JP2006292026A - Supporting shaft for planetary gear - Google Patents

Supporting shaft for planetary gear Download PDF

Info

Publication number
JP2006292026A
JP2006292026A JP2005111585A JP2005111585A JP2006292026A JP 2006292026 A JP2006292026 A JP 2006292026A JP 2005111585 A JP2005111585 A JP 2005111585A JP 2005111585 A JP2005111585 A JP 2005111585A JP 2006292026 A JP2006292026 A JP 2006292026A
Authority
JP
Japan
Prior art keywords
support shaft
planetary gear
peripheral surface
center hole
hardened layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005111585A
Other languages
Japanese (ja)
Other versions
JP2006292026A5 (en
Inventor
Koichi Yamamoto
幸一 山本
Hiromichi Takemura
浩道 武村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005111585A priority Critical patent/JP2006292026A/en
Publication of JP2006292026A publication Critical patent/JP2006292026A/en
Publication of JP2006292026A5 publication Critical patent/JP2006292026A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Transmissions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supporting shaft for a planetary gear preventing the occurrence of serious damage leading to breakage even in the case of having a part liable to fall in strength like the opening peripheral edge parts of an axial center hole 14 and branch holes 15, 15 for feeding lubricating oil. <P>SOLUTION: A surface hardened layer 17 with a hardness of Hv550 or more is formed at a surface layer part including an outer peripheral surface 16 by high frequency heat treatment. The effective hardened layer depth h of the surface hardened layer 17 is regulated to ≤0.75 times as long as a distance H from the inner peripheral surface 18 of the axial center hole 14 to the outer peripheral surface 16. With this constitution, cracks initiated at the opening peripheral edge parts of the respective branch holes 15, 15 are prevented from propagating to the inner peripheral surface 18 of the axial center hole 14 to solve the problem. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明の遊星歯車用支持軸は、例えば自動車用自動変速機やトランスアスクルを構成する遊星歯車装置に組み込まれる遊星歯車をキャリアに対して回転自在に支持する為の、遊星歯車用支持軸の改良に関する。   The planetary gear support shaft of the present invention is an improvement of the planetary gear support shaft for rotatably supporting a planetary gear incorporated in a planetary gear device that constitutes, for example, an automatic transmission for automobiles or a trans-askicle with respect to a carrier. About.

自動車用自動変速機を構成する遊星歯車装置が従来から、例えば特許文献1〜4等、多くの刊行物に記載されて広く知られると共に、広く実施されている。この従来から知られた遊星歯車装置は、例えば図2〜4に示す様に、外周面に歯1aを形成した太陽歯車1と、この太陽歯車1と同心に配置され、内周面に歯2aを形成したリング歯車2との間に、複数個(一般的には3〜4個)の遊星歯車3、3を、円周方向に関して等間隔に配置している。そして、これら複数個の遊星歯車3、3の外周面に形成した歯3aを、上記両歯1a、2aに噛合させている。   BACKGROUND ART Conventionally, planetary gear devices constituting an automatic transmission for automobiles are widely known and widely implemented as described in many publications such as Patent Documents 1 to 4, for example. As shown in FIGS. 2 to 4, for example, this conventionally known planetary gear device includes a sun gear 1 having teeth 1 a formed on the outer peripheral surface thereof and a concentric arrangement with the sun gear 1, and teeth 2 a on the inner peripheral surface thereof. A plurality (generally 3 to 4) of planetary gears 3 and 3 are arranged at equal intervals in the circumferential direction between the ring gear 2 and the ring gear 2. The teeth 3a formed on the outer peripheral surfaces of the plurality of planetary gears 3 and 3 are meshed with the teeth 1a and 2a.

上記複数個の遊星歯車3、3は、それぞれ支持軸4の周囲に、それぞれ複数本ずつのニードル5、5を介して回転自在に支持している。これら各支持軸4の基端部(図3〜4の右端部)は、上記太陽歯車1を中心として回転自在なキャリア6に支持固定している。図示の例では、上記各支持軸4の基端部を上記キャリア6に形成した通孔7aに締まり嵌めで内嵌すると共に、これら各支持軸4と上記キャリア6との間に係止ピン8を掛け渡して、これら各支持軸4が上記通孔7aから脱落するのを防止している。   The plurality of planetary gears 3 and 3 are rotatably supported around the support shaft 4 via a plurality of needles 5 and 5, respectively. The base end portion (the right end portion in FIGS. 3 to 4) of each support shaft 4 is supported and fixed to a carrier 6 that is rotatable around the sun gear 1. In the illustrated example, the base end portion of each of the support shafts 4 is fitted into a through hole 7 a formed in the carrier 6 by an interference fit, and a locking pin 8 is provided between the support shaft 4 and the carrier 6. The support shafts 4 are prevented from falling off from the through holes 7a.

又、図示の例では、上記太陽歯車1を円筒状に形成し、上記キャリア6を、断面L字形で全体を円輪状に形成している。そして、図3に示す様に、このキャリア6の内周縁部に形成した円筒部9を、回転軸10の外周面にスプライン係合させている。上記太陽歯車1は、この回転軸10の周囲に、この回転軸10に対する相対回転を自在に支持している。又、上記リング歯車2は上記各部材1、6、10の周囲に、これら各部材1、6、10に対する相対回転自在に支持している。   In the illustrated example, the sun gear 1 is formed in a cylindrical shape, and the carrier 6 is formed in an annular shape with an L-shaped cross section. As shown in FIG. 3, the cylindrical portion 9 formed on the inner peripheral edge of the carrier 6 is spline-engaged with the outer peripheral surface of the rotating shaft 10. The sun gear 1 freely supports relative rotation with respect to the rotary shaft 10 around the rotary shaft 10. The ring gear 2 is supported around the members 1, 6, 10 so as to be rotatable relative to the members 1, 6, 10.

又、上記各支持軸4の先端部(図3〜4の左端部)は、円輪状に形成された連結板11に形成した通孔7bに内嵌固定し、これら各支持軸4の先端部同士を連結している。これら複数の支持軸4の中間部外周面で、上記キャリア6と上記連結板11との間部分は、円筒面状の内輪軌道12としている。一方、上記遊星歯車3の内周面は、円筒面状の外輪軌道13としている。そして、これら内輪軌道12と外輪軌道13との間部分に前記各ニードル5、5を設けて、上記遊星歯車3を、上記支持軸4の中間部周囲で連結板11とキャリア6との間部分に、回転自在に支持している。尚、上記各支持軸4の内部には、図4に示す様に、通油孔として機能する軸方向中心孔14及び分岐孔15を設け、上記各ニードル5、5の設置部分に潤滑油を送り込み自在としている。即ち、上記軸方向中心孔14の上流端を、上記キャリア6内に設けた潤滑油供給路16に通じさせると共に、上記分岐孔15の両端部を、上記軸方向中心孔14の内周面と外周面とに開口させている。そして、遊星歯車式変速機の運転時に、上記各ニードル5、5の設置部分に潤滑油を送り込み自在としている。   Further, the tip end portions (left end portions in FIGS. 3 to 4) of the respective support shafts 4 are fitted and fixed in through holes 7b formed in the connecting plate 11 formed in an annular shape, and the tip portions of the respective support shafts 4 are fixed. They are linked together. A portion between the carrier 6 and the coupling plate 11 on the outer peripheral surface of the intermediate portion of the plurality of support shafts 4 is a cylindrical inner ring raceway 12. On the other hand, the inner peripheral surface of the planetary gear 3 is a cylindrical outer ring raceway 13. The needles 5, 5 are provided between the inner ring raceway 12 and the outer ring raceway 13, and the planetary gear 3 is placed around the intermediate portion of the support shaft 4 between the connecting plate 11 and the carrier 6. In addition, it is supported rotatably. In addition, as shown in FIG. 4, an axial center hole 14 and a branch hole 15 functioning as oil passage holes are provided inside each support shaft 4, and lubricating oil is applied to the installation portions of the needles 5 and 5. It can be sent freely. That is, the upstream end of the axial center hole 14 communicates with a lubricating oil supply passage 16 provided in the carrier 6, and both ends of the branch hole 15 are connected to the inner peripheral surface of the axial center hole 14. Open to the outer peripheral surface. Then, during operation of the planetary gear type transmission, the lubricating oil can be fed freely into the installation portions of the needles 5 and 5.

上述の様な遊星歯車3及び支持軸4等を含んで構成する遊星歯車装置は、例えば、前記回転軸10を駆動軸又は従動軸とし、上記太陽歯車1又は上記リング歯車2の中心を従動軸又は駆動軸に結合する。そして、何れの歯車1、2、3を回転自在とし、何れの歯車1、2、3を回転不能とするかを切り換える事により、上記駆動軸と従動軸との間の変速並びに回転方向の変換を行なう。この様な遊星歯車装置自体の構成及び作用は、従来から周知であり、本発明の要旨とも関係しないから、全体構造の図示並びに詳しい説明は省略する。   In the planetary gear device configured to include the planetary gear 3 and the support shaft 4 as described above, for example, the rotary shaft 10 is a drive shaft or a driven shaft, and the center of the sun gear 1 or the ring gear 2 is a driven shaft. Or it couple | bonds with a drive shaft. Then, by switching which gears 1, 2, and 3 are rotatable and which gears 1, 2, and 3 are non-rotatable, the shift between the drive shaft and the driven shaft and the conversion of the rotation direction are switched. To do. Since the configuration and operation of such a planetary gear device itself are conventionally well known and are not related to the gist of the present invention, illustration and detailed description of the entire structure are omitted.

ところで、上述の様な遊星歯車装置の運転時に上記支持軸4の外周面(ラジアルニードル軸受の内輪軌道12)乃至表面層部分には、上記各ニードル5、5の転動面との転がり接触に基づいて大きな面圧(高面圧)が加わり、この表面層部分に、数GPa程度にも達する、大きな接触応力が発生する。この為に従来から、上記支持軸4を構成する金属材料として、硬くて大きな負荷に耐えられ、転がり疲労寿命が長く、且つ、滑りに対する耐摩耗性の良好なものを選択使用している。具体的には、SCM420等の肌焼き鋼、SK5等の高周波焼入れ鋼、SUJ2やSUJ3等の高炭素クロム軸受鋼が使用されている。   Incidentally, during operation of the planetary gear device as described above, the outer peripheral surface of the support shaft 4 (inner ring raceway 12 of the radial needle bearing) or the surface layer portion is in rolling contact with the rolling surfaces of the needles 5 and 5. Based on this, a large surface pressure (high surface pressure) is applied, and a large contact stress reaching several GPa is generated in this surface layer portion. For this reason, conventionally, as the metal material constituting the support shaft 4, a material that is hard and can withstand a large load, has a long rolling fatigue life, and has good wear resistance against slipping has been selected and used. Specifically, case-hardened steel such as SCM420, induction-hardened steel such as SK5, and high carbon chrome bearing steel such as SUJ2 and SUJ3 are used.

又、上記支持軸4の外周面乃至は表面層部分は、上記各ニードル5、5の公転運動に基づき、高面圧下で繰り返し剪断応力を受ける為、転がり疲れ寿命確保の面から、厳しい使用条件となる。この為、上述の様な金属材料により造られる上記支持軸4の表面層部分には、浸炭処理や浸炭窒化処理等の表面熱処理を施して、上記繰り返し加わる剪断応力に拘らず(この剪断応力に耐えて)、上記表面層部分の転がり疲れ寿命を確保できる様にしている。更にこの表面層部分には、上記表面熱処理に加えて(この表面熱処理に引き続いて)高周波熱処理を施す事により、表面硬度を確保して、転がり疲れ寿命の一層の向上を図っている。   Further, since the outer peripheral surface or the surface layer portion of the support shaft 4 is repeatedly subjected to shear stress under high surface pressure based on the revolving motion of the needles 5 and 5, severe use conditions from the viewpoint of securing the rolling fatigue life. It becomes. For this reason, the surface layer portion of the support shaft 4 made of the metal material as described above is subjected to surface heat treatment such as carburizing treatment or carbonitriding treatment, regardless of the shear stress repeatedly applied. Endured) to ensure the rolling fatigue life of the surface layer portion. Further, the surface layer portion is subjected to high-frequency heat treatment in addition to the surface heat treatment (following the surface heat treatment) to ensure surface hardness and further improve the rolling fatigue life.

ところが、遊星歯車装置に組み込まれる上記支持軸4の場合には、特有の形状、構造に起因して、次の様な問題を生じる。即ち、この支持軸4の内部には、上記各ニードル5、5の転動面と前記内輪軌道12及び前記外輪軌道13との転がり接触部に潤滑油を供給する為に、軸方向中心孔14及び分岐孔15が形成されている。一方、上記支持軸4の表面層部分の硬度を向上させるべく、この支持軸4に上記高周波熱処理に伴う焼き入れを行なう際には、高周波加熱により温度上昇した上記支持軸4の表面を急冷する為に冷却水を、この支持軸4の表面に向けて噴射する。従って、上記焼き入れ作業時には、この支持軸4の表面が先に冷やされ、引き続き芯部に向かって冷やされていく。この為、この支持軸4の表面でマルテンサイト変態が始まる温度域(例えば、SUJ2の場合で、200〜300℃)で上記支持軸4に、熱処理変態応力と熱的内部応力とが生じる。このうちの熱的内部応力は、この支持軸4の表面と芯部との温度差に基づき、この表面と芯部との熱膨張差により発生する。   However, in the case of the support shaft 4 incorporated in the planetary gear device, the following problems occur due to the unique shape and structure. That is, an axial center hole 14 is provided inside the support shaft 4 in order to supply lubricating oil to rolling contact portions between the rolling surfaces of the needles 5 and 5 and the inner ring raceway 12 and the outer ring raceway 13. And the branch hole 15 is formed. On the other hand, in order to improve the hardness of the surface layer portion of the support shaft 4, when the support shaft 4 is quenched with the high-frequency heat treatment, the surface of the support shaft 4 whose temperature has been raised by high-frequency heating is rapidly cooled. Therefore, cooling water is sprayed toward the surface of the support shaft 4. Therefore, at the time of the quenching operation, the surface of the support shaft 4 is cooled first and then is cooled toward the core. For this reason, heat treatment transformation stress and thermal internal stress are generated in the support shaft 4 in a temperature range where martensitic transformation starts on the surface of the support shaft 4 (for example, 200 to 300 ° C. in the case of SUJ2). Of these, the thermal internal stress is generated due to the difference in thermal expansion between the surface and the core portion based on the temperature difference between the surface of the support shaft 4 and the core portion.

この様な熱処理変態応力及び熱的内部応力は、上記支持軸4の一部に、亀裂に結び付く、大きな引っ張り応力となって加わる可能性がある。特に、上記軸方向中心孔14及び分岐孔15の端部で上記支持孔4の表面(軸方向端面又は外周面)に存在する開口の周縁部に存在するエッジ部の様に、薄肉で熱容量の小さな部分に冷却水が直接吹き付けられると、この部分の温度が急激に低下し、この部分に瞬間的に熱応力を誘発させて、この部分の材料強度を低下させる可能性がある。そして、この部分に亀裂等の損傷が発生すると、この損傷が上記支持軸4の芯部に迄伝播し、この支持軸4全体が折損する可能性がある。従来は、遊星歯車式変速機の運転時に上記支持軸4に加わる力は限られていた為、上述の様な支持軸4の折損等の故障が発生する事はなかった。これに対して、近年、自動車用エンジンの出力向上等により、上記支持軸4に加わる力が大きくなる傾向にあり、上述の様な折損を確実に防止できる技術の実現が求められている。   Such heat treatment transformation stress and thermal internal stress may be applied to a part of the support shaft 4 as a large tensile stress that leads to a crack. In particular, the edge portion of the axial center hole 14 and the branch hole 15 is thin and has a heat capacity such as an edge portion present at the peripheral edge portion of the opening existing on the surface (axial end surface or outer peripheral surface) of the support hole 4. When cooling water is sprayed directly on a small part, the temperature of this part drops rapidly, and this part may induce a thermal stress instantaneously and reduce the material strength of this part. If damage such as a crack occurs in this portion, this damage propagates to the core portion of the support shaft 4 and the entire support shaft 4 may be broken. Conventionally, since the force applied to the support shaft 4 during operation of the planetary gear type transmission is limited, there has been no failure such as breakage of the support shaft 4 as described above. On the other hand, in recent years, the force applied to the support shaft 4 tends to increase due to an increase in the output of an automobile engine, and the realization of a technique that can reliably prevent the above-described breakage is demanded.

特開平7−317885号公報JP 7-317885 A 特開平11−270661号公報JP 11-270661 A 特開2002−235841号公報JP 2002-235841 A 実開昭63−125254号公報Japanese Utility Model Publication No. 63-125254

本発明は、上述の様な事情に鑑み、潤滑油供給用の軸方向中心孔の開口周縁部の様に、強度が低下し易い部分を有する場合でも、折損に結び付く様な重大な損傷が発生する事のない遊星歯車用支持軸を実現すべく発明したものである。   In view of the circumstances as described above, the present invention causes serious damage that leads to breakage even when it has a portion whose strength tends to decrease, such as the opening peripheral portion of the axial center hole for supplying lubricating oil. This invention was invented to realize a planetary gear support shaft that does not occur.

本発明の遊星歯車用支持軸は、従来から知られている遊星歯車用支持軸と同様、例えば図1に示す様に、中心部に軸方向中心孔14を有する。又、必要に応じて、この軸方向中心孔14の内周面と外周面とを貫通する分岐孔15、15を有する。そして、遊星歯車式変速機を構成する遊星歯車3をキャリア6(図3〜4参照)に対して回転自在に支持する為に使用する。
特に、本発明の遊星歯車用支持軸に於いては、外周面16を含む表面層部分に高周波熱処理により形成された、図1に斜格子模様で示す、硬度がHv550以上(好ましくは、請求項2に記載した様に、Hv500以上)である表面硬化層17の有効硬化層深さhを、上記軸方向中心孔14の内周面18から上記外周面16迄の距離Hの0. 75倍以下(h≦0.75H)に規制している。
The planetary gear support shaft of the present invention has an axial center hole 14 at the center as shown in FIG. 1, for example, like the conventionally known planetary gear support shaft. Moreover, it has the branch holes 15 and 15 which penetrate the inner peripheral surface and outer peripheral surface of this axial direction center hole 14 as needed. And it uses in order to support the planetary gear 3 which comprises a planetary gear type transmission rotatably with respect to the carrier 6 (refer FIGS. 3-4).
In particular, in the planetary gear support shaft of the present invention, the surface layer portion including the outer peripheral surface 16 is formed by high-frequency heat treatment, and the hardness shown in FIG. 2, the effective hardened layer depth h of the hardened surface layer 17 is 0.75 times the distance H from the inner peripheral surface 18 of the axial center hole 14 to the outer peripheral surface 16. The following is regulated (h ≦ 0.75H).

尚、高周波熱処理により形成された上記表面硬化層17の硬度は、上記外周面16部分で最も高く、この外周面16から芯部19に向かう程低くなる。従って、硬度がHv550以上である表面硬化層17の有効硬化層深さhとは、上記外周面16から、硬度がHv550である部分迄の、径方向距離である。請求項2に記載した発明の場合には、上記外周面16から、硬度がHv500である部分迄の、径方向距離である。因に、同じ試料で見た場合、有効硬化層深さhの値は、硬度をHv550とした場合よりも、硬度をHv500とした場合の方が大きくなる。従って、請求項1よりも請求項2の方が、有効硬化層深さhの上限値が小さい。又、上記軸方向中心孔14の内周面18から上記外周面16迄の距離Hとは、上記遊星歯車用の支持軸4aの外径Dと、上記軸方向中心孔14の内径dとの差の1/2{H=(D−d)/2}である。   Note that the hardness of the surface hardened layer 17 formed by high-frequency heat treatment is highest at the outer peripheral surface 16 portion, and decreases as it goes from the outer peripheral surface 16 toward the core portion 19. Accordingly, the effective hardened layer depth h of the surface hardened layer 17 having a hardness of Hv550 or more is a radial distance from the outer peripheral surface 16 to a portion having a hardness of Hv550. In the case of the invention described in claim 2, it is a radial distance from the outer peripheral surface 16 to a portion having a hardness of Hv500. Incidentally, when viewed from the same sample, the value of the effective hardened layer depth h is larger when the hardness is Hv500 than when the hardness is Hv550. Therefore, the upper limit of the effective hardened layer depth h is smaller in claim 2 than in claim 1. The distance H from the inner peripheral surface 18 of the axial center hole 14 to the outer peripheral surface 16 is the distance between the outer diameter D of the planetary gear support shaft 4a and the inner diameter d of the axial center hole 14. The difference is 1/2 {H = (D−d) / 2}.

上述の様に構成する本発明によれば、必要とされる転がり疲れ寿命を有し、しかも、潤滑油供給用の孔の開口周縁部の様に、強度が低下し易い部分を有する遊星歯車用の支持軸4aでも、折損の様な重大な故障を有効に防止できる。
先ず、有効硬化層深さh部分で硬度がHv550(或いはHv500)であり、外周面16寄り部分での硬度がこれよりも大きい表面硬化層を有する為、表面の転がり疲れ寿命を確保できる。
According to the present invention configured as described above, for a planetary gear having a required rolling fatigue life and having a portion whose strength tends to decrease, such as the opening peripheral edge of a hole for supplying lubricating oil. Even the support shaft 4a can effectively prevent a serious failure such as breakage.
First, since it has a surface hardened layer having a hardness Hv550 (or Hv500) at the effective hardened layer depth h and a hardness near the outer peripheral surface 16 larger than this, a rolling fatigue life of the surface can be secured.

又、表面硬化層17の有効硬化層深さhを、軸方向中心孔14の内周面18から上記外周面16迄の距離Hの0. 75倍以下に規制している為、上記表面硬化層17を形成する為の高周波焼き入れ(高周波熱処理)時に、遊星歯車用の支持軸4aを構成する金属材料中に発生する内部応力によるこの金属材料の強度が低下、特に上記軸方向中心孔14(更には分岐孔15、15)の開口周縁部の材料強度が低下しても、この低下に基づく、重大な故障の発生を防止できる。この理由は、次の通りである。   Further, since the effective hardened layer depth h of the surface hardened layer 17 is restricted to 0.75 times or less of the distance H from the inner peripheral surface 18 of the axial center hole 14 to the outer peripheral surface 16, the surface hardened At the time of induction hardening (high frequency heat treatment) for forming the layer 17, the strength of the metal material is reduced due to internal stress generated in the metal material constituting the support shaft 4 a for the planetary gear, and particularly the axial center hole 14. Even if the material strength of the peripheral edge of the opening of the (further holes 15, 15) is reduced, it is possible to prevent the occurrence of a serious failure based on this reduction. The reason for this is as follows.

即ち、上記表面硬化層17の有効硬化層深さhを上記範囲に規制する事により、この表面硬化層17の内径側(芯部19寄り部分)に、優れた靱性を有する部分を、十分な径方向厚さを確保した状態で残留させられる。言い換えれば、上記支持軸4aの径方向に関して、高周波熱処理によりマルテンサイト組織となっている上記表面硬化層17を支える部分が、この表面硬化層17と上記軸方向中心孔14との間に、十分な厚さ寸法を確保した状態で存在する。   That is, by limiting the effective hardened layer depth h of the surface hardened layer 17 to the above range, a portion having excellent toughness is sufficiently provided on the inner diameter side of the surface hardened layer 17 (a portion closer to the core portion 19). It is left in a state where the radial thickness is secured. In other words, with respect to the radial direction of the support shaft 4a, a portion that supports the surface hardened layer 17 having a martensite structure by high-frequency heat treatment is sufficiently between the surface hardened layer 17 and the axial center hole 14. It exists in the state which secured the thickness dimension.

逆に言えば、上記表面硬化層17の有効硬化層深さhが、上記軸方向中心孔14の内周面18から上記外周面16迄の距離Hの0. 75倍を越えて大きく(h>0.75Hに)なると、上記表面硬化層17を支えるべき、優れた靱性を有する部分の径方向厚さが不十分になる。そして、この表面硬化層17の一部(例えば分岐孔15、15の開口周縁部)で発生した亀裂が上記支持軸4aの径方向に伝播して上記軸方向中心孔14にまで達し易くなる。この亀裂がこの軸方向中心孔14にまで達した場合には、上記支持軸4aの折損等の重大な故障に結び付き易くなる。   Conversely, the effective hardened layer depth h of the surface hardened layer 17 is larger than 0.75 times the distance H from the inner peripheral surface 18 of the axial center hole 14 to the outer peripheral surface 16 (h > 0.75H), the radial thickness of the portion having excellent toughness that should support the surface hardened layer 17 becomes insufficient. And the crack which generate | occur | produced in a part of this surface hardening layer 17 (for example, opening peripheral part of the branch holes 15 and 15) propagates to the radial direction of the said support shaft 4a, and becomes easy to reach the said axial direction center hole 14. FIG. When this crack reaches the axial center hole 14, it becomes easy to lead to a serious failure such as breakage of the support shaft 4a.

これに対して本発明の場合には、上記表面硬化層17の有効硬化層深さhを小さく抑える(h≦0.75Hとする)事により、上記表面硬化層17の一部で発生した亀裂が上記軸方向中心孔14にまで達しにくくして、上記支持軸4aの折損等の重大な故障を発生しにくくしている。   On the other hand, in the case of the present invention, cracks generated in a part of the surface hardened layer 17 by suppressing the effective hardened layer depth h of the surface hardened layer 17 to be small (h ≦ 0.75H). However, it is difficult to reach the axial center hole 14 so that a serious failure such as breakage of the support shaft 4a is difficult to occur.

本発明の効果を確認する為に行なった実験に就いて説明する。この実験には、図1に模式的に示した様な、支持軸4aを使用した。この様な支持軸4aを、出願人会社製の遊星歯車式変速機用の試験機に組み込んで、以下の条件で耐久試験を行なった。
支持軸4aの外径D=16. 7mm
各ニードル5、5(図3〜4参照)の外径=3. 5mm(総ニードル型)
ラジアルニードル軸受の基本動定格荷重C=23000N
同基本静定格荷重C0 =24000N
運転時に付与したラジアル荷重=9000N
遊星歯車3(図3〜4参照)の回転速度=6000min-1
ラジアルニードル軸受の計算寿命L10=56時間
潤滑油種類及び油温=ATF、100℃
An experiment conducted for confirming the effect of the present invention will be described. In this experiment, a support shaft 4a as schematically shown in FIG. 1 was used. Such a support shaft 4a was incorporated in a testing machine for a planetary gear type transmission manufactured by the applicant company, and a durability test was performed under the following conditions.
Outer diameter D of support shaft 4a = 16.7mm
Outer diameter of each needle 5, 5 (see FIGS. 3-4) = 3.5mm (total needle type)
Basic dynamic load rating of radial needle bearing C = 23000N
Same basic static load rating C 0 = 24000N
Radial load applied during operation = 9000N
Rotational speed of planetary gear 3 (see FIGS. 3 to 4) = 6000 min −1
Calculated life of radial needle bearing L 10 = 56 hours Lubricating oil type and oil temperature = ATF, 100 ° C

上記耐久試験は、上記支持軸4aの軸方向中心孔14の内径d及び表面硬化層17の有効硬化層深さhを種々(本発明の技術的範囲に属する実施例を3種類と、本発明の技術的範囲から外れる比較例を3種類との合計6種類に)異ならせて行なった。そして、上記支持軸4a、各ニードル5、5、遊星歯車3(図2〜4参照)のうちの少なくとも1個が破損した時点で中止し、その時点迄の運転時間を、当該支持軸4aを含むラジアルニードル軸受の転がり疲れ寿命とした。この結果を次の表1に示す。   In the durability test, the inner diameter d of the axial center hole 14 of the support shaft 4a and the effective hardened layer depth h of the surface hardened layer 17 were varied (three examples belonging to the technical scope of the present invention and the present invention). Comparative examples that deviate from the technical scope of the above were made different in three types (three types in total). Then, when at least one of the support shaft 4a, the needles 5, 5 and the planetary gear 3 (see FIGS. 2 to 4) is broken, the operation is stopped. Including the rolling fatigue life of the radial needle bearing. The results are shown in Table 1 below.

Figure 2006292026
Figure 2006292026

上述の様な条件で行なった耐久試験の結果を表す、上記表1から明らかな通り、本発明の技術的範囲に属する支持軸4aを組み込んだラジアルニードル軸受の場合、優れた転がり疲れ寿命を有し、しかも、折損の様な重大な故障に結び付く、亀裂の発生を防止できる。これに対して比較例1〜3は、何れも、表面硬化層17の有効硬化層深さhが大き過ぎて(h>0.75Hであって)、軸方向中心孔14にまで達する亀裂が発生しただけでなく、転がり疲れ寿命も短かった。尚、比較例1、3の場合、h>Hであるが、この状態は、上記表面硬化層17が、上記軸方向中心孔14から軸方向に外れた位置で、この軸方向中心孔14の内周面18よりも径方向内方にまで達している状態を言う。   As is apparent from Table 1 above, which shows the results of the durability test performed under the above-described conditions, the radial needle bearing incorporating the support shaft 4a belonging to the technical scope of the present invention has an excellent rolling fatigue life. In addition, it is possible to prevent the occurrence of cracks that lead to a serious failure such as breakage. On the other hand, in all of Comparative Examples 1 to 3, the effective hardened layer depth h of the surface hardened layer 17 is too large (h> 0.75H), and cracks reaching the axial center hole 14 occur. Not only did it occur, but the rolling fatigue life was also short. In the case of Comparative Examples 1 and 3, h> H, but in this state, the surface hardened layer 17 is located at a position where the surface center layer 14 is displaced from the axial center hole 14 in the axial direction. A state in which the inner circumferential surface 18 is reached inward in the radial direction.

尚、上述した耐久試験を行なうのに、上記支持軸4aを構成する金属材料は、高炭素クロム軸受鋼2種(SUJ2)を使用した。但し、本発明を実施する場合に、高炭素クロム軸受鋼3種又は4種(SUJ3、SUJ4)等、他の高炭素クロム軸受鋼、更には、前述した様な、SCM420等の肌焼き鋼、SK5等の高周波焼入れ鋼を使用する事もできる。   In order to perform the durability test described above, the high carbon chromium bearing steel type 2 (SUJ2) was used as the metal material constituting the support shaft 4a. However, when carrying out the present invention, other high carbon chrome bearing steels such as 3 or 4 types of high carbon chrome bearing steel (SUJ3, SUJ4), and case-hardened steel such as SCM420 as described above, Induction hardened steel such as SK5 can also be used.

本発明の実施例を示す、遊星歯車用支持軸の断面図。Sectional drawing of the support shaft for planetary gears which shows the Example of this invention. 従来構造の遊星歯車装置の第1例を示す略側面図。The schematic side view which shows the 1st example of the planetary gear apparatus of a conventional structure. 図2のA−A断面図。AA sectional drawing of FIG. 同じく部分拡大断面図。Similarly partial expanded sectional view.

符号の説明Explanation of symbols

1 太陽歯車
1a 歯
2 リング歯車
2a 歯
3 遊星歯車
3a 歯
4、4a 支持軸
5 ニードル
6 キャリア
7a、7b 通孔
8 係止ピン
9 円筒部
10 回転軸
11 連結版
12 内輪軌道
13 外輪軌道
14 軸方向中心孔
15 分岐孔
16 外周面
17 表面硬化層
18 内周面
19 芯部
DESCRIPTION OF SYMBOLS 1 Sun gear 1a Tooth 2 Ring gear 2a Tooth 3 Planetary gear 3a Tooth 4, 4a Support shaft 5 Needle 6 Carrier 7a, 7b Through-hole 8 Locking pin 9 Cylindrical part 10 Rotating shaft 11 Connecting plate 12 Inner ring track 13 Outer ring track 14 Axis Direction center hole 15 Branch hole 16 Outer peripheral surface 17 Surface hardened layer 18 Inner peripheral surface 19 Core

Claims (2)

軸方向一端面に開口すると共に、軸方向中間部に迄達する軸方向中心孔を中心部に有し、遊星歯車式変速機を構成する遊星歯車をキャリアに対して回転自在に支持する為の遊星歯車用支持軸に於いて、外周面を含む表面層部分に高周波熱処理により形成された、硬度がHv550以上である表面硬化層の有効硬化層深さが、上記軸方向中心孔の内周面から上記外周面迄の距離の0. 75倍以下である事を特徴とする遊星歯車用支持軸。   A planetary opening that opens at one end surface in the axial direction and has an axial center hole that reaches the middle in the axial direction at the center, and supports the planetary gear constituting the planetary gear type transmission rotatably with respect to the carrier. In the gear support shaft, the effective hardened layer depth of the hardened surface layer having a hardness of Hv550 or higher formed by high frequency heat treatment on the surface layer portion including the outer peripheral surface is from the inner peripheral surface of the axial center hole. A planetary gear support shaft, wherein the distance to the outer peripheral surface is 0.75 times or less. 表面硬化層の硬度をHv500以上として有効硬化層深さを規制した、請求項1に記載した遊星歯車用支持軸。
The planetary gear support shaft according to claim 1, wherein the effective hardened layer depth is regulated by setting the hardness of the hardened surface layer to Hv500 or more.
JP2005111585A 2005-04-08 2005-04-08 Supporting shaft for planetary gear Pending JP2006292026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005111585A JP2006292026A (en) 2005-04-08 2005-04-08 Supporting shaft for planetary gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005111585A JP2006292026A (en) 2005-04-08 2005-04-08 Supporting shaft for planetary gear

Publications (2)

Publication Number Publication Date
JP2006292026A true JP2006292026A (en) 2006-10-26
JP2006292026A5 JP2006292026A5 (en) 2008-05-22

Family

ID=37412797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005111585A Pending JP2006292026A (en) 2005-04-08 2005-04-08 Supporting shaft for planetary gear

Country Status (1)

Country Link
JP (1) JP2006292026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029198A (en) * 2012-08-15 2013-02-07 Nsk Ltd Method of manufacturing planetary gear spindle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340221A (en) * 2003-05-14 2004-12-02 Nsk Ltd Pinion shaft

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340221A (en) * 2003-05-14 2004-12-02 Nsk Ltd Pinion shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029198A (en) * 2012-08-15 2013-02-07 Nsk Ltd Method of manufacturing planetary gear spindle

Similar Documents

Publication Publication Date Title
WO2005068675A1 (en) Rolling bearing
JP2011220357A (en) Planetary gear device
JP2008223104A (en) Rolling shaft
US6659909B2 (en) Toroidal continuously variable transmission and manufacturing method thereof
JP2005214390A (en) Needle bearing, planetary gear mechanism and pinion shaft
JP2015007265A (en) Rolling shaft
JP5472398B2 (en) Manufacturing method of planetary gear support shaft
JP2015014032A (en) Method for manufacturing planetary gear support shaft and planetary gear support shaft
JP2006292025A (en) Supporting shaft for planetary gear
JP2006292026A (en) Supporting shaft for planetary gear
JP2005140275A (en) Planetary gear device
JP2005314794A (en) Rolling bearing
JP2010001521A (en) Shaft and pinion shaft
JP4872371B2 (en) Pinion shaft for planetary gear mechanism
JP2010014184A (en) Support shaft for planetary gear and its manufacturing method
JP2006329268A (en) Rolling bearing for planetary gear mechanism
JP2007024250A (en) Pinion shaft
JP4807146B2 (en) Method for manufacturing pinion shaft and method for manufacturing planetary gear device
JP2013113370A (en) Support shaft for rotary member
JP2006177441A (en) Pinion shaft support device for vehicle
JP2006342904A (en) Pinion shaft and planetary gear device
JP2005291342A (en) Needle bearing
JP2014234526A (en) Rolling shaft
JP2003343577A (en) Roller bearing and belt type non-stage transmission using the same
JP2009001847A (en) Rolling member for transmission and rolling bearing for transmission

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110509

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110708