失を一定値まで下げることができるが、接続損失を避けることはできない。その接続損失による光が伝搬方向に向かって漏れ光の形で散乱し、接続部12から散乱光18が放出される。被測定光ファイバ10A,10Bの光学特性及び融着接続条件が一定であれば、散乱光18の光パワー分布も一定である。   In the optical device, each module is connected by fusion splicing between optical fibers. In the conventional technique, it is possible to adjust the fusion splicing condition and reduce the connection loss to a certain value, but the connection loss cannot be avoided. Light due to the connection loss is scattered in the form of leakage light in the propagation direction, and scattered light 18 is emitted from the connection portion 12. If the optical characteristics and fusion splicing conditions of the optical fibers 10A and 10B to be measured are constant, the light power distribution of the scattered light 18 is also constant.

本発明は、その避けられない接続損失を利用し、モニタしようとする被測定光ファイバ10A,10Bの接続点12近傍に、光の伝搬方向に向けてモニタ用光ファイバ13の先端を設置し、接続損失に起因する散乱光18を受光する。前述した通り、接続損失に起因する散乱光パワーの分布が一定であるため、接続点12近傍の所定位置に設置したモニタ用光ファイバ13の受光パワーも一定となる。すなわちモニタ用光ファイバ13で受光された散乱光パワーと、被測定光ファイバ10A,10Bを伝搬する光パワー(以下、伝搬光パワーと記す。)との相関が一定であるので、モニタ用光ファイバ13で受光された散乱光パワーをPD16で測定することで、簡単に伝搬光パワーを推定することができ、伝搬光パワーを簡単にモニタすることができる。   The present invention utilizes the inevitable connection loss, and installs the tip of the monitoring optical fiber 13 in the vicinity of the connection point 12 of the optical fibers to be measured 10A and 10B to be monitored in the light propagation direction. The scattered light 18 resulting from the connection loss is received. As described above, since the distribution of the scattered light power caused by the connection loss is constant, the light reception power of the monitoring optical fiber 13 installed at a predetermined position near the connection point 12 is also constant. That is, since the correlation between the scattered light power received by the monitoring optical fiber 13 and the optical power propagating through the optical fibers to be measured 10A and 10B (hereinafter referred to as propagation optical power) is constant, the monitoring optical fiber By measuring the scattered light power received at 13 with the PD 16, the propagation light power can be easily estimated, and the propagation light power can be easily monitored.

前記モニタ用ファイバ13の固定方法としては、次の2つの方法が挙げられる。
1)モニタ用光ファイバ13を所定位置に設置した後、モニタ用光ファイバ13の先端部及び被測定光ファイバ10A,10Bの接続点12近傍部とともに、接着剤15を内設した補強スリーブ14で覆い、熱収縮することによって固定する。
2)モニタ用光ファイバ13を所定位置に設置した後、モニタ用光ファイバの先端部及び被測定光ファイバ10A,10Bの接続点12近傍部とともに補強ロッドで覆い、補強ロッドの両端から接着剤を注入し、硬化させる。
なお、前記1)、2)において使用する接着剤15は、被測定光ファイバ10A,10Bのクラッド屈折率より高い屈折率を持つ接着剤が好ましい。
As the method for fixing the monitoring fiber 13, there are the following two methods.
1) After the monitoring optical fiber 13 is installed at a predetermined position, the reinforcing sleeve 14 is provided with an adhesive 15 together with the tip of the monitoring optical fiber 13 and the vicinity of the connection point 12 of the optical fibers 10A and 10B to be measured. Cover and fix by heat shrinking.
2) After the monitoring optical fiber 13 is installed at a predetermined position, the monitoring optical fiber and the vicinity of the connection point 12 of the optical fibers 10A and 10B to be measured are covered with a reinforcing rod, and adhesive is applied from both ends of the reinforcing rod. Inject and cure.
The adhesive 15 used in 1) and 2) is preferably an adhesive having a refractive index higher than the cladding refractive index of the optical fibers 10A and 10B to be measured.

接続点12の付近では、空間位置によって散乱光18のパワー分布が異なるので、モニタ用光ファイバ13の先端を所定位置に設置後、その位置を変えずに固定することが本発明にとって重要な課題である。言い換えれば、モニタ用光ファイバ13の先端位置が一定であれば、その受光パワーと、モニタしようとする伝搬光パワーとの相関が一定となり、モニタ用光ファイバ13の受光パワーによって伝搬光パワーを間接的にモニタすることができる。   In the vicinity of the connection point 12, the power distribution of the scattered light 18 varies depending on the spatial position. Therefore, after the tip of the monitoring optical fiber 13 is installed at a predetermined position, it is important to fix the position without changing the position. It is. In other words, if the tip position of the monitoring optical fiber 13 is constant, the correlation between the received light power and the propagation light power to be monitored becomes constant, and the propagation light power is indirectly determined by the received light power of the monitoring optical fiber 13. Can be monitored automatically.

通常光ファイバ同士の融着接続は、前処理と言われる光ファイバの先端被覆を除去する工程がある。すなわち、接続点12の付近では、光ファイバが石英ガラスからなる裸線の状態のままである。その接続部12を保護するため、通常、予め光ファイバに通しておいた、熱溶融接着剤を内設した補強スリーブ(熱収縮チューブとも言う)で接続部12を再被覆し、補強している。   Usually, the fusion splicing between optical fibers includes a step of removing the end coating of the optical fiber, which is called pretreatment. That is, in the vicinity of the connection point 12, the optical fiber remains in a bare wire state made of quartz glass. In order to protect the connecting portion 12, the connecting portion 12 is usually re-coated and reinforced with a reinforcing sleeve (also referred to as a heat-shrinkable tube) that has been previously passed through an optical fiber and provided with a hot-melt adhesive. .

そこで、本発明では、モニタ用光ファイバ13を所定位置に設置した後、モニタ用光ファイバ13の先端部と被測定光ファイバ10A,10Bの接続部12近傍部とを一緒に補強スリーブ14で被覆することで、追加の設備や工程なく、通常必要となる補強工程の手順によって接続部13の補強と同時にモニタ用光ファイバ13を設置、固定することができる。   Therefore, in the present invention, after the monitoring optical fiber 13 is installed at a predetermined position, the distal end portion of the monitoring optical fiber 13 and the vicinity of the connection portion 12 of the optical fibers 10A and 10B to be measured are covered with the reinforcing sleeve 14 together. By doing so, the monitoring optical fiber 13 can be installed and fixed simultaneously with the reinforcement of the connection portion 13 by the procedure of the reinforcement process that is normally required without additional equipment or processes.

また、本発明では、前記の接着剤の屈折率が、入出力側の光ファイバのクラッド屈折率より高いことが好ましい。本発明では、接続点12近傍にて接続損失に起因する散乱光パワーを受光することで被測定光ファイバ10A,10Bの伝搬光パワーをモニタしている。そのため、接続点12近傍にて接続損失に起因する散乱光18を外部空間に漏出させることが前提となる。しかし、接続点12近傍を覆う接着剤15の屈折率が被測定光ファイバ10A,10Bのクラッドの屈折率より低い場合には、一度コアから放射された散乱光18が屈折率の低い接着剤で反射され、再び光ファイバに戻り、光ファイバのクラッドを経由し、クラッドモードの形で伝搬されてしまう。従って、接続点12近傍にて接続損失を外部空間に散乱させるためには、本発明で用いた接着剤15の屈折率が被測定光ファイバ10A,10Bのクラッド屈折率より高いことが望ましい。   In the present invention, it is preferable that the refractive index of the adhesive is higher than the cladding refractive index of the optical fiber on the input / output side. In the present invention, the propagation light power of the optical fibers 10A and 10B to be measured is monitored by receiving the scattered light power caused by the connection loss in the vicinity of the connection point 12. Therefore, it is assumed that the scattered light 18 caused by the connection loss is leaked to the external space in the vicinity of the connection point 12. However, when the refractive index of the adhesive 15 covering the vicinity of the connection point 12 is lower than the refractive index of the cladding of the optical fibers 10A and 10B to be measured, the scattered light 18 once emitted from the core is an adhesive having a low refractive index. It is reflected, returns to the optical fiber again, and propagates in the form of the cladding mode through the cladding of the optical fiber. Therefore, in order to scatter the connection loss near the connection point 12 to the external space, it is desirable that the refractive index of the adhesive 15 used in the present invention is higher than the cladding refractive index of the optical fibers 10A and 10B to be measured.

一方、市販補強スリーブの内設熱溶融接着剤の種類は限られている。接着剤の選択(例えば、屈折率の選択)が必要となる場合、前記熱収縮方式の補強スリーブ14に代えて、ガラスロッドなどの補強ロッドで、モニタ用光ファイバ13の先端部及び被測定光ファイバ10A,10Bの接続点12近傍部を一括被覆し、該ロッドの両端から所定の接着剤を注入し、硬化させることで固定する方法が有効である。また、このときに使用する接着剤は熱溶融接着剤に限定されることなく、例えば、市販の紫外線硬化型樹脂を使用しても良い。   On the other hand, the types of the internal hot melt adhesive for the commercially available reinforcing sleeve are limited. When selection of an adhesive (for example, selection of a refractive index) is required, a tip of the monitoring optical fiber 13 and light to be measured are replaced with a reinforcing rod such as a glass rod instead of the heat-shrinkable reinforcing sleeve 14. A method is effective in which the vicinity of the connection point 12 of the fibers 10A and 10B is collectively covered, a predetermined adhesive is injected from both ends of the rod, and then fixed by curing. Moreover, the adhesive used at this time is not limited to a hot-melt adhesive, and for example, a commercially available ultraviolet curable resin may be used.

前述の接着剤は、被測定光ファイバ10A,10Bの伝搬光の波長帯域で吸収の少ない接着剤を使用することが好ましい。前述の2つの固定方法のいずれにも、接着剤15を補強スリーブ14内に充填する必要があるため、モニタしようとする伝搬光の波長にもよるが、この接着剤が接続損失に起因する散乱光18を吸収してしまう可能性もある。モニタしようとする伝搬光の波長帯域において吸収の大きい接着剤を使用した場合には、モニタ用光ファイバ13の受光パワーの絶対値が接着剤による吸収によって検出下限まで小さくなり、検出・応答できなくなる恐れがあるだけでなく、吸収された光パワーが熱エネルギーになり、大量の熱が発生する可能性があり、接続部分の補強用樹脂自体が燃えてしまう恐れもある。従って、本発明に使用する接着剤は、モニタしようとする伝搬光の波長帯域にて吸収の少ない接着剤を使用することが好ましい。   As the above-mentioned adhesive, it is preferable to use an adhesive that has little absorption in the wavelength band of the propagation light of the optical fibers 10A and 10B to be measured. In both of the above-described two fixing methods, since the adhesive 15 needs to be filled in the reinforcing sleeve 14, the adhesive is scattered due to the connection loss, depending on the wavelength of the propagation light to be monitored. There is also a possibility that the light 18 is absorbed. When an adhesive having a large absorption in the wavelength band of the propagation light to be monitored is used, the absolute value of the light receiving power of the monitoring optical fiber 13 is reduced to the lower detection limit due to the absorption by the adhesive, and detection / response cannot be performed. In addition to the fear, the absorbed optical power becomes thermal energy, and a large amount of heat may be generated, and there is a possibility that the reinforcing resin itself in the connection portion may burn. Therefore, the adhesive used in the present invention is preferably an adhesive that absorbs less in the wavelength band of the propagation light to be monitored.

本発明において、モニタ用光ファイバ13からの光信号をPD16で受け、電気信号に変換することが好ましい。
また、モニタ用光ファイバの受光パワーが適切になるように、接続点12とモニタ用光ファイバ13の先端との距離を調整することが好ましい。
In the present invention, it is preferable that the optical signal from the monitoring optical fiber 13 is received by the PD 16 and converted into an electrical signal.
In addition, it is preferable to adjust the distance between the connection point 12 and the tip of the monitoring optical fiber 13 so that the light receiving power of the monitoring optical fiber is appropriate.

この光パワーモニタ装置11において、モニタ用光ファイバ13からの光信号を直接モニタすることでも良いが、光デバイスの制御回路が電気回路である場合、光信号を直接モニタより、PDチップなどの受光素子で光信号を電気信号に変換してからモニタすることが一般的である。本発明でも、光デバイスの制御回路が電気回路適用の場合、前記のモニタ用光ファイバ13からの光信号をPD16で電気信号に変換することが望ましい。また、PD16で受光した光パワーが弱い場合には、PD16の制御回路上に電気増幅回路を設置することが好ましい。   In this optical power monitor device 11, the optical signal from the monitoring optical fiber 13 may be directly monitored. However, when the control circuit of the optical device is an electric circuit, the optical signal is received by the PD chip or the like from the direct monitor. It is common to monitor an element after converting an optical signal into an electric signal. Also in the present invention, when the control circuit of the optical device is applied to an electric circuit, it is desirable that the optical signal from the monitoring optical fiber 13 is converted into an electric signal by the PD 16. Further, when the optical power received by the PD 16 is weak, it is preferable to install an electric amplifier circuit on the control circuit of the PD 16.

また、PDなどの素子は許容最大パワーがあり、それ以上になると素子を破壊する恐れがある。PD16の受光パワーが許容最大パワー以上になる恐れがある場合には、PD16の受光前の部分に通常の減衰用光ファイバを入れても勿論良いのであるが、本発明ではPD16の受光パワーが適切な量となるように、モニタ用光ファイバ13先端の設置位置、すなわちモニタ用光ファイバ13の先端と接続点12との距離を調整することが望ましい。基本的には、モニタ用光ファイバ13の先端が接続点12より遠いほど受光パワーが小さくなる(後述する実施例1参照)。   In addition, elements such as PD have an allowable maximum power, and there is a risk that the elements will be destroyed if the power exceeds this. If there is a possibility that the light receiving power of the PD 16 may exceed the allowable maximum power, it is of course possible to insert a normal attenuation optical fiber in the portion before the light receiving of the PD 16. However, in the present invention, the light receiving power of the PD 16 is appropriate. It is desirable to adjust the installation position of the distal end of the monitoring optical fiber 13, that is, the distance between the distal end of the monitoring optical fiber 13 and the connection point 12 so as to be a proper amount. Basically, the farther the tip of the monitoring optical fiber 13 is from the connection point 12, the smaller the received light power (see Example 1 described later).

この光パワーモニタ装置11は、原理的には全ての入出力側に光ファイバを用いる光デバイスに適用可能であるが、特に光増幅作用又は非線形光学効果を高める機能性材料がドープされている光増幅特性のある光ファイバを用いたファイバレーザ、光ファイバ増幅器などの光デバイスなどに適用することが望ましい。   This optical power monitoring device 11 is in principle applicable to optical devices using optical fibers on all input / output sides, but in particular, light doped with a functional material that enhances optical amplification or nonlinear optical effect. It is desirable to apply to optical devices such as fiber lasers and optical fiber amplifiers using optical fibers having amplification characteristics.

高い入出力光パワーを持つ光増幅特性のあるファイバレーザなどの光デバイスでは、入出力光パワーの絶対値が大きいため、接続損失も大きい。例えば、ハイパワーのファイバレーザの場合、出力側の光パワーが10W以上のケースが多い。その場合、出力側の接続損失がわずか0.1dBとしても、絶対パワーは200mW以上になる。その接続損失の0.01%を受光しても−16dBの光パワーとなり、十分検出できるレベルである。   In an optical device such as a fiber laser having an optical amplification characteristic having high input / output optical power, since the absolute value of the input / output optical power is large, the connection loss is also large. For example, in the case of a high power fiber laser, the output side optical power is often 10 W or more. In that case, even if the connection loss on the output side is only 0.1 dB, the absolute power is 200 mW or more. Even if 0.01% of the connection loss is received, the optical power is -16 dB, which is a level that can be sufficiently detected.

また、前記の光増幅作用を高める機能性材料については、希土類元素であるエルビウム(Er)、イッテルビウム(Yb)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)などの希土類イオンを少なくとも1種類含んでいることが望ましい。   In addition, the functional material that enhances the above-described optical amplification function includes rare earth elements such as erbium (Er), ytterbium (Yb), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and the like. It is desirable to include at least one rare earth ion.

[実施例1]
図1に示す装置を作製し、LDからの入力光パワーのモニタを行った。
光源は中心波長980nm、最大出力500mWのLDを用いた。被測定光ファイバである入力側、出力側の光ファイバは、カットオフ波長940nm、モードフィールド径6.7μmのシングルモード光ファイバを用いた。また、入・出力側光ファイバ間の接続点の接続損失は0.1dB(約11.4mW)になるように調整した。
モニタ用光ファイバは、コア径50μm、クラッド径125μm、開口数(NA)0.2のマルチモード光ファイバを用い、これを出力光ファイバに沿わせ、接続点近傍に先端を設置した後、市販の熱溶融接着剤を内設した補強スリーブで固定した。
前記の装置を用いて、光源のLDのパワーを500mWで一定とし、接続点からモニタ用光ファイバ先端までの距離を変えてモニタ用光ファイバの受光パワーをパワーメータでモニタした。その結果を図3に示す。
図3の横軸は接続点からモニタ用光ファイバ先端までの距離であって、縦軸はモニタ用光ファイバの受光パワーである。モニタ用光ファイバ先端の設置位置によって、受光できる散乱光パワーが異なることが分かる。
また、受光パワー最大となっている位置は、接続点の直近ではなく一定の距離で離れている位置にある。これは、接続損失に起因して生じた散乱光が角度(NAによって変化する)を持って放射され、接続点より斜め方向に出てくるため、接続点の直近ではパワーの分布が最大ではない。
[Example 1]
The apparatus shown in FIG. 1 was manufactured and the input optical power from the LD was monitored.
As the light source, an LD having a center wavelength of 980 nm and a maximum output of 500 mW was used. A single-mode optical fiber having a cut-off wavelength of 940 nm and a mode field diameter of 6.7 μm was used as the optical fiber on the input side and output side, which are optical fibers to be measured. The connection loss at the connection point between the input and output side optical fibers was adjusted to be 0.1 dB (about 11.4 mW).
The monitoring optical fiber is a multimode optical fiber having a core diameter of 50 μm, a cladding diameter of 125 μm, and a numerical aperture (NA) of 0.2. Along with the output optical fiber, a tip is installed near the connection point, and then commercially available. The hot-melt adhesive was fixed with a reinforcing sleeve provided inside.
Using the above apparatus, the power of the LD of the light source was made constant at 500 mW, and the light receiving power of the monitoring optical fiber was monitored with a power meter while changing the distance from the connection point to the tip of the monitoring optical fiber. The result is shown in FIG.
The horizontal axis in FIG. 3 is the distance from the connection point to the tip of the monitoring optical fiber, and the vertical axis is the light receiving power of the monitoring optical fiber. It can be seen that the scattered light power that can be received varies depending on the position of the tip of the monitor optical fiber.
In addition, the position where the light receiving power is maximum is not a position close to the connection point but a position separated by a certain distance. This is because the scattered light caused by the connection loss is radiated at an angle (which varies depending on the NA) and emerges in an oblique direction from the connection point, so that the power distribution is not maximum in the immediate vicinity of the connection point. .

[実施例2]
図1に示した装置において、接続点からモニタ用光ファイバ先端までの距離を2mmと一定にし、光源のLDのパワーを100mW〜500mWに変え、モニタ用光ファイバの受光をモニタした。その結果を図4に示す。但し、比較するため、横軸の光源のLD出力パワー単位はmWからdBmに変換している。
図4の横軸は、光源であるLDの出力パワーであり、縦軸はモニタ用光ファイバの受光パワーである。図4の結果から、一定位置に設置したモニタ用光ファイバの受光パワーより出力パワーをモニタすることが可能であることが分かる。
[Example 2]
In the apparatus shown in FIG. 1, the distance from the connection point to the tip of the monitoring optical fiber was kept constant at 2 mm, the power of the LD of the light source was changed from 100 mW to 500 mW, and the received light of the monitoring optical fiber was monitored. The result is shown in FIG. However, for comparison, the LD output power unit of the light source on the horizontal axis is converted from mW to dBm.
The horizontal axis in FIG. 4 is the output power of the LD as the light source, and the vertical axis is the light reception power of the monitoring optical fiber. From the results of FIG. 4, it can be seen that the output power can be monitored from the received light power of the monitoring optical fiber installed at a fixed position.

本発明に係る光パワーモニタ装置の一実施形態を示し、(a)は光パワーモニタ装置の構成図、(b)は要部拡大断面図である。1 shows an embodiment of an optical power monitoring device according to the present invention, where (a) is a configuration diagram of the optical power monitoring device, and (b) is an enlarged cross-sectional view of a main part. 従来の光パワーモニタ装置を示す構成図である。It is a block diagram which shows the conventional optical power monitor apparatus. 実施例1で測定した接続点からモニタ用光ファイバ先端までの距離と受光パワーとの関係を示すグラフである。6 is a graph showing the relationship between the distance from the connection point measured in Example 1 to the tip of the monitoring optical fiber and the light receiving power. 実施例2で測定した光源の出力パワーとモニタ用光ファイバの受光パワーとの関係を示すグラフである。It is a graph which shows the relationship between the output power of the light source measured in Example 2, and the light reception power of the optical fiber for a monitor.

符号の説明Explanation of symbols

10A,10B…被測定光ファイバ、11…光パワーモニタ装置、12…接続点(融着接続点)、13…モニタ用光ファイバ、14…補強スリーブ、15…接着剤、16…PD(光検出手段)、17…LD、18…散乱光。
DESCRIPTION OF SYMBOLS 10A, 10B ... Optical fiber to be measured, 11 ... Optical power monitor apparatus, 12 ... Connection point (fusion splicing point), 13 ... Monitoring optical fiber, 14 ... Reinforcement sleeve, 15 ... Adhesive, 16 ... PD (light detection) Means), 17 ... LD, 18 ... scattered light.

Claims (9)

被測定光ファイバの融着接続点の近傍に、該融着接続点から発する散乱光を入射可能にモニタ用光ファイバを配置し、該光モニタ用光ファイバを通して前記散乱光パワーを測定することによって被測定光ファイバの伝搬光パワーをモニタすることを特徴とする光パワーモニタ方法。   By disposing a monitoring optical fiber in the vicinity of the fusion splicing point of the optical fiber to be measured so that scattered light emitted from the splicing splicing point can be incident, and measuring the scattered light power through the optical monitoring optical fiber An optical power monitoring method characterized by monitoring the propagation optical power of an optical fiber to be measured. モニタ用光ファイバの受光パワーが適切になるように、前記融着接続点と前記モニタ用光ファイバの先端との距離を調整することを特徴とする請求項1に記載の光パワーモニタ方法。   2. The optical power monitoring method according to claim 1, wherein a distance between the fusion splicing point and the tip of the monitoring optical fiber is adjusted so that a light receiving power of the monitoring optical fiber is appropriate. 被測定光ファイバの融着接続点の近傍に、該融着接続点から発する散乱光を入射可能に配置されたモニタ用光ファイバと、該モニタ用光ファイバを通して送られる散乱光パワーを測定する光検出手段とを有することを特徴とする光パワーモニタ装置。   An optical fiber for monitoring arranged so that scattered light emitted from the fusion splicing point can be incident in the vicinity of the fusion splicing point of the optical fiber to be measured, and light for measuring the scattered light power transmitted through the monitoring optical fiber And an optical power monitor device. 前記モニタ用光ファイバの先端部が、前記被測定光ファイバの融着接続点と共に前記被測定光ファイバのクラッド屈折率より高い屈折率の接着剤で固定され、且つ該接着剤が熱収縮した補強スリーブで覆われて固定されていることを特徴とする請求項3に記載の光パワーモニタ装置。   Reinforcement in which the tip of the monitoring optical fiber is fixed with an adhesive having a refractive index higher than the clad refractive index of the optical fiber to be measured together with the fusion splicing point of the optical fiber to be measured, and the adhesive is thermally contracted The optical power monitor device according to claim 3, wherein the optical power monitor device is fixed by being covered with a sleeve. 前記モニタ用光ファイバの先端部が、前記被測定光ファイバの融着接続点と共に、補強ロッドで覆われ、且つ該補強ロッドの内部で前記被測定光ファイバのクラッド屈折率より高い屈折率の接着剤によって固定されていることを特徴とする請求項3に記載の光パワーモニタ装置。   The tip of the monitoring optical fiber is covered with a reinforcing rod together with the fusion splicing point of the optical fiber to be measured, and an adhesive having a refractive index higher than the cladding refractive index of the optical fiber to be measured inside the reinforcing rod The optical power monitor device according to claim 3, wherein the optical power monitor device is fixed by an agent. 前記光検出手段が、モニタ用光ファイバを通して送られる光を電気信号に変換するフォトダイオードであることを特徴とする請求項3〜5のいずれかに記載の光パワーモニタ装置。   6. The optical power monitoring apparatus according to claim 3, wherein the light detection means is a photodiode for converting light transmitted through a monitoring optical fiber into an electric signal. 光増幅作用又は非線形光学効果を有する光デバイスであって、請求項3〜6のいずれかに記載の光パワーモニタ装置を有し、被測定光ファイバの伝搬光パワーを測定可能に構成されていることを特徴とする光デバイス。   An optical device having an optical amplification effect or a nonlinear optical effect, comprising the optical power monitor device according to any one of claims 3 to 6, and configured to be able to measure a propagation optical power of an optical fiber to be measured. An optical device characterized by that. 光増幅作用を高める機能性材料がドープされている光増幅用光ファイバを含むことを特徴とする請求項7に記載の光デバイス。   8. The optical device according to claim 7, further comprising an optical fiber for optical amplification doped with a functional material that enhances an optical amplification effect. 前記機能性材料が、エルビウム、イッテルビウム、ランタン、セリウム、プラセオジム、ネオジム等の希土類イオンからなる群から選択される少なくとも1種であることを特徴とする請求項8に記載の光デバイス。
9. The optical device according to claim 8, wherein the functional material is at least one selected from the group consisting of rare earth ions such as erbium, ytterbium, lanthanum, cerium, praseodymium, and neodymium.
JP2005117032A 2005-04-14 2005-04-14 Method and device for monitoring optical power, and optical device Pending JP2006292674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117032A JP2006292674A (en) 2005-04-14 2005-04-14 Method and device for monitoring optical power, and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117032A JP2006292674A (en) 2005-04-14 2005-04-14 Method and device for monitoring optical power, and optical device

Publications (1)

Publication Number Publication Date
JP2006292674A true JP2006292674A (en) 2006-10-26

Family

ID=37413383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117032A Pending JP2006292674A (en) 2005-04-14 2005-04-14 Method and device for monitoring optical power, and optical device

Country Status (1)

Country Link
JP (1) JP2006292674A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122566A1 (en) 2010-03-30 2011-10-06 株式会社フジクラ Light intensity monitoring circuit and fiber laser system
WO2011125746A1 (en) * 2010-03-31 2011-10-13 株式会社フジクラ Optical module and optical detection method
WO2014034596A1 (en) * 2012-08-31 2014-03-06 株式会社オーク製作所 Illumination monitoring apparatus and exposure apparatus provided with same
JP5690018B1 (en) * 2014-09-30 2015-03-25 株式会社フジクラ Optical fiber re-coating equipment
CN104713643A (en) * 2015-01-08 2015-06-17 中国工程物理研究院应用电子学研究所 Online power monitoring device for high-power all-fiber laser device and packaging method thereof
WO2015129097A1 (en) * 2014-02-25 2015-09-03 株式会社フジクラ Fiber laser device and method for detecting abnormality thereof
JP2017183622A (en) * 2016-03-31 2017-10-05 株式会社フジクラ Optical monitoring device and laser device
CN107370013A (en) * 2017-08-04 2017-11-21 南京理工大学 A kind of device of high-capacity optical fiber laser power Real-time Feedback
CN109974851A (en) * 2019-04-29 2019-07-05 中国工程物理研究院激光聚变研究中心 Laser detector, optical fiber laser and laser detecting method
CN114046962A (en) * 2021-10-29 2022-02-15 广东利元亨智能装备股份有限公司 Method and device for detecting quality of optical fiber fusion point

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023A (en) * 1987-10-23 1990-01-05 Nippon Telegr & Teleph Corp <Ntt> Method of accessing optical fiber circuit and connector plug thereof
JPH05264344A (en) * 1992-03-17 1993-10-12 Fujitsu Ltd Method of monitoring input-output light power of light amplifier
JPH10224304A (en) * 1997-02-03 1998-08-21 Sumitomo Electric Ind Ltd Optical signal reception device, optical communication device and method, and optical fiber discrimination method
WO2005103779A1 (en) * 2004-04-22 2005-11-03 Fujitsu Limited Optical fiber connecting portion structure and light monitor apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023A (en) * 1987-10-23 1990-01-05 Nippon Telegr & Teleph Corp <Ntt> Method of accessing optical fiber circuit and connector plug thereof
JPH05264344A (en) * 1992-03-17 1993-10-12 Fujitsu Ltd Method of monitoring input-output light power of light amplifier
JPH10224304A (en) * 1997-02-03 1998-08-21 Sumitomo Electric Ind Ltd Optical signal reception device, optical communication device and method, and optical fiber discrimination method
WO2005103779A1 (en) * 2004-04-22 2005-11-03 Fujitsu Limited Optical fiber connecting portion structure and light monitor apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122566A1 (en) 2010-03-30 2011-10-06 株式会社フジクラ Light intensity monitoring circuit and fiber laser system
CN102844942A (en) * 2010-03-30 2012-12-26 株式会社藤仓 Light intensity monitoring circuit and fiber laser system
JP5276749B2 (en) * 2010-03-30 2013-08-28 株式会社フジクラ Light intensity monitor circuit and fiber laser system
US9234792B2 (en) 2010-03-30 2016-01-12 Fujikura Ltd. Light intensity monitor capable of detecting light intensity and fiber breaking
WO2011125746A1 (en) * 2010-03-31 2011-10-13 株式会社フジクラ Optical module and optical detection method
JP2011215410A (en) * 2010-03-31 2011-10-27 Fujikura Ltd Optical module and optical detection method
WO2014034596A1 (en) * 2012-08-31 2014-03-06 株式会社オーク製作所 Illumination monitoring apparatus and exposure apparatus provided with same
JP2014049611A (en) * 2012-08-31 2014-03-17 Orc Manufacturing Co Ltd Illumination monitoring device and exposure apparatus with the same
JP2015159208A (en) * 2014-02-25 2015-09-03 株式会社フジクラ Fiber laser device and abnormality detection method for the same
WO2015129097A1 (en) * 2014-02-25 2015-09-03 株式会社フジクラ Fiber laser device and method for detecting abnormality thereof
US9985407B2 (en) 2014-02-25 2018-05-29 Fujikura Ltd. Fiber laser apparatus and method of detecting failure of fiber laser apparatus
JP5690018B1 (en) * 2014-09-30 2015-03-25 株式会社フジクラ Optical fiber re-coating equipment
WO2016051598A1 (en) * 2014-09-30 2016-04-07 株式会社フジクラ Optical fiber recoating device
US10532503B2 (en) 2014-09-30 2020-01-14 Fujikura Ltd. Optical fiber re-coating device
CN104713643A (en) * 2015-01-08 2015-06-17 中国工程物理研究院应用电子学研究所 Online power monitoring device for high-power all-fiber laser device and packaging method thereof
JP2017183622A (en) * 2016-03-31 2017-10-05 株式会社フジクラ Optical monitoring device and laser device
CN107370013A (en) * 2017-08-04 2017-11-21 南京理工大学 A kind of device of high-capacity optical fiber laser power Real-time Feedback
CN109974851A (en) * 2019-04-29 2019-07-05 中国工程物理研究院激光聚变研究中心 Laser detector, optical fiber laser and laser detecting method
CN109974851B (en) * 2019-04-29 2024-01-26 中国工程物理研究院激光聚变研究中心 Laser detection device, fiber laser, and laser detection method
CN114046962A (en) * 2021-10-29 2022-02-15 广东利元亨智能装备股份有限公司 Method and device for detecting quality of optical fiber fusion point

Similar Documents

Publication Publication Date Title
JP2006292674A (en) Method and device for monitoring optical power, and optical device
US8274732B2 (en) Optical module
US20190089113A1 (en) Fiber Laser Apparatus
US20210373348A1 (en) Splice with cladding mode light stripping
US7371019B2 (en) Method and apparatus for sensing light
JP6534999B2 (en) Optical fiber laser device
JP4954737B2 (en) Optical amplification system, optical fiber laser and optical fiber amplifier using the same
EP2100349B1 (en) Cladding pumped fibre laser with a high degree of pump isolation
KR102217718B1 (en) Ultra-high power fiber laser system with multimode-multimode fiber combiner
US7058267B2 (en) Method for manufacturing of an optical fiber with a decoupling interface for scattered light, use of an optical fiber and device for monitoring of the light power guided through an optical fiber
WO2014014068A1 (en) Optical fiber laser device
CN105723576A (en) Fiber laser device
Wetter et al. High power cladding light strippers
JP5378861B2 (en) Optical fiber laser
JP2014060251A (en) Optical power monitoring device, optical power monitoring method, and laser generator using optical power monitoring device
JP4855429B2 (en) Connection method of double clad fiber
JP2011192670A (en) Apparatus and method of monitoring laser diode
CN110364919B (en) Optical fiber laser device
CN109844588B (en) Splice for stripping cladding mode light
JP2014029548A (en) Protection structure for coating end part of optical fiber, laser light source device, and protection method for coating end part of optical fiber
JP7288394B2 (en) FIBER FUSE DETECTION DEVICE AND LASER DEVICE USING THE SAME
Wetter et al. High core and cladding isolation termination for high-power lasers and amplifiers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601