JP2006291048A - Surface-modified molded article of ultra-high-molecular-weight polyethylene and method for producing the same - Google Patents

Surface-modified molded article of ultra-high-molecular-weight polyethylene and method for producing the same Download PDF

Info

Publication number
JP2006291048A
JP2006291048A JP2005114097A JP2005114097A JP2006291048A JP 2006291048 A JP2006291048 A JP 2006291048A JP 2005114097 A JP2005114097 A JP 2005114097A JP 2005114097 A JP2005114097 A JP 2005114097A JP 2006291048 A JP2006291048 A JP 2006291048A
Authority
JP
Japan
Prior art keywords
ions
weight polyethylene
molecular weight
ultra
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005114097A
Other languages
Japanese (ja)
Other versions
JP4832785B2 (en
Inventor
Shohei Taniguchi
昌平 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Original Assignee
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government filed Critical Tokyo Metropolitan Government
Priority to JP2005114097A priority Critical patent/JP4832785B2/en
Publication of JP2006291048A publication Critical patent/JP2006291048A/en
Application granted granted Critical
Publication of JP4832785B2 publication Critical patent/JP4832785B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molded article of an ultra-high-molecular-weight polyethylene having improved friction resistance and abrasion resistance and a method for producing the article. <P>SOLUTION: The 1st invention comprises the bombardment of the surface of an ultra-high-molecular-weight polyethylene molded article with ions by an ion accelerator to carbonize the surface of the article to a depth of about 4μm and form a diamond-like carbon layer giving G band and D band by Raman spectroscopy and the 2nd invention comprises the ion bombardment with an ion accelerator at acceleration energy and ion exposure rate falling within respective specific ranges to obtain the surface-modified molded article of ultra-high-molecular-weight polyethylene. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表面改質された超高分子量ポリエチレン製成形品、およびその製造方法に関する。さらに詳しくは、超高分子量ポリエチレン製成形品に高エネルギーのイオンを照射することによって、成形品の表面から約4μmの深さまで表面改質された超高分子量ポリエチレン製成形品、およびその製造方法に関する。 The present invention relates to a surface-modified ultra-high molecular weight polyethylene molded article and a method for producing the same. More specifically, the present invention relates to an ultra-high molecular weight polyethylene molded product whose surface has been modified from the surface of the molded product to a depth of about 4 μm by irradiating the ultra-high molecular weight polyethylene molded product with high-energy ions, and a method for producing the same. .

超高分子量ポリエチレン製成形品は、人工関節の摺動部として使用されている。この人工関節の摺動部は、金属製またはセラミックス製のボールと、超高分子量ポリエチレン製のカップ(または臼)で構成されている。人工関節の寿命は、骨溶解や弛みが生じるため、一般に10年から20年程度である。これは、超高分子量ポリエチレン製のカップが使用中に摩耗し、摩耗によって生じる摩耗粉に対してマクロファージが増殖し、それによって破骨細胞を活性化させることが、骨溶解(骨吸収)を引き起こす原因の一つであると解されているからである。人工関節の寿命を向上させるためには、超高分子量ポリエチレン製のカップの摩擦係数を低下させ、耐摩耗性を向上させることが必要と考えられている。 Ultra high molecular weight polyethylene molded products are used as sliding parts for artificial joints. The sliding portion of the artificial joint is composed of a metal or ceramic ball and an ultrahigh molecular weight polyethylene cup (or mortar). The life of an artificial joint is generally about 10 to 20 years because osteolysis and loosening occur. This is because the cup made of ultra high molecular weight polyethylene wears during use, and macrophages proliferate against the abrasion powder generated by the wear, thereby activating osteoclasts, causing osteolysis (bone resorption) This is because it is understood as one of the causes. In order to improve the life of the artificial joint, it is considered necessary to reduce the friction coefficient of the cup made of ultrahigh molecular weight polyethylene and improve the wear resistance.

超高分子量ポリエチレン製成形品の耐摩耗性を向上させる方法として、(1)成形品の表面にダイヤモンドライクカーボン(以下、DLCと記載することがある。)薄膜をコーティングする方法(例えば、特許文献1参照)、(2)成形品の表面にガンマ線などの電磁波を照射して架橋させる方法(例えば、特許文献2、特許文献3参照)、(3)成形品の表面に加速したイオンを照射(注入)する方法(例えば、特許文献4参照)、などが一般的である。 As a method for improving the wear resistance of an ultra-high molecular weight polyethylene molded product, (1) a method of coating a diamond-like carbon (hereinafter sometimes referred to as DLC) thin film on the surface of the molded product (for example, patent literature) 1), (2) a method of irradiating the surface of the molded product with an electromagnetic wave such as gamma rays to crosslink (for example, see Patent Document 2 and Patent Document 3), and (3) irradiating the surface of the molded product with accelerated ions ( A method of injection) (see, for example, Patent Document 4).

しかしながら、上記(1)のコーティング法では、コーティング薄膜の厚さ分だけ寸法が変化するために、人工関節などを含め精密加工が必要な製品においては、コーティング薄膜による寸法変化を勘案して製品の設計、加工を行わなければならない。さらに、コーティング薄膜と基板との密着性が最大の課題であり、薄膜が剥離する恐れが大きいコーティング法は、体内に埋め込む人工関節としての使用には適さない。また、コーティング法では、成形品とコーティング薄膜との密着性を向上させる目的で、あらかじめアンダーコート層(下塗り層)を設ける必要があり、作業工程数が増えて繁雑となる。 However, in the coating method (1), the dimensions change by the thickness of the coating thin film. For products that require precision machining, including artificial joints, the dimensional change caused by the coating thin film is taken into account. It must be designed and processed. Furthermore, the most important issue is the adhesion between the coating thin film and the substrate, and the coating method in which the thin film is likely to peel off is not suitable for use as an artificial joint to be implanted in the body. In the coating method, it is necessary to provide an undercoat layer (undercoat layer) in advance for the purpose of improving the adhesion between the molded product and the coating thin film, which increases the number of work steps and is complicated.

上記(2)のガンマ線照射法(電磁波照射法)は、超高分子量ポリエチレン製成形品表面を架橋させ、耐摩耗性を向上させる技術である。しかし、この方法では耐摩耗性の向上に限界があり、さらなる向上が望まれている。また、この方法によるときは、電磁波照射後に加熱処理を必要とし、作業が煩雑であるという欠点がある。上記(3)の成形品表面に加速したイオンを照射する方法は、樹脂成形品表面にDLC層を形成する方法である。提案されている方法は、加速エネルギーが数10keV〜100keVと低水準であるので、成形品表面からのイオン侵入(到達)深さが0.1μm程度と浅く、改質層(DLC層)は0.1μm以下の厚さに過ぎない。改質層の厚さが0.1μm以下では薄過ぎるという欠点があり、また照射量を1017ions/cm以上にしないとDLC層が形成されない。一方、イオン照射量を1017ions/cm以上としてDLC層を形成しようとすると処理時間が長くなり、多量の加速したイオンを照射(注入)すると、成形品の内部応力が高まり、成形品の変形や破壊の原因となり、成形品表面に粗れが生じるなどの不都合が起こる。
特開2005−2377号公報 特開2004−27237号公報 特開平9−122222号公報 特開2000−182284号公報
The gamma ray irradiation method (electromagnetic wave irradiation method) of (2) above is a technique for improving the wear resistance by crosslinking the surface of a molded article made of ultrahigh molecular weight polyethylene. However, this method has a limit in improving wear resistance, and further improvement is desired. Moreover, when this method is used, there is a drawback that heat treatment is required after irradiation with electromagnetic waves, and the operation is complicated. The method (3) of irradiating the surface of the molded product with accelerated ions is a method of forming a DLC layer on the surface of the resin molded product. In the proposed method, the acceleration energy is a low level of several tens keV to 100 keV, so that the ion penetration (arrival) depth from the surface of the molded article is as shallow as about 0.1 μm, and the modified layer (DLC layer) is 0. The thickness is only 1 μm or less. If the thickness of the modified layer is 0.1 μm or less, there is a disadvantage that the modified layer is too thin, and the DLC layer cannot be formed unless the irradiation dose is set to 10 17 ions / cm 2 or more. On the other hand, if the ion irradiation amount is set to 10 17 ions / cm 2 or more and the DLC layer is formed, the processing time becomes long. When a large amount of accelerated ions are irradiated (implanted), the internal stress of the molded product increases, This causes deformation and breakage, and causes inconveniences such as roughness on the surface of the molded product.
Japanese Patent Laying-Open No. 2005-2377 JP 2004-27237 A JP-A-9-122222 JP 2000-182284 A

本発明者は、かかる状況に鑑み、従来技術の欠点を排除した改良技術を提供すべく鋭意検討した結果、本発明を完成するに至ったものである。本発明の目的は、次のとおりである。
1.超高分子量ポリエチレン製成形品の表面から約4μmの深さまで表面改質され、低摩擦化および耐摩耗性を大幅に向上させた超高分子量ポリエチレン製成形品を提供すること。
2.超高分子量ポリエチレン製成形品表面から、約4μmの深さまで表面改質された成形品の製造方法を提供すること。
In view of this situation, the present inventor has intensively studied to provide an improved technique that eliminates the disadvantages of the prior art, and as a result, has completed the present invention. The object of the present invention is as follows.
1. To provide an ultra-high-molecular-weight polyethylene molded product that is surface-modified from the surface of the ultra-high-molecular-weight polyethylene molded product to a depth of about 4 μm and has greatly reduced friction and wear resistance.
2. To provide a method for producing a molded product whose surface has been modified from the surface of a molded product made of ultrahigh molecular weight polyethylene to a depth of about 4 μm.

上記課題を解決するために、第一発明では、超高分子量ポリエチレン製成形品の表面に、イオン加速器によってイオンを照射して、超高分子量ポリエチレン成形品の表面から約4μmの深さまで炭化され、ラマン分光スペクトルにおいてGバンドおよびDバンドが認められる、ダイヤモンドライクカーボン層が形成されてなることを特徴とする、表面改質された超高分子量ポリエチレン製成形品を提供する。 In order to solve the above problems, in the first invention, the surface of the ultra-high molecular weight polyethylene molded product is irradiated with ions by an ion accelerator, and carbonized from the surface of the ultra-high molecular weight polyethylene molded product to a depth of about 4 μm, Provided is a surface-modified ultra-high molecular weight polyethylene molded article characterized in that a diamond-like carbon layer having a G band and a D band in a Raman spectroscopic spectrum is formed.

さらに第二発明では、超高分子量ポリエチレン製成形品の表面に、イオン加速器によって、イオンの加速エネルギーを3MeV〜5MeV、イオン照射量を5×1014ions/cm〜1×1015ions/cmの条件でイオンを照射し、超高分子量ポリエチレン成形品の表面から約4μmの深さまで炭化させ、ラマン分光スペクトルにおいてGバンドおよびDバンドが認められる、ダイヤモンドライクカーボン層を形成することを特徴とする、表面改質された超高分子量ポリエチレン製成形品の製造方法を提供する。 In the second invention, the ion acceleration energy is set to 3 MeV to 5 MeV and the ion irradiation amount is set to 5 × 10 14 ions / cm 2 to 1 × 10 15 ions / cm on the surface of the ultra-high molecular weight polyethylene molded product by an ion accelerator. It is characterized in that it is irradiated with ions under the condition 2 and carbonized from the surface of the ultra-high molecular weight polyethylene molded product to a depth of about 4 μm to form a diamond-like carbon layer in which G band and D band are recognized in the Raman spectrum. And a method for producing a surface-modified ultra-high molecular weight polyethylene molded article.

本発明は、以下に詳細に説明するとおりであり、次のような特別に有利な効果を奏し、その産業上の利用価値は極めて大である。
1.本発明に係る表面が改質された超高分子量ポリエチレン製成形品は、表面の低摩擦化(低摩擦係数)が達成され、かつ成形品表面の耐摩耗性を大幅に向上する。
2.本発明に係る表面が改質された超高分子量ポリエチレン製成形品は、成形品の表面から約4μmの深さまで改質されているので、DLCコーティング法のように、改質された層が剥離する恐れがないし、寸法変化などを勘案することなしに製品の設計が可能であり、後加工も不要である。
3.本発明に係る表面が改質された超高分子量ポリエチレン製成形品の製造方法によれば、一工程で成形品の表面から約4μmの深さまで改質できる。
4.本発明に係る表面が改質された超高分子量ポリエチレン製成形品の製造方法によれば、イオン加速器を用いて高加速エネルギーでイオンを照射するので、従来法に比較して約40倍の厚さの改質層を形成することができる。
5.本発明に係る表面が改質された超高分子量ポリエチレン製成形品の製造方法によれば、イオン加速器を用いて高加速エネルギーでイオンを照射するので、照射量は従来技術の100分の1程度にすることができる。
The present invention is as described in detail below, has the following particularly advantageous effects, and its industrial utility value is extremely great.
1. The ultra high molecular weight polyethylene molded article having a modified surface according to the present invention achieves low surface friction (low friction coefficient) and greatly improves the wear resistance of the molded article surface.
2. Since the ultra high molecular weight polyethylene molded product with a modified surface according to the present invention is modified to a depth of about 4 μm from the surface of the molded product, the modified layer is peeled off as in the DLC coating method. The product can be designed without taking into account the dimensional change, and no post-processing is required.
3. According to the method for producing an ultra-high molecular weight polyethylene molded product having a modified surface according to the present invention, it can be modified to a depth of about 4 μm from the surface of the molded product in one step.
4). According to the method for producing an ultra-high molecular weight polyethylene molded article having a modified surface according to the present invention, ions are irradiated with high acceleration energy using an ion accelerator, so that the thickness is about 40 times that of the conventional method. A modified layer can be formed.
5. According to the method for producing a molded article of ultrahigh molecular weight polyethylene having a modified surface according to the present invention, ions are irradiated with high acceleration energy using an ion accelerator, so the irradiation amount is about 1/100 of that of the prior art. Can be.

以下、本発明を詳細に説明する。
本発明において超高分子量ポリエチレン(以下、UHMWPEと記載することがある。)とは、チ−グラー法重合技術により製造され、その平均分子量が粘度法で100万〜500万のものをいう。UHMWPEは、一般の高密度ポリエチレン(HDPE)の分子量2万〜20万に比べてきわめて大きく、HDPEやほかのエンジニアリングプラスチックスに比べて、特に耐摩耗性、耐衝撃性、自己潤滑性および耐薬品性などが優れている。このような分子量を有する超高分子量ポリエチレンは、旭化成株式会社(商品名:ハイモラー)、三井化学株式会社(商品名:ハイゼックス・ミリオン)、ドイツ・ヘキスト社(商品名:HOSTALENGUR)、アメリカ・ハーキュレス社(HIFAX1000)の四社から販売されている。UHMWPEは、粘度平均分子量が350万〜450万のものが好ましい。
Hereinafter, the present invention will be described in detail.
In the present invention, ultra high molecular weight polyethylene (hereinafter sometimes referred to as UHMWPE) refers to those produced by Ziegler polymerization technique and having an average molecular weight of 1,000,000 to 5,000,000 by viscosity method. UHMWPE is extremely large compared to the molecular weight of 20,000 to 200,000 of general high-density polyethylene (HDPE), and especially wear resistance, impact resistance, self-lubrication and chemical resistance compared to HDPE and other engineering plastics. Excellent in properties. Ultra high molecular weight polyethylene having such a molecular weight is available from Asahi Kasei Corporation (product name: Hymorer), Mitsui Chemicals Co., Ltd. (product name: Hi-Zex Million), German Hoechst (product name: HOSTALENGUR), American Hercules Corporation (HIFAX1000) is sold by four companies. UHMWPE preferably has a viscosity average molecular weight of 3.5 to 4.5 million.

本発明において成形品とは、平板、棒、箱、管、レンズ、リング、カップ(臼)、椀、球、歯車、人工関節(肩関節、肘関節、手根関節、指関節、股関節、膝関節、足関節など)などをいう。これら成形品は、押出成形法、射出成形法、圧縮成形法などによって製造することができる。 In the present invention, the molded product refers to a flat plate, a rod, a box, a tube, a lens, a ring, a cup (mortar), a heel, a ball, a gear, an artificial joint (shoulder joint, elbow joint, wrist joint, finger joint, hip joint, knee). Joint, ankle joint, etc.). These molded products can be manufactured by an extrusion molding method, an injection molding method, a compression molding method, or the like.

本発明に係る方法では、UHMWPE製成形品を、イオン加速器によって表面改質処理する。イオン加速器は、UHMWPE製成形品に照射するイオンの照射速度を加速して、イオンがUHMWPE製成形品の表面から深い位置に侵入(到達)させるように機能する。この目的で使用できるイオン加速器としては、後記する図1に示したような、セシウムスパッタ型イオン源、タンデム型加速管を用いるイオン加速器が挙げられる。 In the method according to the present invention, a UHMWPE molded product is subjected to surface modification treatment by an ion accelerator. The ion accelerator functions to accelerate the irradiation speed of the ions irradiated to the UHMWPE molded article so that the ions penetrate (arrive) deep from the surface of the UHMWPE molded article. Examples of the ion accelerator that can be used for this purpose include an ion accelerator using a cesium sputter ion source and a tandem accelerator tube as shown in FIG.

上記イオン加速器によってUHMWPE製成形品の表面改質処理する際に、イオンの加速エネルギーは、3MeV〜5MeVの範囲で選ぶのが好ましい。イオンの加速エネルギーが3MeV未満であると、イオンの成形品表面からの侵入(到達)深さが浅く、UHMWPE製成形品の耐摩耗性が改良されず、加速エネルギーが5MeVを超えると、照射中に成形品表面が溶融する恐れがあり、いずれも好ましくない。   When the surface modification of the UHMWPE molded product is performed by the ion accelerator, the ion acceleration energy is preferably selected in the range of 3 MeV to 5 MeV. If the ion acceleration energy is less than 3 MeV, the ion penetration depth from the molded product surface is shallow, the wear resistance of the UHMWPE molded product is not improved, and if the acceleration energy exceeds 5 MeV, irradiation is in progress. In addition, the surface of the molded product may be melted, which is not preferable.

イオンの種類としては、例えば、シリコン、カーボン、窒素、金などのイオンが挙げられる。一般に、原子番号の低い元素のイオンが、成形品に照射した際に成形品表面から深く侵入(到達)し易く、厚いDLC層を形成し易い。中でも、人体に無害で、成形品表面から深く侵入し易いシリコンイオンが好ましい。 Examples of types of ions include ions of silicon, carbon, nitrogen, gold, and the like. In general, ions of an element having a low atomic number easily penetrate (arrive) deeply from the surface of the molded article when the molded article is irradiated, and a thick DLC layer is easily formed. Among these, silicon ions that are harmless to the human body and easily penetrate deeply from the surface of the molded product are preferable.

上記イオン加速器によってUHMWPE製成形品の表面改質処理する際には、イオンの加速エネルギーを上記範囲で選び、イオン照射量は、5×1014ions/cm〜1×1015ions/cmの範囲で選ぶのが好ましい。イオン照射量が5×1014ions/cm未満であると、イオン照射量が不足しDLC層が形成されず、1×1015ions/cmを超えると成形品表面の耐摩耗性改良効果が飽和し、イオン照射量を高くする意味がなくなるからである。 When the surface modification treatment of the UHMWPE molded product is performed by the ion accelerator, the ion acceleration energy is selected within the above range, and the ion irradiation amount is 5 × 10 14 ions / cm 2 to 1 × 10 15 ions / cm 2. It is preferable to select within the range. When the ion irradiation amount is less than 5 × 10 14 ions / cm 2 , the ion irradiation amount is insufficient and the DLC layer is not formed. When the ion irradiation amount exceeds 1 × 10 15 ions / cm 2 , the effect of improving the wear resistance of the surface of the molded product This is because there is no point in increasing the ion irradiation amount.

UHMWPE製成形品の表面改質処理する際に、イオンの加速エネルギーを上記範囲で選び、イオン照射量を上記範囲で選ぶことによって、UHMWPE製成形品表面につきラマン分光スペクトルを測定した際に、GバンドおよびDバンドを有する層の形成が観察される(後記する図2参照)。Gバンドは、グラファイト構造のカーボンに起因する波長1550cm−1付近のバンドであり、Dバンドは、アモルファス構造のカーボンに起因する波長1350cm−1付近のバンドである。これらGバンドおよびDバンドが観察されると、成形品の表面にDLC層が形成されているといえる。イオンの加速エネルギーを上記範囲で選び、イオン照射量を上記範囲で選ぶことによって、UHMWPE製成形品の表面に約4μmの深さまで炭化させ、DLC層を形成させることができる。 When the surface modification treatment of the UHMWPE molded product is performed, the acceleration spectrum of ions is selected within the above range, and the ion irradiation amount is selected within the above range. Formation of a layer having a band and a D band is observed (see FIG. 2 described later). The G band is a band near a wavelength of 1550 cm −1 due to carbon having a graphite structure, and the D band is a band near a wavelength of 1350 cm −1 due to carbon having an amorphous structure. When these G band and D band are observed, it can be said that a DLC layer is formed on the surface of the molded product. By selecting the acceleration energy of ions within the above range and the ion irradiation amount within the above range, the surface of the molded article made of UHMWPE can be carbonized to a depth of about 4 μm to form a DLC layer.

次に、本発明に係る方法に従い、UHMWPE製成形品の表面を改質する方法の概略を説明する。図1は、本発明に係る表面改質された成形品を製造する際に使用されるイオン加速器の一例の概略図である。イオン加速器1は、セシウムスパッタ型イオン源2、引き出し電極3、質量分離用電磁石4、タンデム型加速管5、エネルギー分離用電磁石6、走査電極7、中性・イオン分離用電極8、照射室9、基板10から構成される。 Next, an outline of a method for modifying the surface of a UHMWPE molded article according to the method of the present invention will be described. FIG. 1 is a schematic view of an example of an ion accelerator used in manufacturing a surface-modified molded article according to the present invention. The ion accelerator 1 includes a cesium sputtering ion source 2, an extraction electrode 3, a mass separation electromagnet 4, a tandem acceleration tube 5, an energy separation electromagnet 6, a scanning electrode 7, a neutral / ion separation electrode 8, and an irradiation chamber 9. , Composed of the substrate 10.

図1において、セシウムスパッタ型イオン源2により生成されるイオンは、マイナスイオンであり、イオン源2としては、シリコンイオンを発生させこれを成形品表面に照射する場合は、シリコン粉末を用いる。図1において、矢印はイオンの移送(輸送、進行)方向である。マイナスイオンは、引き出し電極により約20keVの加速エネルギーで、質量分離用電磁石4に導かれる。導かれたマイナスイオンの中には、照射するマイナスイオンの外に他のイオンも存在するので、質量分離用電磁石4により、照射するマイナスイオンの1価イオンのみを、質量および加速エネルギーにより分離し、タンデム型加速管5へ移送される。 In FIG. 1, ions generated by the cesium sputter ion source 2 are negative ions. As the ion source 2, silicon powder is used when silicon ions are generated and irradiated on the surface of a molded product. In FIG. 1, the arrow indicates the direction of ion transport (transportation, travel). The negative ions are guided to the mass separation electromagnet 4 by the extraction electrode with an acceleration energy of about 20 keV. Among the introduced negative ions, there are other ions in addition to the negative ions to be irradiated. Therefore, only the monovalent ions of the negative ions to be irradiated are separated by the mass and the acceleration energy by the mass separation electromagnet 4. , And transferred to the tandem type acceleration tube 5.

タンデム型加速管5の中央部がプラスの電極とされており、マイナスイオンは中央部へ加速される。中央部で印加できる電圧は、0.5MV〜1.7MVの範囲である。中央部では、微量の窒素ガスが流されており、そこに1価のマイナスイオンが到着すると、窒素ガスとの反応により、プラスイオンに変換される。タンデム型加速管5の末端部の電位はグラウンドであるので、プラスイオンに変換されたイオンは、さらに加速されタンデム型加速管5の末端方向に移送される。プラスイオンは、1価、2価イオンなど種々の価数のイオンが存在し、それぞれ加速エネルギーが異なるので、エネルギー分離用電磁石6により、単一加速エネルギーに分離され、走査電極7により、照射面積に対し、均一のビーム強度になるように走査され、照射室9に設置された基板10に照射される。 The central part of the tandem type acceleration tube 5 is a positive electrode, and negative ions are accelerated to the central part. The voltage that can be applied at the center is in the range of 0.5 MV to 1.7 MV. A small amount of nitrogen gas flows in the center, and when monovalent negative ions arrive there, they are converted into positive ions by reaction with nitrogen gas. Since the potential at the end of the tandem accelerator tube 5 is ground, the ions converted into positive ions are further accelerated and transferred toward the end of the tandem accelerator tube 5. The positive ions include ions having various valences such as monovalent and divalent ions, and each has different acceleration energy. Therefore, the positive ions are separated into single acceleration energy by the energy separation electromagnet 6 and irradiated by the scanning electrode 7. On the other hand, the substrate 10 is scanned so as to have a uniform beam intensity, and is irradiated onto the substrate 10 installed in the irradiation chamber 9.

タンデム型加速管5から走査電極7の間で中性化した原子は、中性・イオン分離用電極8により分離され、基板10には単一加速エネルギーのプラスイオンのみが照射される。プラスイオンに付加される加速エネルギーは、2価のプラスイオンの場合、マイナスイオン側で0.5〜1.7MeV、プラスイオン側で1.0〜3.4MeVであるので、合計すると1.5MeV〜5.1MeVである。 The atoms neutralized between the tandem type acceleration tube 5 and the scanning electrode 7 are separated by the neutral / ion separation electrode 8, and the substrate 10 is irradiated only with positive ions having a single acceleration energy. The acceleration energy added to the positive ions is 0.5 to 1.7 MeV on the negative ion side and 1.0 to 3.4 MeV on the negative ion side in the case of the divalent positive ion, so that the total is 1.5 MeV. -5.1 MeV.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はその趣旨を超えない限り、以下の記載例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to the following description examples, unless the meaning is exceeded.

UHMWPE(旭化成社製、商品名:ハイモラーEX1300W、粘度平均分子量が350万〜450万の範囲のもの)から、直径30mm、厚さ3mmの大きさの円板を、押出成形法で製造した丸棒から切削加工法で調製した。この円板表面を、直径が1μmのダイヤモンド粒によって研磨し、照射室9の基板10部分に配置する直前にエタノールによって超音波洗浄し、図1に示したイオン加速器の基板10部分に配置した。イオン加速器によって照射するイオンの種類は、シリコンとした。実施例でシリコンイオンを選んだ理由は、セシウムスパッタ型イオン源2を使うにあたり、マイナスイオンとして生成量が多い元素であること、かつ、生体に悪影響を及ぼさない元素であることなどによる。加速エネルギーは、1.5MeVおよび3.0MeVの2つの水準とし、照射量は5×1013〜1×1015ions/cmの範囲で変更させる条件として、円板にイオン照射した。 A round bar made of UHMWPE (made by Asahi Kasei Co., Ltd., trade name: Hi-Molar EX1300W, having a viscosity average molecular weight in the range of 3.5 million to 4.5 million) with a diameter of 30 mm and a thickness of 3 mm by extrusion molding And prepared by a cutting method. The disk surface was polished with diamond grains having a diameter of 1 μm, and ultrasonically cleaned with ethanol immediately before being placed on the substrate 10 portion of the irradiation chamber 9, and placed on the substrate 10 portion of the ion accelerator shown in FIG. The type of ions irradiated by the ion accelerator was silicon. The reason why silicon ions are selected in the embodiment is that, when using the cesium sputter ion source 2, it is an element that generates a large amount as negative ions and an element that does not adversely affect the living body. The acceleration energy was set to two levels of 1.5 MeV and 3.0 MeV, and the irradiation amount was changed within a range of 5 × 10 13 to 1 × 10 15 ions / cm 2 .

図2は、UHMWPE製円板に、シリコンイオンを加速エネルギー3.0MeV、照射量を1×1015ions/cmとして照射したあと、円板表面につきラマン分光法によって撮ったスペクトルの一例である。ラマン分光法によるスペクトルには、グラファイト構造のカーボンに起因する波長1550cm−1付近のGバンド、および、アモルファス構造のカーボンに起因する波長1350cm−1付近のDバンドが認められ、円板表面にDLC層が形成されたことが確認された。 FIG. 2 is an example of a spectrum taken by Raman spectroscopy on a disk surface after irradiating a UHMWPE disk with silicon ions at an acceleration energy of 3.0 MeV and an irradiation amount of 1 × 10 15 ions / cm 2. . In the spectrum by Raman spectroscopy, a G band near a wavelength of 1550 cm −1 due to carbon having a graphite structure and a D band near a wavelength of 1350 cm −1 due to carbon having an amorphous structure are recognized, and DLC is observed on the disk surface. It was confirmed that a layer was formed.

図3ないし図5は、UHMWPE製円板に、シリコンイオンを、加速エネルギーを3.0MeV、照射量を1×1015ions/cmとして照射したあと、円板表面につき、表面から深さ方向への元素分布を、2次イオン質量分析法によって測定した結果の一例である。図3は炭素原子の元素分布、図4は水素原子の元素分布、図5はシリコン原子の元素分布を示した。これら図3ないし図5から、シリコンイオンはUHMWPE製円板の表面から約3μmから約4μmの深さの間に侵入(到達)し、侵入濃度ピークの深さ位置は約3.8μmである(図5参照)。シリコンイオンが進入した深さ(約3.8μm)よりも表面側では、水素原子の強度が低いことから(図4参照)、シリコンイオンが侵入した領域では、イオンの加速エネルギーによって、水素原子と炭素原子の化学結合が切断されて水素原子が外部に放出され、その結果、水素原子が減少し炭素原子が多く存在する領域で、再結合する際にDLC層が形成されたと推測される(図3参照)。また、改質層の厚さは、加速エネルギー3.0MeVのシリコンイオンを照射した場合には、約4μmであることが明らかである(図5参照)。 3 to 5 show that a UHMWPE disk is irradiated with silicon ions at an acceleration energy of 3.0 MeV and an irradiation amount of 1 × 10 15 ions / cm 2 , and then the disk surface is in the depth direction from the surface. It is an example of the result of having measured the element distribution to to by secondary ion mass spectrometry. 3 shows the element distribution of carbon atoms, FIG. 4 shows the element distribution of hydrogen atoms, and FIG. 5 shows the element distribution of silicon atoms. From FIG. 3 to FIG. 5, silicon ions penetrate (arrive) from the surface of the UHMWPE disk to a depth of about 3 μm to about 4 μm, and the depth position of the penetration concentration peak is about 3.8 μm ( (See FIG. 5). Since the strength of hydrogen atoms is lower on the surface side than the depth at which silicon ions have entered (about 3.8 μm) (see FIG. 4), in the region where silicon ions have entered, The chemical bonds of carbon atoms are broken and hydrogen atoms are released to the outside. As a result, it is presumed that a DLC layer is formed when recombining in a region where the number of hydrogen atoms decreases and carbon atoms exist (see FIG. 3). Further, it is apparent that the thickness of the modified layer is about 4 μm when irradiated with silicon ions having an acceleration energy of 3.0 MeV (see FIG. 5).

図6および図7は、UHMWPE製円板について、ボール・オン・ディスク試験機により、摩擦係数を測定した際の結果を示すグラフである。ボール・オン・ディスク試験では、直径6mmのアルミナボールを使用し、摩擦直径を10mm、回転速度を毎秒1回転、押し付け荷重を10Nの条件下で、空気中、無潤滑状態で測定を行ったものである。試験中は、1秒間隔で摩擦力を測定し、制御用コンピュータにより、摩擦係数への変換およびメモリへの保存を行うことができる。 6 and 7 are graphs showing the results of measuring the friction coefficient of a UHMWPE disk using a ball-on-disk tester. In the ball-on-disk test, an alumina ball having a diameter of 6 mm was used, the friction diameter was 10 mm, the rotation speed was 1 rotation per second, and the pressing load was 10 N. The measurement was performed in air and in an unlubricated state. It is. During the test, the friction force is measured at intervals of 1 second, and can be converted into a coefficient of friction and stored in a memory by a control computer.

図6は、未照射のUHMWPE製円板に、シリコンイオンを、加速エネルギーを一定の1.5MeVとし、照射量を5×1013〜1×1015ions/cmの条件で照射して表面改質処理したあと、ボール・オン・ディスク試験機により、UHMWPE製円板について摩擦係数と摩擦回転数の関係を示すグラフである。図7は、未照射のUHMWPE製円板に、シリコンイオンを、加速エネルギーを一定の3.0MeVとし、照射量を5×1013〜1×1015ions/cmの条件で照射して表面改質処理したあと、ボール・オン・ディスク試験機により、UHMWPE製円板についての摩擦係数と摩擦回転数の関係を示すグラフである。 FIG. 6 shows a surface of an unirradiated UHMWPE disk irradiated with silicon ions under a condition where the acceleration energy is constant 1.5 MeV and the irradiation amount is 5 × 10 13 to 1 × 10 15 ions / cm 2. It is a graph which shows the relationship between a friction coefficient and a friction rotation speed about a disk made from UHMWPE by a ball-on-disk test machine after a modification process. FIG. 7 shows an unirradiated UHMWPE disk irradiated with silicon ions at a constant acceleration energy of 3.0 MeV and an irradiation amount of 5 × 10 13 to 1 × 10 15 ions / cm 2. It is a graph which shows the relationship between the friction coefficient about a UHMWPE disc, and a friction rotation speed by a ball-on-disk test machine after a modification process.

図6および図7より、次のことが明らかとなる。
1.未照射のUHMWPE製円板に、シリコンイオンを、加速エネルギーを1.5MeVの一定とし、照射量を5×1013ions/cm、1×1014ions/cmの2水準として照射しても、円板表面の摩擦係数は低下しない(図6参照)。
2.未照射のUHMWPE製円板に、シリコンイオンを、加速エネルギーを3.0MeVの一定とし、照射量を5×1013ions/cm、1×1014ions/cmの2水準として照射しても、円板表面の摩擦係数は低下しない(図7参照)。
3.未照射のUHMWPE製円板に、シリコンイオンを、加速エネルギーを1.5MeVの一定とし、照射量を5×1014ions/cm、1×1015ions/cmの2水準として照射すると、円板表面の摩擦係数は低下する(図6参照)。
4.未照射のUHMWPE製円板に、シリコンイオンの加速エネルギーを3.0MeVと一定とし、照射量を5×1014ions/cm、1×1015ions/cmの2水準として照射すると、円板表面の摩擦係数は大幅に低下する(図7参照)。
5.未照射のUHMWPE製円板に、シリコンイオンを照射する際の加速エネルギーは、3.0MeVとした方が円板表面の低摩擦化が顕著であり、かつ、この低摩擦化の状態が持続する(図6および図7参照)。
6.以上から、UHMWPE製円板の低摩擦化を図るには、加速エネルギーは3.0MeV以上が好適であり、イオンの照射量は5×1014ions/cm〜1×1015ions/cmの範囲が好適であることが明らかである。
6 and 7 reveal the following.
1. An unirradiated UHMWPE disk is irradiated with silicon ions at a constant acceleration energy of 1.5 MeV and an irradiation dose of 2 levels of 5 × 10 13 ions / cm 2 and 1 × 10 14 ions / cm 2. However, the friction coefficient of the disk surface does not decrease (see FIG. 6).
2. An unirradiated UHMWPE disk is irradiated with silicon ions at a constant acceleration energy of 3.0 MeV and an irradiation dose of 2 levels of 5 × 10 13 ions / cm 2 and 1 × 10 14 ions / cm 2. However, the friction coefficient of the disk surface does not decrease (see FIG. 7).
3. When an unirradiated UHMWPE disk is irradiated with silicon ions at a constant acceleration energy of 1.5 MeV and an irradiation dose of 5 × 10 14 ions / cm 2 and 1 × 10 15 ions / cm 2 , The friction coefficient of the disk surface decreases (see FIG. 6).
4). When a non-irradiated UHMWPE disc is irradiated with a constant acceleration energy of silicon ions of 3.0 MeV and an irradiation amount of 2 × 10 14 ions / cm 2 and 1 × 10 15 ions / cm 2 , The friction coefficient of the plate surface is greatly reduced (see FIG. 7).
5. When the irradiation energy of silicon ions is applied to an unirradiated UHMWPE disk, 3.0 MeV is more conspicuous in reducing the friction of the disk surface, and this reduced friction state is maintained. (See FIGS. 6 and 7).
6). From the above, in order to reduce the friction of the UHMWPE disk, the acceleration energy is preferably 3.0 MeV or more, and the ion irradiation amount is 5 × 10 14 ions / cm 2 to 1 × 10 15 ions / cm 2. It is clear that the range of is preferred.

次に、上記した試験法とは別の方法で、本発明に係るUHMWPE製円板品表面の耐摩耗性を評価した。上記した試験と同様にして調製したUHMWPE製円板に、シリコンイオンを、加速エネルギーを3.0MeV、イオン照射量を5×1014ions/cmおよび1×1015ions/cmとして照射した。この円板に、上記のボール・オン・ディスク試験機を使用し、上記した試験条件で20万回転摩擦した。このあと、円板上の摩耗痕の形状を、触針式表面粗さ計により測定し、摩耗体積を算出した結果を、表−1に示した。なお、摩耗痕の形状は台形であると仮定し、それぞれの上幅、下幅および深さを測定値し、体積を算出した。 Next, the wear resistance of the surface of the UHMWPE disk product according to the present invention was evaluated by a method different from the test method described above. UHMWPE discs prepared in the same manner as described above were irradiated with silicon ions at an acceleration energy of 3.0 MeV and ion irradiation doses of 5 × 10 14 ions / cm 2 and 1 × 10 15 ions / cm 2 . . The disc was rubbed at 200,000 revolutions under the test conditions described above using the above ball-on-disk tester. Then, the shape of the wear mark on the disk was measured with a stylus type surface roughness meter, and the results of calculating the wear volume are shown in Table 1. In addition, assuming that the shape of the wear scar was a trapezoid, the upper width, the lower width, and the depth of each were measured, and the volume was calculated.

Figure 2006291048
Figure 2006291048

表−1より、次のことが明らかとなる。
1.未照射超高分子量ポリエチレン製円板よりも、5×1014ions/cmおよび1×1015ions/cmの条件でイオン照射したものが、摩耗粉の体積が小さく、耐摩耗性が改良されている。
2.イオン照射量を大きくしたものが、成形品表面の耐摩耗性は一層向上している。
From Table 1, the following becomes clear.
1. Compared to unirradiated ultra high molecular weight polyethylene discs, those irradiated with ions under the conditions of 5 × 10 14 ions / cm 2 and 1 × 10 15 ions / cm 2 have a smaller wear powder volume and improved wear resistance. Has been.
2. When the ion irradiation amount is increased, the wear resistance of the surface of the molded product is further improved.

本発明に係る表面が改質された超高分子量ポリエチレン製成形品としては、低摩耗化(低摩擦係数)、耐摩耗性などが要求される人工関節、工業用部品、工業用製品などが挙げられる。中でも、肩関節、肘関節、手根関節、指関節、股関節、膝関節、足関節などの人工関節が好適である。 Examples of the ultra-high molecular weight polyethylene molded product having a modified surface according to the present invention include artificial joints, industrial parts, industrial products, etc. that require low wear (low friction coefficient), wear resistance, and the like. It is done. Among them, artificial joints such as shoulder joints, elbow joints, carpal joints, finger joints, hip joints, knee joints, and foot joints are suitable.

本発明の表面改質法に用いられるイオン加速器の一例の概略図である。It is the schematic of an example of the ion accelerator used for the surface modification method of this invention. 表面改質処理された超高分子量ポリエチレン製円板についてのラマンスペクトルの一例である。It is an example of the Raman spectrum about the ultra high molecular weight polyethylene disk by which the surface modification process was carried out. 表面改質処理された超高分子量ポリエチレン製円板につき、2次イオン質量分析法により、炭素の深さ方向分布を測定した結果の一例である。It is an example of the result of having measured the depth direction distribution of carbon by the secondary ion mass spectrometry about the ultra high molecular weight polyethylene disk by which the surface modification process was carried out. 2次イオン質量分析法により、水素の深さ方向分布を測定した結果の一例である。It is an example of the result of having measured the depth direction distribution of hydrogen by the secondary ion mass spectrometry. 2次イオン質量分析法により、シリコンの深さ方向分布を測定した結果の一例である。It is an example of the result of having measured the depth direction distribution of silicon by secondary ion mass spectrometry. 加速エネルギー1.5MeVと一定とし、照射量を5×1013〜1×1015ions/cmと変えて表面改質処理した超高分子量ポリエチレン製円板の摩擦係数と摩擦回転数の関係図である。Relationship between friction coefficient and rotational speed of ultra high molecular weight polyethylene disk surface-modified with a constant acceleration energy of 1.5 MeV and an irradiation dose of 5 × 10 13 to 1 × 10 15 ions / cm 2 It is. 加速エネルギー3.0MeVと一定とし、照射量を5×1013〜1×1015ions/cmと変えて表面改質処理した超高分子量ポリエチレン製円板の摩擦係数と摩擦回転数の関係図である。Relationship between friction coefficient and rotational speed of ultra high molecular weight polyethylene disk surface-modified by changing the irradiation energy from 5 × 10 13 to 1 × 10 15 ions / cm 2 at a constant acceleration energy of 3.0 MeV. It is.

符号の説明Explanation of symbols

1:イオン加速器
2:セシウムスパッタ型イオン源
3:引き出し電極
4:質量分離用電磁石
5:タンデム型加速管
6:エネルギー分離用電磁石
7:走査電極
8:中性・イオン分離用電極
9:照射室
10:基板
1: ion accelerator 2: cesium sputter ion source 3: extraction electrode 4: electromagnet for mass separation 5: tandem acceleration tube 6: electromagnet for energy separation 7: scanning electrode 8: electrode for neutral / ion separation 9: irradiation chamber 10: Substrate

Claims (6)

超高分子量ポリエチレン製成形品の表面に、イオン加速器によってイオンを照射して、超高分子量ポリエチレン製成形品の表面から約4μmの深さまで炭化され、ラマン分光スペクトルにおいてGバンドおよびDバンドが認められる、ダイヤモンドライクカーボン層が形成されてなることを特徴とする、表面改質された超高分子量ポリエチレン製成形品。 The surface of the ultra high molecular weight polyethylene molded product is irradiated with ions by an ion accelerator to be carbonized to a depth of about 4 μm from the surface of the ultra high molecular weight polyethylene molded product, and G and D bands are observed in the Raman spectrum. A surface-modified ultra-high molecular weight polyethylene molded product characterized in that a diamond-like carbon layer is formed. 超高分子量ポリエチレンが、粘度平均分子量が350万〜450万のものである、請求項1に記載の表面改質された超高分子量ポリエチレン製成形品の製造方法。 The method for producing a surface-modified ultrahigh molecular weight polyethylene molded article according to claim 1, wherein the ultrahigh molecular weight polyethylene has a viscosity average molecular weight of 3.5 to 4.5 million. イオン加速器により照射される照射イオンが、シリコンイオンである、請求項1または請求項2に記載の表面改質された超高分子量ポリエチレン製成形品。 The surface-modified ultrahigh molecular weight polyethylene molded article according to claim 1 or 2, wherein the irradiation ions irradiated by the ion accelerator are silicon ions. イオンの加速エネルギーが、3MeV〜5MeVである、請求項1ないし請求項3のいずれか1項に表面改質された超高分子量ポリエチレン製成形品。 The ultrahigh molecular weight polyethylene molded article whose surface is modified according to any one of claims 1 to 3, wherein the acceleration energy of ions is 3 MeV to 5 MeV. イオンの照射量が、5×1014ions/cm〜1×1015ions/cmである、請求項1ないし請求項4のいずれか1項に表面改質された超高分子量ポリエチレン製成形品。 The ultra-high molecular weight polyethylene molding whose surface is modified according to any one of claims 1 to 4, wherein the ion irradiation amount is 5 x 10 14 ions / cm 2 to 1 x 10 15 ions / cm 2. Goods. 超高分子量ポリエチレン製成形品の表面に、イオン加速器によって、イオンの加速エネルギーを3MeV〜5MeV、イオン照射量を5×1014ions/cm〜1×1015ions/cmとの条件でイオンを照射し、超高分子量ポリエチレン製成形品の表面から約4μmの深さまで炭化させ、ラマン分光スペクトルにおいてGバンドおよびDバンドが認められる、ダイヤモンドライクカーボン層を形成することを特徴とする、表面改質された超高分子量ポリエチレン製成形品の製造方法。 On the surface of the ultra-high molecular weight polyethylene molded product, ions are accelerated by an ion accelerator under the conditions of an ion acceleration energy of 3 MeV to 5 MeV and an ion irradiation amount of 5 × 10 14 ions / cm 2 to 1 × 10 15 ions / cm 2. To form a diamond-like carbon layer in which the G band and D band are observed in the Raman spectroscopic spectrum, and carbonized to a depth of about 4 μm from the surface of the molded article made of ultrahigh molecular weight polyethylene. A method for producing a molded product of ultra-high molecular weight polyethylene.
JP2005114097A 2005-04-12 2005-04-12 Surface-modified ultra high molecular weight polyethylene molded article and method for producing the same Expired - Fee Related JP4832785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114097A JP4832785B2 (en) 2005-04-12 2005-04-12 Surface-modified ultra high molecular weight polyethylene molded article and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114097A JP4832785B2 (en) 2005-04-12 2005-04-12 Surface-modified ultra high molecular weight polyethylene molded article and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006291048A true JP2006291048A (en) 2006-10-26
JP4832785B2 JP4832785B2 (en) 2011-12-07

Family

ID=37411964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114097A Expired - Fee Related JP4832785B2 (en) 2005-04-12 2005-04-12 Surface-modified ultra high molecular weight polyethylene molded article and method for producing the same

Country Status (1)

Country Link
JP (1) JP4832785B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101651227B1 (en) * 2015-04-20 2016-08-25 다이텍연구원 Method Of Surface Modifing UHMWPE Fiber Using Oxident Agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284243A (en) * 1987-08-04 1989-11-15 Ion Tech Ltd Implant member for human body
JP2000021019A (en) * 1998-07-03 2000-01-21 Sony Corp Resin disk substrate for information carrier
JP2005002377A (en) * 2003-06-10 2005-01-06 Osaka Prefecture Method of depositing of diamond-like carbon film
JP2006000219A (en) * 2004-06-15 2006-01-05 Mizuho Co Ltd Implant for artificial joint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284243A (en) * 1987-08-04 1989-11-15 Ion Tech Ltd Implant member for human body
JP2000021019A (en) * 1998-07-03 2000-01-21 Sony Corp Resin disk substrate for information carrier
JP2005002377A (en) * 2003-06-10 2005-01-06 Osaka Prefecture Method of depositing of diamond-like carbon film
JP2006000219A (en) * 2004-06-15 2006-01-05 Mizuho Co Ltd Implant for artificial joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101651227B1 (en) * 2015-04-20 2016-08-25 다이텍연구원 Method Of Surface Modifing UHMWPE Fiber Using Oxident Agent

Also Published As

Publication number Publication date
JP4832785B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US5133757A (en) Ion implantation of plastic orthopaedic implants
Valenza et al. Characterization of ultra-high-molecular-weight polyethylene (UHMWPE) modified by ion implantation
Arifvianto et al. Effect of surface mechanical attrition treatment (SMAT) on microhardness, surface roughness and wettability of AISI 316L
Kusy et al. Frictional coefficients of ion-implanted alumina against ion-implanted beta-titanium in the low load, low velocity, single pass regime
EP2826983A1 (en) Combination of cylinder and piston ring
US6502442B2 (en) Method and apparatus for abrasive for abrasive fluid jet peening surface treatment
JP2001500192A (en) Surface layer structure that is wear-resistant to titanium or its alloy, withstands high mechanical loads, and has low friction, and a method of manufacturing the same
Pohrebniak et al. Structure and properties of multilayer nanostructured coatings TiN/MoN depending on deposition conditions
Li et al. Effect of nitrogen ion implantation dose on torsional fretting wear behavior of titanium and its alloy
KR101843606B1 (en) Surface treatment of a metal part by oblique shot peening
JP4832785B2 (en) Surface-modified ultra high molecular weight polyethylene molded article and method for producing the same
Kudryakov et al. DLC coatings for tribotechnical purposes: features of the structure and wear resistance
Beake et al. Improved nanomechanical test techniques for surface engineered materials
Kapczinski et al. Surface modification of titanium by plasma nitriding
Turos et al. The effects of ion bombardment of ultra-high molecular weight polyethylene
Gispert et al. Tribological behaviour of Cl-implanted TiN coatings for biomedical applications
Liu et al. Surface gradient CoCrMo alloy generated by carbon ion implantation with enhanced tribocorrosion resistance
JP4482379B2 (en) Implant for artificial joint and method for manufacturing the same
Cristóbal et al. Tribological behaviour of aluminium alloy AA7075 after ion implantation
WO2018174107A1 (en) Resin moulded body, and method for producing resin moulded body
CN105441872A (en) Amorphous carbon composite coating and preparation method and application thereof
JPWO2014104085A1 (en) Metal material in which surface layer is cured and surface layer curing method
JP2007277710A (en) Cobalt-chromium base alloy material and method for manufacturing the same
KR20120084844A (en) A method for preparing artificial joint materials and apparatus thereof
de Souza et al. Structural, chemical and tribo-mechanical surface features of Ti and nitrided Ti submitted to hydrogen low energy implantation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060720

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080307

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080411

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110921

R150 Certificate of patent or registration of utility model

Ref document number: 4832785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees