JP2006291134A - Gasification method for biomass - Google Patents

Gasification method for biomass Download PDF

Info

Publication number
JP2006291134A
JP2006291134A JP2005117101A JP2005117101A JP2006291134A JP 2006291134 A JP2006291134 A JP 2006291134A JP 2005117101 A JP2005117101 A JP 2005117101A JP 2005117101 A JP2005117101 A JP 2005117101A JP 2006291134 A JP2006291134 A JP 2006291134A
Authority
JP
Japan
Prior art keywords
gasification
zone
accelerator
temperature
reaction zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005117101A
Other languages
Japanese (ja)
Other versions
JP4549918B2 (en
Inventor
Hitoshi Inoue
上 斉 井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005117101A priority Critical patent/JP4549918B2/en
Publication of JP2006291134A publication Critical patent/JP2006291134A/en
Application granted granted Critical
Publication of JP4549918B2 publication Critical patent/JP4549918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which causes the gasification reaction of a biomass to efficiently and effectively proceed under relatively low temperature conditions, thus solving the problem accompanying the occurrence of tar or soot, reducing the thermal load of an apparatus material, decreasing heat loss, preventing the melting of vegetal ashes or a gasification accelerator, and realizing a more stable control. <P>SOLUTION: The gasification method of a biomass uses an apparatus equipped with a gasification reaction zone 1 and a regeneration zone 2 and includes a step of circulating, between both the zones, a gasification accelerator having a catalytic function and/or a heat medium function. The gasification reaction zone and the regeneration zone are adjoined to each other through a thermally conductive partition wall 3; thus heat transfer by radiation, conduction, and convection from the regeneration zone to the gasification zone is enabled, the temperature of the regeneration zone is lowered, and the automatic temperature adjustment function of the apparatus for gasification is enhanced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、バイオマスの燃料化技術に関し、特に、バイオマスをガス化して気体燃料またはメタノール等の液体燃料を製造するための効率的な方法に関するものである。   The present invention relates to biomass fueling technology, and more particularly to an efficient method for gasifying biomass to produce gaseous fuel or liquid fuel such as methanol.

今日、地球の温暖化を防止し、また有限な化石燃料資源の枯渇を避けるため、自然エネルギー技術を開発しそれを広範に普及させることが緊急な課題となっている。自然エネルギーの中でもバイオマスエネルギーは、賦存量が大きく、燃料への転換が可能であることなどから、自然エネルギーの筆頭と位置付けられることが多い。   Today, in order to prevent global warming and avoid the depletion of finite fossil fuel resources, it is an urgent task to develop and widely disseminate natural energy technology. Among renewable energies, biomass energy is often positioned as the top of renewable energies because it has a large potential and can be converted to fuel.

バイオマスのエネルギー利用技術には、直接燃焼、熱化学的変換技術、生化学的変換技術があるが、直接燃焼は特に小規模プロセスの場合効率に限界があり、また生化学的変換では、糖質やでんぷん質などの限られたバイオマスしか原料にできない。一方、熱化学的変換によれば、セルロース系化合物を含め、バイオマスを全体として利用でき、かつ小規模でも高効率のエネルギー利用が可能となる。   Biomass energy utilization technologies include direct combustion, thermochemical conversion technology, and biochemical conversion technology, but direct combustion has limited efficiency, especially for small-scale processes. Only limited biomass such as starch can be used as raw material. On the other hand, according to thermochemical conversion, biomass including cellulosic compounds can be used as a whole, and high-efficiency energy can be used even on a small scale.

これまで開発されてきた熱化学的変換技術には、例えば、特開平7−138580号(特許文献1)に記載の方法がある。これは、有機物を空気または酸素及び水蒸気により部分酸化する方法であって、供給する水蒸気と有機物中の炭素とのモル比が1〜10となるように調整し、さらに燃焼またはガス化温度が700℃〜900℃になるように調整するものである。また、特開平9−111254号(特許文献2)には、そのような方法によって生成したガス中のタールやススを、ガス化炉の後流側に設けられたニッケル含有合金またはニッケル触媒を内装したガス分解炉により分解する方法が提案されている。さらに、特開2002−212574号(特許文献3)には、バイオマスをスチームでガス化する炉の周囲に流動床炉を設け、バイオマスを流動床炉で燃焼させて、ガス化炉に熱を供給する方法が記載されている。特開2003−246990号(特許文献4)には、Rh/CeO/M(ここで、MはSiO、AlO、AlまたはZnO)で表される触媒を用いた流動床反応器において、バイオマスを800℃未満でガス化する方法が提案されている。 As a thermochemical conversion technique that has been developed so far, for example, there is a method described in JP-A-7-138580 (Patent Document 1). This is a method of partially oxidizing an organic substance with air or oxygen and water vapor, adjusting the molar ratio of the water vapor to be supplied to the carbon in the organic substance to be 1 to 10, and further having a combustion or gasification temperature of 700. It adjusts so that it may be set to ° C-900 ° C. Japanese Patent Laid-Open No. 9-111254 (Patent Document 2) is provided with a nickel-containing alloy or nickel catalyst provided on the downstream side of the gasification furnace containing tar and soot in the gas generated by such a method. There has been proposed a method of decomposing by a gas decomposition furnace. Furthermore, in JP 2002-212574 (Patent Document 3), a fluidized bed furnace is provided around a furnace for gasifying biomass with steam, the biomass is burned in the fluidized bed furnace, and heat is supplied to the gasification furnace. How to do is described. Japanese Patent Application Laid-Open No. 2003-246990 (Patent Document 4) discloses a fluidized bed using a catalyst represented by Rh / CeO 2 / M (where M is SiO 2 , AlO 2 , Al 2 O 3, or ZnO 2 ). In the reactor, a method for gasifying biomass at less than 800 ° C. has been proposed.

本発明者の知見によれば、上述した従来の方法においては、それぞれ次のような解決すべき問題がある。   According to the knowledge of the present inventor, the conventional methods described above have the following problems to be solved.

(1)バイオマスを空気または酸素及び水蒸気によって部分酸化する方法
この方法においては、700℃以下の反応温度ではタールが副生し、それがガス化炉内部や下流の熱回収装置、ガス洗浄装置、さらにはシフト反応装置、CO除去装置、メタノール合成装置にまでもおよんで閉塞や反応収率の低下を招く結果となる。それをさけるためガス化炉の温度を700℃以上に維持しようとすると、より多くのバイオマスを燃焼させる必要があり、このため目的とするガスの収率が低下する上に、ガス化炉の構造材料を耐熱性の高いものとする必要がある。さらに、上記燃焼のために空気または酸素をガス化炉に導入しなければならないが、空気を用いると生成ガスを窒素で希釈してしまう結果となり、また酸素を用いる場合、空気から純酸素を精製するための煩雑な工程が必要となり、製造コストの点においても不利である。
(1) Method of partially oxidizing biomass with air or oxygen and water vapor In this method, tar is produced as a by-product at a reaction temperature of 700 ° C. or lower, which is a heat recovery device, a gas scrubber, In addition, even the shift reaction apparatus, the CO 2 removal apparatus, and the methanol synthesis apparatus are clogged and the reaction yield is reduced. In order to avoid this, if it is attempted to maintain the temperature of the gasifier at 700 ° C. or higher, it is necessary to burn more biomass, which lowers the yield of the target gas and increases the structure of the gasifier. It is necessary to make the material highly heat resistant. Furthermore, air or oxygen must be introduced into the gasifier for the above combustion, but if air is used, the product gas will be diluted with nitrogen, and if oxygen is used, pure oxygen will be purified from the air. This is a disadvantage in terms of manufacturing cost.

(2)上記においてガス化炉の下流に分解炉を設置する方法
ガス化炉からガス分解炉にいたる過程で、分解生成物の重合や縮合反応が進むと考えられ、またガス化炉からの生成ガスをガス分解炉に導く段階で新たに加熱を行わなければならないため、熱効率の点で不利である。さらに、ガス分解炉で用いる触媒の劣化が激しく、頻繁な交換を要する。
(2) Method of installing a cracking furnace downstream of the gasification furnace in the above process It is considered that the polymerization and condensation reaction of the decomposition products proceed in the process from the gasification furnace to the gas cracking furnace. This is disadvantageous in terms of thermal efficiency because new heating must be performed at the stage of introducing the gas to the gas decomposition furnace. In addition, the catalyst used in the gas cracking furnace is severely degraded and requires frequent replacement.

(3)ガス化炉の周囲にバイオマスを燃焼させる流動床炉を設置する方法
無触媒の反応であるため、タールの生成を防ぐためにはガス化炉の温度を700℃以上、より好ましくは800℃以上とする必要があり、流動床炉はさらに高温を要するため、それらの炉の構造材料を高価な耐熱材料とする必要がある。また、ガス化炉内のバイオマスの加熱は、主として炉壁からの輻射にたよることとなり、伝熱効率に限りがある。したがって、装置の熱効率が低くなる。
(3) Method of installing a fluidized bed furnace for burning biomass around the gasification furnace Since this is a non-catalytic reaction, the temperature of the gasification furnace is 700 ° C or higher, more preferably 800 ° C, in order to prevent tar formation. Since the fluidized bed furnaces require higher temperatures, the structural materials of those furnaces need to be expensive heat-resistant materials. Moreover, the heating of the biomass in the gasification furnace mainly depends on radiation from the furnace wall, and the heat transfer efficiency is limited. Therefore, the thermal efficiency of the device is lowered.

(4)触媒を用いた流動床反応器においてバイオマスをガス化する方法
この方法で用いられる触媒は高価であり、また劣化をさけられない。
(4) Method of gasifying biomass in a fluidized bed reactor using a catalyst The catalyst used in this method is expensive and cannot be deteriorated.

すなわち、一般に無触媒のガス化は、低温ではタールが生成するため、高温にする必要があり、装置材料の熱的負担の増加と熱効率の低下がさけられない。ガス化剤の一部または全部として空気を用いて部分燃焼させる方式では、生成ガスが低発熱量・低品質のガスとなる。それをさけるためにガス化剤をスチームのみとした外熱式のガス化炉では熱効率が低い、触媒を用いれば、ガス化温度を下げることができるが、一般に触媒は高価であり、またすみやかに劣化してしまう、という問題があった。   That is, in general, non-catalytic gasification needs to be performed at a high temperature because tar is generated at a low temperature, and an increase in the thermal burden on the apparatus material and a decrease in thermal efficiency cannot be avoided. In the method of partial combustion using air as part or all of the gasifying agent, the generated gas becomes a gas with a low calorific value and low quality. In order to avoid this, the external heating type gasification furnace with only the gasifying agent as steam has low thermal efficiency. If a catalyst is used, the gasification temperature can be lowered, but the catalyst is generally expensive and promptly. There was a problem of deterioration.

これらの問題を解決するべく、先に本発明者らは、バイオマスを含む有機物系原料を、ガス化反応ゾーンにおいて、昇温条件下、ガス化剤の存在下において、触媒機能および/または熱媒体機能を有する粘土からなるガス化促進剤と流動接触させることによって、前記有機物系原料を気体・液体燃料製造のための有用ガスに転換する技術を提案している(特開2003−41268号公報(特許文献5))。この技術によれば、400〜750℃の比較的温和な温度条件で、タールの生成をともなうことなく、有機物系原料を効率的にガス化できる。   In order to solve these problems, the present inventors previously made an organic material containing biomass into a catalytic function and / or a heat medium in a gasification reaction zone under a temperature rising condition and in the presence of a gasifying agent. A technique for converting the organic material into a useful gas for producing a gas / liquid fuel by fluid contact with a gasification accelerator made of clay having a function has been proposed (Japanese Patent Laid-Open No. 2003-41268 ( Patent Document 5)). According to this technique, an organic material can be efficiently gasified under a relatively mild temperature condition of 400 to 750 ° C. without generating tar.

この先行発明におけるガス化方法は、比較的高温範囲でガス化ゾーンを構成する反応槽を運転し、ガス化促進剤に炭素が沈着するのをさける方法と、比較的低温域で反応を行って、ガス化促進剤上に炭素質成分を沈着させ、その炭素分を反応ゾーンとは別個に設けられた再生ゾーンで燃焼により、または部分燃焼と炭素質ガス化反応により除去する工程を含む方法がある。この二つの方法の中では、後者が、より低温でガス化することができ、生成ガスの品質もすぐれていることから、より好ましい方法である。しかし、この後者の方法において、ガス化ゾーンと再生ゾーンを分離させ、両者の間の伝熱がもっぱらガス化促進剤により行われる場合は、ガス化ゾーンは低温化できても再生ゾーンは高温にする必要があり、このため、装置材料に熱的負担がかかり、装置からの熱損失が比較的大きく、植物灰やガス化促進剤が溶融する懸念もあった。また、ガス化炉の温度が変動しやすく、その調整が容易でなかった。
特開平7−138580号 特開平9−111254号 特開2002−212574号 特開2003−246990号 特開2003−41268号
The gasification method in this prior invention is a method in which a reaction tank constituting a gasification zone is operated in a relatively high temperature range to avoid carbon deposition on the gasification accelerator, and a reaction is performed in a relatively low temperature range. Depositing a carbonaceous component on the gasification accelerator and removing the carbon content by combustion in a regeneration zone provided separately from the reaction zone, or by partial combustion and a carbonaceous gasification reaction. is there. Of these two methods, the latter is a more preferable method because it can be gasified at a lower temperature and the quality of the product gas is excellent. However, in this latter method, when the gasification zone and the regeneration zone are separated and the heat transfer between them is performed exclusively by the gasification accelerator, the regeneration zone is heated to a high temperature even if the gasification zone can be cooled. For this reason, there is a concern that a thermal burden is applied to the device material, heat loss from the device is relatively large, and the plant ash and the gasification accelerator are melted. Further, the temperature of the gasifier is likely to fluctuate, and adjustment thereof is not easy.
JP-A-7-138580 JP-A-9-111254 JP 2002-212574 A JP 2003-246990 A JP 2003-41268 A

本発明は上述した先行発明をさらに改良し、高度なものとするためになされたものであり、バイオマスのガス化反応を、再生ゾーンを含め装置全体として比較的低温条件下において効率的かつ効果的に進行させ、これによりタールや煤の発生にともなう問題を解消するとともに、装置材料の熱的負担を軽減し、熱損失を低減し、植物灰やガス化促進剤の溶融を防ぐとともに、より安定した制御を実現する方法を提供することを目的とするものである。   The present invention was made in order to further improve and improve the above-described prior invention, and the biomass gasification reaction is efficiently and effectively performed under relatively low temperature conditions as a whole apparatus including the regeneration zone. This eliminates the problems associated with tar and soot generation, reduces the thermal burden on equipment materials, reduces heat loss, prevents melting of plant ash and gasification accelerators, and is more stable. It is an object of the present invention to provide a method for realizing such control.

上記の課題を解決するために、本発明によるバイオマスのガス化方法は、ガス化反応ゾーンと再生ゾーンを備え、両者の間を触媒機能および/または熱媒体機能を有するガス化促進剤を循環させ、ガス化反応ゾーンにバイオマスを含む有機物を投入してガス化剤とガス化促進剤の存在下でガス化させ、炭素分などの吸着副生物が表面に沈着したガス化促進剤を再生ゾーンに導いて、前記再生ゾーンにおいてガス化促進剤に付着した吸着副生物を燃焼により、または部分燃焼と炭素質ガス化反応により除去し、このようにして再生された加熱状態のガス化促進剤を前記ガス化反応ゾーンに再循環させる工程を含むバイオマスのガス化方法であって、前記ガス化反応ゾーンと再生ゾーンとを、熱伝導性を有する隔壁を介して隣接させ、前記再生ゾーンからガス化反応ゾーンへの放射、伝導ならびに対流による熱の移動が前記隔壁を介して行われるようにし、これによりこのような熱の移動がない場合と比べて再生ゾーンの温度を低減させるとともに、ガス化のための装置の自動温度調整機能を高めるようにしたことを特徴とするものである。   In order to solve the above problems, a biomass gasification method according to the present invention includes a gasification reaction zone and a regeneration zone, and a gasification accelerator having a catalytic function and / or a heat medium function is circulated between the two. , Put an organic substance containing biomass into the gasification reaction zone and gasify it in the presence of a gasifying agent and a gasification accelerator, and the gasification accelerator with adsorption by-products such as carbon deposited on the surface is put into the regeneration zone. And by adsorbing by-products adhering to the gasification accelerator in the regeneration zone by combustion or by partial combustion and carbonaceous gasification reaction, the heated gasification accelerator regenerated in this way is A biomass gasification method including a step of recirculating to a gasification reaction zone, wherein the gasification reaction zone and the regeneration zone are adjacent to each other through a partition wall having thermal conductivity, and the regeneration zone Heat transfer from the gas to the gasification reaction zone by radiation, conduction and convection through the partition, thereby reducing the temperature of the regeneration zone compared to the case without such heat transfer. The automatic temperature adjustment function of the apparatus for gasification is enhanced.

本発明に係るバイオマスのガス化方法の好ましい態様においては、前記ガス化反応ゾーンおよび再生ゾーンにおける温度条件が、ガス化反応ゾーンにおいて400℃〜800℃、好ましくは400℃〜750℃、より好ましくは450℃〜600℃であり、再生ゾーンにおいては、ガス化反応ゾーンより25℃〜300℃高い温度、好ましくは25℃〜200℃高い温度、より好ましくは25℃〜150℃高い温度範囲の、比較的温和な条件からなる。   In a preferred embodiment of the biomass gasification method according to the present invention, the temperature conditions in the gasification reaction zone and the regeneration zone are 400 ° C. to 800 ° C., preferably 400 ° C. to 750 ° C., more preferably in the gasification reaction zone. Comparison between 450 ° C. and 600 ° C., and in the regeneration zone a temperature range of 25 ° C. to 300 ° C. higher than the gasification reaction zone, preferably a temperature higher by 25 ° C. to 200 ° C., more preferably a temperature range higher by 25 ° C. to 150 ° C. It consists of mild conditions.

さらに、本発明においては、好ましくは、前記ガス化における前記ガス化促進剤が、スメクタイト粘土、バーミキュライト粘土、カオリン-蛇紋石粘土、緑泥石粘土およびこれらの混合物からなる群から選ばれた少なくとも1種を含んでなる。   Further, in the present invention, preferably, the gasification accelerator in the gasification is at least one selected from the group consisting of smectite clay, vermiculite clay, kaolin-serpentine clay, chlorite clay, and mixtures thereof. Comprising.

さらに他の本発明の好ましい態様においては、前記ガス化におけるガス化剤が、水蒸気を含む。   In still another preferred embodiment of the present invention, the gasifying agent in the gasification contains water vapor.

また、本発明の好ましい態様においては、前記ガス化反応ゾーンの流動層部分の水平方向断面の周長に対して、ガス化反応ゾーンと再生ゾーンを隔てる壁の長さが、20%以上、好ましくは30%以上、さらに好ましくは40%以上を占める。   Further, in a preferred embodiment of the present invention, the length of the wall separating the gasification reaction zone and the regeneration zone is 20% or more, preferably relative to the circumferential length of the horizontal section of the fluidized bed portion of the gasification reaction zone. Occupies 30% or more, more preferably 40% or more.

本発明によれば、従来提案されているような、ガス化ゾーンと再生ゾーンが分離されて両者の熱の授受がガス化促進剤を熱媒体とする伝熱のみである場合と比べて、このような伝熱に加えて両ゾーンの隔壁を通しての放射、対流、伝導による伝熱が生じ、特に、壁の両面が流動層である部分における伝熱速度は著しく大きくなる。このため、ガス化促進剤が担うべき伝熱量を相対的に小さくすることができる。すなわち一定のガス化促進剤の循環速度のもとで再生ゾーンの温度を、ガス化プロセス全体に悪影響を与えることなく効果的に低下させることができる。これにより、装置材料にかかる熱的負荷が低下するとともに、装置からの熱損失が低下して装置の熱効率が向上する。また、植物灰などバイオマスに含まれる灰分や、ガス化促進剤は高温においては溶融し、円滑な流動状態を妨げることがあるが、その危険性を低減ないし解消することができる。   According to the present invention, compared with the case where the gasification zone and the regeneration zone are separated and the heat transfer between them is only heat transfer using the gasification accelerator as a heat medium, as proposed in the past. In addition to such heat transfer, heat transfer by radiation, convection, and conduction through the partition walls of both zones occurs, and in particular, the heat transfer rate in the portion where both surfaces of the wall are fluidized beds is remarkably increased. For this reason, the amount of heat transfer which a gasification promoter should bear can be made relatively small. That is, the temperature of the regeneration zone can be effectively reduced without adversely affecting the entire gasification process under a constant gasification promoter circulation rate. This reduces the thermal load on the device material and reduces the heat loss from the device, thereby improving the thermal efficiency of the device. In addition, ash contained in biomass such as plant ash and gasification accelerators melt at high temperatures and hinder smooth flow, but the risk can be reduced or eliminated.

さらに、このガス化反応は、低温ではガスの収率が低くなる一方でガス化促進剤に沈着する炭素分等の副生成物の収率が高まり、高温になるにしたがってガスの収率が高くなり、前記副生成物の収率が低くなる。ある適正なガス化炉の温度において、ガス/副生物間の収率の分配と、再生ゾーンにおける副生物の燃焼熱によるガス化炉への熱の供給がつりあう。その適正温度に比してガス化炉の温度が高すぎ、副生物の収率が低い場合、再生ゾーンでの副生物の燃焼によって発生する熱が少なく、再生ゾーンの温度が下がって、ガス化ゾーンに伝わる熱が小さくなり、ガス化炉の温度が下がる。一方、適正な温度に比してガス化炉の温度が低すぎる場合、副生物の収率が多くなり、再生ゾーンにおける副生物の燃焼熱が大きくなって再生ゾーンの温度が上がり、ガス化ゾーンへの伝熱速度が大きくなって、ガス化ゾーンの温度が上がる。このフィードバック機構により、ガス化炉の温度は、自動的に適正な最適ポイントに調整されていく傾向にある。   Furthermore, this gasification reaction has a low yield of gas at low temperatures, while the yield of by-products such as carbon components deposited on the gasification accelerator increases, and the yield of gas increases as the temperature increases. Thus, the yield of the by-product is lowered. At a certain gasifier temperature, there is a balance between the gas / byproduct yield distribution and the supply of heat to the gasifier by the byproduct combustion heat in the regeneration zone. If the temperature of the gasifier is too high compared to the appropriate temperature and the yield of by-products is low, less heat is generated by the combustion of by-products in the regeneration zone, and the temperature in the regeneration zone is lowered, resulting in gasification. The heat transferred to the zone is reduced, and the temperature of the gasifier decreases. On the other hand, if the temperature of the gasifier is too low compared to the appropriate temperature, the yield of by-products will increase, the combustion heat of by-products in the regeneration zone will increase and the temperature of the regeneration zone will rise, and the gasification zone will increase. The heat transfer rate to the gas increases and the temperature of the gasification zone increases. By this feedback mechanism, the temperature of the gasifier tends to be automatically adjusted to an appropriate optimum point.

ガス化ゾーンと再生ゾーンが分離された装置では、この自動調整機構を発揮するための再生ゾーンからガス化ゾーンへの熱の移動はもっぱらガス化促進剤の循環によって行われるため、フィードバックに時間を要し、温度条件の変動が大きく運転に支障を生じやすい。この点、本発明では、ガス化ゾーンと再生ゾーンが、ともに流動層の状態であり伝熱速度の大きい壁を隔てて隣接しているゆえに、再生ゾーンからガス化ゾーンへの熱の移動が迅速に生じ、遅延なくフィードバックが行われる。すなわち、ガス化のための装置の自動温度調整機能を高めることができるのである。このため、温度条件の変動の少ない、安定した運転を行うことができる。   In an apparatus in which the gasification zone and the regeneration zone are separated, the heat transfer from the regeneration zone to the gasification zone for demonstrating this automatic adjustment mechanism is performed exclusively by the circulation of the gasification accelerator. In other words, fluctuations in the temperature conditions are large and troubles are likely to occur. In this regard, in the present invention, since the gasification zone and the regeneration zone are both in a fluidized bed state and are adjacent to each other across a wall having a high heat transfer rate, heat transfer from the regeneration zone to the gasification zone is rapid. The feedback is performed without delay. That is, the automatic temperature control function of the apparatus for gasification can be enhanced. For this reason, it is possible to perform a stable operation with little variation in temperature conditions.

本発明の方法によれば、ガス化反応ゾーンと再生ゾーンを有し、バイオマスを含む有機物原料を、ガス化反応ゾーンにおいて、昇温条件下、ガス化剤の存在下において、触媒機能および/または熱媒体機能を持つガス化促進剤と流動接触させることによって、前記有機物系原料を気体燃料または液体燃料製造のための有用ガスに転換し、炭素分等の副生物が吸着されたガス化促進剤を、ガス化反応ゾーンから抜き出して再生ゾーンに導入し、前記再生ゾーンにおいてガス化促進剤に付着した吸着副生物を燃焼により、または部分燃焼と炭素質ガス化反応により除去し、このようにして再生された加熱状態のガス化促進剤を前記ガス化反応ゾーンに再循環させる工程を含むガス化方法において、再生塔の温度を低減し、装置材料に与える熱的負荷を軽減し、装置からの熱損失を削減するとともに、植物灰およびガス化促進剤の溶融の危険性を低減ないし解消することができ、さらに、装置の温度自動調整機能を高めて、より安定した運転を実現することができる。   According to the method of the present invention, an organic material raw material having a gasification reaction zone and a regeneration zone and containing biomass is subjected to a catalytic function and / or in a gasification reaction zone under a temperature rising condition and in the presence of a gasifying agent. A gasification accelerator in which the organic material is converted to a useful gas for producing a gaseous fuel or a liquid fuel by fluid contact with a gasification accelerator having a heat medium function, and by-products such as carbon are adsorbed. Is extracted from the gasification reaction zone and introduced into the regeneration zone, and the adsorption by-products adhering to the gasification accelerator in the regeneration zone are removed by combustion or by partial combustion and carbonaceous gasification reaction. In the gasification method including the step of recirculating the regenerated heated gasification accelerator to the gasification reaction zone, the thermal load applied to the apparatus material by reducing the temperature of the regeneration tower This reduces the heat loss from the equipment, reduces or eliminates the risk of melting plant ash and gasification accelerators, and further increases the automatic temperature adjustment function of the equipment to make it more stable. Driving can be realized.

本発明によるバイオマスのガス化方法は、ガス化反応ゾーンと再生ゾーンを備え、両者の間を触媒機能および/または熱媒体機能を有するガス化促進剤を循環させ、ガス化反応ゾーンにバイオマスを含む有機物を投入してガス化剤とガス化促進剤の存在下でガス化させ、炭素分などの吸着副生物が表面に沈着したガス化促進剤を再生ゾーンに導いて、前記再生ゾーンにおいてガス化促進剤に付着した吸着副生物を燃焼により、または部分燃焼と炭素質ガス化反応により除去し、このようにして再生された加熱状態のガス化促進剤を前記ガス化反応ゾーンに再循環させる工程を含むバイオマスのガス化方法であって、前記ガス化反応ゾーンと再生ゾーンとを、熱伝導性を有する隔壁を介して隣接させ、前記再生ゾーンからガス化反応ゾーンへの放射、伝導ならびに対流による熱の移動が前記隔壁を介して行われるようにし、これによりこのような熱の移動がない場合と比べて再生ゾーンの温度を低減させるとともに、ガス化のための装置の自動温度調整機能を高めるようにしたことを特徴とするものである。   The biomass gasification method according to the present invention includes a gasification reaction zone and a regeneration zone, circulates a gasification promoter having a catalytic function and / or a heat medium function between the two, and includes the biomass in the gasification reaction zone. An organic substance is introduced and gasified in the presence of a gasifying agent and a gasification accelerator, and a gasification accelerator with adsorption by-products such as carbon deposited on the surface is led to the regeneration zone, and gasification is performed in the regeneration zone. A step of removing adsorption by-products adhering to the promoter by combustion or by partial combustion and carbonaceous gasification reaction, and recirculating the heated gasification promoter thus regenerated to the gasification reaction zone The gasification reaction zone and the regeneration zone are adjacent to each other through a partition wall having thermal conductivity, and the release from the regeneration zone to the gasification reaction zone is performed. The heat transfer by radiation, conduction and convection is carried out through the partition, thereby reducing the temperature of the regeneration zone compared to the case without such heat transfer and the device for gasification. The automatic temperature control function is enhanced.

以下、添付図面を参照しながら、本発明をより具体的に説明する。図1は、本発明によるバイオマスのガス化方法を実施するための装置の基本的構成を示す断面図である。図1にその概要が示されているように、本発明の方法を実施する装置は、ガス化反応ゾーン1と再生ゾーン2とが、熱伝導性を有する隔壁3を介して隣接して設けられている。ガス化反応ゾーン1にバイオマスを含む有機物を投入してガス化剤とガス化促進剤の存在下でガス化させ、炭素分などの吸着副生物が表面に沈着したガス化促進剤を隔壁の下部に設けられた孔を通じるなどして再生ゾーン2に導いて、再生ゾーン2においてガス化促進剤に付着した吸着副生物を燃焼により、または部分燃焼と炭素質ガス化反応により除去し、このようにして再生された加熱状態のガス化促進剤を、同様の孔を通じるなどして、さらにガス化反応ゾーン1に再循環させる。装置の熱バランスを保つために、再生ゾーン2にもバイオマス等の補助燃料を投入してもよい。符号4はサイクロンである。   Hereinafter, the present invention will be described more specifically with reference to the accompanying drawings. FIG. 1 is a sectional view showing a basic configuration of an apparatus for carrying out a biomass gasification method according to the present invention. As schematically shown in FIG. 1, in the apparatus for carrying out the method of the present invention, a gasification reaction zone 1 and a regeneration zone 2 are provided adjacent to each other via a partition wall 3 having thermal conductivity. ing. Gasification reaction zone 1 is charged with an organic substance containing biomass and gasified in the presence of a gasifying agent and a gasification accelerator, and a gasification accelerator with adsorption by-products such as carbon deposited on the surface is placed below the partition wall. The adsorbed by-product adhering to the gasification accelerator in the regeneration zone 2 is removed by combustion or by partial combustion and carbonaceous gasification reaction. The heated gasification accelerator regenerated in this manner is further recycled to the gasification reaction zone 1, for example, through the same hole. In order to maintain the heat balance of the apparatus, auxiliary fuel such as biomass may be introduced into the regeneration zone 2 as well. Reference numeral 4 denotes a cyclone.

本発明においては、両ゾーンの動作状態において、隔壁3を介して、再生ゾーン2からガス化反応ゾーン1への放射、伝導ならびに対流による熱の移動が効果的に行われる。   In the present invention, in the operating state of both zones, heat transfer by radiation, conduction and convection from the regeneration zone 2 to the gasification reaction zone 1 is effectively performed via the partition walls 3.

本発明が適用可能なガス化反応ゾーン1および再生ゾーン2の形状は特に限定されるものではなく、それぞれのゾーンの水平方向の断面が円形、楕円形、四角形またはそれらに準じた形状のいずれでもよいが、二つのゾーンは隔壁3を隔てて隣接していなければならない。   The shapes of the gasification reaction zone 1 and the regeneration zone 2 to which the present invention can be applied are not particularly limited, and the horizontal cross section of each zone may be a circle, an ellipse, a quadrangle, or a shape corresponding thereto. However, the two zones must be adjacent to each other with the partition wall 3 therebetween.

ガス化反応ゾーン1と再生ゾーン2を隔てる隔壁3の幅は、再生ゾーン2からガス化反応ゾーン1への十分な伝熱を確保するために、ガス化反応ゾーン1の流動層部分における水平方向断面の周長の20%以上、好ましくは30%以上、さらに好ましくは40%以上であることが望ましい。   The width of the partition wall 3 separating the gasification reaction zone 1 and the regeneration zone 2 is such that the horizontal direction in the fluidized bed portion of the gasification reaction zone 1 is sufficient to ensure sufficient heat transfer from the regeneration zone 2 to the gasification reaction zone 1. It is desirable that it is 20% or more, preferably 30% or more, more preferably 40% or more of the circumference of the cross section.

隔壁3の材料としては、熱伝導性にすぐれ、使用温度に耐える素材であれば特に限定されるものではないが、例えば、18Cr−8Ni系のステンレス、ニッケル基耐熱合金等が好ましく使用できる。   The material of the partition wall 3 is not particularly limited as long as it is excellent in thermal conductivity and can withstand the operating temperature. For example, 18Cr-8Ni stainless steel, nickel-base heat-resistant alloy, etc. can be preferably used.

ガス化反応ゾーン1の好ましい温度条件としては、400℃〜800℃の範囲であり、好ましくは400℃〜750℃、より好ましくは450℃〜600℃である。一方、再生ゾーン2の好ましい温度条件としては、上記ガス化反応ゾーンの温度より25℃〜300℃高い温度、好ましくは25℃〜200℃高い温度、より好ましくは25℃〜150℃高い温度範囲の、比較的温和な条件とすることが望ましい。   As a preferable temperature condition of the gasification reaction zone 1, it is the range of 400 degreeC-800 degreeC, Preferably it is 400 degreeC-750 degreeC, More preferably, it is 450 degreeC-600 degreeC. On the other hand, as a preferable temperature condition of the regeneration zone 2, the temperature is 25 ° C to 300 ° C higher than the temperature of the gasification reaction zone, preferably 25 ° C to 200 ° C higher, more preferably 25 ° C to 150 ° C higher. It is desirable to use relatively mild conditions.

本発明の方法が適用可能なバイオマス原料は、特に限定されるものではなく、気体燃料またはメタノールなどの液体燃料合成のための有用ガスが取得可能なすべての有機物系有用材料が含まれる。具体的には、森林ないし山林由来の木質系材料、湿原、河川、草地、海洋からの植物・藻類資源、林業や農産物廃棄物、廃棄プラスチック類などが含まれる。   The biomass raw material to which the method of the present invention can be applied is not particularly limited, and includes all organic useful materials from which a useful gas for synthesizing liquid fuel such as gaseous fuel or methanol can be obtained. Specifically, woody materials derived from forests or forests, wetlands, rivers, grasslands, plant and algae resources from the ocean, forestry and agricultural waste, waste plastics, etc. are included.

これらバイオマスを含む有機物系原料の微粉化ないし微細化は、ガス化反応時の接触面積(比表面積)を増大させて反応を効果的かつ効率的に行う上で肝要である。この場合の原料の微粉化の程度は、300〜3000μm、好ましくは300〜600μm程度のサイズが適当である。   The pulverization or refinement of the organic material containing biomass is important for increasing the contact area (specific surface area) during the gasification reaction and performing the reaction effectively and efficiently. In this case, the degree of pulverization of the raw material is 300 to 3000 μm, preferably about 300 to 600 μm.

本発明においては、このような有機物系原料を、ガス化反応ゾーンにおいて、昇温条件下、ガス化剤の存在下において、触媒機能および/または熱媒体機能を有する粘土からなるガス化促進剤と流動接触させる。   In the present invention, such an organic material is converted into a gasification accelerator comprising a clay having a catalytic function and / or a heat medium function in a gasification reaction zone in the presence of a gasifying agent under temperature rising conditions. Make fluid contact.

ガス化に必要なガス化剤として、加熱水蒸気および空気の混合物が用いられ得るが、より好ましくは、生成ガス濃度の低下を防止する上で水蒸気のみを用いることが望ましい。水蒸気は、触媒の流動化や触媒上の油分のストリッピングの機能を有することから特に望ましい。さらに、後述するように、再生ゾーンにおいて空気を導入することによって粘土触媒上の吸着副生物を燃焼により、または部分燃焼と炭素質ガス化反応により除去することができる。   As a gasifying agent necessary for gasification, a mixture of heated steam and air can be used, but it is more preferable to use only steam in order to prevent a decrease in the concentration of the product gas. Steam is particularly desirable because it has a fluidizing function of the catalyst and a function of stripping oil on the catalyst. Further, as will be described later, by introducing air in the regeneration zone, adsorption by-products on the clay catalyst can be removed by combustion or by partial combustion and carbonaceous gasification reaction.

なお、ガス化反応ゾーンに導入するガス化剤の投入量および温度条件は、反応させるバイオマス原料の種類、量、性状に応じて適宜最適範囲が選択され得る。通常、ガス化剤としての水蒸気の投入量としては、スチーム/バイオマス比で、0.3〜2.5、好ましくは0.5〜1.0の範囲である。なお、ガス化反応の温度条件の詳細については後述する。   It should be noted that the optimum amount of the gasification agent introduced into the gasification reaction zone and the temperature condition can be appropriately selected according to the type, amount and properties of the biomass raw material to be reacted. Usually, the input amount of water vapor as a gasifying agent is in the range of 0.3 to 2.5, preferably 0.5 to 1.0 in terms of steam / biomass ratio. Details of the temperature conditions for the gasification reaction will be described later.

また、水蒸気の導入は、粉体の流動が生じる態様で行うことが好ましく、このような流動化によってガス化反応ゾーンにおける水蒸気、気相に遊離したバイオマスの高分子や熱分解生成物および触媒粒子との間の良好な接触による流動接触ガス化が行われ得る。   Further, the introduction of water vapor is preferably performed in such a manner that powder flows, and by such fluidization, water vapor in the gasification reaction zone, biomass polymer or thermal decomposition product released into the gas phase, and catalyst particles Fluidized contact gasification can be performed with good contact between the two.

ガス化反応において流動接触させるガス化促進剤は、触媒機能および/または熱媒体機能を有する粘土からなるが、バイオマスの種類や下流の装置の設計ならびにプロセス全体のコストを勘案しつつ、最適なものが選択され得る。具体的には、ガス化促進剤は、好ましくは、モンモリロナイト、バイデライト、ノントロナイトなどのスメクタイト粘土、バーミキュライト粘土、カオリニアト、ハロイサイト、クロンステダイトなどのカオリン−蛇紋石粘土、緑泥石粘土など、およびこれらの混合物からなる群から選ばれた少なくとも1種を含んでなる。   The gasification accelerator to be fluidly contacted in the gasification reaction is made of clay having a catalytic function and / or a heat medium function, but is optimal in consideration of the type of biomass, the design of downstream equipment, and the cost of the entire process. Can be selected. Specifically, the gasification accelerator is preferably a smectite clay such as montmorillonite, beidellite, nontronite, kaolinite, kaolinite, halloysite, kaolin-serpentine clay such as cronstedite, chlorite clay, and the like. It comprises at least one selected from the group consisting of these mixtures.

ガス化促進剤としては、必須成分としての粘土の他に、他の鉱物、ケイソウ土、貝殻、シリカアルミナ系触媒、遷移金属担持無機材料系触媒、金属酸化物触媒およびこれらの混合物から選ばれた少なくとも1種を必要に応じてさらに追加的に添加することができる。   As the gasification accelerator, in addition to clay as an essential component, it was selected from other minerals, diatomaceous earth, shells, silica-alumina-based catalysts, transition metal-supported inorganic material-based catalysts, metal oxide catalysts, and mixtures thereof. At least one kind can be additionally added as necessary.

なお、ガス化促進剤の粒径は、10〜500μm程度が好ましく、さらに好ましくは60〜300μmである。   In addition, the particle size of the gasification accelerator is preferably about 10 to 500 μm, and more preferably 60 to 300 μm.

ガス化促進剤の投入量は、使用するガス化促進剤やバイオマス原料の種類や性状、ならびに使用装置に応じて適宜最適範囲が選択され得る。   The optimum amount of the gasification accelerator can be selected in accordance with the type and properties of the gasification accelerator and biomass material used and the equipment used.

従来、バイオマス原料から気体燃料やメタノール合成用の有用ガスを生成させる方法においては、ガス化炉における触媒を用いた研究においては触媒の劣化が予想以上に早く、実用化にいたっていないのが現状である。また、前述したように、バイオマス原料から有用ガスを生成させる際の最大の問題は、タールの生成である。ガス化反応炉を700℃以下の比較的低温条件で運転した場合はタールの生成を避けることができず、また、逆に900℃以上の高温条件ではタールの生成は防げるもののプロセスの自立的熱バランスの維持が困難となる。本発明者は、バイオマス原料をガス化する際に上記のような粘土からなるガス化促進剤と流動状態で接触させることによって、上記の困難な問題を一挙に解消することができることを見出した。   Conventionally, in the method of generating gas fuel or useful gas for methanol synthesis from biomass raw materials, the deterioration of the catalyst is faster than expected in the research using the catalyst in the gasification furnace, and it is not put into practical use at present It is. As described above, the biggest problem in generating useful gas from biomass raw material is the generation of tar. When the gasification reactor is operated at a relatively low temperature condition of 700 ° C. or lower, tar generation cannot be avoided, and conversely, at a high temperature condition of 900 ° C. or higher, tar generation is prevented, but the process self-sustaining heat Maintaining balance becomes difficult. The present inventor has found that the above-mentioned difficult problems can be solved at once by bringing the biomass raw material into contact with a gasification accelerator made of clay as described above in a fluidized state.

一般に、タール分は、固相のバイオマスから気相に遊離した高分子が分解を受けずに残留したり、不飽和結合をもつ熱分解生成物が縮合あるいは重合して生じるものである。このような遊離成分は、例えば、水素原子と親和性をもつ金属触媒やプロトン供与性の酸触媒の存在によってすみやかに分解されたり、その重合が抑制されると考えられる。このように、本発明においては、流動状態において上記のような微粉状のガス化促進剤と微粉状のバイオマスとを接触させることによってガス化反応を進行させることにより、気相におけるタールの生成を効果的に防止し、しかも反応ゾーンの所要温度を格段に低下させることができるのである。したがって、この方法によれば、生成ガスの収率とプロセスの熱バランスを画期的に改善することが可能となる。さらに、上記のようなガス化促進剤を反応系に導入することは、ガス化促進剤が熱媒体として作用して、ガス化反応を効率的に進行させる上でも重要である。   In general, the tar content is generated by the polymer released from the solid phase biomass remaining in the gas phase without being decomposed or by condensation or polymerization of a thermal decomposition product having an unsaturated bond. Such a free component is considered to be promptly decomposed or its polymerization is suppressed, for example, by the presence of a metal catalyst having affinity with a hydrogen atom or a proton-donating acid catalyst. As described above, in the present invention, the gasification reaction is advanced by bringing the fine powdery gasification accelerator and the fine powdery biomass into contact with each other in the fluidized state, thereby generating tar in the gas phase. It can be effectively prevented and the required temperature of the reaction zone can be significantly reduced. Therefore, according to this method, the yield of the product gas and the heat balance of the process can be dramatically improved. Furthermore, introduction of the gasification accelerator as described above into the reaction system is important in order for the gasification accelerator to act as a heat medium and to efficiently advance the gasification reaction.

したがって、本発明においては、スメクタイト粘土等の極めて入手しやすくしかも安価な粘土成分(必要に応じて前処理したもの)をガス化促進剤として用い、しかもこれを再生ゾーンにおいて連続的に再生しつつガス化反応を行うことができる。この方法によれば、ガス化促進剤の一部を比較的高い交換率で連続的に入れ替え、かつ、分解反応によってガス化促進剤上に沈着する炭素分を再生ゾーンにおいて除去することによって、ガス化促進剤の触媒活性を保持しつつ効率的に接触分解反応を行わせることができる。   Therefore, in the present invention, an extremely easily available and inexpensive clay component such as smectite clay (pretreated if necessary) is used as a gasification accelerator, and this is continuously regenerated in the regeneration zone. A gasification reaction can be performed. According to this method, a part of the gasification accelerator is continuously replaced at a relatively high exchange rate, and the carbon component deposited on the gasification accelerator by the decomposition reaction is removed in the regeneration zone, The catalytic cracking reaction can be carried out efficiently while maintaining the catalytic activity of the oxidization accelerator.

本発明においては、ガス化反応ゾーン(ガス化炉)と再生ゾーン(再生塔)の間を、上述したような触媒機能/熱媒体機能を持つガス化促進剤を循環させながらバイオマスをガス化するに際して、ガス化促進剤の循環量は、触媒/バイオマス比が適正になるように決定される。一方、このガス化促進剤は熱媒体機能も併せ持っていることから、ガス化反応ゾーンと再生ゾーンにおける熱収支がつりあうように、その循環量が設定されなければならない。この二つの要求が合致するように再生ゾーンの適正温度を決めることができる。すなわち、触媒/バイオマス比の適正値から決められた循環量において、装置の熱収支がつりあうように再生ゾーンの温度条件が決められるのである。   In the present invention, biomass is gasified while circulating the gasification accelerator having the catalytic function / heat medium function as described above between the gasification reaction zone (gasification furnace) and the regeneration zone (regeneration tower). At this time, the circulation amount of the gasification accelerator is determined so that the catalyst / biomass ratio is appropriate. On the other hand, since this gasification accelerator also has a heat medium function, the amount of circulation must be set so that the heat balance between the gasification reaction zone and the regeneration zone is balanced. The appropriate temperature of the regeneration zone can be determined so that these two requirements are met. That is, the temperature condition of the regeneration zone is determined so that the heat balance of the apparatus is balanced in the circulation amount determined from the appropriate value of the catalyst / biomass ratio.

従来提案されているように、ガス化反応ゾーンと再生ゾーンとが分離されている装置を使用した場合においては、両者の伝熱はもっぱらガス化促進剤を媒体として行われるが、本発明のように伝熱速度の大きい壁を介して両者が隣接している場合、ガス化促進剤以外に隔壁を通した伝熱が行われるため、ガス化促進剤が担う伝熱量が格段に少なくなる。これにより、触媒/バイオマス比の要求から決められる一定の循環速度においては、再生ゾーン(再生塔)の温度をより低く設定することができる。これにより、装置材料にかかる熱的負荷が減少し、より安価な素材を用いることも可能となる。あるいは、同一の素材を用いた場合、その耐久性を高めることができる。さらに、再生塔の温度を低めることは、装置からの熱損失の削減にもつながる。   As conventionally proposed, in the case of using an apparatus in which the gasification reaction zone and the regeneration zone are separated, the heat transfer of both is performed exclusively using the gasification accelerator as a medium. When the two are adjacent to each other through a wall having a large heat transfer rate, heat transfer through the partition walls is performed in addition to the gasification accelerator, so that the amount of heat transferred by the gasification accelerator is significantly reduced. Thereby, the temperature of the regeneration zone (regeneration tower) can be set lower at a constant circulation speed determined from the requirement of the catalyst / biomass ratio. As a result, the thermal load applied to the device material is reduced, and a cheaper material can be used. Or when the same raw material is used, the durability can be improved. Furthermore, lowering the temperature of the regeneration tower leads to reduction of heat loss from the apparatus.

また、植物灰などバイオマスに含まれる灰分は高温にさらされると溶融し、溶融物が低温部分で凝結固化したり、円滑な流動状態を妨げる場合があり、ガス化促進剤も高温では溶融して活性を失うことがあるが、再生塔の温度を低減することにより、それらの危険性を回避することができる。   In addition, the ash contained in biomass such as plant ash melts when exposed to high temperatures, and the melt may condense and solidify in the low-temperature part or prevent a smooth flow state. Gasification accelerators also melt at high temperatures. Although the activity may be lost, the danger can be avoided by reducing the temperature of the regeneration tower.

さらに、バイオマスを昇温条件下、スチームの存在下で触媒と接触させてガス化する方法においては、一般にガス化温度が高いほどガスの収率が大きくなる一方で炭素分等の副生物の収率が小さくなり、逆にガス化温度が低いほど、ガスの収率は小さくなり、副生物の収率が大きくなる。ある適正なガス化炉の温度において、ガス/副生物間の収率の分配と、再生塔における副生物の燃焼熱によるガス化炉への熱の供給がつりあう。その適正温度に比してガス化炉の温度が高すぎ、副生物の収率が低い場合、再生塔での副生物の燃焼によって発生する熱が少なく、再生塔内の温度が下がって、ガス化炉に伝わる熱が小さくなり、ガス化炉の温度が下がる。一方、適正な温度に比してガス化炉の温度が低すぎる場合、副生物の収率が多くなり、再生塔における副生物の燃焼熱が大きくなって再生塔内の温度が上がり、ガス化炉への伝熱速度が大きくなって、ガス化炉内の温度が上がる。このフィードバック機構により、ガス化炉の温度は、自動的に適正な点に調整されていく傾向にある。ところが、ガス化炉と再生塔が分離された装置では、この自動調整機構を発揮するための再生塔からガス化炉への熱伝達はもっぱらガス化促進剤の循環によって行われるため、フィードバックに時間を要し、ガス化温度が高すぎて炭素分の収率が低く、再生塔の温度が下がっていった場合、それにともないガス化反応炉の温度も下がっていくが、その温度が最適点に達しても、そのフィードバックの遅れからさらに温度が下がり続ける。逆に、ガス化温度が低すぎる場合、炭素分の生成が多いため再生塔の温度が上がり、それによってガス化炉の温度も上がっていくが、ガス化炉の温度が適正となった後も、そのフィードバックに時間がかかるため、ガス化炉の温度はさらに上昇を続ける。そのように、このガス化方法は温度が自動的に最適点に調整されていく機構が備わっているのにかかわらず、温度は最適点をはさんで変動が生じる傾向にある。ところが、本発明のように、ガス化炉と再生塔を熱伝導性にすぐれた隔壁を介して隣接させた場合、再生塔における燃焼熱の変化による再生塔内の温度変化は、ガス化促進剤の循環を待つことなく、隔壁を通して迅速にガス化炉に伝わるため、前記のフィードバックの遅れが解消され、装置の自動温度調整機構を高め、温度条件の変動の少ない、安定した運転を行うことが可能となる。   Furthermore, in the method of gasifying biomass by bringing it into contact with a catalyst in the presence of steam in a temperature-raising condition, generally the higher the gasification temperature, the higher the gas yield, while the collection of by-products such as carbon. The lower the rate and the lower the gasification temperature, the smaller the yield of gas and the greater the yield of by-products. At a certain gasifier temperature, there is a balance between the gas / byproduct yield distribution and the supply of heat to the gasifier by the combustion heat of the byproduct in the regeneration tower. When the temperature of the gasifier is too high compared to the appropriate temperature and the yield of by-products is low, the heat generated by the combustion of by-products in the regeneration tower is low, the temperature in the regeneration tower decreases, and the gas The heat transferred to the gasifier decreases, and the temperature of the gasifier decreases. On the other hand, if the temperature of the gasifier is too low compared to the appropriate temperature, the yield of by-products will increase, the combustion heat of by-products in the regeneration tower will increase, the temperature in the regeneration tower will rise, and gasification will occur. The heat transfer rate to the furnace increases and the temperature in the gasifier increases. By this feedback mechanism, the temperature of the gasifier tends to be automatically adjusted to an appropriate point. However, in an apparatus in which the gasification furnace and the regeneration tower are separated, heat transfer from the regeneration tower to the gasification furnace for demonstrating this automatic adjustment mechanism is performed exclusively by the circulation of the gasification accelerator. If the gasification temperature is too high, the carbon yield is low, and the temperature of the regeneration tower is lowered, the temperature of the gasification reactor will be lowered accordingly. Even if it reaches the temperature, the temperature continues to fall further due to the delay in the feedback. Conversely, if the gasification temperature is too low, the regeneration tower temperature rises due to the large amount of carbon produced, and the gasification furnace temperature also rises, but even after the gasification furnace temperature has become appropriate. Since the feedback takes time, the temperature of the gasifier continues to rise further. As such, the gasification method has a mechanism in which the temperature is automatically adjusted to the optimum point, but the temperature tends to fluctuate between the optimum points. However, when the gasification furnace and the regeneration tower are adjacent to each other through a partition wall having excellent thermal conductivity as in the present invention, the temperature change in the regeneration tower due to the change in combustion heat in the regeneration tower is a gasification accelerator. Without waiting for the circulation of the gas, it is quickly transmitted to the gasification furnace through the partition wall, so that the delay of the feedback is eliminated, the automatic temperature control mechanism of the apparatus is enhanced, and the stable operation with less fluctuation of the temperature condition can be performed. It becomes possible.

ここで、従来提案されている技術においては部分酸化の実施のために酸素を供給する場合、空気からの酸素の分離精製が必要となり、一方、空気を供給する場合は、メタノール合成用のガスが窒素で希釈されてしまう問題がある。ところが本発明の方法によれば、燃焼用には空気を用いるため、酸素を分離する必要がなく、かつその空気は再生塔に供給され、排ガスは反応槽からの生成ガスとは別系統の流れとして排出されるため、生成ガスが窒素で希釈される問題もない。   Here, in the conventionally proposed technique, when oxygen is supplied for performing the partial oxidation, separation and purification of oxygen from air is required. On the other hand, when air is supplied, a gas for methanol synthesis is used. There is a problem of being diluted with nitrogen. However, according to the method of the present invention, since air is used for combustion, it is not necessary to separate oxygen, the air is supplied to the regeneration tower, and the exhaust gas flows in a separate system from the product gas from the reaction tank. Therefore, there is no problem that the product gas is diluted with nitrogen.

また、本発明の他の好ましい態様においては、上記再生ゾーンにおける発生熱および/または廃棄熱の少なくとも一部を回収し、これを有効利用する工程を含んでいてもよい。このようにして回収された熱は、バイオマス原料の乾燥や加熱、ガス化剤としての水蒸気の生成等に有効利用することができる。   Moreover, in another preferable aspect of the present invention, a step of recovering at least a part of the generated heat and / or waste heat in the regeneration zone and effectively using the recovered heat may be included. The heat recovered in this way can be effectively used for drying and heating of biomass raw materials, generation of water vapor as a gasifying agent, and the like.

このように本発明においては、固体の微粉化されたガス化促進剤を効果的に流動接触させることによって、第一に気相に遊離したバイオマスの高分子や熱分解生成物をすみやかに分解することができる点で効果的であるが、そればかりではなく、バイオマスとガス化促進剤との接触による熱伝導やガス化促進剤からの輻射によって、反応に必要なエネルギーをバイオマスに伝える伝熱媒体としてもこのガス化促進剤は重要な作用を奏するものと推定される。さらに、比較的低温で運転を行う場合には、副生する炭素分を触媒表面に吸着し再生塔で吸着された副生物チャーが燃焼するにともなって発生する熱を、反応ゾーンに伝達してバイオマスを加熱する働きもある。このようなガス化促進剤の多面的な働きによって、ガス化反応プロセスの熱収支が画期的に改善され、温和な温度・圧力条件の下での効率的なメタノール合成用ガスの製造が可能となる。   As described above, in the present invention, by effectively fluidly contacting the solid pulverized gasification accelerator, firstly, the polymer and the pyrolysis product of biomass released to the gas phase are promptly decomposed. It is effective in that it can be used, but it is not only that, but also a heat transfer medium that conveys the energy required for the reaction to the biomass by heat conduction from the contact between the biomass and the gasification accelerator and radiation from the gasification accelerator. However, this gasification accelerator is presumed to have an important effect. Furthermore, when operating at a relatively low temperature, the carbon generated as a by-product is adsorbed on the catalyst surface, and the heat generated as the by-product char adsorbed in the regeneration tower burns is transferred to the reaction zone. There is also a function to heat biomass. The multifaceted action of such gasification accelerators dramatically improves the heat balance of the gasification reaction process, enabling efficient production of methanol synthesis gas under mild temperature and pressure conditions. It becomes.

本発明は、上記のような方法によって得られた有用原料ガスからメタノール等の液体燃料を製造する方法を包含する。具体的には、上記工程によって得られる生成ガスを、必要に応じてシフト反応装置で成分の調整を行い、二酸化炭素除去装置で二酸化炭素を除去した後、メタノール合成装置において触媒反応によりメタノールを合成することができる。したがって、得られた生成ガスから気体燃料またはメタノールを合成する方法は公知の手段により適宜実施することができる。   The present invention includes a method for producing a liquid fuel such as methanol from the useful raw material gas obtained by the method as described above. Specifically, after adjusting the components of the product gas obtained in the above process with a shift reactor if necessary, carbon dioxide is removed with a carbon dioxide removal device, and then methanol is synthesized by a catalytic reaction in a methanol synthesis device. can do. Therefore, a method for synthesizing gaseous fuel or methanol from the obtained product gas can be appropriately carried out by known means.

また、本発明においては、使用するガス化促進剤が粘土からなるので、反応後に廃棄される廃触媒(粘土)と灰の混合物をそのまま土壌に還元して、土壌改良剤として有効利用することも可能である。特に、バイオマスを採取し続けることによって土壌が次第に肥沃度/生産性を低下させることが懸念される場合にこのような土壌改良剤の利用は有用である。このような廃棄物の土壌改良剤としての利用は、酸性土壌の改良、土壌へのミネラル成分の補給において好ましく、また、還元する土壌の性状によっては粘土の養分吸着力や保水性の改良によって土壌自体の生産性を高めることも可能である。   In the present invention, since the gasification accelerator to be used is made of clay, a mixture of waste catalyst (clay) and ash discarded after the reaction can be directly reduced to the soil and effectively used as a soil conditioner. Is possible. In particular, the use of such soil conditioners is useful when there is a concern that the soil will gradually reduce fertility / productivity by continuing to collect biomass. Use of such waste as a soil conditioner is preferable for improving acidic soil and supplying mineral components to the soil, and depending on the properties of the soil to be reduced, the soil can be improved by improving the nutrient adsorption and water retention capacity of clay. It is also possible to increase the productivity of itself.

さらにまた、本発明は、上記のガス化方法の実施によって得られた有用ガスをそのまま気体燃料として使用することも可能である。   Furthermore, in the present invention, the useful gas obtained by carrying out the above gasification method can be used as a gaseous fuel as it is.

直径1.1m、高さ2.5mの円筒状のステンレス製容器を、ステンレス製の隔壁で半分に仕切って二つの半円筒状容器とし、それぞれをガス化炉、再生塔として用いて、バイオマスのガス化を行った。円筒の外側は断熱材で被覆した。流動媒体として酸処理したカオリン系粘土(粒径100〜300μm)を用い、ガス化炉と再生塔の間を循環させた。ガス化炉にバイオマスを投入し、粘土触媒の存在下、スチームによりガス化した。炭素質の副生物を吸着した粘土触媒を再生塔に循環し、再生塔には空気を吹き込んで、吸着副生物を燃焼除去して粘土触媒を再生し、再生された粘土触媒を再びガス化炉に循環させた。装置全体の熱収支を保つため、再生塔にも若干のバイオマスを燃料として投入した。その結果、表1に示すように、高発熱量のガスが得られた。再生塔の温度は、ガス化炉と再生塔が分離されている場合はガス化炉の温度に対して150〜200℃高い温度を必要とするのに対して、ガス化炉と再生塔を隣接させ、両者の隔壁を熱伝達性の高いものとすることによって、ガス化炉より75℃高い温度にまで低減できた。また、ガス化炉と再生塔が分離されている場合、両者の温度が周期的に変動し、調整がしにくいのに対して、本発明の方法では、それらの温度の変動が微小にとどまり、安定的な運転が可能となった。

Figure 2006291134
A cylindrical stainless steel container having a diameter of 1.1 m and a height of 2.5 m is divided into two semicylindrical containers by dividing them in half with a stainless steel partition wall, and each of them is used as a gasification furnace and a regeneration tower. Gasification was performed. The outside of the cylinder was covered with a heat insulating material. An acid-treated kaolin clay (particle size: 100 to 300 μm) was used as the fluid medium and circulated between the gasifier and the regeneration tower. Biomass was charged into the gasifier and gasified with steam in the presence of a clay catalyst. The clay catalyst adsorbing the carbonaceous by-product is circulated to the regeneration tower, air is blown into the regeneration tower, the adsorption by-product is burned and removed to regenerate the clay catalyst, and the regenerated clay catalyst is gasified again. It was circulated to. In order to maintain the heat balance of the entire system, some biomass was also injected into the regeneration tower as fuel. As a result, as shown in Table 1, a gas with a high calorific value was obtained. The temperature of the regeneration tower needs to be 150 to 200 ° C. higher than the temperature of the gasification furnace when the gasification furnace and the regeneration tower are separated, whereas the gasification furnace and the regeneration tower are adjacent to each other. By making both the partition walls have high heat transfer properties, the temperature could be reduced to 75 ° C. higher than that of the gasifier. In addition, when the gasification furnace and the regeneration tower are separated, the temperature of both fluctuates periodically and is difficult to adjust, whereas in the method of the present invention, the fluctuation of those temperatures remains minute, Stable operation became possible.
Figure 2006291134

本発明によるバイオマスのガス化方法を実施するための装置の基本的構成を示す断面図。Sectional drawing which shows the basic composition of the apparatus for enforcing the gasification method of biomass by this invention.

符号の説明Explanation of symbols

1 ガス化反応ゾーン
2 再生ゾーン
3 隔壁
4 サイクロン
1 Gasification Reaction Zone 2 Regeneration Zone 3 Bulkhead 4 Cyclone

Claims (5)

ガス化反応ゾーンと再生ゾーンを備え、両者の間を触媒機能および/または熱媒体機能を有するガス化促進剤を循環させ、ガス化反応ゾーンにバイオマスを含む有機物を投入してガス化剤とガス化促進剤の存在下でガス化させ、炭素分などの吸着副生物が表面に沈着したガス化促進剤を再生ゾーンに導いて、前記再生ゾーンにおいてガス化促進剤に付着した吸着副生物を燃焼により、または部分燃焼と炭素質ガス化反応により除去し、このようにして再生された加熱状態のガス化促進剤を前記ガス化反応ゾーンに再循環させる工程を含むバイオマスのガス化方法であって、
前記ガス化反応ゾーンと再生ゾーンとを、熱伝導性を有する隔壁を介して隣接させ、前記再生ゾーンからガス化反応ゾーンへの放射、伝導ならびに対流による熱の移動が前記隔壁を介して行われるようにし、これによりこのような熱の移動がない場合と比べて再生ゾーンの温度を低減させるとともに、ガス化のための装置の自動温度調整機能を高めるようにしたことを特徴とする、バイオマスのガス化方法。
A gasification reaction zone and a regeneration zone are provided, a gasification accelerator having a catalytic function and / or a heat medium function is circulated between the two, and an organic substance containing biomass is introduced into the gasification reaction zone to provide a gasifying agent and a gas. Gasification is carried out in the presence of a gasification accelerator, and the gasification accelerator with adsorption by-products such as carbon deposited on the surface is introduced into the regeneration zone, and the adsorption by-product attached to the gasification accelerator is burned in the regeneration zone. Or a method of biomass gasification comprising a step of recycling the gasification accelerator in a heated state, which is removed by partial combustion and carbonaceous gasification reaction, and regenerated in this manner, to the gasification reaction zone. ,
The gasification reaction zone and the regeneration zone are adjacent to each other via a partition wall having thermal conductivity, and heat transfer by radiation, conduction, and convection from the regeneration zone to the gasification reaction zone is performed via the partition wall. Thus, the temperature of the regeneration zone is reduced as compared with the case where there is no such heat transfer, and the automatic temperature control function of the apparatus for gasification is enhanced. Gasification method.
前記ガス化反応ゾーンおよび再生ゾーンにおける温度条件が、ガス化反応ゾーンにおいて400℃〜800℃、好ましくは400℃〜750℃、より好ましくは450℃〜600℃であり、再生ゾーンにおいては、ガス化反応ゾーンより25℃〜300℃高い温度、好ましくは25℃〜200℃高い温度、より好ましくは25℃〜150℃高い温度範囲の、比較的温和な条件からなる、請求項1に記載の方法。   The temperature conditions in the gasification reaction zone and the regeneration zone are 400 ° C. to 800 ° C., preferably 400 ° C. to 750 ° C., more preferably 450 ° C. to 600 ° C. in the gasification reaction zone. The process according to claim 1, comprising relatively mild conditions in the temperature range of 25 ° C to 300 ° C higher than the reaction zone, preferably 25 ° C to 200 ° C higher, more preferably 25 ° C to 150 ° C higher. 前記ガス化における前記ガス化促進剤が、スメクタイト粘土、バーミキュライト粘土、カオリン-蛇紋石粘土、緑泥石粘土およびこれらの混合物からなる群から選ばれた少なくとも1種を含んでなる、請求項1に記載の方法。   The gasification accelerator in the gasification comprises at least one selected from the group consisting of smectite clay, vermiculite clay, kaolin-serpentine clay, chlorite clay, and mixtures thereof. the method of. 前記ガス化におけるガス化剤が、水蒸気を含む、請求項1に記載の方法。   The method according to claim 1, wherein the gasifying agent in the gasification includes water vapor. 前記ガス化反応ゾーンの流動層部分の水平方向断面の周長に対して、ガス化反応ゾーンと再生ゾーンを隔てる壁の長さが、20%以上、好ましくは30%以上、さらに好ましくは40%以上を占める、請求項1に記載の方法。   The wall length separating the gasification reaction zone and the regeneration zone is 20% or more, preferably 30% or more, more preferably 40%, with respect to the circumferential length of the horizontal section of the fluidized bed portion of the gasification reaction zone. 2. The method according to claim 1 occupying the above.
JP2005117101A 2005-04-14 2005-04-14 Biomass gasification method Expired - Fee Related JP4549918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117101A JP4549918B2 (en) 2005-04-14 2005-04-14 Biomass gasification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117101A JP4549918B2 (en) 2005-04-14 2005-04-14 Biomass gasification method

Publications (2)

Publication Number Publication Date
JP2006291134A true JP2006291134A (en) 2006-10-26
JP4549918B2 JP4549918B2 (en) 2010-09-22

Family

ID=37412050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117101A Expired - Fee Related JP4549918B2 (en) 2005-04-14 2005-04-14 Biomass gasification method

Country Status (1)

Country Link
JP (1) JP4549918B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040886A (en) * 2007-08-09 2009-02-26 Ihi Corp Gasification method and gasification system
KR101717724B1 (en) * 2016-09-06 2017-04-05 주식회사 한울엔지니어링 Thermochemical transformation systems by circulation of heat carrier and methods thereby
WO2017154679A1 (en) * 2016-03-07 2017-09-14 特定非営利活動法人 Apex Method and device for separating solids from fluidized layer
KR101781729B1 (en) * 2016-01-29 2017-09-25 주식회사 이엠이노베이션 Thermochemical transformation systems by circulation of heat carrier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025168A (en) * 2001-07-12 2003-01-29 Kitamura Mach Co Ltd Machine provided with pneumatic pressure utilizing equipment
JP2003041268A (en) * 2001-07-31 2003-02-13 Hitoshi Inoue Method for gasifying biomass
JP2004168872A (en) * 2002-11-19 2004-06-17 Plantec Inc System and method for modifying gasified solid fuel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025168A (en) * 2001-07-12 2003-01-29 Kitamura Mach Co Ltd Machine provided with pneumatic pressure utilizing equipment
JP2003041268A (en) * 2001-07-31 2003-02-13 Hitoshi Inoue Method for gasifying biomass
JP2004168872A (en) * 2002-11-19 2004-06-17 Plantec Inc System and method for modifying gasified solid fuel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040886A (en) * 2007-08-09 2009-02-26 Ihi Corp Gasification method and gasification system
KR101781729B1 (en) * 2016-01-29 2017-09-25 주식회사 이엠이노베이션 Thermochemical transformation systems by circulation of heat carrier
WO2017154679A1 (en) * 2016-03-07 2017-09-14 特定非営利活動法人 Apex Method and device for separating solids from fluidized layer
JPWO2017154679A1 (en) * 2016-03-07 2018-12-27 特定非営利活動法人 Apex Method and apparatus for separating solids from a fluidized bed
KR101717724B1 (en) * 2016-09-06 2017-04-05 주식회사 한울엔지니어링 Thermochemical transformation systems by circulation of heat carrier and methods thereby
WO2018048179A1 (en) * 2016-09-06 2018-03-15 주식회사 한울엔지니어링 Method and system for thermochemically converting combustible material by circulating thermal medium

Also Published As

Publication number Publication date
JP4549918B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP4259777B2 (en) Biomass gasification method
EP2350233B1 (en) Method and apparatus for producing liquid biofuel from solid biomass
JP5289055B2 (en) Gasification process and system with in-situ tar removal
JP5114412B2 (en) Separation type fluidized bed gasification method and gasification apparatus for solid fuel
WO2007004342A1 (en) Method of solid fuel gasification including gas purification and gasifier employing the method
JP5630626B2 (en) Organic raw material gasification apparatus and method
EP3083008B1 (en) Process and apparatus for cleaning raw product gas
JP5532207B2 (en) Circulating fluidized bed gasification reactor
JP4547244B2 (en) Organic gasifier
JP6304856B2 (en) Biomass gasification method using improved three-column circulating fluidized bed
JP5057466B2 (en) Method for generating combustible gas and gasification reactor therefor
CN108946661B (en) Method and system for preparing hydrogen through biomass gasification
JP4549918B2 (en) Biomass gasification method
EP3029016B1 (en) Method and system for acetylene (CH2) or ethylene (C2H4) production
JP2010501685A5 (en)
JP2014074144A (en) Co-gasification method of coal and biomass by three bed type circulation layer and its device
JP2009298967A (en) Gasification process and gasification apparatus
US11643609B2 (en) Process and a system for producing synthesis gas
US20130158298A1 (en) Production of alcohols having at least four carbon atoms from carbonaceous materials
US9738569B2 (en) Production of acrylic acid and ethanol from carbonaceous materials
JP2007023084A (en) Catalyst for biomass gasification
JP4041880B2 (en) Method for gasifying organic matter using porous inorganic particles
JP2009067979A (en) Gasification reactor for forming combustible gas
US9150488B2 (en) Production of acrylic acid and ethanol from carbonaceous materials
US11268031B1 (en) Direct biochar cooling methods and systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100707

R150 Certificate of patent or registration of utility model

Ref document number: 4549918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees