JP2006289396A - Method for manufacturing mold - Google Patents

Method for manufacturing mold Download PDF

Info

Publication number
JP2006289396A
JP2006289396A JP2005110849A JP2005110849A JP2006289396A JP 2006289396 A JP2006289396 A JP 2006289396A JP 2005110849 A JP2005110849 A JP 2005110849A JP 2005110849 A JP2005110849 A JP 2005110849A JP 2006289396 A JP2006289396 A JP 2006289396A
Authority
JP
Japan
Prior art keywords
sand
binder
mold
weight
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005110849A
Other languages
Japanese (ja)
Other versions
JP4615350B2 (en
Inventor
Hitoshi Funada
等 船田
Masayuki Kato
雅之 加藤
Yoshimitsu Ina
由光 伊奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005110849A priority Critical patent/JP4615350B2/en
Publication of JP2006289396A publication Critical patent/JP2006289396A/en
Application granted granted Critical
Publication of JP4615350B2 publication Critical patent/JP4615350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing the mold, with which even in the case that the addition quantity of a binder is reduced, the higher mold strength can be obtained and regenerating characteristic of sand can be improved. <P>SOLUTION: The method for manufacturing the mold, is performed, by which the binder is added into a spherical molding sand manufactured with a flame fusion method, and the mold is manufactured by injecting carbon dioxide gas. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭酸ガスを硬化剤として鋳型を造型する方法において、火炎溶融法により製造された球状鋳物砂を組み合わせることにより、粘結剤添加量を低減した鋳型の製造方法に関する。   The present invention relates to a method for producing a mold in which the amount of binder added is reduced by combining spherical casting sand produced by a flame melting method in a method for forming a mold using carbon dioxide gas as a curing agent.

鋳型の造型に用いる粘結剤として、安全性に優れた炭酸ガスで硬化しうる有機粘結剤が注目されている。   As a binder used for molding a mold, an organic binder that can be cured with carbon dioxide gas, which is excellent in safety, has attracted attention.

炭酸ガスで硬化しうる有機粘結剤組成物は、例えば特許文献1に開示されている。一方、特許文献2には、減圧造型法において特定の有機系炭酸ガス硬化型粘結剤を用いて造型することにより、作業環境、鋳型砂の充填性及び鋳物品質を改善することが開示されている。
特開平2000−15389号公報 特開平9−52144号公報
An organic binder composition that can be cured with carbon dioxide gas is disclosed in Patent Document 1, for example. On the other hand, Patent Document 2 discloses improving the working environment, mold sand filling property and casting quality by molding using a specific organic carbon dioxide curing binder in the reduced pressure molding method. Yes.
Japanese Unexamined Patent Publication No. 2000-15389 JP-A-9-52144

しかしながら、これらの方法によっても鋳型強度は十分とは言えず、それ故粘結剤添加量を多く配合する必要があり、砂再生性が悪い要因となっていた。   However, even with these methods, the mold strength cannot be said to be sufficient, and therefore it is necessary to add a large amount of binder, which causes poor sand regeneration.

本発明は、粘結剤添加量を低減しても、より高い鋳型強度が得られ、かつ砂再生性も改善できる鋳型の製造方法の提供を目的とする。   An object of the present invention is to provide a method for producing a mold that can obtain higher mold strength and improve sand reproducibility even if the amount of binder is reduced.

本発明は、火炎溶融法で製造された球状鋳物砂に、粘結剤を添加し、炭酸ガスを吹き込むことにより造型する、鋳型の製造方法に関する。   The present invention relates to a method for producing a mold in which molding is performed by adding a binder and blowing carbon dioxide gas into a spherical casting sand produced by a flame melting method.

本発明によれば、粘結剤添加量を低減しても、より高い鋳型強度が得られ、かつ砂再生性も改善できる鋳型の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, even if it reduces binder addition amount, the mold manufacturing method which can obtain higher mold intensity | strength and can also improve sand reproducibility is provided.

本発明では、火炎溶融法で製造された球状鋳物砂に、粘結剤を添加し、炭酸ガスを吹き込むことにより鋳型を造型することができる。具体的には、鋳物砂と粘結剤とを混練機により混練した鋳物砂を、吹き込み或いは手込めにより、型に充填した後、炭酸ガスを吹き込み、型に充填した鋳物砂を硬化させて鋳型を造型することができる。本発明に用いられる粘結剤は、炭酸ガス硬化型の粘結剤であり、有機系粘結剤や、無機系粘結剤が挙げられる。   In this invention, a casting_mold | template can be shape | molded by adding a binder to the spherical casting sand manufactured by the flame melting method, and blowing in carbon dioxide gas. Specifically, casting sand obtained by kneading foundry sand and a binder with a kneading machine is filled into a mold by blowing or manual filling, and then carbon dioxide gas is blown to cure the foundry sand filled in the mold to form a mold. Can be molded. The binder used in the present invention is a carbon dioxide curable binder, and examples thereof include an organic binder and an inorganic binder.

本発明では、鋳型強度向上の観点から、減圧造型法により鋳型を造型することが好ましい。以下に、減圧造型法により造型する場合について詳細に説明する。減圧造型法としては、吸圧造型法とVRH造型法が挙げられる。   In the present invention, it is preferable to mold the mold by a reduced pressure molding method from the viewpoint of improving the mold strength. Below, the case where it shape | molds by the pressure reduction molding method is demonstrated in detail. Examples of the pressure molding method include a pressure molding method and a VRH molding method.

まず、吸圧造型法は鋳物砂を高い真空圧で瞬時に鋳枠中或いは中子箱に充填し、引き続き減圧下で硬化ガスを主型或いは中子に通じて硬化させ、鋳型を作製する方法である。更に詳しく説明すると、主型の造型法として、ベントプラグを有する中空になったパターンプレートの上に鋳枠を設置し、その上に鋳物砂の流出口が複数個あるホッパー内に、粘結剤を混練した鋳物砂を投入して鋳枠上に乗せ、減圧側のバルブを作動させることにより瞬時に空気を吸引すると、ホッパーの中の鋳物砂は瞬時に鋳枠に吸引充填される。更に、充填度を高めたい場合は、フィルム又は平板を鋳物砂上面に被せ、再び吸引すると良く、この場合空気中の炭酸ガスが遮断されるため鋳物砂の可使時間が延長されるなどのメリットも有する。また、中子を造型するときは、鋳型キャビティ内面にベントプラグを有する垂直割中子箱を設置し、その上に粘結剤を混練した鋳物砂を入れたホッパーを置き、減圧バルブの作動によってキャビティー内を瞬時に吸引すると、ホッパー内の鋳物砂は勢いよく中子キャビティー内に充填される。次に、炭酸ガスの通気を行うため、ガッシング蓋又はフィルムを中子箱の上に被せ、中子箱から吸引した後、炭酸ガスを供給することにより鋳物砂を硬化させる。   First, the pressure molding method is a method in which casting sand is instantaneously filled into a casting frame or a core box at a high vacuum pressure, and then a curing gas is passed through the main mold or core under reduced pressure to produce a mold. It is. More specifically, as a main mold forming method, a casting frame is set on a hollow pattern plate having a vent plug, and a binder is provided in a hopper having a plurality of foundry sand outlets. When casting air is kneaded and placed on the casting frame, and air is instantaneously sucked by operating a valve on the decompression side, the casting sand in the hopper is instantaneously sucked and filled into the casting frame. In addition, if you want to increase the degree of filling, put a film or flat plate on the top of the casting sand and suck it again. In this case, the carbon dioxide gas in the air is shut off, so the merit of extending the working time of the casting sand is extended. Also have. When molding the core, install a vertical split core box with a vent plug on the inner surface of the mold cavity, place a hopper containing cast sand mixed with a binder on it, and operate the decompression valve. When the inside of the cavity is sucked instantaneously, the foundry sand in the hopper is filled into the core cavity vigorously. Next, in order to ventilate the carbon dioxide gas, a gashing lid or a film is placed on the core box, sucked from the core box, and then the foundry sand is hardened by supplying carbon dioxide gas.

通気条件は特に限定されるものではないが、目安として20〜500リットル/分で、炭酸ガスの通気圧は0.1〜5気圧の範囲が好ましく、さらに好ましくは0.5〜3気圧である。また、炭酸ガスの使用量は粘結剤100重量部に対し5〜300重量部が好ましい。空洞部の減圧度も特に限定されないが、0〜0.1MPaが好ましく、さらに好ましくは0.0001〜0.04MPaである。ここではこのような造型法を吸圧造型法といい、粘結剤を用いて造型することにより、更に鋳物砂の充填性が向上し、高強度の鋳型を造型することが可能となる。また、加えて毒性のない炭酸ガスを用いて硬化する粘結剤を用いて鋳造することにより、高品質な鋳造鋳物が生産できるものである。   Although the aeration conditions are not particularly limited, the standard is 20 to 500 liters / minute, and the aeration pressure of carbon dioxide gas is preferably in the range of 0.1 to 5 atm, more preferably 0.5 to 3 atm. The amount of carbon dioxide used is preferably 5 to 300 parts by weight with respect to 100 parts by weight of the binder. The degree of decompression of the cavity is not particularly limited, but is preferably 0 to 0.1 MPa, and more preferably 0.0001 to 0.04 MPa. Here, such a molding method is referred to as a pressure molding method. By molding using a binder, the filling property of the foundry sand is further improved, and a high-strength mold can be molded. In addition, a high-quality casting can be produced by casting using a binder that is cured using non-toxic carbon dioxide gas.

VRH造型法は、粘結剤を混練した鋳物砂を模型に充填し、密閉容器内に納めた後、容器内を減圧にし鋳型内の空気を排除した後容器内の硬化ガスを導入することにより、ガスを鋳型に均一に充満させ、鋳型中の粘結剤との反応を促進することにより鋳型を均一に硬化させる方法である。本発明においては、火炎溶融法で製造された球状鋳物砂を用いることによって、粘結剤添加量を低減しても、高品質な鋳造鋳物を生産することができる。   In the VRH molding method, a model is filled with foundry sand kneaded with a binder, placed in a sealed container, the inside of the container is depressurized and air in the mold is removed, and then the hardening gas in the container is introduced. In this method, the mold is uniformly cured by filling the mold uniformly with the gas and promoting the reaction with the binder in the mold. In the present invention, by using the spherical casting sand produced by the flame melting method, a high-quality casting can be produced even if the amount of the binder is reduced.

本発明においてVRH造型法で造型する場合は、粘結剤を混練した鋳物砂を鋳型模型に充填し、密閉容器内に納めた後の減圧度は通常0〜0.05MPaが良く、実用的に好ましくは0.001〜0.01MPaが好ましい。また、その保持時間は密閉容器や真空ポンプの能力にも関係するが、通常30分間以内であり、密閉容器の真空ポンプに通ずる減圧バルブを開いて約10分間以内で0.001MPaに達し、その後、炭酸ガスで密閉容器内を置換する。それに要する時間は数秒間から数分間であり、密閉容器内の圧力を約大気圧相当にして鋳型を取り出す。VRH造型法においても目安とする炭酸ガスの使用量は粘結剤100重量部に対し好ましくは5〜300重量部、より好ましくは20〜200重量部が適正である。   In the present invention, when molding by the VRH molding method, the degree of vacuum after filling the molding model with the molding sand kneaded with the binder and placing it in the sealed container is usually 0 to 0.05 MPa, which is practically preferable. Is preferably 0.001 to 0.01 MPa. The holding time is also related to the capacity of the sealed container and the vacuum pump, but is usually within 30 minutes, and reaches 0.001 MPa within about 10 minutes after opening the pressure reducing valve connected to the vacuum pump of the sealed container, Replace the sealed container with carbon dioxide. The time required for this is several seconds to several minutes, and the mold is taken out with the pressure in the sealed container equivalent to about atmospheric pressure. The amount of carbon dioxide used as a standard in the VRH molding method is preferably 5 to 300 parts by weight, more preferably 20 to 200 parts by weight, based on 100 parts by weight of the binder.

本発明の方法で使用する球状鋳物砂は、特開2004−202577号に示されるような火炎溶融法により製造される。   The spherical casting sand used in the method of the present invention is produced by a flame melting method as disclosed in JP-A No. 2004-202577.

本発明の球状鋳物砂の形状である球状とは、球形度0.88以上、好ましくは0.90以上のものをいう。球状であるか否かについては、たとえば、鋳物砂を光学顕微鏡やデジタルスコープ(たとえば、キーエンス社製、VH−8000型)等で観察し、判定することができる。   The spherical shape which is the shape of the spherical casting sand of the present invention refers to a sphericity of 0.88 or more, preferably 0.90 or more. Whether or not it is spherical can be determined, for example, by observing the foundry sand with an optical microscope or a digital scope (for example, VH-8000, manufactured by Keyence Corporation).

球状鋳物砂の主成分は、従来公知の耐火物及び耐火物原料を火炎溶融法にて球状化したものが用いられ、特に限定されない。当該粉末粒子を酸素等のキャリアガスに分散させ、下記火炎中で溶融して球状化する。用いる火炎はプロパン、ブタン、メタン、天然液化ガス、LPG、重油、灯油、軽油、微粉炭等の燃料を酸素と燃焼させることによって発生させたものや、N2不活性ガス等を電離させて生じるプラズマジェット火炎などが使用できる。 The main component of the spherical casting sand is not particularly limited, and conventionally known refractories and refractory raw materials obtained by spheronization by a flame melting method are used. The powder particles are dispersed in a carrier gas such as oxygen, and are melted and spheroidized in the following flame. Occurs flame propane, butane, methane, natural liquefied gas, LPG, heavy oil, kerosene, gas oil, and that is generated by burning the fuel oxygen pulverized coal etc., ionizes the N 2 inert gas or the like used Plasma jet flames can be used.

これら耐火物及び耐火物原料の中で、耐火性や入手のしやすさなどの観点から、SiO2を主成分としたもの、Al23及びSiO2を主成分としたもの、MgO及びSiO2を主成分としたものが好ましい。それらの中でも特にAl23及びSiO2を主成分としたものが好ましい。 Among these refractories and refractory raw materials, those containing SiO 2 as the main component, those containing Al 2 O 3 and SiO 2 as the main components, MgO and SiO from the viewpoint of fire resistance and availability. Those having 2 as a main component are preferred. Among them, those mainly containing Al 2 O 3 and SiO 2 are preferable.

ここで「主成分」とは、上記成分が合計量で鋳物砂全体の全成分中に60重量%以上含有されていることをいう。主成分の含有量としては、耐火性の向上という観点から、これら成分の合計量は、球状鋳物砂の全成分中、好ましくは85〜100重量%、より好ましくは90〜100重量%である。   Here, the “main component” means that the above components are contained in a total amount of 60% by weight or more in the total components of the foundry sand. As the content of the main component, from the viewpoint of improving fire resistance, the total amount of these components is preferably 85 to 100% by weight, more preferably 90 to 100% by weight, based on all the components of the spherical casting sand.

なお、本発明の球状鋳物砂に主成分以外の成分として含まれ得るものとしては、たとえば、Fe23、TiO2、K2O、Na2O等の金属酸化物が挙げられる。これらは、出発原料に由来するものである。 Incidentally, as it may be included as a component other than the main component in the spherical molding sand of the present invention, for example, Fe 2 O 3, TiO 2 , K 2 O, and metal oxides Na 2 O and the like. These are derived from starting materials.

Fe23とTiO2が含まれる場合、それらの含有量としてはそれぞれ5重量%以下が好ましい。また、Fe23の含有量は2.5重量%以下がより好ましく、2重量%以下がさらに好ましい。K2OとNa2Oが含まれる場合、それらの含有量としては合計量として3重量%以下が好ましく、より好ましくは1重量%以下である。 When Fe 2 O 3 and TiO 2 are contained, their content is preferably 5% by weight or less. Further, the content of Fe 2 O 3 is more preferably 2.5% by weight or less, and further preferably 2% by weight or less. When K 2 O and Na 2 O are contained, the total content is preferably 3% by weight or less, more preferably 1% by weight or less.

また、Al23及びSiO2を主成分とする場合、Al23/SiO2重量比率は1〜15であることが好ましい。耐火性および鋳物砂の再生効率の向上の観点から、1.2〜12が好ましく、1.5〜9がより好ましい。また、このAl23及びSiO2、若しくはSiO2のみが主成分である場合、主成分以外の成分としてCaOとMgOが含まれ得る。その場合、球状鋳物砂の耐火性の向上の観点から、それらの含有量としては合計量として5重量%以下が好ましい。 In the case of mainly composed of Al 2 O 3 and SiO 2, Al 2 O 3 / SiO 2 weight ratio is preferably 1 to 15. From the viewpoint of improvement in fire resistance and casting sand regeneration efficiency, 1.2 to 12 is preferable, and 1.5 to 9 is more preferable. Further, when only Al 2 O 3 and SiO 2 or SiO 2 are the main components, CaO and MgO may be included as components other than the main components. In that case, from the viewpoint of improving the fire resistance of the spherical casting sand, the total content thereof is preferably 5% by weight or less.

また、MgO及びSiO2を主成分とする場合、MgO/SiO2の重量比率は0.1〜10が好ましい。球状化のし易さ及び耐蝕性、耐火性及び鋳物砂の再生効率の向上の観点から、0.2〜9が好ましく、0.3〜5がより好ましい。 In the case of the main component MgO and SiO 2, the weight ratio of MgO / SiO 2 is preferably 0.1 to 10 is. From the viewpoints of easiness of spheroidization, corrosion resistance, fire resistance, and improvement in recycle efficiency of foundry sand, 0.2 to 9 is preferable, and 0.3 to 5 is more preferable.

また、このMgO及びSiO2が主成分である場合、主成分以外の成分としてAl23が含まれうる。これは原料に由来するが、球状鋳物砂の耐蝕性向上の観点から含有量として10重量%以下が好ましい。 When MgO and SiO 2 are the main components, Al 2 O 3 can be included as a component other than the main components. Although this originates in a raw material, 10 weight% or less is preferable as content from a viewpoint of the corrosion-resistant improvement of a spherical casting sand.

また、本発明の球状鋳物砂の吸水率(重量%)としては、鋳型の製造の際に使用する粘結剤の鋳物砂内部への吸収による粘結剤使用量の増加の抑制や、鋳型強度の向上、混練砂の流動性等の観点から、3重量%以下が好ましく、0.8重量%以下がより好ましく、0.3重量%以下がさらに好ましい。吸水率はJIS A1109細骨材の吸水率測定方法に従って測定することができる。   Further, the water absorption rate (% by weight) of the spherical casting sand of the present invention includes suppression of an increase in the amount of binder used due to absorption of the binder used in the production of the mold into the casting sand, and strength of the mold. From the viewpoints of improving the viscosity and the fluidity of the kneaded sand, it is preferably 3% by weight or less, more preferably 0.8% by weight or less, and further preferably 0.3% by weight or less. The water absorption can be measured according to the method for measuring the water absorption of JIS A1109 fine aggregate.

なお、球状鋳物砂の吸水率は、火炎溶融法により該砂を調製した場合、該方法以外の焼成方法により調製した砂と比べて、同じ球形度であれば、通常、吸水率は低くなる。   In addition, the water absorption rate of spherical cast sand is usually lower when the sand is prepared by a flame melting method and the same sphericity as compared with sand prepared by a firing method other than the method.

本発明に用いられる有機系粘結剤としては、水溶性アルカリフェノール樹脂と、ホウ酸化合物類、アルミン酸化合物類及びスズ酸化合物類から選ばれる化合物とを含有するものが挙げられる。水溶性アルカリフェノール樹脂は、フェノール系・ホルムアルデヒド樹脂、特にフェノール類・ホルムアルデヒド樹脂、ビスフェノール類・ホルムアルデヒド樹脂、或いはフェノール類・ビスフェノール類・ホルムアルデヒド共縮合樹脂が挙げられ、その製造の際に使用された水や触媒が含まれていてもよい。以下にこれらについて説明する。   Examples of the organic binder used in the present invention include those containing a water-soluble alkaline phenol resin and a compound selected from boric acid compounds, aluminate compounds, and stannic acid compounds. Examples of water-soluble alkaline phenol resins include phenolic and formaldehyde resins, especially phenols and formaldehyde resins, bisphenols and formaldehyde resins, or phenols, bisphenols, and formaldehyde co-condensation resins. Or a catalyst may be included. These will be described below.

フェノール系・ホルムアルデヒド樹脂のフェノール原料として、フェノール類やビスフェノール類を単独で用いたホルムアルデヒド樹脂、或いはフェノール類とビスフェノール類を同時に用いたホルムアルデヒド共縮合樹脂を調製して、所定の水溶性アルカリフェノール樹脂を得る。   Prepare phenolic raw materials for phenolic and formaldehyde resins by preparing formaldehyde resins that use phenols and bisphenols alone or formaldehyde cocondensation resins that use phenols and bisphenols at the same time. obtain.

フェノール類としては、フェノール、クレゾール(オルト、メタ、パラ)、レゾルシン等が挙げられ、またビスフェノール類としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールZ等が挙げられる。   Examples of phenols include phenol, cresol (ortho, meta, para), and resorcin. Examples of bisphenols include bisphenol A, bisphenol F, bisphenol S, and bisphenol Z.

有機系粘結剤中の水溶性アルカリフェノール樹脂の含有量は、50〜99重量%が好ましく、70〜90重量%がより好ましい。   The content of the water-soluble alkali phenol resin in the organic binder is preferably 50 to 99% by weight, and more preferably 70 to 90% by weight.

また、本発明で用いられる有機系粘結剤は、ホウ酸化合物類、アルミン酸化合物類及びスズ酸化合物類から選ばれる化合物を含有する。ホウ酸化合物類としては、ホウ酸、ホウ砂等のホウ酸化合物、ホウ酸エステル類等が挙げられる。また、アルミン酸化合物類としては、アルミン酸ナトリウム、アルミン酸カリウム、アルミン酸リチウム等が挙げられる。また、スズ酸化合物類としては、スズ酸ナトリウム、スズ酸カリウム、スズ酸リチウム等が挙げられる。これらの化合物の含有量は、有機系粘結剤中、0.1〜30重量%、更に3〜15重量%であることが好ましい。これらの化合物は、有機系粘結剤中の樹脂、例えばアルカリ性の水溶性フェノール樹脂中に架橋形成させるために用いられる。   The organic binder used in the present invention contains a compound selected from boric acid compounds, aluminate compounds and stannic acid compounds. Examples of the boric acid compounds include boric acid compounds such as boric acid and borax, and boric acid esters. Examples of the aluminate compounds include sodium aluminate, potassium aluminate, lithium aluminate and the like. Examples of stannic acid compounds include sodium stannate, potassium stannate, lithium stannate and the like. The content of these compounds is preferably 0.1 to 30% by weight, more preferably 3 to 15% by weight, in the organic binder. These compounds are used for crosslinking in a resin in an organic binder, for example, an alkaline water-soluble phenol resin.

また、本発明で用いられる無機系粘結剤としては、ケイ酸ナトリウム等の水ガラスが挙げられる。   Examples of the inorganic binder used in the present invention include water glass such as sodium silicate.

粘結剤としては、鋳型強度向上の観点から、有機系粘結剤が好ましい。   As the binder, an organic binder is preferable from the viewpoint of improving the mold strength.

粘結剤は、球状鋳物砂100重量部に対し、0.5〜2.0重量部、更に0.5〜1.5重量部を添加することが好ましい。   The binder is preferably added in an amount of 0.5 to 2.0 parts by weight, and more preferably 0.5 to 1.5 parts by weight, with respect to 100 parts by weight of the spherical casting sand.

また、鋳型強度を更に高めるために、添加剤としてセロソルブ、カルビトール、トリエチレングリコールエーテル類等のグリコールエーテル類を樹脂の反応時又は反応終了時に添加してもよく、添加量は粘結剤100重量部に対し0.1〜30重量部、好ましくは5〜20重量部である。尚、添加時期は、鋳物砂の混練調整時に添加してもよく、更にシランカップリング剤を追加してもよい。   In order to further increase the mold strength, glycol ethers such as cellosolve, carbitol, triethylene glycol ethers may be added as an additive at the time of the reaction of the resin or at the end of the reaction. It is 0.1-30 weight part with respect to a weight part, Preferably it is 5-20 weight part. The addition time may be added at the time of kneading adjustment of the foundry sand, and a silane coupling agent may be further added.

従来、減圧造型法に用いられる鋳物砂、例えば、特開平9−52144号公報(特許文献2)に記載されているような輸入珪砂、国産珪砂、アルミナサンド、ジルコンサンド、クロマイトサンド、合成ムライトサンド(セラビーズ)、オリビンサンド、金属粉末、金属酸化物粉末等)では、鋳物砂100重量部に対して1.0重量部以下の粘結剤添加量では十分な強度を得ることはできなかった。これに対して、本発明では、鋳物砂として、火炎溶融法で製造された球状鋳物砂を使用することにより、且つ粘結剤を併用して炭酸ガス硬化させることにより、鋳型強度が飛躍的に向上するため、粘結剤添加量を大幅に低減でき、砂再生性を向上することができる。すなわち、該製法により製造された鋳型であれば、再生砂として使用するために、あまり負荷をかけなくても優れた鋳型強度を発現させることができるということである。   Conventionally, foundry sand used in vacuum molding, for example, imported quartz sand, domestic quartz sand, alumina sand, zircon sand, chromite sand, synthetic mullite sand as described in JP-A-9-52144 (Patent Document 2) (Cerabeads), olivine sand, metal powder, metal oxide powder, etc.), a sufficient strength could not be obtained with a binder addition amount of 1.0 part by weight or less with respect to 100 parts by weight of foundry sand. On the other hand, in the present invention, the mold strength is drastically increased by using spherical foundry sand produced by the flame melting method as the foundry sand and curing the carbon dioxide gas together with the binder. Therefore, the amount of binder added can be greatly reduced, and sand reproducibility can be improved. That is, if the mold is produced by the production method, it can be used as reclaimed sand, so that excellent mold strength can be exhibited without much load.

<鋳物砂の種類>
以下に、実施例及び比較例で用いた鋳物砂を説明する。
<Types of foundry sand>
Below, the foundry sand used by the Example and the comparative example is demonstrated.

実施例1〜3、6、9〜11
Al2O3とSiO2を合計量で97重量%含有する、Al2O3/SiO2重量比率が1.7、含水率が0重量%、平均粒径が0.31mm、長軸径/短軸径比が1.5のムライト粉末(柴田セラミックス製合成ムライト粉末)を出発原料とし、当該粉末を、酸素をキャリアガスとして用い、LPG(プロパンガス)を対酸素比(容量比)1.1で燃焼させた火炎(約2000℃)中に投入し、単分散した球状鋳物砂を得た。得られた鋳物砂は、Al2O3とSiO2を合計量で97重量%含有しており、Al2O3/SiO2重量比率が1.7、平均粒径が0.26mm、球形度が0.99、吸水率が0重量%、粒子密度が2.9g/cm3であった。
Examples 1-3, 6, 9-11
97% by weight of Al 2 O 3 and SiO 2 in total, Al 2 O 3 / SiO 2 weight ratio is 1.7, moisture content is 0% by weight, average particle size is 0.31 mm, major axis diameter / A mullite powder (synthetic mullite powder manufactured by Shibata Ceramics) having a minor axis diameter ratio of 1.5 is used as a starting material, oxygen is used as a carrier gas, and LPG (propane gas) is used as an oxygen ratio (volume ratio). It was put into a flame (about 2000 ° C.) burned in No. 1 to obtain monodispersed spherical casting sand. The resulting foundry sand contains 97% by weight of Al 2 O 3 and SiO 2 in total amount, the Al 2 O 3 / SiO 2 weight ratio is 1.7, the average particle size is 0.26 mm, and the sphericity Was 0.99, the water absorption was 0% by weight, and the particle density was 2.9 g / cm 3 .

実施例4
実施例1で使用した球状鋳物砂を、下記の再生砂の調製方法に基づいて再生処理を行い、再生砂を得た。
Example 4
The spheroidal foundry sand used in Example 1 was regenerated based on the following reclaimed sand preparation method to obtain reclaimed sand.

実施例5、8
出発原料の平均粒径を0.9mm、長軸径/短軸径比を1.7とした以外は実施例1と同様な操作で単分散した球状鋳物砂を得た。得られた鋳物砂は、Al2O3とSiO2を合計量で97重量%含有しており、Al2O3/SiO2重量比率が1.7、平均粒径が0.69mm、球形度が0.97、吸水率が0重量%、粒子密度が2.8g/cm3であった。
Examples 5 and 8
Monodispersed spherical casting sand was obtained in the same manner as in Example 1 except that the starting material had an average particle size of 0.9 mm and a major axis / minor axis ratio of 1.7. The obtained foundry sand contains 97% by weight of Al 2 O 3 and SiO 2 in total amount, the Al 2 O 3 / SiO 2 weight ratio is 1.7, the average particle size is 0.69 mm, and the sphericity Was 0.97, the water absorption was 0% by weight, and the particle density was 2.8 g / cm 3 .

実施例7
実施例5で使用した球状鋳物砂を、下記の再生砂の調製方法に基づいて再生処理を行い、再生砂を得た。
Example 7
The spheroidal foundry sand used in Example 5 was regenerated based on the following reclaimed sand preparation method to obtain reclaimed sand.

比較例1〜4、8〜10
天然珪砂としてフラタリー・シリカサンド(オーストラリア産)を用いた。
Comparative Examples 1-4, 8-10
Flattery silica sand (Australia) was used as natural silica sand.

比較例5
比較例1で使用したフラタリー・シリカサンドを、下記の再生砂の調製方法に基づいて再生処理を行い、再生砂を得た。
Comparative Example 5
The flattery silica sand used in Comparative Example 1 was reclaimed based on the following reclaimed sand preparation method to obtain reclaimed sand.

比較例6
焼結型の球状の人造セラミック鋳物砂(商品名:セラビーズ#750(伊藤忠セラテック社製))を用いた。
Comparative Example 6
Sintered spherical artificial ceramic foundry sand (trade name: Cerabeads # 750 (manufactured by ITOCHU CERATECH)) was used.

比較例7
アトマイズ法によって得られた溶融造粒法による人造セラミック鋳物砂(商品名:エスパール#75(山川産業社製))
Comparative Example 7
Artificial ceramic casting sand by melt granulation obtained by atomization method (trade name: ESPARL # 75 (manufactured by Yamakawa Sangyo Co., Ltd.))

<再生砂の調製方法>
新砂に表1に示した粘結剤を添加・混合し、炭酸ガスにより、減圧造型法(VRH造型法)で硬化させ造型した鋳型を用い、鋳造(材質:FCD-450(注湯温度は1410℃)、無塗型)し、回収した砂をクラッシャーにかけ、日本鋳造(株)製M型ロータリーリクレマーを用いて再生した(1回目の再生)。得られた再生砂に、表1に示した粘結剤を添加・混合し、炭酸ガスにより硬化させ造型した鋳型を用い、鋳造(材質:FCD-450(注湯温度は1410℃)、無塗型)した。この鋳型から鋳物砂の回収、再生を上記同様に繰り返し、10回再生したものを再生砂として用いた。
<Preparation method of reclaimed sand>
Add and mix the binder shown in Table 1 into fresh sand, harden with carbon dioxide gas using the reduced pressure molding method (VRH molding method), and cast (material: FCD-450 (pour temperature is 1410) C.), uncoated type), and the recovered sand was applied to a crusher and regenerated using an M-type rotary reclaimer manufactured by Nippon Casting Co., Ltd. (first regeneration). The resulting reclaimed sand is added and mixed with the binder shown in Table 1 and cured using carbon dioxide gas, and then cast (material: FCD-450 (the pouring temperature is 1410 ° C), uncoated Type). The casting sand was collected and regenerated from this mold in the same manner as described above, and the regenerated sand was regenerated 10 times.

尚、火炎溶融法で製造された球状鋳物砂の場合は、上記再生のための造型においては、粘結剤の添加量は鋳物砂100重量部に対して0.7重量部添加して造型を行った。一方、フラタリー珪砂の場合は、上記再生のための造型においては、樹脂添加量0.7重量部では鋳型強度が低かったので、鋳物砂100重量部に対して3.5重量部添加して再生のための造型を行った。   In addition, in the case of the spherical casting sand manufactured by the flame melting method, in the molding for the above-mentioned regeneration, the amount of binder added is 0.7 parts by weight with respect to 100 parts by weight of the molding sand. went. On the other hand, in the case of flattery silica sand, in the molding for the above regeneration, the mold strength was low when the resin addition amount was 0.7 parts by weight. Therefore, 3.5 parts by weight was added to 100 parts by weight of foundry sand and recycled. Made a mold for.

<酸消費量の測定方法>
酸消費量は、鋳物砂に残存するアルカリ金属等のアルカリ成分量を表すものであり、日本鋳造技術協会規格:「JACT試験法 S−4」に規定される「鋳物砂の酸消費量試験法」に従って測定した。再生砂においては、新砂における値に近いほど砂の再生性に優れることを表す。
<Measurement method of acid consumption>
The acid consumption represents the amount of alkali components such as alkali metals remaining in the foundry sand, and is defined by the “Foundry Sand Acid Consumption Test Method” defined in the Japan Casting Technology Association Standard: “JACT Test Method S-4”. ”And measured. In reclaimed sand, the closer to the value in fresh sand, the better the sand reproducibility.

<強熱減量分の測定方法>
強熱減量分(LOI)は、鋳物砂に残存する、吸着水分、層間水分、結晶水分のほかに熱分解する物質および燃焼する物質の質量変化割合であり、日本鋳造技術協会規格:「JACT試験法 S−2」に規定される「鋳物砂の強熱減量試験法」に従って測定した。再生砂においては、新砂における値に近いほど砂の再生性に優れることを表す。
<Measurement method for loss on ignition>
Loss on ignition (LOI) is the mass change rate of the substance that thermally decomposes and burns in addition to the adsorbed moisture, interlayer moisture, and crystal moisture remaining in the foundry sand. It was measured in accordance with “Method for loss on ignition of foundry sand” defined in “Method S-2”. In reclaimed sand, the closer to the value in fresh sand, the better the sand reproducibility.

<評価>
上記の鋳物砂を用いて、以下の造型法により、それぞれ表1に示した粘結剤の添加量(鋳物砂100重量部に対する粘結剤の重量部)でテストピース(直径が50mmで高さが50mm)の造型を行った。得られたテストピース鋳型の1時間経過後の圧縮強度を表1に示した。
<Evaluation>
Using the above foundry sand, the test piece (having a diameter of 50 mm and a height) was added by the following molding method with the addition amount of the binder shown in Table 1 (parts by weight of binder with respect to 100 parts by weight of foundry sand). Is 50 mm). Table 1 shows the compressive strength of the obtained test piece mold after 1 hour.

(1)常圧造型法
バッチミキサーで鋳物砂と表1の粘結剤を1分間混練、テストピース8個取りのガス硬化用木型に充填後、ガス温度30℃、通気量20リットル/分、ガス圧力0.2MPaで炭酸ガスを30秒間通気し、鋳型(直径が50mmで高さが50mmのテストピース)を得た。
(1) Atmospheric pressure molding method Mixing molding sand and binder in Table 1 with a batch mixer for 1 minute, filling into a gas curing wood mold with 8 test pieces, gas temperature 30 ° C, air flow rate 20 liters / minute Carbon dioxide was aerated for 30 seconds at a gas pressure of 0.2 MPa to obtain a mold (a test piece having a diameter of 50 mm and a height of 50 mm).

(2)吸圧造型法
ベントプラグを有する中空になったパターンプレートの上に鋳枠を設置し、その上に可使時間及び充填度を大きくさせるためポリフィルムを表1に示した粘結剤を混練した鋳物砂の上に被せ、鋳物砂の流出口が複数個あるホッパーを鋳枠上に乗せ、減圧側のバルブを作動させることにより瞬時に空気を吸引し、ホッパーの中の鋳物砂を吸引充填した。この時の減圧度は0.008MPaであった。吸引充填後は減圧度が低くなるためそのまま減圧度を保持させ、次に炭酸ガスのバルブを開き硬化ガスを送り込み、鋳型(直径が50mmで高さが50mmのテストピース)を得た。
(2) Pressure molding method The binder shown in Table 1 is a polyfilm shown in Table 1 in order to increase the pot life and filling degree on a cast frame placed on a hollow pattern plate having a vent plug. Put the hopper with multiple casting sand outlets on the casting frame and actuate the valve on the decompression side to instantly suck the air, Suction filled. The degree of vacuum at this time was 0.008 MPa. After the suction filling, the degree of decompression was lowered, so that the degree of decompression was maintained as it was, and then the carbon dioxide gas valve was opened and the curing gas was fed to obtain a mold (a test piece having a diameter of 50 mm and a height of 50 mm).

(3)VRH造型法
表1に示した粘結剤を混練した鋳物砂を100リットル容積の密閉容器内に入れ、0.003MPaになるように減圧し、減圧後炭酸ガスを常圧になるまで送り、密閉容器から鋳型(直径が50mmで高さが50mmのテストピース)を取り出した。この時の0.003MPaに達するまでの所要時間は3分間であり、炭酸ガスを送り込んで常圧に達するまでの所要時間は1分間であった。
(3) VRH molding method Casting sand kneaded with the binder shown in Table 1 is placed in a 100-liter sealed container, depressurized to 0.003 MPa, and after depressurization, carbon dioxide is sent to atmospheric pressure. The mold (test piece having a diameter of 50 mm and a height of 50 mm) was taken out from the sealed container. At this time, the time required to reach 0.003 MPa was 3 minutes, and the time required to reach atmospheric pressure by feeding carbon dioxide gas was 1 minute.

Figure 2006289396
Figure 2006289396

なお、表1中の粘結剤は以下のものである。
・有機系粘結剤:(水溶性アルカリフェノール樹脂:79.5重量%、硼砂:5重量%、γ−アミノプロピルトリエトキシシラン:0.5重量%、フェニルモノエチレングリコールエーテル:15重量%)
・無機系粘結剤:水ガラス
In addition, the binder in Table 1 is as follows.
Organic binder: (water-soluble alkali phenol resin: 79.5% by weight, borax: 5% by weight, γ-aminopropyltriethoxysilane: 0.5% by weight, phenyl monoethylene glycol ether: 15% by weight)
・ Inorganic binder: Water glass

Claims (5)

火炎溶融法で製造された球状鋳物砂に、粘結剤を添加し、炭酸ガスを吹き込むことにより造型する、鋳型の製造方法。 A method for producing a mold, wherein molding is performed by adding a binder and blowing carbon dioxide gas into a spherical casting sand produced by a flame melting method. 前記球状鋳物砂100重量部に対し、前記粘結剤0.5〜2.0重量部を添加する請求項1記載の鋳型の製造方法。 The method for producing a mold according to claim 1, wherein 0.5 to 2.0 parts by weight of the binder is added to 100 parts by weight of the spherical casting sand. 粘結剤が有機系粘結剤である請求項1又は2記載の鋳型の製造方法。 The method for producing a mold according to claim 1 or 2, wherein the binder is an organic binder. 減圧造型法により造型する請求項1〜3の何れか1項記載の鋳型の製造方法。 The method for producing a mold according to any one of claims 1 to 3, wherein molding is performed by a reduced pressure molding method. 減圧造型法が吸圧造型法又はVRH造型法である請求項4記載の鋳型の製造方法。 5. The method for producing a mold according to claim 4, wherein the reduced pressure molding method is an absorption molding method or a VRH molding method.
JP2005110849A 2005-04-07 2005-04-07 Mold manufacturing method Active JP4615350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005110849A JP4615350B2 (en) 2005-04-07 2005-04-07 Mold manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110849A JP4615350B2 (en) 2005-04-07 2005-04-07 Mold manufacturing method

Publications (2)

Publication Number Publication Date
JP2006289396A true JP2006289396A (en) 2006-10-26
JP4615350B2 JP4615350B2 (en) 2011-01-19

Family

ID=37410559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110849A Active JP4615350B2 (en) 2005-04-07 2005-04-07 Mold manufacturing method

Country Status (1)

Country Link
JP (1) JP4615350B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985552A (en) * 2010-11-04 2011-03-16 哈尔滨鑫润工业有限公司 Method for removing defect of casting surface with spherical sand by sandblasting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476947B2 (en) * 1987-12-24 1992-12-07 Foseco Int
JPH0952144A (en) * 1995-08-11 1997-02-25 Kao Corp Molding method
JP2723376B2 (en) * 1991-05-16 1998-03-09 花王株式会社 Binder composition for foundry sand and method for producing mold
JP2000015389A (en) * 1998-06-29 2000-01-18 Kao Corp Binder composition for carbon dioxide curing
JP2004202577A (en) * 2002-12-09 2004-07-22 Kao Corp Spherical molding sand

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476947B2 (en) * 1987-12-24 1992-12-07 Foseco Int
JP2723376B2 (en) * 1991-05-16 1998-03-09 花王株式会社 Binder composition for foundry sand and method for producing mold
JPH0952144A (en) * 1995-08-11 1997-02-25 Kao Corp Molding method
JP2000015389A (en) * 1998-06-29 2000-01-18 Kao Corp Binder composition for carbon dioxide curing
JP2004202577A (en) * 2002-12-09 2004-07-22 Kao Corp Spherical molding sand

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985552A (en) * 2010-11-04 2011-03-16 哈尔滨鑫润工业有限公司 Method for removing defect of casting surface with spherical sand by sandblasting
CN101985552B (en) * 2010-11-04 2014-03-26 哈尔滨鑫润工业有限公司 Method for removing defect of casting surface with spherical sand by sandblasting

Also Published As

Publication number Publication date
JP4615350B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
EP1757382B1 (en) Resin coated sand
CN110267752B (en) Mold material composition and method for producing mold using same
MX2007002585A (en) Material mixture for producing casting moulds for machining metal
EP0888199B1 (en) Sleeves, their preparation, and use
KR20120123049A (en) Foundry mixes containing carbonate salts and their uses
CN106470779B (en) Molding material mixture, mold and core made therefrom, and method of making the same
JP2000176604A (en) Exothermic assembly for casting
KR20110047330A (en) Core material mixture for casting, method for manufacturing core for casting and core for casting using the same
CN108188339B (en) Precoated sand for casting with sintering resistance and low expansion performance
JP4425825B2 (en) Resin coated sand
JP4603463B2 (en) Spherical casting sand
JP2019519379A (en) Core-shell particles for use as fillers for feeder compositions
JP5600472B2 (en) Foundry sand, foundry sand composition, and casting mold obtained using the same
RU2512517C2 (en) Compositions containing certain metallocenes and use thereof
CN1929937A (en) Resin coated sand
JP4615350B2 (en) Mold manufacturing method
JPH03291124A (en) Manufacture of sand mold for casting
JP2009022980A (en) Method for manufacturing mold
WO2017086379A1 (en) Binder composition for molding mold
JP5276861B2 (en) Ceramic aggregate for mold, method for producing the same, and mold using the same
JP2008207238A (en) Casting mold
CN101856719A (en) Sealing cup refractory material for continuous casting ladle long nozzle and manufacturing method thereof
JP4364717B2 (en) Foundry sand composition
JPH08215788A (en) Binder composition for casting mold, casting mold composition and production of casting mold
JP2014208364A (en) Self-curing mold molding composition, method of manufacturing the same, and method of manufacturing mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101020

R151 Written notification of patent or utility model registration

Ref document number: 4615350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250