JP2006281285A - Method for hot-rolling titanium material - Google Patents
Method for hot-rolling titanium material Download PDFInfo
- Publication number
- JP2006281285A JP2006281285A JP2005105803A JP2005105803A JP2006281285A JP 2006281285 A JP2006281285 A JP 2006281285A JP 2005105803 A JP2005105803 A JP 2005105803A JP 2005105803 A JP2005105803 A JP 2005105803A JP 2006281285 A JP2006281285 A JP 2006281285A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- heating
- scale
- titanium
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Metal Rolling (AREA)
Abstract
Description
本発明は、チタン材の熱間圧延方法に関し、特に、熱間圧延疵を低減することのできるチタン材の熱間圧延方法に関する。 The present invention relates to a method for hot rolling a titanium material, and more particularly to a method for hot rolling a titanium material that can reduce hot rolling wrinkles.
チタン材を熱間圧延する場合、一般的には工業用純チタンで700〜900℃、更に熱間変形抵抗の高いチタン合金で1000℃以上まで加熱される。一方、チタンは、大気などの酸化雰囲気中に700〜1000℃以上の高温で曝されると、高温酸化によって、その表面にはスケールとその下部にαケースと呼ばれる酸素が富化した層が形成され、温度が高いほど時間が長いほどスケールとαケースが成長することが知られている。チタンのスケールは、高温域では鋼のスケールに比べ剥離しにくく、鋼の熱間圧延で実施されているような高圧水やスラブの幅方向圧下のいずれかまたはその双方を実施する熱間圧延時の脱スケール法(例えば、特許文献1、特許文献2参照。)では除去されにくいため、熱間圧延後の被圧延材表面の肌荒れや疵などの欠陥(総称して、以降、スケール疵と呼ぶ)に発展する場合がある。
When a titanium material is hot-rolled, it is generally heated to 700 to 900 ° C. with pure titanium for industrial use, and further to 1000 ° C. or more with a titanium alloy having a high hot deformation resistance. On the other hand, when titanium is exposed to an oxidizing atmosphere such as air at a high temperature of 700 to 1000 ° C. or higher, a high-temperature oxidation forms a scale and an oxygen-enriched layer called α-case on its surface on its surface. It is known that the scale and α-case grow as the temperature increases and the time increases. Titanium scales are less prone to delamination than steel scales at high temperatures, and during hot rolling where either or both of high-pressure water and / or slab width reduction as in hot rolling of steel is performed. Since this is difficult to remove by the descaling method (for example, refer to
これまで、チタン材のスケール疵を低減するために、加熱時や熱間圧延時の高温酸化を抑制する方法として、比較的低温である500〜800℃で加熱する方法(例えば、特許文献3参照。)、雰囲気の酸素分圧を0.02atm以下にする方法(例えば、特許文献4参照。)、箱内にチタン材を密閉し大気と遮断する方法(例えば、特許文献5参照。)、雰囲気をアルゴンや窒素ガスにする方法(例えば、特許文献6参照。)、酸化防止剤を被圧延材に塗布する方法(例えば、特許文献7参照。)等が開示されてきた。 Until now, in order to reduce the scale wrinkle of titanium material, as a method of suppressing high temperature oxidation during heating or hot rolling, a method of heating at a relatively low temperature of 500 to 800 ° C. (for example, see Patent Document 3) ), A method of setting the oxygen partial pressure of the atmosphere to 0.02 atm or less (for example, see Patent Document 4), a method of sealing a titanium material in a box and shutting it off from the atmosphere (for example, see Patent Document 5), atmosphere Has been disclosed, for example, a method of using an argon or nitrogen gas (see, for example, Patent Document 6), a method of applying an antioxidant to a material to be rolled (see, for example, Patent Document 7), and the like.
チタン材の熱間圧延時に生じるスケール疵を低減するために、加熱スケールを抑制すべく上述のように加熱雰囲気を制御する方法は、そのための加熱設備が必要である。一方、鋼は一般的に大気などの酸化雰囲気で加熱されることから、チタン用の特別な加熱設備が必要となれば、鉄鋼製造設備そのままでチタン材を熱間圧延できるといったメリットが活用できなくなる。 In order to reduce the scale wrinkles generated during the hot rolling of the titanium material, the method for controlling the heating atmosphere as described above to suppress the heating scale requires heating equipment for that purpose. On the other hand, since steel is generally heated in an oxidizing atmosphere such as the atmosphere, if special heating equipment for titanium is required, the advantage that the titanium material can be hot-rolled with the steel production equipment as it is cannot be utilized. .
また、チタン材を箱内に密封して加熱する方法は、箱内に密閉する作業、加熱後の熱間圧延前に箱内から取り出す作業と繁雑な工程が付加されてしまう。 Moreover, the method of sealing and heating a titanium material in a box adds a work of sealing in the box, a work of taking out from the box before hot rolling after heating, and a complicated process.
加熱スケールを抑制すべく加熱温度を低くする方法は、圧延温度も低くなるために変形抵抗が大きく大きなサイズの素材を圧延する際には圧延機への負荷が過大となり、一般的な熱間圧延ミルでは能力が不十分な場合がある。特に、高温での変形抵抗が大きいチタン合金では問題となる。更に、700〜800℃程度の温度域ではチタンの加熱スケールは十分に抑制することはできず熱間圧延によってスケール疵が発生する場合がある。 The method of lowering the heating temperature to suppress the heating scale is because the rolling temperature is also lowered, so when rolling a large size material with large deformation resistance, the load on the rolling mill becomes excessive, and general hot rolling The mill may have insufficient capacity. This is particularly a problem with titanium alloys having high deformation resistance at high temperatures. Furthermore, in the temperature range of about 700 to 800 ° C., the heating scale of titanium cannot be sufficiently suppressed, and scale wrinkles may occur due to hot rolling.
そこで、本発明は、チタン材の熱間圧延において、加熱スケールを抑制するために雰囲気を制御できる加熱設備を用いることなく、且つ熱間変形抵抗が過大となる低温域で加熱することもなく、一般的な鉄鋼製造設備で実施可能なスケール疵を低減することのできる、チタン材の熱間圧延方法を提供することを目的とするものである。 Therefore, the present invention, in hot rolling of titanium material, without using a heating facility that can control the atmosphere to suppress the heating scale, and without heating in a low temperature region where the hot deformation resistance is excessive, An object of the present invention is to provide a method for hot rolling titanium material, which can reduce scale wrinkles that can be carried out in a general steel production facility.
上記課題を解決するために本発明の要旨は、以下のとおりである。
(1)加熱したチタン材の熱間圧延に際し、加熱後、最初の圧延パスとして、圧下率8%以下で圧延ロール下を通材することにより表面スケールを剥離、粉砕する工程と、さらに、該圧延パス後に、水流や気流のいずれかまたは水と気体の混合流体を被圧延材に吹き付けて、前記剥離、粉砕した表面スケールを除去する工程とからなるスケール除去工程を配し、その後、所定のサイズに圧延することを特徴とする、チタン材の熱間圧延方法。
(2)前記加熱後に、前記スケール除去工程を複数回繰り返すことを特徴とする、上記(1)に記載のチタン材の熱間圧延方法。
(3)さらに、前記表面スケールを剥離、粉砕する圧延パス中も、水流や気流のいずれかまたは水と気体の混合流体を被圧延材に吹き付けて、剥離、粉砕した表面スケールを除去することを特徴とする、上記(1)または(2)に記載のチタン材の熱間圧延方法。
In order to solve the above problems, the gist of the present invention is as follows.
(1) Upon hot rolling of the heated titanium material, after heating, as a first rolling pass, a step of peeling and pulverizing the surface scale by passing under a rolling roll at a rolling reduction rate of 8% or less; and After the rolling pass, either a water stream or an air flow or a mixed fluid of water and gas is sprayed on the material to be rolled, and a scale removing step is arranged which includes a step of removing the peeled and crushed surface scale, A method of hot rolling a titanium material, characterized by rolling to a size.
(2) The hot rolling method for a titanium material according to (1), wherein the scale removing step is repeated a plurality of times after the heating.
(3) Further, during the rolling pass for peeling and crushing the surface scale, either the water stream or the airflow or the mixed fluid of water and gas is sprayed on the material to be rolled to remove the peeled and crushed surface scale. The method for hot rolling a titanium material as described in (1) or (2) above.
なお、ここでチタンとは、工業用純チタン、α型チタン合金、α+β型チタン合金、β型チタン合金をはじめとする、チタンを主な構成元素とする金属である。 Here, titanium is a metal having titanium as a main constituent element, including industrial pure titanium, α-type titanium alloy, α + β-type titanium alloy, and β-type titanium alloy.
また、ここでのチタンは、その断面形状として、板状、棒線状等の任意の断面形状をとることができる。 Moreover, titanium here can take arbitrary cross-sectional shapes, such as plate shape and rod shape, as the cross-sectional shape.
本発明によって、加熱スケールを抑制するために雰囲気を制御できる加熱設備を用いることなく、且つ熱間変形抵抗が過大となる低温域で加熱することもなく、一般的な鉄鋼製造設備で実施可能なスケール疵を低減することのできる、チタン材の熱間圧延方法を提供することができるため、その産業上の効果は計り知れない。 According to the present invention, it can be carried out in a general steel production facility without using a heating facility capable of controlling the atmosphere to suppress the heating scale, and without heating in a low temperature range where the hot deformation resistance is excessive. Since it is possible to provide a hot rolling method for titanium material that can reduce scale wrinkles, the industrial effects are immeasurable.
本発明者らは、チタン材において、加熱スケールに起因するスケール疵を低減する熱間圧延方法に関して鋭意研究を重ねた結果、加熱後のチタン材を圧下率8%以下で圧延ロール下を通材することによって、通材後の表面で加熱スケールが部分的に剥離するとともに、加熱スケールは細かく粉砕されて、その後、水流や気流のいずれかまたは水と気体の混合流体を吹き付けるだけでほぼ除去できるような状態になることを見出した。一方、加熱後に圧下率8%以下の通材を加える前に圧下率8%超で通材すると、加熱スケールがチタン材表面に押し込まれてプリントされたような状態となり加熱スケールが非常に剥離しにくく、その後、水流や気流のいずれかまたは水と気体の混合流体を被圧延材に吹き付けても約70%以上は残存してしまうことを見出した。そして、はじめに圧延ロール下を通材し水流や気流のいずれかまたは水と気体の混合流体を吹き付けた後の加熱スケール残存率に応じて、以降圧延を実施した材料表面の疵発生頻度は変化しており、該加熱スケール残存率に呼応して最終圧延後の疵発生頻度が高くなる。 As a result of intensive research on a hot rolling method for reducing scale wrinkles caused by heating scales in titanium materials, the present inventors passed titanium materials after heating under a rolling roll at a reduction rate of 8% or less. As a result, the heating scale partially peels off on the surface after passing the material, and the heating scale is finely pulverized, and then can be almost removed simply by spraying either a water stream or an air current or a mixed fluid of water and gas. I found out that On the other hand, if a material with a rolling reduction of more than 8% is passed before adding a material with a rolling reduction of 8% or less after heating, the heating scale is pushed into the surface of the titanium material and printed, and the heating scale peels off very much. After that, it was found that about 70% or more remains even when either a water flow or an air flow or a mixed fluid of water and gas is sprayed on the material to be rolled. Then, depending on the heating scale remaining rate after first passing under the rolling roll and spraying either water flow or air flow or a mixed fluid of water and gas, the frequency of occurrence of wrinkles on the surface of the material on which the rolling has been performed subsequently changes. Accordingly, the frequency of occurrence of wrinkles after the final rolling increases in response to the heating scale remaining rate.
上述の加熱スケールの圧延挙動は、以下のような過程と考えられる。加熱スケールは、ロールと接触した時点で温度が低下するために脆化し僅かな応力負荷でも分断される。加熱後の圧下率が8%以下と低い場合には、圧下率が小さいために被圧延材表面の分断された加熱スケールは母材と圧着することなく圧延ロールの外に出てきて、高圧水などの水流や気流のいずれかまたは水と気体の混合流体を吹き付けるだけでほぼ除去できる。なお、流体を吹き付けないと、表面の分断された加熱スケールは次の圧延の圧下率が高い場合には押し込まれて被圧延材表面に圧着されてしまう。一方、加熱後の圧下率が8%を超えて高くなると、分断された加熱スケールはそのまま圧延ロールによって押し込まれ軟質な母材に埋まり込み圧着された状態となる。そのために、密着性が高く剥離性が低い状態の加熱スケールが残存する。 The rolling behavior of the heating scale described above is considered as the following process. When the heating scale comes into contact with the roll, the temperature is lowered, so that the heating scale becomes brittle and is divided even by a slight stress load. When the rolling reduction after heating is as low as 8% or less, since the rolling reduction is small, the heated scale divided on the surface of the material to be rolled comes out of the rolling roll without being crimped to the base material, It can be almost removed by spraying either a water stream or an air stream or a mixed fluid of water and gas. In addition, if the fluid is not sprayed, when the rolling reduction ratio of the next rolling is high, the heating scale whose surface is divided is pushed in and pressed onto the surface of the material to be rolled. On the other hand, when the rolling reduction after heating exceeds 8%, the divided heating scale is pushed in as it is by a rolling roll, and is embedded in a soft base material and pressed. Therefore, a heating scale with a high adhesion and a low peelability remains.
図1に、1パス目の圧下率(圧延ロール下を1回通材時)と1パス後に水流を吹き付けた後の加熱スケール残存率(下記、工程1にて評価)の関係およびさらに熱間圧延を継続した板を用いて冷間圧延した後の疵発生頻度(下記、工程2にて評価)との関係を示す。なお、用いたチタン材は工業用純チタンJIS1種である。
[工程1]:(1)厚み60mmのスラブを850℃、4時間加熱→(2)加熱炉抽出→(3)種々の圧下率で圧延ロール下を1回通材→(4)水流の吹き付け→(5)被圧延材の加熱スケール残存率を評価
[工程2]:(1)厚み60mmのスラブを850℃、4時間加熱→(2)加熱炉抽出→(3)種々の圧下率で圧延ロール下を1回通材し、水流吹き付け→(4)さらに、各パスの圧下率が10%以上の熱間圧延を継続し、厚み約4mmまで圧延→(5)ショットブラストおよび硝フッ酸酸洗(厚みで約50μm溶削)にて脱スケール→(6)厚み2mmまで冷間圧延→(7)疵発生頻度を評価
FIG. 1 shows the relationship between the rolling reduction ratio in the first pass (when the material passes once under the rolling roll) and the residual ratio of the heating scale after spraying the water flow after the first pass (evaluated in
[Step 1]: (1) Heating 60 mm thick slab at 850 ° C. for 4 hours → (2) Heating furnace extraction → (3) Feeding material under rolling roll at various rolling reductions once → (4) Spraying water flow → (5) Evaluate the heat scale remaining rate of the material to be rolled [Step 2]: (1) Heat 60 mm slab at 850 ° C. for 4 hours → (2) Extraction from heating furnace → (3) Roll at various reduction ratios Pass the material under the roll once and spray with water flow → (4) Furthermore, continue the hot rolling with a reduction rate of 10% or more in each pass and roll to a thickness of about 4 mm → (5) Shot blasting and nitric hydrofluoric acid Descaling by washing (approx. 50μm thickness) → (6) Cold rolling to thickness 2mm → (7) Evaluation of flaw occurrence frequency
ここで、スラブは、表面を機械加工によって平滑に仕上げており、8個の各チャンファーは全て1mm手入れしたものを用いた。工程1の加熱スケール残存率は、圧延後の表面を幅方向に3等分、長さ方向に10等分した合計30箇所を、目視で観察して加熱スケールが残存している箇所数を数え、そのパーセンテージで評価した。なお、加熱スケールの残存は色で判別することができ、加熱スケールが残存している箇所は加熱スケールである酸化チタンの白っぽい色をしており、加熱スケールが残存していない箇所は暗い灰色をしている。工程2の疵発生頻度は、冷間圧延後の板を長さ方向に30等分し、その30箇所のうち疵があった箇所数を数え、パーセンテージで評価した。疵の有無は、まず目視で観察し、続いて軍手が表面に引っかかる箇所を再度目視で観察して判断した。
Here, the surface of the slab was smoothed by machining, and each of the eight chamfers was one that was cared for 1 mm. The heating scale remaining rate in
ショットブラスト、酸洗ままの表面肌は荒れており小さな疵を見落とす可能性がある。冷間圧延を施すことによって、表面は平滑になり疵も長さ方向に伸びることから疵の観察が容易になることから、冷間圧延後に疵の評価を実施した。すなわち、観察方法として冷間圧延後に疵を評価しているが、ここでの評価は、熱間圧延による疵、つまり熱間圧延ままの表面を評価していることになる。 Shot blasted and pickled surface skin is rough and may overlook small wrinkles. By performing cold rolling, the surface becomes smooth and the wrinkles extend in the length direction, so that wrinkles can be easily observed. Therefore, wrinkles were evaluated after cold rolling. In other words, as an observation method, wrinkles are evaluated after cold rolling, but the evaluation here is evaluation of wrinkles by hot rolling, that is, hot-rolled surfaces.
図1より、上述したように加熱スケールの残存率と冷間圧延後の疵発生頻度が呼応しており、加熱後の1パス目の圧下率が8%以下の場合に、加熱スケール残存率と疵発生頻度がともに20%以下と低く、さらに圧下率が5%以下の場合にはこれらが安定して10%以下になる。 From FIG. 1, as described above, the residual ratio of the heating scale and the frequency of wrinkle generation after cold rolling correspond to each other, and when the reduction ratio of the first pass after heating is 8% or less, When the wrinkle occurrence frequency is both low, 20% or less, and when the rolling reduction is 5% or less, these are stably reduced to 10% or less.
また、図2に加熱後に圧延ロール下を2回通材した場合(2パスした場合)の圧下率と加熱スケール残存率および冷間圧延した後の疵発生頻度の関係を示す。なお、ここでも図1の場合同様に工程1、工程2のように水流の吹き付けを実施した。図1の1回通材(1パス)の場合に比べて、圧下率8%以下では加熱スケール残存率と疵発生頻度はともに10%程度以下に低下しており、さらに圧下率が5%以下になるとこれらが3%以下に安定している。したがって、圧下率8%以下で複数パス通材することによって、疵を安定して低減することができる。
Moreover, FIG. 2 shows the relationship between the rolling reduction rate when the material is passed under the rolling roll twice after heating (two passes), the heating scale residual rate, and the frequency of wrinkling after cold rolling. In this case, too, water flow was sprayed as in
チタン合金においても上記と同様の効果が得られる。なお、図1、図2に示した例では水流を吹き付けたが、気流や水と気体の混合流体を吹き付けても同様の効果が得られる。 The same effects as described above can be obtained with a titanium alloy. In addition, although the water flow was sprayed in the example shown in FIG. 1, FIG. 2, the same effect is acquired even if it sprays airflow or the mixed fluid of water and gas.
また、スラブを用いて板やストリップの熱間圧延では通常鉄鋼の場合には圧延初期に幅方向の圧下が付与されるが、本発明において鉄鋼同様に幅方向の圧下を厚み方向の圧下前あるいは後に実施しても熱間圧延疵を低減する効果は変わらないことから、本発明において幅方向の圧下を付与しても構わない。 Further, in the case of steel, hot rolling of plates and strips using slabs, in the case of steel, a reduction in the width direction is applied at the beginning of rolling, but in the present invention, the reduction in the width direction is applied before the reduction in the thickness direction or in the same manner as steel. Even if it implements later, since the effect which reduces a hot rolling wrinkle does not change, you may provide the reduction | decrease of the width direction in this invention.
本発明を、以下の実施例を用いてを更に詳細に説明する。 The invention will now be described in more detail using the following examples.
まず、表1に、板を熱間圧延した際の、加熱条件、圧延スケジュール(各パスの圧下率)、加熱スケールの残存率、冷間圧延後の疵発生頻度を示す。なお、素材となるスラブは、厚み60mm、幅120mm、長さ150mmの同一形状で、工業用純チタンJIS1種、JIS4種、α+β型チタン合金であるJIS61種(Ti−3Al−2.5V)、β型チタン合金であるTi−15V−3Cr−3Sn−3Alの4種類を用いた。スラブは、表面を機械加工によって平滑に仕上げており、8個の各チャンファーは全て1mm手入れしたものを用いた。加熱雰囲気は全て大気で、圧延は水平ロールでスラブを厚み方向に圧下し、厚み4mmの熱間圧延板にした。表1のNo.1で1パス目の圧下率を0%としているのは、スラブの厚み60mmと同一の圧延ロール間隙で通材したことを意味する。
First, Table 1 shows the heating conditions, rolling schedule (reduction rate of each pass), the remaining rate of the heating scale, and the frequency of wrinkling after cold rolling when the plate is hot-rolled. In addition, the slab used as a raw material has the same shape with a thickness of 60 mm, a width of 120 mm, and a length of 150 mm, and industrial pure
表1の加熱スケール残存率は、該欄に表記した観察パス数で圧延をやめた試料を作り、その試料の表面を目視にて観察して加熱スケールの残存状態を評価したものである。熱間圧延疵の評価は、表1の圧延スケジュールで熱間圧延した後、ショットブラスト、硝フッ酸酸洗にて厚みで約50μm溶削して脱スケールした後、厚み2mmまで冷間圧延した板を用いて、表面の疵発生頻度を評価した。なお、加熱スケール残存率と冷間圧延後の疵発生頻度の評価方法は上述と同じである。 The heating scale remaining rate in Table 1 is obtained by making a sample in which rolling was stopped with the number of observation passes described in the column, and visually observing the surface of the sample to evaluate the remaining state of the heating scale. Evaluation of the hot rolling mill was carried out by hot rolling according to the rolling schedule shown in Table 1, then shot blasting, slicing by about 50 μm in thickness with nitric hydrofluoric acid, descaling, and then cold rolling to a thickness of 2 mm. The frequency of wrinkle occurrence on the surface was evaluated using a plate. In addition, the evaluation method of the heating scale residual rate and the flaw occurrence frequency after cold rolling is the same as that described above.
表1の工業用純チタンJIS1種とJIS4種において、比較例であるNo.7,8,12,18は、1パス目の圧下率が本発明の範囲外である10%以上であるために、加熱スケール残存率が70%以上であり、それに伴って冷間圧延後の疵発生率も40%以上と高い。これに対して、加熱温度が850℃の実施例No.1,2,3,4,5,6,13,14,15,16,17、また800℃の実施例No.9,10,11は、1パス目の圧下率が0〜8%と本発明の範囲にあり、加熱スケール残存率が20%未満と低く、冷間圧延後の疵発生頻度も20%以下と低い。
In industrial pure
そのなかでも、1パス目の圧下率を5%以下とする実施例No.1,2,3,4,5,9,10,13,14,15,16,17は、加熱スケール残存率が7%以下で、冷間圧延後の疵発生頻度も10%以下とさらに低いことがわかる。 Among them, Example No. 1 in which the rolling reduction in the first pass is 5% or less. 1, 2, 3, 4, 5, 9, 10, 13, 14, 15, 16, and 17 have a heating scale residual rate of 7% or less, and the frequency of occurrence of wrinkles after cold rolling is further lower than 10%. I understand that.
流体の吹き付け条件のみが異なる実施例No.4,13,14,15の4つを比較すると、加熱スケール残存率、冷間圧延後の疵発生頻度ともにほとんど差がない。 Example No. different only in the spraying conditions of the fluid. When comparing four of 4, 13, 14, and 15, there is almost no difference in the remaining ratio of the heating scale and the frequency of occurrence of wrinkles after cold rolling.
表1のチタン合金Ti−3Al−2.5VとTi−15V−3Cr−3Sn−3Alの場合も、工業用純チタンJIS1種やJIS4種と同様な効果が得られており、1パス目に圧下率が3%あるいは5%と低い実施例でNo.19,20,22,23と、30%と高い比較例No.21,24を比べると、実施例の方が加熱スケール残存率と冷間圧延後の疵発生頻度がともに10%以下と低い。
In the case of titanium alloys Ti-3Al-2.5V and Ti-15V-3Cr-3Sn-3Al in Table 1, the same effects as those of industrial pure
また、圧下率8%以下の3%または5%で2パスあるいは3パス通材した実施例No.25,26,27,28,29,30は、1パスのみ実施した場合に比べて、加熱スケール残存率が3%以下で、冷間圧延後の疵発生頻度も3%以下とさらに低いことがわかる。その効果は、工業用純チタン、チタン合金(Ti−3Al−2.5V、Ti−15V−3Cr−3Sn−3Al)とも同様である。 Further, Example No. 2 which passed 2 or 3 passes at 3% or 5% with a rolling reduction of 8% or less. 25, 26, 27, 28, 29, and 30 have a heating scale remaining rate of 3% or less and a flaw occurrence frequency after cold rolling of 3% or less as compared with the case where only one pass is performed. Recognize. The effect is the same for industrial pure titanium and titanium alloys (Ti-3Al-2.5V, Ti-15V-3Cr-3Sn-3Al).
次ぎに、表2に棒線を熱間圧延した際の、加熱条件、圧延スケジュール(各パスの圧下率)、加熱スケールの残存率、脱スケール後の疵発生頻度を示す。ここで、圧下率は断面減少率で示す。なお、素材となるビレットは、直径60mm、長さ300mmの同一形状で、工業用純チタンJIS1種、JIS4種、α+β型チタン合金であるJIS61種(Ti−3Al−2.5V)、β型チタン合金であるTi−15V−3Cr−3Sn−3Alの4種類を用いた。加熱雰囲気は全て大気で、圧延は孔型の上下ロールで圧下し、直径20mmの棒線にした。
Next, Table 2 shows the heating conditions, rolling schedule (reduction rate of each pass), the remaining rate of the heating scale, and the frequency of wrinkling after descaling when the bar wire is hot-rolled. Here, the rolling reduction is indicated by the cross-sectional reduction rate. In addition, billet used as a material has the same shape with a diameter of 60 mm and a length of 300 mm, industrial pure
表2の加熱スケール残存率は、該欄に表記した観察パス数で圧延をやめた試料を作り、その試料の表面を目視にて観察して加熱スケールの残存状態を評価した。加熱スケール残存率は、観察試料を長手方向に10等分、円周方向に3等分した計30箇所を観察し加熱スケール残存箇所数を測定しパーセンテージで示した。熱間圧延疵の評価は、表2の圧延スケジュールで熱間圧延した後、ショットブラスト、硝フッ酸酸洗にて直径で約50μm溶削して脱スケールした後、長手方向に30等分した30箇所にて疵がある箇所数を測定し、表面の疵発生頻度としてパーセンテージで示した。なお、加熱スケールの残存と疵の有無の判定は、上述の板の場合と同様な方法で、加熱スケールは色で、疵は目視および軍手触手にて実施した。 The heating scale remaining rate in Table 2 was evaluated by evaluating the remaining state of the heating scale by making a sample in which rolling was stopped with the number of observation passes indicated in the column and visually observing the surface of the sample. The heating scale remaining rate was expressed as a percentage by observing a total of 30 places where the observation sample was divided into 10 equal parts in the longitudinal direction and 3 parts in the circumferential direction, and measuring the number of remaining heating scale parts. The hot rolling mill was evaluated by performing hot rolling according to the rolling schedule shown in Table 2, then removing the scale by shot blasting and nitric hydrofluoric acid pickling to remove approximately 50 μm in diameter, and then dividing into 30 equal parts in the longitudinal direction. The number of spots with wrinkles at 30 locations was measured and indicated as a percentage as the frequency of occurrence of wrinkles on the surface. The determination of the remaining heating scale and the presence or absence of wrinkles was carried out in the same manner as in the case of the above-mentioned plate, and the heating scale was in color and the wrinkles were visually and manually touched.
表2の棒線にて、1パス目の圧下率が10%以上と高い比較例No.37,38,40,42,44は、加熱スケール残存率が60%以上で脱スケール後の疵発生頻度が43%以上である。これに対して、1パス目あるいは1パス目と2パス目の圧下率が8%以下の本発明の実施例No.31,32,33,34,35,36,39,41,43,45,46,47は、工業用純チタンJIS1種、JIS4種、Ti−3Al−2.5V,Ti−15V−3Cr−3Sn−3Alのいずれの品種においても、加熱スケール残存率が13%以下で脱スケール後の疵発生頻度が17%以下と低いことがわかる。
In the bar in Table 2, the comparative example No. 1 in which the rolling reduction in the first pass is as high as 10% or more. 37, 38, 40, 42, and 44 have a heating scale residual rate of 60% or more and a soot generation frequency after descaling of 43% or more. On the other hand, in Example 1 of the present invention, the rolling reduction of the first pass or the first pass and the second pass is 8% or less. 31, 32, 33, 34, 35, 36, 39, 41, 43, 45, 46, 47 are industrial pure
そのなかでも、1パス目の圧下率を5%以下とする実施例No.31,32,33,34,35,39,43は、加熱スケール残存率が7%以下で、冷間圧延後の疵発生頻度も10%以下とさらに低いことがわかる。なお、流体の吹き付け条件のみが異なる実施例No.34,35を比較すると、加熱スケール残存率、脱スケール後の疵発生頻度ともに差がない。 Among them, Example No. 1 in which the rolling reduction in the first pass is 5% or less. 31, 32, 33, 34, 35, 39, and 43 have a heating scale remaining rate of 7% or less, and the occurrence frequency of wrinkles after cold rolling is 10% or less. It should be noted that Example No. 1 differs only in the fluid spraying conditions. When 34 and 35 are compared, there is no difference in the heating scale remaining rate and the occurrence frequency of wrinkles after descaling.
また、圧下率8%以下の5%で2パス通材した実施例No.45,46,47は、1パスのみ実施した場合に比べて、加熱スケール残存率が3%以下で、脱スケール後の疵発生頻度も3%以下とさらに低いことがわかる。その効果は、工業用純チタン、チタン合金(Ti−3Al−2.5V、Ti−15V−3Cr−3Sn−3Al)とも同様である。 Moreover, Example No. 2 which passed 2 passes at 5% of 8% or less rolling reduction. 45, 46 and 47 show that the heating scale remaining rate is 3% or less and the frequency of soot generation after descaling is 3% or less, compared with the case where only one pass is performed. The effect is the same for industrial pure titanium and titanium alloys (Ti-3Al-2.5V, Ti-15V-3Cr-3Sn-3Al).
以上のように、工業用純チタンとチタン合金の板と棒線の例を用いて本発明を説明してきたが、その他のチタン品種や形状においても同様の効果を得ることができる。 As described above, the present invention has been described using the examples of industrial pure titanium and titanium alloy plates and rods, but the same effect can be obtained in other titanium varieties and shapes.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005105803A JP2006281285A (en) | 2005-04-01 | 2005-04-01 | Method for hot-rolling titanium material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005105803A JP2006281285A (en) | 2005-04-01 | 2005-04-01 | Method for hot-rolling titanium material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006281285A true JP2006281285A (en) | 2006-10-19 |
Family
ID=37403720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005105803A Withdrawn JP2006281285A (en) | 2005-04-01 | 2005-04-01 | Method for hot-rolling titanium material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006281285A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107138523A (en) * | 2017-06-29 | 2017-09-08 | 西部超导材料科技股份有限公司 | A kind of TB9 titanium alloy wires bar and its milling method |
-
2005
- 2005-04-01 JP JP2005105803A patent/JP2006281285A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107138523A (en) * | 2017-06-29 | 2017-09-08 | 西部超导材料科技股份有限公司 | A kind of TB9 titanium alloy wires bar and its milling method |
CN107138523B (en) * | 2017-06-29 | 2019-07-02 | 西部超导材料科技股份有限公司 | A kind of TB9 titanium alloy wire bar and its milling method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0369795A2 (en) | Method of manufacturing seamless tube formed of titanium material | |
EP4282990A1 (en) | Duplex stainless steel pipe and method for manufacturing same | |
RU2001114993A (en) | Strip production method and rolling mill production line | |
JP6356084B2 (en) | Method for producing cold rolled rolled plate and method for producing pure titanium plate | |
JP2006281285A (en) | Method for hot-rolling titanium material | |
JP4546432B2 (en) | Hot rolling method for strip steel | |
JP5064934B2 (en) | Method for producing Si and Cr-containing strips with excellent scale peelability | |
JP4851967B2 (en) | Hot rolling method for strip steel | |
JP4546408B2 (en) | Manufacturing method of strip with excellent surface properties | |
JP2006289377A (en) | Titanium material hot rolling method | |
JP2007196250A (en) | Method for cold-rolling metallic strip | |
JP4764135B2 (en) | Mechanical descaling method for steel | |
JP5569186B2 (en) | Production line for hot rolled steel sheet and method for producing hot rolled steel sheet | |
CN101646505A (en) | Process for producing plug for use in piercing/rolling raw metallic material, process for producing metallic tube, and plug for use in piercing/rolling raw metallic material | |
JP3171053B2 (en) | Hot rolling method of titanium slab | |
JP2005305519A (en) | HOT-ROLLING LINE AND HOT ROLLING METHOD OF HIGH Cr STEEL USING THE SAME | |
JP2006206949A (en) | METHOD FOR MANUFACTURING Ni ALLOY | |
JP5632624B2 (en) | Steel bar manufacturing method | |
JPH0657388A (en) | Production of cold-rolled sheet of titanium or titanium alloy small in surface flaw | |
Hinton et al. | Key Challenges for Efficient Descaling | |
JP3252704B2 (en) | Method for producing hot-rolled steel sheet excellent in pickling properties and surface properties | |
JP5928396B2 (en) | Method for producing high carbon hot-rolled steel sheet for cold rolling | |
JP3496459B2 (en) | Rolling method of ferritic stainless steel sheet | |
JP2017200701A (en) | Manufacturing method of steel material | |
WO2006008804A1 (en) | METHOD FOR HOT WORKING OF Cr-CONTAINING STEEL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080603 |