JP2006289377A - Titanium material hot rolling method - Google Patents

Titanium material hot rolling method Download PDF

Info

Publication number
JP2006289377A
JP2006289377A JP2005109431A JP2005109431A JP2006289377A JP 2006289377 A JP2006289377 A JP 2006289377A JP 2005109431 A JP2005109431 A JP 2005109431A JP 2005109431 A JP2005109431 A JP 2005109431A JP 2006289377 A JP2006289377 A JP 2006289377A
Authority
JP
Japan
Prior art keywords
rolling
heating
scale
pass
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005109431A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takahashi
一浩 高橋
Mitsunori Abe
光範 阿部
Naoaki Harada
尚明 原田
Kinichi Kimura
欽一 木村
Hiroki Nagahama
裕樹 永▲浜▼
Yasutaka Saruwatari
康隆 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005109431A priority Critical patent/JP2006289377A/en
Publication of JP2006289377A publication Critical patent/JP2006289377A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium material hot rolling method by which flaws caused by the hot rolling, in particular, sticking flaw can be reduced. <P>SOLUTION: The titanium material hot rolling method is characterized in that when heated titanium material is hot-rolled, the first pass rolling is performed at a temperature of ≥ 750°C and a draft of > 8% without performing descaling before the rolling is started after the heating, then the heated titanium material is hot-rolled in a predetermined shape. Heated scale is uniformly depressed into the surface after the one pass rolling, and pressed into a base titanium. The adhesibility of heated scale is therefore increased, and the finely divided heated scales continuously remain in the surface even when the subsequent rolling is advanced, the sticking of a work to a rolling roll is suppressed and the flaw during the hot rolling can be reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、チタン材の熱間圧延方法に関し、特に、被圧延材とロールとの焼き付きに起因する熱間圧延疵を低減することのできるチタン材の熱間圧延方法に関する。   The present invention relates to a method for hot rolling of a titanium material, and more particularly to a method for hot rolling of a titanium material that can reduce hot rolling wrinkles caused by seizure between a material to be rolled and a roll.

チタン材を熱間圧延する場合、一般的には工業用純チタンで700〜900℃、更に熱間変形抵抗の高いチタン合金で1000℃以上まで加熱される。一方、チタンは大気などの酸化雰囲気中に700〜1000℃以上の高温で曝されると、高温酸化によって、その表面にはスケールとその下部にαケースと呼ばれる酸素が富化した層が形成され、温度が高いほど時間が長いほどスケールとαケースが成長することが知られている。このチタンのスケールは、熱間圧延後の被圧延材表面の肌荒れや疵などの欠陥(総称して、以降、スケール疵と呼ぶ)に発展する場合があるという観点から、従来、チタン材のスケール疵を低減するために、熱間圧延・加熱時の高温酸化を抑制する方法として、比較的低温である500〜800℃で加熱する方法(例えば、特許文献1参照。)、雰囲気の酸素分圧を0.02atm以下にする方法(例えば、特許文献2参照。)、箱内にチタン材を密閉し大気と遮断する方法(例えば、特許文献3参照。)、雰囲気をアルゴンや窒素ガスにする方法(例えば、特許文献4参照。)、酸化防止剤を被圧延材に塗布する方法(例えば、特許文献5参照。)等が開示されてきた。   When a titanium material is hot-rolled, it is generally heated to 700 to 900 ° C. with pure titanium for industrial use, and further to 1000 ° C. or more with a titanium alloy having a high hot deformation resistance. On the other hand, when titanium is exposed to an oxidizing atmosphere such as air at a high temperature of 700 to 1000 ° C. or higher, high-temperature oxidation forms a scale and an oxygen-enriched layer called α-case on the surface of the surface. It is known that the scale and α-case grow as the temperature increases and the time increases. From the viewpoint that this titanium scale may develop into defects such as rough skin and wrinkles on the surface of the material to be rolled after hot rolling (collectively, hereinafter referred to as scale wrinkles), the titanium scale has been conventionally used. In order to reduce soot, as a method of suppressing high temperature oxidation during hot rolling / heating, a method of heating at a relatively low temperature of 500 to 800 ° C. (see, for example, Patent Document 1), an oxygen partial pressure of the atmosphere Of 0.02 atm or less (for example, see Patent Document 2), a method of sealing a titanium material in a box and shutting it off from the atmosphere (for example, see Patent Document 3), a method of making the atmosphere argon or nitrogen gas (For example, refer patent document 4.), the method (for example, refer patent document 5) etc. which apply | coat antioxidant to a to-be-rolled material have been disclosed.

また、鉄鋼の熱間圧延では、高圧水によるデスケール、あるいはスラブの幅方向に圧下を加えたりして加圧した後に、流体を吹き付けたり、ブラッシング工程を実施するなどして熱間圧延時にスケールを除去する方法がある(例えば、特許文献6、特許文献7参照。)。   In hot rolling of steel, the scale is reduced during hot rolling by de-scaling with high-pressure water or pressurizing by pressing down in the width direction of the slab and then spraying fluid or performing a brushing process. There is a method of removing (see, for example, Patent Document 6 and Patent Document 7).

Cr含有量11質量%以上のステンレス鋼にて、加熱後に幅圧下などでデスケールした後、被圧延材表面のスケールが剥離した部分にスケールを再生成させた後に、次パスの圧延を実施することによって、圧延ロールとの焼き付きによる表面疵(総称して、以降、焼き付き疵と呼ぶ)を低減する方法がある(例えば、特許文献8参照。)。   In stainless steel with a Cr content of 11% by mass or more, after being descaled after heating under a width reduction, etc., after the scale is regenerated in the part where the scale is peeled off, the next pass rolling is performed. There is a method of reducing surface wrinkles due to seizure with a rolling roll (collectively, hereinafter referred to as seizure flaws) (see, for example, Patent Document 8).

特開昭64−005606号公報JP-A 64-005606 特開昭61−108407号公報JP 61-108407 A 特開昭61−270361号公報Japanese Patent Laid-Open No. 61-270361 特開平06−170410号公報Japanese Patent Laid-Open No. 06-170410 特開昭61−133054号公報JP-A-61-133054 特開平05−057331号公報JP 05-057331 A 特開平05−277543号公報JP 05-277543 A 特開昭60−170503号広報JP-A-60-170503

上述のようにチタン材の熱間圧延時に生じるスケール疵を低減するために、加熱スケールの発生を抑制する方法は、その一方で加熱スケールが薄いために熱間圧延時に圧延ロールと金属チタンが容易に接触し、焼き付き疵が発生する場合がある。また、鉄鋼の熱間圧延で実施されている圧延前(特に厚み方向の圧延前)の高圧水デスケーリングや幅方向の圧下によって、加熱されたチタン表面の加熱スケールは除去されてしまい上記同様に焼き付き疵が発生する場合がある。   As described above, in order to reduce the scale wrinkling that occurs during the hot rolling of titanium material, the method of suppressing the generation of the heating scale is easy on the rolling roll and metal titanium during the hot rolling because the heating scale is thin. May cause seizure defects. In addition, due to high-pressure water descaling and rolling in the width direction before rolling (particularly before rolling in the thickness direction), which is performed by hot rolling of steel, the heating scale on the heated titanium surface is removed in the same manner as described above. Burn-in defects may occur.

一般的な工業生産に供される圧延工場では、被圧延材は、加熱炉から抽出され、搬送ロールで搬送されて、圧延機で圧延される。チタンの熱間圧延では、チタンが鉄鋼に比べ熱伝導率が低いために、搬送ロールとの接触によって表層部が冷却されてスケールが脆くなり、さらに搬送ロールとのスリップや衝撃によって、加熱スケールが部分的に剥離する。そのため、その後の熱間圧延時にスケールが剥離した部分で焼き付き疵が生じる場合がある。   In a rolling mill used for general industrial production, a material to be rolled is extracted from a heating furnace, conveyed by a conveying roll, and rolled by a rolling mill. In the hot rolling of titanium, the thermal conductivity of titanium is lower than that of steel, so the surface layer is cooled by contact with the transport roll and the scale becomes brittle. Partially peel off. For this reason, seizure flaws may occur at the portion where the scale is peeled off during subsequent hot rolling.

これに対して、焼き付き疵を抑制するために、チタンの熱間圧延でも、上述のステンレス鋼のように加熱後にデスケールした後、圧延前に高温保持してスケールを再生成させる方法が考えられる。しかしながら、加熱時に形成される加熱スケールの厚みを鉄鋼とチタンとで比較すると、鉄鋼では0.5〜3mm(500〜3000μm)程度であるのに対して、チタンでは数10μmのオーダーであり、両者間では約10〜100倍もの差があり、チタンはスケールの成長が鉄鋼よりも非常に遅いことがわかる。そのため、チタンでは熱間圧延の途中でスケールを再生させるためには、高温保持に鉄鋼の約10〜100倍の時間を要してしまい、効率が決して良くない。   On the other hand, in order to suppress seizure flaws, even in the hot rolling of titanium, after descaled after heating like the above-mentioned stainless steel, a method of maintaining the temperature at a high temperature before rolling to regenerate the scale can be considered. However, when the thickness of the heating scale formed during heating is compared between steel and titanium, it is about 0.5 to 3 mm (500 to 3000 μm) for steel, whereas it is on the order of several tens of μm for titanium. There is a difference of about 10 to 100 times between them, and it can be seen that the scale growth of titanium is much slower than that of steel. For this reason, in order to regenerate the scale in the middle of hot rolling with titanium, it takes about 10 to 100 times as long as steel to maintain the high temperature, and the efficiency is never good.

そこで、本発明は、チタン材の熱間圧延において、熱間圧延による疵、特に、焼き付き疵を低減することのできるチタン材の熱間圧延方法を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a method for hot rolling a titanium material that can reduce hot rolling, particularly seizure, in hot rolling of a titanium material.

上記課題を解決するための本発明の要旨は、以下のとおりである。
(1)加熱したチタン材の熱間圧延に際し、加熱後、圧延開始までにデスケールすることなく、1パス目の圧延を、温度750℃以上、圧下率8%超で行い、その後、所定の形状に圧延することを特徴とする、チタン材の熱間圧延方法。
The gist of the present invention for solving the above problems is as follows.
(1) During the hot rolling of the heated titanium material, after the heating, the first pass rolling is performed at a temperature of 750 ° C. or more and a reduction ratio of more than 8% without being descaled until the start of rolling. A method for hot rolling of a titanium material, characterized in that the rolling is performed in the following manner.

なお、ここでチタンとは、工業用純チタン、α型チタン合金、α+β型チタン合金、β型チタン合金をはじめとする、チタンを主な構成元素とする金属である。また、ここで、デスケールとは、一般的に用いられている高圧水などの流体吹き付け、ブラッシング工程、スラブの幅方向の圧下など、加熱スケールを積極的に除去する工程のことであり、被圧延材をロールなどで搬送する工程は含まない。   Here, titanium is a metal having titanium as a main constituent element, including industrial pure titanium, α-type titanium alloy, α + β-type titanium alloy, and β-type titanium alloy. Here, descaling is a process that actively removes the heating scale, such as generally used fluid spraying such as high-pressure water, brushing process, slab width reduction, etc. It does not include the process of transporting the material with a roll or the like.

また、ここでのチタンは、その断面形状として、板状、棒線状等の任意の断面形状をとることができる。   Moreover, titanium here can take arbitrary cross-sectional shapes, such as plate shape and rod shape, as the cross-sectional shape.

本発明によって、チタン材の熱間圧延において、熱間圧延による疵、特に、焼き付き疵を有利に低減することのできる、チタン材の熱間圧延方法を提供することができるため、本発明の産業上の効果は計り知れない。   According to the present invention, in the hot rolling of a titanium material, it is possible to provide a method for hot rolling of a titanium material, which can advantageously reduce defects due to hot rolling, particularly seizure defects. The above effect is immeasurable.

本発明者らは、チタン材の熱間圧延において、圧延ロールとの焼き付きに起因した表面疵を低減する熱間圧延方法に関して鋭意研究を重ねた結果、加熱スケールを被圧延材表面に安定的に存在させることによって、圧延ロールと金属チタンとの接触が抑制されて焼き付き疵が低減されることを見出し、安定的に加熱スケールを被圧延材表面に存在させる方法として、加熱後にデスケールすることなく、750℃以上の温度で1パス目を圧下率8%超、好ましくは10%以上で圧延することが効果的であることを見出した。この方法によって、1パス圧延後の表面には加熱スケールが均一に押し込まれ母材チタンに圧着されたような状態となり、加熱スケールの密着性が高まり、以降圧延が進行しても細かく分断された加熱スケールは表面に残存し続けて圧延ロールと被圧延材の焼き付きを抑制し、その結果、焼き付き疵が低減される。   In the hot rolling of titanium material, the present inventors have conducted extensive research on a hot rolling method for reducing surface flaws caused by seizure with a rolling roll. As a result, the heating scale is stably applied to the surface of the material to be rolled. By making it exist, it is found that the contact between the rolling roll and the metal titanium is suppressed and seizure defects are reduced, and as a method of stably presenting the heating scale on the surface of the material to be rolled, without descale after heating, It has been found that it is effective to perform rolling at a temperature of 750 ° C. or higher at the first pass at a rolling reduction of more than 8%, preferably 10% or more. By this method, the heating scale is uniformly pushed into the surface after one-pass rolling, and it is in a state where it is pressure-bonded to the base material titanium, the adhesion of the heating scale is increased, and it is finely divided even if the rolling proceeds thereafter. The heating scale remains on the surface and suppresses the seizure of the rolling roll and the material to be rolled, and as a result, seizure flaws are reduced.

図1に、加熱後の1パス目の圧下率と1パス圧延後の加熱スケール残存率の関係(下記、工程1にて評価)、さらに以降熱間圧延を継続した板を用いて冷間圧延した場合の疵頻度(下記、工程2にて評価)との関係を示す。なお、用いたチタン材は工業用純チタンJIS1種である。
[工程1]:(1)厚み60mmのスラブを850℃4時間加熱→(2)加熱炉抽出→(3)800℃にて種々の圧下率で1パス圧延→(4)被圧延材の加熱スケール残存率を評価
[工程2]:(1)厚み60mmのスラブを850℃4時間加熱→(2)加熱炉抽出→(3)800℃にて種々圧下率で1パス圧延→(4)さらに熱間圧延を継続し厚み約4mmまで圧延→(5)ショットブラスト、硝フッ酸酸洗(厚みで約50μm溶削)にてデスケール→(6)厚み2mmまで冷間圧延→(7)疵頻度を評価
FIG. 1 shows the relationship between the rolling reduction ratio of the first pass after heating and the heating scale remaining ratio after the first pass rolling (evaluation in the following step 1), and further cold rolling using a plate that has continued hot rolling thereafter. The relationship with the frequency of wrinkles (evaluated in the following, step 2) is shown. In addition, the used titanium material is industrial pure titanium JIS1 type.
[Step 1]: (1) Heating a 60 mm thick slab at 850 ° C. for 4 hours → (2) Heating furnace extraction → (3) One pass rolling at various reduction ratios at 800 ° C. → (4) Heating of the material to be rolled Evaluation of scale residual ratio [Step 2]: (1) Heating 60 mm thick slab at 850 ° C. for 4 hours → (2) Heating furnace extraction → (3) One pass rolling at various reduction ratios at 800 ° C. → (4) Continues hot rolling and rolls to a thickness of about 4 mm → (5) Shot blasting, nitric hydrofluoric acid pickling (about 50 μm thickness cutting) → (6) Cold rolling to a thickness of 2 mm → (7) 疵 frequency Evaluate

ここで、スラブは、表面を機械加工によって平滑に仕上げており、8個の各チャンファーは全て1mm面取り手入れしたものを用いた。工程1の加熱スケール残存率は、圧延後の表面を幅方向に3等分、長さ方向に10等分した合計30箇所を、目視で観察して加熱スケールが残存している箇所数を数え、そのパーセンテージで評価した。なお、加熱スケールの残存は色で判別することができ、加熱スケールが残存している箇所は加熱スケールである酸化チタンの白っぽい色をしており、加熱スケールが残存していない箇所は暗い灰色をしている。工程2の疵頻度は、冷間圧延後の板を長さ方向に30等分し、その30箇所のうち疵があった箇所数を数え、パーセンテージで評価した。疵の有無は、まず目視で観察し、続いて軍手が表面に引っかかる箇所を再度目視で観察して判断した。   Here, the surface of the slab was smoothed by machining, and each of the eight chamfers was prepared by chamfering 1 mm. The heating scale remaining rate in step 1 was obtained by visually observing a total of 30 locations obtained by dividing the rolled surface into 3 equal parts in the width direction and 10 equal parts in the length direction, and counting the number of places where the heat scale remained. And evaluated as a percentage. The remaining heating scale can be identified by the color, the portion where the heating scale remains is the whitish color of titanium oxide, which is the heating scale, and the portion where the heating scale does not remain is dark gray. is doing. The wrinkle frequency in step 2 was evaluated by a percentage by dividing the cold-rolled plate into 30 equal parts in the length direction, counting the number of wrinkles in the 30 places. The presence or absence of a heel was first determined by visual observation, and then visually observed again where the work gloves were caught on the surface.

ショットブラスト、酸洗ままの表面肌は荒れており小さな疵を見落とす可能性がある。冷間圧延を施すことによって、表面は平滑になり疵も長さ方向に伸びることから疵の観察が容易になることから、冷間圧延後に疵の評価を実施した。すなわち、観察方法として冷間圧延後の疵を評価しているが、ここでの評価は、熱間圧延による疵、つまり熱間圧延ままの表面を評価していることと同等となる。   Shot blasted and pickled surface skin is rough and may overlook small wrinkles. By performing cold rolling, the surface becomes smooth and the wrinkles extend in the length direction, so that wrinkles can be easily observed. Therefore, wrinkles were evaluated after cold rolling. That is, although the wrinkle after cold rolling is evaluated as an observation method, evaluation here is equivalent to evaluating the wrinkle by hot rolling, that is, the surface as hot rolled.

図1より、上述したように加熱スケールの残存率と冷間圧延後の疵頻度が呼応しており、加熱後の1パス目の圧下率が8%超の場合に、加熱スケール残存率が50%以上と高まり疵頻度が20%以下と低くなる。さらに1パス目の圧下率が10%以上の場合には、加熱スケール残存率が70%以上と高まり疵頻度が10%以下と低くなる。さらに好ましくは、1パス目の圧下率が20%以上になると疵頻度が10%未満に安定する。   From FIG. 1, as described above, the remaining ratio of the heating scale corresponds to the drought frequency after cold rolling, and the heating scale remaining ratio is 50% when the rolling reduction ratio of the first pass after heating exceeds 8%. % And the frequency of wrinkles decreases to 20% or less. Further, when the rolling reduction ratio in the first pass is 10% or more, the heating scale remaining rate is increased to 70% or more and the wrinkle frequency is reduced to 10% or less. More preferably, when the rolling reduction of the first pass is 20% or more, the wrinkle frequency is stabilized to less than 10%.

図2に、1パス目の被圧延材の温度と加熱スケール残存率の関係(下記、工程3にて評価)、さらに以降熱間圧延を継続した板を用いて冷間圧延した場合の疵頻度(下記、工程4にて評価)との関係を示す。なお、いずれもスラブ裏面側の評価結果である。ここで、用いたスラブの表面と形状、加熱スケール残存率の評価、疵頻度の評価は、上述と同じである。
[工程3]:(1)厚み60mmのスラブを850℃4時間加熱→(2)加熱炉抽出→(3)スラブの表面が種々の温度になるまで搬送ロール上を繰り返し移動→(4)圧下率20%で1パス圧延→(5)被圧延材裏面の加熱スケール残存率を評価
[工程4]:(1)厚み60mmのスラブを850℃4時間加熱→(2)加熱炉抽出→(3)スラブの表面が種々の温度になるまで搬送ロール上を繰り返し移動→(4)圧下率20%で1パス圧延→(5)さらに熱間圧延を継続し厚み約4mmまで圧延→(6)ショットブラスト、硝フッ酸酸洗(厚みで約50μm溶削)にてデスケール→(7)厚み2mmまで冷間圧延→(8)板裏面の疵頻度を評価
FIG. 2 shows the relationship between the temperature of the material to be rolled in the first pass and the heating scale remaining rate (evaluated in Step 3 below), and the frequency of drought when cold rolling is performed using a plate that has been hot-rolled thereafter. (Evaluation in step 4 below). In addition, all are the evaluation results on the back side of the slab. Here, the surface and shape of the slab used, the evaluation of the heating scale remaining rate, and the evaluation of the wrinkle frequency are the same as described above.
[Step 3]: (1) Heating a slab having a thickness of 60 mm for 4 hours at 850 ° C. → (2) Extraction in a heating furnace → (3) Repetitively moving on a transport roll until the surface of the slab reaches various temperatures → (4) Reduction 1 pass rolling at a rate of 20% → (5) Evaluate the heating scale remaining rate on the back side of the material to be rolled [Step 4]: (1) Heat a 60 mm thick slab at 850 ° C. for 4 hours → (2) Extraction from the heating furnace → (3 ) Repeated movement on the transport roll until the surface of the slab reaches various temperatures → (4) One pass rolling with a rolling reduction of 20% → (5) Continued hot rolling and rolled to a thickness of about 4 mm → (6) Shot Descaling by blasting and nitric acid hydrofluoric acid pickling (about 50μm thickness cutting) → (7) Cold rolling to thickness 2mm → (8) Evaluation of the frequency of wrinkles on the back of the plate

図2より、スラブ搬送時の加熱スケールの剥離がその温度と関係していることがわかる。温度が750℃以上と高い場合には加熱スケール残存率は60%以上で疵頻度は10%以下に安定しているが、700℃以下と温度が低くなると加熱スケール残存率は20%以下に低下し疵頻度は40%を超えてしまう。したがって、加熱後、750℃以上の温度で1パス目の圧延を実施することが必要である。この結果は、温度が低下しながらロール上を搬送されると裏面側の加熱スケールは搬送中に剥離が進み落下してしまうためと考えられる。   FIG. 2 shows that the peeling of the heating scale during slab conveyance is related to the temperature. When the temperature is as high as 750 ° C. or higher, the heating scale remaining rate is 60% or more and the soot frequency is stable to 10% or less, but when the temperature is lowered to 700 ° C. or lower, the heating scale remaining rate decreases to 20% or less. The wrinkle frequency exceeds 40%. Therefore, it is necessary to carry out the first pass rolling at a temperature of 750 ° C. or higher after heating. This result is considered to be because when the surface of the roll is transported while the temperature is lowered, the heating scale on the back surface side is peeled off during transportation.

また、1パス目の圧延前に、高圧水を吹き付けてデスケールを実施した場合、また、スラブを幅方向に5%圧下した場合、これらのデスケール工程によって加熱スケールは除去されてしまい、その後に厚み方向に圧下率20%で圧延しても加熱スケール残存率は7%以下と低く、それに伴って疵頻度も60%と高い結果であった。   In addition, when the descaling is performed by spraying high-pressure water before rolling in the first pass, or when the slab is reduced by 5% in the width direction, the heating scale is removed by these descaling steps, and the thickness is increased thereafter. Even when rolling was performed at a rolling reduction of 20% in the direction, the heating scale remaining rate was as low as 7% or less, and accordingly, the wrinkle frequency was as high as 60%.

チタン合金においても上記と同様の効果が得られる。   The same effects as described above can be obtained with a titanium alloy.

以上のことから、熱間圧延時の焼き付き疵の低減を目的に、加熱スケールが残存した状態で1パス目の圧延を実施するために、本発明では、加熱したチタン材をデスケールすることなく、加えて搬送中加熱スケールの剥離を抑えるため1パス目の被圧延材温度を750℃以上とした。且つ本発明では、チタン材を、1パス目に圧下率8%超で圧延し、その後に所定の形状に圧延することとした。なお、より安定して焼き付き疵を低減できることから圧下率を10%以上とするのがこのましく、さらに焼き付き疵を低減する必要がある場合には、圧下率20%以上とするのがさらに好ましい。   From the above, in order to carry out the first pass rolling with the heating scale remaining for the purpose of reducing seizure flaws during hot rolling, in the present invention, without descaling the heated titanium material, In addition, in order to suppress peeling of the heating scale during conveyance, the temperature of the material to be rolled in the first pass was set to 750 ° C. or higher. In the present invention, the titanium material is rolled at a reduction ratio of more than 8% in the first pass, and then rolled into a predetermined shape. Note that the reduction rate is preferably 10% or more because the seizure defects can be more stably reduced, and when the reduction rate is further required, the reduction ratio is more preferably 20% or more. .

本発明では1パス目で加熱スケールが被圧延材表面に圧着されて密着性が高まっていることから、1パス目以降に圧下率8%以下の軽い圧延や高圧水などによるデスケール、スラブ幅方向の圧下を加えても、加熱スケールは被圧延材表面に安定して残存しており焼き付き疵を低減する効果に変わりはない。   In the present invention, since the heating scale is pressure-bonded to the surface of the material to be rolled in the first pass and the adhesion is increased, the descaling by the light rolling or the high-pressure water with a reduction rate of 8% or less after the first pass, the slab width direction Even if this reduction is applied, the heating scale remains stably on the surface of the material to be rolled, and the effect of reducing seizure flaws remains unchanged.

本発明を、以下の実施例を用いて更に詳細に説明する。   The invention is explained in more detail using the following examples.

まず、表1に、板を熱間圧延した際の、加熱条件、抽出後のデスケール条件、1パス目の圧延温度、圧延スケジュール(各パスの圧下率)、1パス後の加熱スケール残存率、冷間圧延後の疵頻度を示す。なお、素材となるスラブは、厚み60mm、幅120mm、長さ150mmの同一形状で、工業用純チタンJIS1種、JIS4種、α+β型チタン合金であるJIS61種(Ti−3Al−2.5V)、β型チタン合金であるTi−15V−3Cr−3Sn−3Alの4種類を用いた。スラブは、表面を機械加工によって平滑に仕上げており、8個の各チャンファーは全て1mm面取り手入れしたものを用いた。加熱雰囲気は全て大気で、抽出後スラブが表1の1パス目の圧延温度になるまでスラブは搬送ロール上を繰り返し移動させながら待機させた。圧延は水平ロールでスラブを厚み方向に圧下し、厚み4mmの熱間圧延板にした。   First, in Table 1, the heating conditions when the plate is hot-rolled, the descaling conditions after extraction, the rolling temperature in the first pass, the rolling schedule (the reduction rate of each pass), the heating scale remaining rate after one pass, The frequency of wrinkles after cold rolling is shown. In addition, the slab used as a raw material has the same shape with a thickness of 60 mm, a width of 120 mm, and a length of 150 mm, and industrial pure titanium JIS type 1, JIS type 4, JIS 61 type (Ti-3Al-2.5V) which is an α + β type titanium alloy, Four types of Ti-15V-3Cr-3Sn-3Al, which are β-type titanium alloys, were used. The slab had a smooth surface finished by machining, and each of the eight chamfers was a 1 mm chamfered one. The heating atmosphere was all air, and the slab was kept on standby while repeatedly moving on the transport roll until the slab reached the rolling temperature in the first pass of Table 1 after extraction. In rolling, the slab was reduced in the thickness direction with a horizontal roll to obtain a hot rolled plate having a thickness of 4 mm.

Figure 2006289377
Figure 2006289377

表1の1パス後の加熱スケール残存率は、1パスで圧延をやめた試料を作り、その試料の表面を目視にて観察して加熱スケールの残存状態を評価したものである。熱間圧延疵の評価は、表1の圧延スケジュールで熱間圧延した後、ショットブラスト、硝フッ酸酸洗にて厚みで約50μm溶削してデスケールした後、厚み2mmまで冷間圧延した板を用いて、表面の疵頻度を評価した。なお、加熱スケール残存率と冷間圧延後の疵頻度の評価方法は上述と同じである。   The heating scale remaining rate after one pass in Table 1 is a sample in which rolling was stopped in one pass, and the surface of the sample was visually observed to evaluate the remaining state of the heating scale. Evaluation of the hot rolling mill was performed by hot rolling according to the rolling schedule shown in Table 1, then shot blasting and scouring with nitric hydrofluoric acid pickled to a thickness of about 50 μm, descaling, and then cold rolling to a thickness of 2 mm Was used to evaluate the wrinkle frequency on the surface. In addition, the evaluation method of the heating scale residual rate and the wrinkle frequency after cold rolling is the same as the above-mentioned.

表1の工業用純チタンJIS1種とJIS4種において、比較例であるNo.A1,A2,A3,A11,A18は1パス目の圧下率が本発明の範囲外である8%以下であるため、またNo.A15,A16は加熱抽出後に搬送ロール上を移動させながら待機した後の1パス目の圧延温度(以降、1パス目の圧延温度)が本発明の範囲外である750℃未満であるため、加熱スケール残存率が20%以下と低く、それに伴って冷間圧延後の疵頻度も40%以上と高い。これに対して、加熱温度が850℃の実施例No.A4,A5,A6,A7,A8,A9,A10,A17,A19,A20、また800℃の実施例No.A12、A13,A14は、1パス目の圧下率が8%超の9〜40%で且つ1パス目の圧延温度が750℃以上の750〜800℃と本発明の範囲内にあり、加熱スケール残存率が50%以上と高く、冷間圧延後の疵頻度も20%以下と低い。   In industrial pure titanium JIS type 1 and JIS type 4 in Table 1, No. 1 which is a comparative example. A1, A2, A3, A11, and A18 have a rolling reduction ratio of the first pass of 8% or less, which is outside the scope of the present invention. A15 and A16 are heating because the first-pass rolling temperature (hereinafter referred to as the first-pass rolling temperature) after waiting while moving on the transport roll after heat extraction is less than 750 ° C., which is outside the scope of the present invention. The scale remaining rate is as low as 20% or less, and accordingly, the frequency of wrinkles after cold rolling is as high as 40% or more. On the other hand, Example No. whose heating temperature is 850 ° C. A4, A5, A6, A7, A8, A9, A10, A17, A19, A20, and Example No. A12, A13, and A14 are within the range of the present invention, in which the rolling reduction in the first pass is 9 to 40%, which exceeds 8%, and the rolling temperature in the first pass is 750 to 800 ° C., which is 750 ° C. or higher. The residual rate is as high as 50% or more, and the frequency of wrinkling after cold rolling is as low as 20% or less.

そのなかでも、1パス目の圧下率を10%以上とする実施例No.A5,A6,A7,A8,A9,A10,A13,A14,A17,A19,A20は、加熱スケール残存率が63%以上で、冷間圧延後の疵頻度も10%以下とさらに低いことがわかる。また、実施例No.A7,A8では1パス目に各々圧下率20%と30%の圧延を実施しているため、2パス目に圧下率5%と軽い圧延を実施しても加熱スケールが密着したまま残存することから、同様の効果が得られている。   Among them, Example No. 1 in which the rolling reduction of the first pass is 10% or more. As for A5, A6, A7, A8, A9, A10, A13, A14, A17, A19, A20, it can be seen that the residual ratio of the heating scale is 63% or more and the wrinkle frequency after cold rolling is further lower, 10% or less. . In addition, Example No. In A7 and A8, rolling is performed at 20% and 30% reduction in the first pass, so the heating scale remains in contact even when light rolling is performed at 5% reduction in the second pass. Therefore, the same effect is obtained.

表1のチタン合金Ti−3Al−2.5VとTi−15V−3Cr−3Sn−3Alの場合も、工業用純チタンJIS1種やJIS4種と同様な効果が得られており、1パス目の圧下率が、3%と低い比較例であるNo.A21,A24と、10%と20%と高い実施例であるNo.A22,A23,A25,A26を比べると、実施例の方が加熱スケール残存率は高く冷間圧延後の疵頻度は10%以下と低い。   In the case of titanium alloys Ti-3Al-2.5V and Ti-15V-3Cr-3Sn-3Al in Table 1, the same effects as those of industrial pure titanium JIS type 1 and JIS type 4 are obtained, and the first pass reduction No. which is a comparative example having a low rate of 3%. A21, A24, No. 10 which is 10% and 20%, which is a high example. When A22, A23, A25, and A26 are compared, the heat scale remaining rate is higher in the examples, and the frequency of wrinkling after cold rolling is as low as 10% or less.

また、加熱炉抽出後に高圧水でデスケールした比較例No.A27,A28,A29は、各々工業用純チタンJIS1種、Ti−3Al−2.5V、Ti−15V−3Cr−3Sn−3Alともに加熱スケール残存率が7%以下と低く冷間圧延後の疵頻度は60%以上と高い。   In addition, Comparative Example No. descaled with high pressure water after extraction in the heating furnace. A27, A28, and A29 are industrial pure titanium JIS type 1, Ti-3Al-2.5V, Ti-15V-3Cr-3Sn-3Al, and the heating scale remaining rate is as low as 7% or less, and the frequency of defects after cold rolling. Is as high as 60% or more.

次ぎに、表2に棒線を熱間圧延した際の、加熱条件、抽出後のデスケール条件、1パス目の圧延温度、圧延スケジュール(各パスの圧下率)、1パス後の加熱スケール残存率、デスケール後の疵頻度を示す。ここで、圧下率は断面減少率で示す。なお、素材となるビレットは、直径60mm、長さ300mmの同一形状で、工業用純チタンJIS1種、JIS4種、α+β型チタン合金であるJIS61種(Ti−3Al−2.5V)、β型チタン合金であるTi−15V−3Cr−3Sn−3Alの4種類を用いた。加熱雰囲気は全て大気で、抽出後ビレットが表2の1パス目の圧延温度になるまでビレットは搬送ロール上を繰り返し移動させながら待機させた。圧延は孔型の上下ロールで圧下し、直径20mmの棒線にした。   Next, Table 2 shows the heating conditions, the descaling conditions after extraction, the rolling temperature of the first pass, the rolling schedule (the rolling reduction ratio of each pass), and the heating scale remaining rate after the first pass when the bar wire is hot rolled. The frequency of wrinkles after descaling is shown. Here, the rolling reduction is indicated by the cross-sectional reduction rate. In addition, billet used as a material has the same shape with a diameter of 60 mm and a length of 300 mm, industrial pure titanium JIS type 1, JIS type 4, JIS 61 type (Ti-3Al-2.5V) which is an α + β type titanium alloy, β type titanium. Four types of alloys, Ti-15V-3Cr-3Sn-3Al, were used. The heating atmosphere was all air, and the billet was kept on standby while repeatedly moving on the transport roll until the billet reached the rolling temperature in the first pass in Table 2. Rolling was reduced with a perforated upper and lower roll to form a bar with a diameter of 20 mm.

Figure 2006289377
Figure 2006289377

表2の加熱スケール残存率は、1パスで圧延をやめた試料を作り、その試料の表面を目視にて観察して加熱スケールの残存状態を評価した。加熱スケール残存率は、観察試料を長手方向に10等分、円周方向に3等分した計30箇所を観察し加熱スケール残存箇所数を測定しパーセンテージで示した。熱間圧延疵の評価は、表2の圧延スケジュールで熱間圧延した後、ショットブラスト、硝フッ酸酸洗にて直径で約50μm溶削して脱スケールした後、長手方向に30等分した30箇所にて疵がある箇所数を測定し、表面の疵発生頻度としてパーセンテージで示した。なお、加熱スケール残存と疵の有無の判定は、上述の板の場合と同様な方法で、加熱スケールは色で、疵は目視および軍手触手にて実施した。   For the heating scale remaining rate in Table 2, a sample in which rolling was stopped in one pass was made, and the surface of the sample was visually observed to evaluate the remaining state of the heating scale. The heating scale remaining rate was expressed as a percentage by observing a total of 30 places where the observation sample was divided into 10 equal parts in the longitudinal direction and 3 parts in the circumferential direction, and measuring the number of remaining heating scale parts. The hot rolling mill was evaluated by performing hot rolling according to the rolling schedule shown in Table 2, then removing the scale by shot blasting and nitric hydrofluoric acid pickling to remove approximately 50 μm in diameter, and then dividing into 30 equal parts in the longitudinal direction. The number of spots with wrinkles at 30 locations was measured and indicated as a percentage as the frequency of occurrence of wrinkles on the surface. The determination of the remaining heating scale and the presence or absence of wrinkles was performed by the same method as in the case of the above-described plate, and the heating scale was colored and the wrinkles were visually and manually touched.

表2の棒線にて、1パス目の圧下率が5%以下と低い比較例No.B1,B2,B10,B12,B14、1パス目の圧延温度が650℃と低いは比較例No.B8は、加熱スケール残存率が10%以下でデスケール後の疵頻度が60%以上である。これに対して、1パス目の圧下率が10%以上で且つ1パス目の圧延温度が750℃以上である本発明の実施例No.B3,B4,B5,B6,B7,B9,B11,B13,B15は、工業用純チタンJIS1種、JIS4種、Ti−3Al−2.5V,Ti−15V−3Cr−3Sn−3Alのいずれの品種においても、加熱スケール残存率が70%以上と高くデスケール後の疵頻度が10%以下と低いことがわかる。   In the bar in Table 2, the comparative example No. 1 in which the rolling reduction in the first pass is as low as 5% or less. B1, B2, B10, B12, B14, the rolling temperature of the first pass is as low as 650 ° C. B8 has a heating scale remaining rate of 10% or less and a wrinkle frequency after descaling of 60% or more. On the other hand, Example No. of the present invention in which the rolling reduction in the first pass is 10% or more and the rolling temperature in the first pass is 750 ° C. or more. B3, B4, B5, B6, B7, B9, B11, B13, B15 are industrial pure titanium JIS type 1, JIS type 4, Ti-3Al-2.5V, Ti-15V-3Cr-3Sn-3Al Also, it can be seen that the residual rate of heating scale is as high as 70% or more and the soot frequency after descaling is as low as 10% or less.

また、抽出後の高圧水でデスケールした比較例No.B16、B17,B18は、各々工業用純チタンJIS1種、Ti−3Al−2.5V、Ti−15V−3Cr−3Sn−3Alともに加熱スケール残存率が7%以下と低くデスケール後の疵頻度は57%以上と高い。   Comparative Example No. descaled with high-pressure water after extraction. B16, B17, and B18 are industrial pure titanium JIS type 1, Ti-3Al-2.5V, Ti-15V-3Cr-3Sn-3Al, and the heating scale residual rate is as low as 7% or less. % And higher.

以上のように、工業用純チタンとチタン合金の板と棒線の例を用いて本発明を説明してきたが、その他のチタン品種や形状においても同様の効果を得ることができる。   As described above, the present invention has been described using the examples of industrial pure titanium and titanium alloy plates and rods, but the same effect can be obtained in other titanium varieties and shapes.

加熱後の1パス目の圧下率と1パス圧延後の加熱スケール残存率およびさらに熱間圧延を継続した板を用いて冷間圧延した場合の疵頻度との関係を示す図である。It is a figure which shows the relationship between the rolling reduction rate of the 1st pass after heating, the heating scale residual rate after 1 pass rolling, and also the drought frequency at the time of cold rolling using the board which continued the hot rolling. 加熱抽出後に搬送ロール上で移動させながら待機させた場合の1パス目の被圧延材温度と加熱スケール残存率の関係を示す図である。It is a figure which shows the relationship between the to-be-rolled material temperature of the 1st path | pass at the time of making it wait while moving on a conveyance roll after heat extraction, and a heating scale residual rate.

Claims (1)

加熱したチタン材の熱間圧延に際し、加熱後、圧延開始までにデスケールすることなく、1パス目の圧延を、温度750℃以上、圧下率8%超で行い、その後、所定の形状に圧延することを特徴とする、チタン材の熱間圧延方法。   During the hot rolling of the heated titanium material, after the heating, the first pass rolling is performed at a temperature of 750 ° C. or more and a reduction rate of more than 8% without being descaled until the start of rolling, and then rolled into a predetermined shape. A method for hot rolling a titanium material.
JP2005109431A 2005-04-06 2005-04-06 Titanium material hot rolling method Withdrawn JP2006289377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005109431A JP2006289377A (en) 2005-04-06 2005-04-06 Titanium material hot rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005109431A JP2006289377A (en) 2005-04-06 2005-04-06 Titanium material hot rolling method

Publications (1)

Publication Number Publication Date
JP2006289377A true JP2006289377A (en) 2006-10-26

Family

ID=37410542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005109431A Withdrawn JP2006289377A (en) 2005-04-06 2005-04-06 Titanium material hot rolling method

Country Status (1)

Country Link
JP (1) JP2006289377A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200072678A (en) 2018-12-13 2020-06-23 주식회사 포스코 Titanium slab for hot-rolling and manufacturing method thereof
CN116748336A (en) * 2023-08-17 2023-09-15 成都先进金属材料产业技术研究院股份有限公司 Pure titanium flat-ball section bar and hot withdrawal and straightening process thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200072678A (en) 2018-12-13 2020-06-23 주식회사 포스코 Titanium slab for hot-rolling and manufacturing method thereof
CN116748336A (en) * 2023-08-17 2023-09-15 成都先进金属材料产业技术研究院股份有限公司 Pure titanium flat-ball section bar and hot withdrawal and straightening process thereof
CN116748336B (en) * 2023-08-17 2023-12-15 成都先进金属材料产业技术研究院股份有限公司 Pure titanium flat-ball section bar and hot withdrawal and straightening process thereof

Similar Documents

Publication Publication Date Title
JP2996245B2 (en) Martensitic stainless steel with oxide scale layer and method for producing the same
JP4853515B2 (en) Stainless steel pipe manufacturing method
JP2006289377A (en) Titanium material hot rolling method
JPWO2007138914A1 (en) Manufacturing method of seamless stainless steel pipe
EP3406361B1 (en) Titanium plate
JP4720491B2 (en) Stainless steel pipe manufacturing method
JP5064934B2 (en) Method for producing Si and Cr-containing strips with excellent scale peelability
JP4704978B2 (en) A method for producing steel with excellent scale peelability.
JP3303344B2 (en) Method for producing cold-rolled sheet of titanium or titanium alloy with few surface defects
JP4851967B2 (en) Hot rolling method for strip steel
JP3171053B2 (en) Hot rolling method of titanium slab
JP2006281285A (en) Method for hot-rolling titanium material
JP2002275666A (en) Descaling method for stainless steel strip and apparatus therefor
JP2005305519A (en) HOT-ROLLING LINE AND HOT ROLLING METHOD OF HIGH Cr STEEL USING THE SAME
CN105382699A (en) Method for removing pure nickel strip surface oxide skin
CN101844151A (en) The production equipment of stainless steel strip and discontinuous production method thereof
JP5324964B2 (en) Method for producing Cr-containing strip steel
JP4764135B2 (en) Mechanical descaling method for steel
JP2007229747A (en) Method for producing bar steel having excellent surface property
JPS6138270B2 (en)
JP5632624B2 (en) Steel bar manufacturing method
JP3374961B2 (en) Method and apparatus for removing surface oxide film from copper alloy
JP2002294477A (en) Pickling method for hot rolled steel strip superior in surface quality after pickling
WO2004103589A1 (en) Fe-Cr ALLY BILLET AND METHOD FOR PRODUCTION THEREOF
WO2006008804A1 (en) METHOD FOR HOT WORKING OF Cr-CONTAINING STEEL

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701