JP2006289407A - Facilities and method for cooling h-section steel - Google Patents

Facilities and method for cooling h-section steel Download PDF

Info

Publication number
JP2006289407A
JP2006289407A JP2005111568A JP2005111568A JP2006289407A JP 2006289407 A JP2006289407 A JP 2006289407A JP 2005111568 A JP2005111568 A JP 2005111568A JP 2005111568 A JP2005111568 A JP 2005111568A JP 2006289407 A JP2006289407 A JP 2006289407A
Authority
JP
Japan
Prior art keywords
cooling
divided
header
cooling water
lowermost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005111568A
Other languages
Japanese (ja)
Other versions
JP4760102B2 (en
Inventor
Takashi Kuroki
高志 黒木
Naoki Nakada
直樹 中田
Shinji Inamura
信二 稲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005111568A priority Critical patent/JP4760102B2/en
Publication of JP2006289407A publication Critical patent/JP2006289407A/en
Application granted granted Critical
Publication of JP4760102B2 publication Critical patent/JP4760102B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide facilities and a method for cooling H-section steel, by which facilities and method, the uniformity of cooling in the width direction of a flange can be further improved in the accelerated cooling of the H-section steel. <P>SOLUTION: A header 30 is partitioned into a plurality of divided headers 31, 32, 33 in the vertical direction. The jetted flow rate density (lowermost end jetted flow rate density) of cooling water at the lowermost end of a multi-hole nozzle 51 arranged on the lowermost stage is larger than the jetted flow rate density of cooling water at the uppermost end of the multi-hole nozzle 51 arranged on the divided header 31 of the lowermost stage or is larger than the jetted flow rate density (uppermost end jetted flow rate density) of cooling water at the uppermost end of the multi-hole nozzle 52 or 53 arranged on the divided header 32 or 33. Further, the lowermost end jetted flow rate density is 1.25 to 2.5 times as large as the uppermost end jetted flow rate density, and the jetted flow rate density is varied with the diameter or the density of the holes of the multi-hole nozzles 51, 52, 53. Further, the cooling water is supplied to the divided header 31 arranged within the range corresponding to the width of the flange of the H-section steel 1 to be cooled. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はH形鋼の冷却設備および冷却方法、特に、H形鋼のフランジ面の均一冷却を行うためのH形鋼の冷却設備および冷却方法に関するものである。   The present invention relates to a cooling equipment and a cooling method for H-section steel, and more particularly to a cooling equipment and a cooling method for H-section steel for uniformly cooling the flange surface of H-section steel.

従来より、H形鋼の製造は、熱間粗圧延および仕上圧延を行った後に、高温鋼材に冷却媒体として冷却水を供給する冷却を行う工程を有する。近年、H形鋼の強度に対する要求が高くなってきており、このため鋼に添加する合金成分の検討および加速冷却による材料組織の微細化が図られている。
この合金成分による対応は、低コスト化の要求に必ずしも合致するものではないため、仕上圧延後の冷却速度がたとえば5℃/秒以上の「加速冷却」を行うことによって組織を微細化し、合金成分に頼らない強度アップが図られている。
Conventionally, the manufacture of H-section steel has a step of performing cooling by supplying cooling water as a cooling medium to a high-temperature steel after hot rough rolling and finish rolling. In recent years, the demand for the strength of H-shaped steel has been increasing, and for this reason, examination of alloy components added to the steel and refinement of the material structure by accelerated cooling have been attempted.
Since the response by this alloy component does not necessarily meet the demand for cost reduction, the microstructure is refined by performing “accelerated cooling” with a cooling rate after finish rolling of, for example, 5 ° C./second or more. The strength is increased without relying on.

そして、加速冷却手段を均一に実行するため、たとえば、仕上圧延後の搬送ラインのサイドガイドに複数の冷却水の噴射口を設けると共に、サイドガイドのH形鋼のフランジ外面に対峙する面を、傾斜面、湾曲面または段差面にするものが開示されている(例えば、特許文献1)。
また、箱型に形成した水冷ヘッダを仕切り板によって上下方向で複数に仕切り、形鋼のフランジ上端縁に噴射する冷却水の噴射量を、最下面から噴射される冷却水の噴射量の80%以上にするものが開示されている(例えば、特許文献2参照)。
さらに、箱型に形成した冷却設備の冷却面側板に噴射孔を多段配列し(以下「多孔噴射冷却設備」と称する場合がある)、上段からの流下水の影響を考慮して各段のノズルの噴射水密度を設定するものがある(例えば、特許文献3参照)。
And in order to perform the accelerated cooling means uniformly, for example, while providing a plurality of cooling water injection ports on the side guide of the conveyance line after finish rolling, the surface facing the flange outer surface of the H-shaped steel of the side guide, What makes an inclined surface, a curved surface, or a level | step difference surface is disclosed (for example, patent document 1).
Moreover, the water cooling header formed in the box shape is divided into a plurality of parts in the vertical direction by the partition plate, and the injection amount of the cooling water injected to the upper edge of the flange of the shape steel is 80% of the injection amount of the cooling water injected from the lowermost surface. What is described above is disclosed (for example, see Patent Document 2).
Further, the injection holes are arranged in multiple stages on the cooling surface side plate of the cooling equipment formed in a box shape (hereinafter sometimes referred to as “porous injection cooling equipment”), and the nozzles of each stage are considered in consideration of the influence of the flowing water from the upper stage. There is one that sets the jet water density (see, for example, Patent Document 3).

特開2001−191107号公報(第3−4頁、図1)JP 2001-191107 A (page 3-4, FIG. 1) 特開2002−11514号公報(第5−6頁、図5)Japanese Patent Laid-Open No. 2002-11514 (page 5-6, FIG. 5) 特開平2−92413号公報(第3頁、図5)JP-A-2-92413 (page 3, FIG. 5)

しかしながら、特許文献1に開示された発明は、冷却水の噴射口とH形鋼のフランジ外面との距離を一定に保つことが可能なため冷却を安定して行え、H形鋼がサイドガイドに近接しても、フランジの下端部のみがサイドガイドに当接するだけであるから、所定の強度の保証と疵の防止とができるものであるが、近年の要求される製品強度のさらなる高度化に対応すべく、フランジ全体をさらに均一に冷やす技術が求められていた。   However, since the invention disclosed in Patent Document 1 can keep the distance between the cooling water injection port and the flange outer surface of the H-shaped steel constant, the cooling can be stably performed, and the H-shaped steel serves as a side guide. Even if they are close to each other, only the lower end of the flange is in contact with the side guide, so that it is possible to guarantee the specified strength and prevent wrinkles. In order to cope with this, a technique for cooling the entire flange more uniformly was required.

特許文献2に開示された発明は、フランジ下部に比べフランジ上部の噴射割合を増し、下部より上部の冷却噴射量を増加させることにより、上端側の冷却水の噴射を強めて、フランジの上下方向で均一に冷却するようにしたものであるところ、近年の要求される製品強度のさらなる高度化に対応すべく、フランジ全体をさらに均一に冷やす技術が求められていた。   The invention disclosed in Patent Document 2 increases the injection ratio of the upper part of the flange as compared to the lower part of the flange, and increases the cooling injection amount at the upper part from the lower part, thereby strengthening the injection of the cooling water on the upper end side and increasing the vertical direction of the flange. However, a technology for cooling the entire flange more uniformly has been demanded in order to cope with the further increase in product strength required in recent years.

また、特許文献3に開示された発明は、フランジ上部から落下してくる流下水が冷却を促進するため、フランジ下面に比べフランジ上部噴射割合を増し、フランジ下部における冷却噴射量よりフランジ上部における冷却噴射量を増加させるものであるが、フランジ幅方向(下部〜上部方向に同じ)の温度偏差を助長してしまい、さらなる製品の形状不良や強度不足等の原因となっていた。   Further, in the invention disclosed in Patent Document 3, since the flowing water falling from the upper part of the flange promotes cooling, the injection ratio of the upper part of the flange is increased compared to the lower face of the flange, and the cooling at the upper part of the flange is more than the cooling injection amount at the lower part of the flange. Although the injection amount is increased, the temperature deviation in the flange width direction (same in the lower to upper direction) is promoted, which causes further product shape defects and insufficient strength.

本発明は上記課題を解決するためのものであり、温度データの詳細な解析に基づく知見により、H形鋼の加速冷却においてフランジ幅方向の冷却の均一性がさらに高くなる、H形鋼の冷却設備および冷却方法を提供することを目的としている。   The present invention is for solving the above-mentioned problem, and the cooling based on the detailed analysis of the temperature data further improves the cooling uniformity in the flange width direction in the accelerated cooling of the H-shaped steel. It aims to provide equipment and cooling method.

(1)本発明のH形鋼の冷却設備は、多孔ノズルが設置されたヘッダに冷却水を供給して、前記多孔ノズルから冷却水を噴出してH形鋼のフランジを冷却するH形鋼の冷却設備であって、
前記ヘッダが上下方向で複数の分割ヘッダに仕切られ、
該複数の分割ヘッダのうち最下段の分割ヘッダに設置された多孔ノズルの最下端における冷却水の噴射流量密度が、最下段の分割ヘッダに設置された多孔ノズルの最上端における冷却水の噴射流量密度より、あるいは、最下段の分割ヘッダを除く分割ヘッダに設置された多孔ノズルの最上端における冷却水の噴射流量密度より、大きいことを特徴とする。
(1) The H-shaped steel cooling equipment of the present invention supplies cooling water to a header provided with a multi-hole nozzle, and jets the cooling water from the multi-hole nozzle to cool the flange of the H-section steel. Cooling equipment,
The header is partitioned into a plurality of divided headers in the vertical direction,
The cooling water injection flow density at the lowermost end of the porous nozzle installed in the lowermost divided header among the plurality of divided headers is equal to the cooling water injection flow rate at the uppermost end of the porous nozzle installed in the lowermost divided header. It is characterized by being larger than the density or the jet flow density of the cooling water at the uppermost end of the porous nozzle installed in the divided header excluding the lowermost divided header.

(2)また、前記複数の分割ヘッダのうち最下段の分割ヘッダに設置された多孔ノズルの最下端における冷却水の噴射流量密度が、最下段の分割ヘッダに設置された多孔ノズルの最上端における冷却水の噴射流量密度、あるいは、最下段の分割ヘッダを除く分割ヘッダに設置された多孔ノズルの最上端における冷却水の噴射流量密度の1.25〜2.5倍であることを特徴とする。   (2) Moreover, the injection flow density of the cooling water at the lowermost end of the porous nozzle installed in the lowermost divided header among the plurality of divided headers is the uppermost end of the porous nozzle installed in the lowermost divided header. It is 1.25 to 2.5 times the injection flow density of the cooling water or the injection flow density of the cooling water at the uppermost end of the porous nozzle installed in the divided header excluding the lowermost divided header. .

(3)また、前記噴射流量密度が多孔ノズルの孔径によって変更されることを特徴とする。   (3) Moreover, the said injection flow density is changed by the hole diameter of a perforated nozzle.

(4)また、前記噴射流量密度が多孔ノズルの孔密度によって変更されることを特徴とする。   (4) Moreover, the said injection flow density is changed by the hole density of a perforated nozzle.

(5)さらに、本発明のH形鋼の冷却方法は、多孔ノズルが設置されて複数の分割ヘッダに仕切られたヘッダの、被冷却H形鋼のフランジ幅に対応した範囲の分割ヘッダに冷却水を供給する工程と、
該冷却水が供給された分割ヘッダの多孔ノズルから冷却水を噴出してH形鋼のフランジを冷却する工程とを有し、
前記複数の分割ヘッダのうち最下段の分割ヘッダに設置された多孔ノズルの最下端における冷却水の噴射流量密度が、被冷却H形鋼のフランジ幅の上端に対応する分割ヘッダに設置された多孔ノズルの最上端における冷却水の噴射流量密度より、大きいことを特徴とする。
(5) Furthermore, the cooling method of the H-section steel of the present invention cools the divided header in a range corresponding to the flange width of the H-shaped steel to be cooled, in which the porous nozzle is installed and divided into a plurality of divided headers. Supplying water,
Cooling the H-shaped steel flange by ejecting cooling water from the porous nozzle of the divided header supplied with the cooling water,
The cooling water injection flow density at the lowermost end of the multi-hole nozzle installed in the lowermost divided header among the plurality of divided headers is a porous installed in the divided header corresponding to the upper end of the flange width of the H-shaped steel to be cooled. It is characterized by being larger than the injection flow density of the cooling water at the uppermost end of the nozzle.

(6)また、前記複数の分割ヘッダのうち最下段の分割ヘッダに設置された多孔ノズルの最下端における冷却水の噴射流量密度が、被冷却H形鋼のフランジ幅の上端に対応する分割ヘッダに設置された多孔ノズルの最上端における冷却水の噴射流量密度の1.25〜2.5倍であることを特徴とする。   (6) Moreover, the divided header corresponding to the upper end of the flange width of the H-shaped steel to be cooled, in which the cooling water injection flow density at the lowermost end of the perforated nozzle installed in the lowermost divided header among the plurality of divided headers It is characterized by being 1.25 to 2.5 times the jet flow density of the cooling water at the uppermost end of the multi-hole nozzle installed in the nozzle.

(7)また、前記噴射流量密度が多孔ノズルの孔径によって変更されることを特徴とする。   (7) Moreover, the said injection flow density is changed by the hole diameter of a perforated nozzle.

(8)また、前記噴射流量密度が多孔ノズルの孔密度によって変更されることを特徴とする。   (8) Further, the jet flow density is changed according to the hole density of the porous nozzle.

したがって、本発明に係るH形鋼の冷却設備および冷却方法は、複数の分割ヘッダのうち最下段の分割ヘッダに設置された多孔ノズルの最下端における冷却水の噴射流量密度が、被冷却H形鋼のフランジ幅の上端に対応する分割ヘッダに設置された多孔ノズルの最上端における冷却水の噴射流量密度より、大きいため、フランジ幅の下端に近い範囲が確実に冷却され、フランジ幅方向(下端〜上端方向に同じ)の冷却後の温度が均一になる。   Therefore, in the cooling equipment and cooling method for H-shaped steel according to the present invention, the injection flow density of the cooling water at the lowermost end of the multi-hole nozzle installed in the lowermost divided header among the plurality of divided headers is H-shaped to be cooled. Since the cooling water injection flow density at the uppermost end of the multi-hole nozzle installed on the split header corresponding to the upper end of the flange width of the steel is larger than the lower end of the flange width, the flange width direction (lower end) The temperature after cooling in the same direction in the upper end direction becomes uniform.

図1は本発明の実施形態に係るH形鋼の冷却設備が配置される圧延ラインを模式的に示す設備構成図である。
図1において、圧延ライン20は、H形鋼1を粗圧延する粗圧延機21と、粗圧延されたH形鋼1を仕上圧延する仕上圧延機22と、仕上圧延されたH形鋼1を冷却する冷却設備23と、冷却されたH形鋼1を所定の長さに分割する仕上圧延する熱間鋸断機25とを有している。冷却設備23において、H形鋼1のフランジ外面に冷却水が供給され、その後、H形鋼1のフランジ幅方向の温度分布が温度計24によって測定される。
FIG. 1 is an equipment configuration diagram schematically showing a rolling line in which an H-section steel cooling equipment according to an embodiment of the present invention is arranged.
In FIG. 1, a rolling line 20 includes a rough rolling machine 21 for roughly rolling an H-section steel 1, a finish rolling machine 22 for finish-rolling the roughly rolled H-section steel 1, and a finish-rolled H-section steel 1. It has a cooling facility 23 for cooling, and a hot sawing machine 25 for finish rolling to divide the cooled H-section steel 1 into a predetermined length. In the cooling facility 23, cooling water is supplied to the flange outer surface of the H-section steel 1, and then the temperature distribution in the flange width direction of the H-section steel 1 is measured by the thermometer 24.

図2は図1に示す冷却設備を説明する正面視の断面図である。
図2において、冷却設備23は、一対のヘッダ30(図2には左側のみ示す)と、ヘッダ30に冷却水を供給する冷却水供給手段(図示しない)と、冷却設備23を圧延ライン20の中心に向かって進退させる進退手段(図示しない)と、を有している。
ヘッダ30の内部は、仕切り41、42によって複数の分割ヘッダ31、32、33に分けられている。そして、分割ヘッダ31、32、33の圧延ライン20の中心側(H形鋼1のフランジに対峙する側に同じ)の面に、多孔ノズル51、52、53が設置されている。
なお、図2において、仕切りが2箇所に設置され、3室の分割ヘッダが例示されているが、本発明はこれに限定するものではなく、4室以上の分割ヘッダを設けてもよい。
FIG. 2 is a front sectional view for explaining the cooling equipment shown in FIG.
In FIG. 2, the cooling facility 23 includes a pair of headers 30 (shown only on the left side in FIG. 2), cooling water supply means (not shown) for supplying cooling water to the headers 30, and the cooling facility 23 of the rolling line 20. Advancing / retreating means (not shown) for advancing / retreating toward the center.
The inside of the header 30 is divided into a plurality of divided headers 31, 32 and 33 by partitions 41 and 42. And the perforated nozzles 51, 52, and 53 are installed in the surface of the division headers 31, 32, and 33 on the center side of the rolling line 20 (the same as the side facing the flange of the H-section steel 1).
In FIG. 2, the partition is installed at two locations and the three-room divided header is illustrated, but the present invention is not limited to this, and four or more divided headers may be provided.

したがって、図2に示すようにH形鋼1のフランジ10の外面には、ほぼ垂直に多孔噴流の冷却水を供給される。この多孔噴流による加速冷却により、H形鋼1のフランジ10の表面温度は640℃程度となり、これにより、H形鋼1の断面のフェライト組織は微細化され、強度アップが図られる。   Therefore, as shown in FIG. 2, the outer surface of the flange 10 of the H-section steel 1 is supplied with the cooling water of the perforated jet almost vertically. By this accelerated cooling by the perforated jet, the surface temperature of the flange 10 of the H-section steel 1 becomes about 640 ° C., whereby the ferrite structure of the cross section of the H-section steel 1 is refined and the strength is increased.

なお、加速冷却は、H形鋼1のフランジ幅(図2において上下方向の距離に同じ)に応じて使用する分割ヘッダ31、32、33の段数を決定することができる。たとえば、フランジ幅が小さい場合は、最下段の1つの分割ヘッダ31のみを用い、フランジ幅が大きい場合は、2つないし3つの分割ヘッダ31、32、33を使用することができる。   In addition, acceleration cooling can determine the number of stages of the divided headers 31, 32, 33 to be used according to the flange width of the H-section steel 1 (same as the vertical distance in FIG. 2). For example, when the flange width is small, only the lowermost one divided header 31 can be used, and when the flange width is large, two to three divided headers 31, 32, 33 can be used.

また、製造するH形鋼1のフランジ10の厚さおよび要求される強度目標と、H形鋼1の搬送速度に基づき、使用する冷却設備23の長さ(図1において左右方向の距離に同じ)を決定する。なお、ヘッダ30(多孔噴流装置に同じ)はテーブルローラー26上をスライドするボックス型である。   Further, based on the thickness of the flange 10 of the H-section steel 1 to be manufactured, the required strength target, and the conveyance speed of the H-section steel 1, the length of the cooling equipment 23 to be used (same as the distance in the left-right direction in FIG. 1). ). The header 30 (same as the multi-hole jet device) is a box type that slides on the table roller 26.

また、多孔ノズル51、52、53(以下まとめて「多孔ノズル50」と称する場合がある)は、それぞれH形鋼1のフランジ10の幅方向(図2において上下方向に同じ)で噴射流量密度が相違している。
(あ)たとえば、多孔ノズル50の孔径をフランジ幅方向で変化させ、噴射流量密度を大きくする場合は孔径を大きくし、噴射流量密度を小さくする場合は、孔径を小さくして流量を調整する。
(い)あるいは、多孔ノズル50の孔密度を変化させ、噴射流量密度を大きくする場合は、複数の孔が配置される間隔を短くし、噴射流量密度を小さくする場合は孔の配置される間隔を長くする。
(う)さらに、噴出流量を変化させる方法であり、噴射流量密度を大きくする場合は、ヘッダ30の圧延ライン20側の板厚を薄くしたり、あるいは孔の内面の面粗さを下げて(より平滑な面あるいは鏡面に近づける)圧損を少なくしたりする。反対に、噴射流量密度を小さくする場合はヘッダ30の圧延ライン20側の板厚を厚くしたり、孔の内面の面粗さを上げて(より粗い面あるいは凹凸のある面に近づける)圧損を大きくしたりする。
In addition, the multi-hole nozzles 51, 52, and 53 (hereinafter sometimes referred to collectively as the "multi-hole nozzle 50") are respectively injected flow density in the width direction of the flange 10 of the H-section steel 1 (the same in the vertical direction in FIG. 2). Is different.
(A) For example, when the hole diameter of the multi-hole nozzle 50 is changed in the flange width direction and the injection flow density is increased, the hole diameter is increased, and when the injection flow density is decreased, the hole diameter is decreased and the flow rate is adjusted.
(I) Alternatively, when the hole density of the multi-hole nozzle 50 is changed to increase the injection flow density, the interval between the plurality of holes is shortened, and when the injection flow density is reduced, the interval between the holes. Lengthen.
(C) Further, this is a method of changing the jet flow rate. When increasing the jet flow density, the thickness of the header 30 on the rolling line 20 side is reduced, or the surface roughness of the inner surface of the hole is reduced ( Reduce the pressure loss (to make it closer to a smoother surface or mirror surface). On the other hand, when the injection flow density is reduced, the thickness of the header 30 on the rolling line 20 side is increased, or the surface roughness of the inner surface of the hole is increased (closer to a rougher surface or an uneven surface). Or make it bigger.

次に、本発明の実施例を説明する。製造されるH形鋼の諸元を表1に、H形鋼の冷却条件を表2に、それぞれ示す。すなわち、H形鋼1a、1bは、フランジ幅方向温度分布をほぼ一定の800℃(仕上圧延温度に同じ)として仕上圧延を行った後、冷却設備23によってフランジ10が640℃(冷却終了温度に同じ)程度になるまで冷却を行った。
図3および図4は、それぞれ実施例における冷却水の噴射流量密度を示す模式図および冷却後の温度分布図である。なお、H形鋼1aでは最下段の1つの分割ヘッダ31のみを使用し、H形鋼1bでは2つの分割ヘッダ31、32を使用した。
Next, examples of the present invention will be described. Table 1 shows the specifications of the manufactured H-section steel, and Table 2 shows the cooling conditions for the H-section steel. That is, the H-shaped steels 1a and 1b are subjected to finish rolling with the temperature distribution in the flange width direction being almost constant 800 ° C. (same as the finish rolling temperature), and then the flange 10 is cooled to 640 ° C. It was cooled to the same level.
FIG. 3 and FIG. 4 are a schematic diagram showing a jet flow density of cooling water and a temperature distribution diagram after cooling in the examples, respectively. In the H-section steel 1a, only one divided header 31 at the bottom is used, and in the H-section steel 1b, two divided headers 31 and 32 are used.

Figure 2006289407
Figure 2006289407
Figure 2006289407
Figure 2006289407

図3において、フランジ10の幅方向の流量分布は、以下に調整されている。
(a)比較例1は、幅方向の全域でヘッダ30で流量分布が一定(図3の(a)参照)。
(b)比較例2(H形鋼1bのみ)は、最下段の分割ヘッダ31に比べ、冷却最上面の分割ヘッダ32の噴射流量密度が1.3倍となるよう流量制御されている(図3の(b)参照)。
In FIG. 3, the flow rate distribution in the width direction of the flange 10 is adjusted as follows.
(A) In Comparative Example 1, the flow rate distribution is constant in the header 30 throughout the width direction (see FIG. 3A).
(B) In Comparative Example 2 (only H-section steel 1b), the flow rate is controlled so that the injection flow density of the divided header 32 on the uppermost cooling surface is 1.3 times that of the divided header 31 on the lowermost stage (see FIG. 3 (b)).

(c)実施例1は、最下段の分割ヘッダ31の最下部の噴射流量密度が、H形鋼1aでは分割ヘッダ31の最上部に比べ1.3倍となるよう単調増加させ、H形鋼1bでは分割ヘッダ32の最上部に比べ1.3倍となるよう単調増加させている(図3の(c)参照)。
(d)実施例2は、最下段の分割ヘッダ31の最下部20mmの部分の噴射流量密度を、H形鋼1aでは分割ヘッダ31の最上部に比べ、H形鋼1bでは分割ヘッダ32の最上部に比べ1.3倍となるよう増加させている(図3の(d)参照)。
(C) In Example 1, the injection flow density at the bottom of the lowermost divided header 31 is monotonically increased in the H-section steel 1a to be 1.3 times that of the uppermost portion of the divided header 31, In 1b, it is monotonously increased to be 1.3 times that of the uppermost part of the divided header 32 (see FIG. 3C).
(D) In the second embodiment, the injection flow density of the lowermost 20 mm portion of the lowermost divided header 31 is higher than that of the uppermost portion of the divided header 31 in the H-section steel 1a, and the lowest of the divided header 32 in the H-section steel 1b. It is increased to 1.3 times that of the upper part (see FIG. 3D).

図4において、冷却後のフランジ10の幅方向の温度分布は、以下になっている。
(a)比較例1では、H形鋼1a、1bの水冷部において流下水の影響で、フランジの下部ほど冷却能力が低下し、フランジの下部にいくほど温度が上昇する温度分布となっている(図4の(a)参照)。このため、水冷部最下部の強度が十分ではなかったので、強化元素の添加を行い、コスト増を余儀なくされた。
In FIG. 4, the temperature distribution in the width direction of the flange 10 after cooling is as follows.
(A) In Comparative Example 1, due to the influence of flowing water in the water-cooled portions of the H-section steels 1a and 1b, the cooling capacity decreases as the flanges lower, and the temperature increases as the temperature decreases toward the flanges. (See FIG. 4A). For this reason, since the strength of the lowermost part of the water-cooled part was not sufficient, a strengthening element was added, and the cost was inevitably increased.

(b)比較例2では、H形鋼1bの水冷部において、流下水の影響とフランジ上部の噴射流量密度を増した影響で、さらにフランジの下部ほど冷却能力が低下し、水冷部でフランジ下部にいくほど温度が上昇する温度分布となっている(図4の(b)参照)。このため、水冷部最下部の強度が十分ではなかったので、強化元素の添加を行い、コスト増を余儀なくされた。   (B) In Comparative Example 2, in the water-cooled part of the H-section steel 1b, the cooling capacity is further lowered at the lower part of the flange due to the influence of the flowing water and the increase in the jet flow density at the upper part of the flange. The temperature distribution increases as the distance increases (see FIG. 4 (b)). For this reason, since the strength of the lowermost part of the water-cooled part was not sufficient, a strengthening element was added, and the cost was inevitably increased.

(c)実施例1では、最下段の分割ヘッダ31の最下部、すなわちフランジ下端から20mmの部分の噴射流量密度が最上部に比べ1.3倍となるよう単調増加させたため、水冷部温度が均一となり(表2参照)、温度分布も平坦に改善されている(図4の(c)参照)。その結果、比較例1、2よりもフランジ水冷部下端部の温度が低くなり、強度が上がったため、H形鋼1a、1bでは強化元素の添加を著しく少なくすることができ、コストを大幅に削減することができた(従来はフランジ下端部の低い強度を基準に鋼の成分設計を行っていた)。   (C) In Example 1, since the injection flow density of the lowermost part of the lowermost divided header 31, that is, the portion 20 mm from the lower end of the flange, is monotonically increased to 1.3 times that of the uppermost part, the water cooling part temperature is It becomes uniform (see Table 2), and the temperature distribution is also improved flat (see (c) in FIG. 4). As a result, the temperature at the lower end of the flange water-cooled part is lower than that of Comparative Examples 1 and 2, and the strength is increased. (Conventionally, steel components were designed based on the low strength of the lower end of the flange).

(d)実施例2では、最下段の分割ヘッダ31の最下部20mmの部分の噴射流量密度を最上部に比べ1.3倍としたため、この部分が従来より、よく冷えている(図4(d)参照)。すなわち、冷却中および冷却直後の熱拡散により、H形鋼1a、1bのいずれにおいても水冷部フランジ下部温度が低下している。その結果、表2に示すようにH形鋼1a、1bのフランジ水冷部の温度および温度分布は比較例1、2に比べて均一になり、しかも、フランジ水冷部下端部の温度が低くなり、強度が上がったため、H形鋼1a、1bのいずれにおいても強化元素の添加を少なくすることができ、コストを削減することができた(従来はフランジ下端部の低い強度を基準に鋼の成分設計を行っていた)。   (D) In Example 2, since the injection flow density of the lowermost 20 mm portion of the lowermost divided header 31 is set to 1.3 times that of the uppermost portion, this portion is cooled more than before (FIG. 4 ( d)). That is, due to thermal diffusion during cooling and immediately after cooling, the water-cooled portion flange lower temperature is lowered in both of the H-section steels 1a and 1b. As a result, as shown in Table 2, the temperature and temperature distribution of the flange water-cooled portions of the H-section steels 1a and 1b are more uniform than those of Comparative Examples 1 and 2, and the temperature at the lower end of the flange water-cooled portion is lowered. Since the strength increased, the addition of strengthening elements could be reduced in both the H-section steels 1a and 1b, and the cost could be reduced (conventional design of steel based on the low strength of the flange lower end) )

なお、以上の実施例では、噴射流量密度を多孔ノズル50の孔径によって調整した例を示したが、本発明はこれに限るものではなく、上述のように、たとえば、多孔ノズル50の孔の配置の密度を変更することによって噴射流量密度を調節してもよいし、孔(ノズルの噴射孔に同じ)内を通過する冷却水がうける圧損を制御し、噴射流量密度を調整する方法であってもよい。
また、多孔ノズル50の噴射流量密度の比率をノズルの孔面積の比率と同じとすれば、噴射圧力をそれぞれ調整する必要がなく、同じヘッダから冷却水を供給することが可能となって好適である。
In addition, although the example which adjusted the injection flow density with the hole diameter of the porous nozzle 50 was shown in the above Example, this invention is not limited to this, For example, arrangement | positioning of the hole of the porous nozzle 50 is mentioned above. The injection flow density may be adjusted by changing the density of the nozzle, or the pressure loss caused by the cooling water passing through the hole (same as the nozzle injection hole) is controlled to adjust the injection flow density. Also good.
Further, if the ratio of the injection flow density of the multi-hole nozzle 50 is the same as the ratio of the hole area of the nozzle, it is not necessary to adjust the injection pressure and cooling water can be supplied from the same header. is there.

また、以上の実施例では、強冷却部の噴射流量密度を通常冷却部の1.3倍としているが、1.25〜2.5倍であればよい。1.25倍より小さいと冷却を均一にする効果が小さくなる。一方、2.5倍より大きくすると、その部分が過冷却となってしまい、強度が許容上限を超えてしまう。   Moreover, in the above Example, although the injection flow density of a strong cooling part is 1.3 times the normal cooling part, what is necessary is just to be 1.25 to 2.5 times. If it is less than 1.25 times, the effect of making the cooling uniform is reduced. On the other hand, if it is larger than 2.5 times, the portion is overcooled, and the strength exceeds the allowable upper limit.

なお、所定の高強度を得るためには、噴射流量密度が500リットル/分 m2を超えることが望ましいものであるが、噴射流量密度が大きくなると流下水の量も増し、その影響でフランジ上部よりフランジ下部が冷えにくい傾向が生じるところ、本発明はフランジ下部を確実に冷却することができるから、噴射流量密度が500リットル/分 m2を超える場合であっても、フランジの全域で均一な高強度を保証することができるという顕著な効果を奏することになる。
さらに、噴射流量密度が1000リットル/分 m2以上の場合では、フランジ上部より下部が冷えにくいという傾向がより顕著となるところ、かかる場合であっても、本発明は前記顕著な効果を奏するものである。
In order to obtain a predetermined high strength, it is desirable that the injection flow density exceeds 500 liters / minute m 2. However, as the injection flow density increases, the amount of flowing water also increases, and as a result more flanges where lower portion cools less likely occurs, since the present invention can reliably cool the flange lower portion, even when the injection flow rate density exceeds 500 l / min m 2, uniform across the flange There is a remarkable effect that high strength can be guaranteed.
Further, when the injection flow density is 1000 liters / minute m 2 or more, the tendency that the lower part of the flange is harder to cool than the upper part of the flange becomes more conspicuous. Even in such a case, the present invention has the remarkable effect. It is.

また、分割ヘッダ31、32、33は、H形鋼1のフランジ幅が200mmおよび300mmの場合について、1段および2段を使用する場合を例に説明したが、本発明はこれに限るものではなく、製造するH形鋼のフランジ幅の種類に応じてどのように区切ってもよい。たとえば、製造するH形鋼のフランジ幅が150mmから50mmピッチで大きくなるような場合では、ヘッダをより細かく分割して使用してもよい。   Moreover, although the division headers 31, 32, and 33 have been described by taking the case where the first and second stages are used as an example when the flange width of the H-section steel 1 is 200 mm and 300 mm, the present invention is not limited to this. However, it may be divided in any way according to the type of flange width of the H-shaped steel to be manufactured. For example, in the case where the flange width of the H-shaped steel to be manufactured is increased at a pitch of 150 mm to 50 mm, the header may be further divided and used.

以上のように本発明に係るH形鋼の冷却設備および冷却方法、フランジ幅が相違するH形鋼についてフランジを均一に冷却することができるから、各種H形鋼の冷却設備および冷却方法として広く利用することができる。   As described above, the cooling equipment and cooling method for H-section steel according to the present invention, and the H-section steel having different flange widths can uniformly cool the flange. Therefore, it is widely used as a cooling equipment and cooling method for various H-section steels. Can be used.

本発明の実施形態に係るH形鋼の冷却設備が配置される圧延ラインを模式的に示す設備構成図。The equipment block diagram which shows typically the rolling line by which the cooling equipment of the H-section steel which concerns on embodiment of this invention is arrange | positioned. 図1に示す冷却設備を説明する正面視の断面図。Sectional drawing of the front view explaining the cooling equipment shown in FIG. 実施例における冷却水の噴射流量密度を示す模式図。The schematic diagram which shows the injection flow density of the cooling water in an Example. 実施例における冷却後の温度分布図。The temperature distribution figure after cooling in an Example.

符号の説明Explanation of symbols

1 H形鋼
10 フランジ
11 中央部
20 圧延ライン
21 粗圧延機
22 仕上圧延機
23 冷却設備
24 温度計
25 熱間鋸断機
30 ヘッダ
31 分割ヘッダ
32 分割ヘッダ
33 分割ヘッダ
41 仕切り
42 仕切り
51 多孔ノズル
52 多孔ノズル
53 多孔ノズル
DESCRIPTION OF SYMBOLS 1 H-section steel 10 Flange 11 Center part 20 Rolling line 21 Rough rolling mill 22 Finishing rolling mill 23 Cooling equipment 24 Thermometer 25 Hot saw machine 30 Header 31 Division header 32 Division header 33 Division header 41 Partition 42 Partition 51 Porous nozzle 52 perforated nozzle 53 perforated nozzle

Claims (8)

多孔ノズルが設置されたヘッダに冷却水を供給して、前記多孔ノズルから冷却水を噴出してH形鋼のフランジを冷却するH形鋼の冷却設備であって、
前記ヘッダが上下方向で複数の分割ヘッダに仕切られ、
該複数の分割ヘッダのうち最下段の分割ヘッダに設置された多孔ノズルの最下端における冷却水の噴射流量密度が、最下段の分割ヘッダに設置された多孔ノズルの最上端における冷却水の噴射流量密度より、あるいは、最下段の分割ヘッダを除く分割ヘッダに設置された多孔ノズルの最上端における冷却水の噴射流量密度より、大きいことを特徴とするH形鋼の冷却設備。
H-shaped steel cooling equipment for supplying cooling water to a header in which a multi-hole nozzle is installed, and ejecting the cooling water from the multi-hole nozzle to cool a flange of the H-section steel,
The header is partitioned into a plurality of divided headers in the vertical direction,
The cooling water injection flow density at the lowermost end of the porous nozzle installed in the lowermost divided header among the plurality of divided headers is equal to the cooling water injection flow rate at the uppermost end of the porous nozzle installed in the lowermost divided header. A cooling facility for H-section steel, which is larger than the density or the injection flow density of the cooling water at the uppermost end of the multi-hole nozzle installed in the divided header excluding the lowermost divided header.
前記複数の分割ヘッダのうち最下段の分割ヘッダに設置された多孔ノズルの最下端における冷却水の噴射流量密度が、最下段の分割ヘッダに設置された多孔ノズルの最上端における冷却水の噴射流量密度、あるいは、最下段の分割ヘッダを除く分割ヘッダに設置された多孔ノズルの最上端における冷却水の噴射流量密度の1.25〜2.5倍であることを特徴とする請求項1記載のH形鋼の冷却設備。   The cooling water injection flow density at the lowermost end of the porous nozzle installed in the lowermost divided header among the plurality of divided headers is the cooling water injection flow rate at the uppermost end of the porous nozzle installed in the lowermost divided header. The density or 1.25 to 2.5 times the injection flow density of the cooling water at the uppermost end of the multi-hole nozzle installed in the divided header excluding the lowermost divided header. H-shaped steel cooling equipment. 前記噴射流量密度が多孔ノズルの孔径によって変更されることを特徴とする請求項1または2記載のH形鋼の冷却設備。   The cooling equipment for H-section steel according to claim 1 or 2, wherein the jet flow density is changed according to a hole diameter of a multi-hole nozzle. 前記噴射流量密度が多孔ノズルの孔密度によって変更されることを特徴とする請求項1乃至3の何れかに記載のH形鋼の冷却設備。   The H-section steel cooling equipment according to any one of claims 1 to 3, wherein the jet flow density is changed by a hole density of a multi-hole nozzle. 多孔ノズルが設置されて複数の分割ヘッダに仕切られたヘッダの、被冷却H形鋼のフランジ幅に対応した範囲の分割ヘッダに冷却水を供給する工程と、
該冷却水が供給された分割ヘッダの多孔ノズルから冷却水を噴出してH形鋼のフランジを冷却する工程とを有し、
前記複数の分割ヘッダのうち最下段の分割ヘッダに設置された多孔ノズルの最下端における冷却水の噴射流量密度が、被冷却H形鋼のフランジ幅の上端に対応する分割ヘッダに設置された多孔ノズルの最上端における冷却水の噴射流量密度より、大きいことを特徴とするH形鋼の冷却方法。
A step of supplying cooling water to a divided header in a range corresponding to the flange width of the H-shaped steel to be cooled of the header in which the multi-hole nozzle is installed and divided into a plurality of divided headers;
Cooling the H-shaped steel flange by ejecting cooling water from the porous nozzle of the divided header supplied with the cooling water,
The cooling water injection flow density at the lowermost end of the multi-hole nozzle installed in the lowermost divided header among the plurality of divided headers is a porous installed in the divided header corresponding to the upper end of the flange width of the H-shaped steel to be cooled. A cooling method for H-section steel, which is larger than a jet flow density of cooling water at an uppermost end of a nozzle.
前記複数の分割ヘッダのうち最下段の分割ヘッダに設置された多孔ノズルの最下端における冷却水の噴射流量密度が、被冷却H形鋼のフランジ幅の上端に対応する分割ヘッダに設置された多孔ノズルの最上端における冷却水の噴射流量密度の1.25〜2.5倍であることを特徴とする請求項5記載のH形鋼の冷却方法。   The cooling water injection flow density at the lowermost end of the multi-hole nozzle installed in the lowermost divided header among the plurality of divided headers is a porous installed in the divided header corresponding to the upper end of the flange width of the H-shaped steel to be cooled. 6. The method for cooling an H-section steel according to claim 5, wherein the cooling water jet flow density density at the uppermost end of the nozzle is 1.25 to 2.5 times. 前記噴射流量密度が多孔ノズルの孔径によって変更されることを特徴とする請求項5または6記載のH形鋼の冷却方法。   The method of cooling an H-section steel according to claim 5 or 6, wherein the jet flow density is changed depending on a hole diameter of a multi-hole nozzle. 前記噴射流量密度が多孔ノズルの孔密度によって変更されることを特徴とする請求項5乃至7の何れかに記載のH形鋼の冷却方法。
The method for cooling an H-section steel according to any one of claims 5 to 7, wherein the jet flow density is changed according to a hole density of a multi-hole nozzle.
JP2005111568A 2005-04-08 2005-04-08 H-shaped steel cooling equipment and cooling method Expired - Fee Related JP4760102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005111568A JP4760102B2 (en) 2005-04-08 2005-04-08 H-shaped steel cooling equipment and cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005111568A JP4760102B2 (en) 2005-04-08 2005-04-08 H-shaped steel cooling equipment and cooling method

Publications (2)

Publication Number Publication Date
JP2006289407A true JP2006289407A (en) 2006-10-26
JP4760102B2 JP4760102B2 (en) 2011-08-31

Family

ID=37410569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005111568A Expired - Fee Related JP4760102B2 (en) 2005-04-08 2005-04-08 H-shaped steel cooling equipment and cooling method

Country Status (1)

Country Link
JP (1) JP4760102B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115364A1 (en) * 2012-02-02 2013-08-08 Jfeスチール株式会社 Rail cooling method and rail cooling device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS455604Y1 (en) * 1969-06-26 1970-03-18
JP2000190017A (en) * 1998-12-24 2000-07-11 Nkk Corp Wide-flange shape steel flange cooling equipment
JP2002011514A (en) * 2000-06-27 2002-01-15 Nkk Corp Method and device for cooling shape steel
JP2006281220A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Facilities and method for cooling h-section steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS455604Y1 (en) * 1969-06-26 1970-03-18
JP2000190017A (en) * 1998-12-24 2000-07-11 Nkk Corp Wide-flange shape steel flange cooling equipment
JP2002011514A (en) * 2000-06-27 2002-01-15 Nkk Corp Method and device for cooling shape steel
JP2006281220A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Facilities and method for cooling h-section steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115364A1 (en) * 2012-02-02 2013-08-08 Jfeスチール株式会社 Rail cooling method and rail cooling device
US9988696B2 (en) 2012-02-02 2018-06-05 Jfe Steel Corporation Rail cooling method and rail cooling device
US10100380B2 (en) 2012-02-02 2018-10-16 Jfe Steel Corporation Rail cooling device

Also Published As

Publication number Publication date
JP4760102B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4238260B2 (en) Steel plate cooling method
JP4029871B2 (en) Steel plate cooling device, hot-rolled steel plate manufacturing apparatus and manufacturing method
EP1935521B1 (en) A hot rolling mill for a steel plate or sheet and hot rolling methods using such mill
JP2008110353A (en) Method of cooling hot-rolled steel strip
JP4774887B2 (en) Steel sheet cooling equipment and manufacturing method
JP2007090428A (en) Equipment and method for hot-rolling steel sheet
JP3642031B2 (en) Hot strip strip cooling system
US11072839B2 (en) Process and device for cooling a metal substrate
JP4954932B2 (en) Manufacturing method of hot-rolled steel sheet
JP4870110B2 (en) Steel plate cooling device
JP4029865B2 (en) Hot rolled steel sheet manufacturing equipment and hot rolled steel sheet manufacturing method
WO2014167138A1 (en) Method and device for enhanced strip cooling in the cold rolling mill
JP4760102B2 (en) H-shaped steel cooling equipment and cooling method
JPWO2011001935A1 (en) Hot rolled steel sheet cooling apparatus, cooling method, manufacturing apparatus, and manufacturing method
EP2979770B1 (en) Thick steel plate manufacturing device and manufacturing method
TW201813731A (en) Device and method for cooling hot-rolled steel sheet
JP4682669B2 (en) H-shaped steel cooling equipment and cooling method
JP2007260748A (en) Facility and method for cooling wide flange shape steel
JP4432669B2 (en) H-shaped steel cooling method and cooling line equipment
KR102638366B1 (en) Secondary cooling method and device for continuous casting cast steel
JP2006231361A (en) Apparatus of cooling line for h steel
JP2018094574A (en) Hot rolling method
JPH07290136A (en) Method and device for cooling wide flange shape
JP2009061460A (en) Water cooler for bar steel
JP2005279736A (en) Hot-rolled steel strip manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4760102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees