JP2006286548A - Ion current measuring apparatus - Google Patents

Ion current measuring apparatus Download PDF

Info

Publication number
JP2006286548A
JP2006286548A JP2005108081A JP2005108081A JP2006286548A JP 2006286548 A JP2006286548 A JP 2006286548A JP 2005108081 A JP2005108081 A JP 2005108081A JP 2005108081 A JP2005108081 A JP 2005108081A JP 2006286548 A JP2006286548 A JP 2006286548A
Authority
JP
Japan
Prior art keywords
collector
electrostatic shielding
ion current
electrode plate
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005108081A
Other languages
Japanese (ja)
Other versions
JP4797158B2 (en
Inventor
Masashi Kondo
真史 近藤
Shoji Cho
照二 長
Junko Kohagura
純子 小波蔵
Tomoharu Numakura
友晴 沼倉
Masaru Tokioka
優 時岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2005108081A priority Critical patent/JP4797158B2/en
Publication of JP2006286548A publication Critical patent/JP2006286548A/en
Application granted granted Critical
Publication of JP4797158B2 publication Critical patent/JP4797158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion current measuring apparatus capable of measuring ions with energy of about several keV, suppressing an applied voltage to a small level and being miniaturized. <P>SOLUTION: A particle orbit deflection portion is formed on the side of an electrode plate between an electrode plate 2 and a collector 3, a electrostatic shield grid 5 for forming an ion capturing portion is provided on the side of the collector 3, and means for applying a positive voltage to the electrode plate 2 and a negative voltage to an electrostatic shield means 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、イオン電流計測器に関し、ミラー型開放端プラズマ閉じ込め装置に使用するイオン電流量計測器に関する。   The present invention relates to an ion current measuring device, and more particularly to an ion current measuring device used in a mirror type open-ended plasma confinement device.

経済性の高い核融合炉を考えた場合、ミラー磁場からのプラズマの端損失をもっと減少させて、閉じ込め性能をさらに良くする必要がある。この閉じ込め改善策として考え出されたのが、プラズマを電位の壁で閉じ込めるタンデム・ミラー方式である。即ち、ミラー磁場を直線的に並べ、両端のミラー部に高温高密度のプラズマを生成すると、中央ミラー部より高い正の電位が形成される。この電位の壁で中央ミラー部のプラズマを閉じ込める。この電位閉じ込めの原理は世界初のタンデム・ミラー装置ガンマ6で実証され、閉じ込め性能が改善された。   When considering an economical fusion reactor, it is necessary to further improve the confinement performance by further reducing the edge loss of the plasma from the mirror magnetic field. A tandem mirror system that confines plasma with a potential wall has been devised as a measure for improving this confinement. That is, when the mirror magnetic fields are linearly arranged and high-temperature and high-density plasma is generated in the mirror portions at both ends, a positive potential higher than that of the central mirror portion is formed. The plasma at the central mirror is confined by this potential wall. This principle of potential confinement was demonstrated in the world's first tandem mirror device, Gamma 6, and the confinement performance was improved.

タンデム・ミラー型プラズマ閉じ込め装置ガンマ10では、磁場によるプラズマ閉じ込めに加え、電子サイクロトロン加熱(ECH)によりプラズマ閉じ込め電位を形成する事で、プラズマ閉じ込め性能を著しく向上させている。最近では、ECHの径方向パワー分布を制御する事で、電位分布・径方向電場を容易に制御できるミラー装置の最大の利点を生かし、乱れた渦状のプラズマ内構造が高電位生成・強い電場シアdE(r)/drの形成によって制御される事を発明者等は世界に先駆けて示した。加えて、トカマク・ヘリカル等の異なる閉じ込め方式においても、これら電位/電場による閉じ込め効果がプラズマ向上に普遍的・本質的である事が分かってきており、電位/電場の生成物理機構・比例則の究明は、国際熱核融合実験炉を含む装置形式を超えた普遍的で緊要な解明すべき研究課題となっている。   In the tandem mirror type plasma confinement device gamma 10, in addition to plasma confinement by a magnetic field, plasma confinement potential is formed by electron cyclotron heating (ECH), thereby significantly improving the plasma confinement performance. Recently, by controlling the radial power distribution of the ECH, taking advantage of the greatest advantage of the mirror device that can easily control the potential distribution and the radial electric field, the disturbed vortex-like structure in the plasma generates high potential and strong electric field shear. The inventors have pioneered the world that it is controlled by the formation of dE (r) / dr. In addition, even in different confinement methods such as tokamak and helical, it has been found that the confinement effect by these potential / electric fields is universal and essential for plasma improvement. Research has become a universal and urgent research subject that needs to be elucidated beyond the equipment format including the International Thermonuclear Experimental Reactor.

電位生成によるイオン閉じ込め性能を厳密に評価するためには、イオン電流量を厳密に計測することができるイオン電流量計測器が必要となる。発明者等は、イオン電流量を厳密に計測できるイオン電流量計測器として二枚の平行平板構造からなり、一方に正の電圧を印加して入射電子・イオンを電場偏向することで入射電子とイオンを分離し、イオンをコレクターに捕集するようになし、かつ不整電場補正板を設置したイオン電流量計測器を提案し、入射電子等の影響を抑制した数10eVから数1000eVに亘るイオン計測を可能にした。   In order to strictly evaluate ion confinement performance due to potential generation, an ion current amount measuring device capable of strictly measuring the ion current amount is required. The inventors of the present invention have two parallel plate structures as an ion current amount measuring device capable of strictly measuring the ion current amount, and by applying a positive voltage to one of them and deflecting the incident electrons and ions in the electric field, Proposed ion current meter that separates ions, collects ions in the collector, and is equipped with an irregular electric field correction plate, and measures ions from several tens eV to several thousand eV while suppressing the influence of incident electrons, etc. Made possible.

しかしながら、このイオン電流量計測器は、その奥行きが約100mmあり、内部に計測器を複数個設置する事を目的とした計測器アレイの奥行き(50mm)を超えており、計測器アレイへの設置を行う上での小型化が求められている。   However, this ion current measuring instrument has a depth of about 100 mm and exceeds the depth (50 mm) of the measuring instrument array for the purpose of installing a plurality of measuring instruments inside. There is a demand for downsizing.

小型化を進める上では、
(1)磁力線に対し垂直になるような角度をもたせた設置を行うために計測器の奥行きが
45mm以下であること
(2)計測可能なイオンエネルギーの範囲を前述のイオン電流量計測器と同等なものとす
ること
(3)印加電圧を数kVに抑えること
が要求される。
In promoting miniaturization,
(1) The depth of the measuring instrument is 45 mm or less in order to install it at an angle that is perpendicular to the lines of magnetic force. (2) The measurable ion energy range is equivalent to the above-mentioned ion current measuring instrument. (3) It is required to suppress the applied voltage to several kV.

本発明は、かかる点に鑑み数keV程度のエネルギーを持つプラズマイオンを計測することができ、印加電圧を小さく抑え、かつ小型化が可能なイオン電流量計測器を提供することを目的とする。   An object of the present invention is to provide an ion current amount measuring device that can measure plasma ions having energy of about several keV in view of such a point, can suppress an applied voltage, and can be downsized.

本発明は、電極板とコレクターとの間に入射した入射プラズマについてのイオン電流を計測するイオン電流量計測器において、
前記電極板と前記コレクターとの空間に電極板側に粒子軌道偏向部を形成し、コレクター側にイオン捕集部を形成する静電遮蔽手段を設けたこと
を特徴とするイオン電流量計測器を提供する。
The present invention is an ion current measuring device for measuring an ion current of an incident plasma incident between an electrode plate and a collector,
An ion current amount measuring device comprising: an electrostatic shielding means for forming a particle trajectory deflecting portion on the electrode plate side in the space between the electrode plate and the collector and forming an ion collecting portion on the collector side; provide.

本発明によれば、静電遮蔽手段(例えば、静電遮蔽グリッド)を電極板とコレクターとの間に設けることによって電極板側を粒子軌道偏向部とし、コレクター側をイオン捕集部とすることができ、入射電子、二次電子の影響を抑制した正確なイオン計測を可能とした簡易構造であって、電位分布とコレクター構造を最適化する事が可能となり、小型化を可能にしたイオン電流量計測器を提供することができる。   According to the present invention, by providing an electrostatic shielding means (for example, an electrostatic shielding grid) between the electrode plate and the collector, the electrode plate side is used as the particle trajectory deflecting unit, and the collector side is used as the ion collecting unit. It is a simple structure that enables accurate ion measurement that suppresses the influence of incident electrons and secondary electrons, and it is possible to optimize the potential distribution and collector structure. A quantity measuring instrument can be provided.

本発明の実施例を説明する前に、本実施例が1つの適用例と採用されるタンデム・ミラー型装置ガンマ10(以下ガンマ10装置という。)を説明する。図1は開放端型プラズマ閉じ込め装置であるタンデム・ミラー型装置ガンマ10を示す。図1において、開放端型プラズマ閉じ込め装置であるタンデム・ミラー型装置ガンマ10は、軸上に並べたコイルにより5つのミラー磁場を発生させてプラズマを磁束管の内部に閉じ込め、両端のプラグバリア部ミラー磁場に設置された中性粒子ビームと電子のマイクロ波を入射してプラズマを加熱してサーマルバリア電位とイオン閉じ込め電位を形成することにより、磁場と電場によるプラズマ閉じ込めを実現し、プラズマ閉じ込め性能を向上させている。   Before describing an embodiment of the present invention, a tandem mirror type device gamma 10 (hereinafter referred to as a gamma 10 device) in which the present embodiment is applied as one application example will be described. FIG. 1 shows a tandem mirror device gamma 10 which is an open-ended plasma confinement device. In FIG. 1, a tandem mirror type device gamma 10 that is an open-ended plasma confinement device generates five mirror magnetic fields by coils arranged on an axis to confine plasma inside a magnetic flux tube, and plug barrier portions at both ends. Plasma confinement by magnetic field and electric field is realized by injecting neutral particle beam and electron microwave installed in mirror magnetic field and heating plasma to form thermal barrier potential and ion confinement potential. Has improved.

次に、図2を用いてタンデム・ミラー型装置ガンマ10の装置端部について説明する。
ガンマ10装置端部においては、プラズマ閉じ込めの磁場と電場を乗り越え、磁力線に沿って流出するプラズマが存在する。この端損失プラズマ中のイオンと電子を分離し、端損失イオンの電流量とエネルギー・スペクトルの時間変化を測定することにより、端損失イオン温度、イオン閉じ込め電位、プラズマ閉じ込め時間を導出し、電位によるプラズマ閉じ込め性能の評価を行うことができる。
Next, the device end of the tandem mirror type device gamma 10 will be described with reference to FIG.
At the end of the gamma 10 device, there is a plasma that overcomes the magnetic and electric fields of the plasma confinement and flows out along the magnetic field lines. By separating the ions and electrons in this edge loss plasma and measuring the time variation of the current amount and energy spectrum of the edge loss ions, the edge loss ion temperature, ion confinement potential, and plasma confinement time are derived, depending on the potential. The plasma confinement performance can be evaluated.

端損失プラズマは空間的な広がりもって流出し、プラズマの対称性はプラズマ閉じ込め評価に係るので、空間分布測定が出来るように提案の計測器をプラズマ半径方向に数個設置している。装置端部は空間的制約があるため計測器の設置スペースは奥行き5cmのダクト内である。   The edge loss plasma flows out spatially and the symmetry of the plasma is related to the plasma confinement evaluation. Therefore, several proposed measuring instruments are installed in the plasma radial direction so that the spatial distribution can be measured. Since the end of the device is spatially limited, the installation space for the measuring instrument is in a duct with a depth of 5 cm.

今回の発明に先立ち、原理実証のために設計・開発した計測器である端損失イオン電流量絶対値計測器の例を図3に基づいて説明する。この計測器には、本願発明も含めての、基本原理の一つである「外部磁場(プラズマ閉じ込め磁場)を利用した二次電子自己回収機能」が使用されている。   Prior to the present invention, an example of an end loss ion current amount absolute value measuring instrument which is a measuring instrument designed and developed for proof of principle will be described with reference to FIG. This measuring instrument uses the “secondary electron self-recovery function using an external magnetic field (plasma confinement magnetic field)” which is one of the basic principles including the present invention.

入射プラズマに対し平行に設置した電極板とコレクターの間に電場を形成し、電場によるイオンと電子の軌道偏向によりイオンのみをコレクターに入射させる。プラズマ入射口付近に生じる不整電場による低エネルギー・イオンの散乱を防ぐため、プラズマ入射口上部に不整電場補正板を設置し、数10eVの低エネルギー・イオン計測を可能にした。   An electric field is formed between an electrode plate placed in parallel to the incident plasma and the collector, and only ions are incident on the collector by orbital deflection of ions and electrons by the electric field. In order to prevent the scattering of low energy ions due to the irregular electric field generated in the vicinity of the plasma inlet, an irregular electric field correction plate is installed at the upper part of the plasma inlet, enabling low energy ion measurement of several tens of eV.

コレクターを外部磁場と平行に設置することにより、イオン入射に伴いコレクターから発生した二次電子は外部磁場によるローレンツ力により磁力線の回りを回転し、コレクターへ再回収される。この二次電子自己回収機能により、従来の検出器に設置していた二次電子リペラー・グリッドが不要となった。また、斜入射式イオン・エネルギー・スペクトル計測器は、エネルギー分析のためイオンがコレクターに入射するまでに5枚のグリッドを透過している。このため、プラズマ入射口におけるイオン電流量への換算が必要となるが、本計測器はグリッドを全く使用しないため、コレクターで計測される電流量はプラズマ入射口におけるイオン電流量に等しく、計測効率100%の測定器である。   By installing the collector in parallel with the external magnetic field, secondary electrons generated from the collector with the incidence of ions rotate around the lines of magnetic force due to the Lorentz force due to the external magnetic field and are collected again by the collector. This secondary electron self-recovery function eliminates the need for a secondary electron repeller grid that was installed in conventional detectors. In addition, the grazing incidence ion energy spectrum measuring instrument transmits five grids before the ions are incident on the collector for energy analysis. For this reason, conversion to the ion current at the plasma inlet is necessary, but since this measuring instrument does not use a grid at all, the current measured at the collector is equal to the ion current at the plasma inlet, and the measurement efficiency 100% measuring instrument.

しかしながら、数keVのエネルギーを持つイオン計測が必要なため、計測器の奥行きが8.2 cmとなり、端損失イオン計測器アレイのダクト内に設置するためには更なる小型化が必要である。   However, since ion measurement with energy of several keV is required, the depth of the measuring instrument is 8.2 cm, and further downsizing is necessary for installation in the duct of the edge loss ion measuring instrument array.

本願実施例は、電極板とコレクターとの間に入射した入射プラズマについてのイオン電流を計測するイオン電流量計測器において、
前記電極板と前記コレクターとの空間に電極板側に粒子軌道偏向部を形成し、コレクター側にイオン捕集部を形成する静電遮蔽手段を設け、
前記電極板にプラス電圧を、そして前記静電遮蔽手段にマイナス電圧を印加する手段を有して、入射イオンと平行方向の外部磁場によりコレクターから発生する二次電子を回収することを特徴とするイオン電流量計測器が構成される。
The embodiment of the present application is an ion current measuring device for measuring an ion current of an incident plasma incident between an electrode plate and a collector,
In the space between the electrode plate and the collector, a particle trajectory deflecting portion is formed on the electrode plate side, and an electrostatic shielding means for forming an ion collecting portion on the collector side is provided,
The apparatus has means for applying a positive voltage to the electrode plate and a negative voltage to the electrostatic shielding means, and collects secondary electrons generated from the collector by an external magnetic field parallel to the incident ions. An ion current meter is configured.

前記静電遮蔽手段は、前記電極板と前記コレクターとの間に設けた静電遮蔽グリッドと、該静電遮蔽グリッドを保持する箱形であって、イオンのコレクターとして働く保持ボックスから形成される。   The electrostatic shielding means is formed from an electrostatic shielding grid provided between the electrode plate and the collector, and a holding box that holds the electrostatic shielding grid and serves as an ion collector. .

前記コレクターは箱形形状にもしくはL字状に形成される。
前記コレクターは箱形形状にもしくはL字状に形成されて、前記保持ボックス内に収納される。
The collector is formed in a box shape or an L shape.
The collector is formed in a box shape or an L shape and is accommodated in the holding box.

前記静電遮蔽グリッドは入射プラズマの方向と平行な磁力線に対し、平行に設置されたワイヤーを等間隔で配設して形成される。   The electrostatic shielding grid is formed by arranging wires arranged in parallel to the lines of magnetic force parallel to the direction of the incident plasma at equal intervals.

以下、本発明の実施例を図面に基づいて説明する。
図4は、本発明の実施例であるイオン電流量計測器100の概略構成を一部断面部分を含んで示してある。なお、本願では、イオン電流量計測器は、荷電粒子電流計測器を含んだ概念で使用する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 4 shows a schematic configuration of the ion current measuring instrument 100 which is an embodiment of the present invention, including a partial cross-sectional portion. In the present application, the ion current measuring device is used in a concept including a charged particle current measuring device.

図4において、イオン電流量計測器100は、入射するプラズマの送出部の1部を形成するコリメータ1、コリメータ1に近接して電極板2およびコレクター3並びに静電遮蔽手段4を構成する静電遮蔽グリッド5を備える。静電遮蔽手段4は、電極板2とコレクター3との間の空間に配置される静電遮蔽グリッド5とこの静電遮蔽グリッド5を保持する箱形の保持ボックス6とから構成される。   In FIG. 4, an ion current measuring device 100 includes a collimator 1 that forms part of an incident plasma sending unit, an electrode plate 2, a collector 3, and an electrostatic shielding means 4 that are close to the collimator 1. A shielding grid 5 is provided. The electrostatic shielding means 4 includes an electrostatic shielding grid 5 disposed in a space between the electrode plate 2 and the collector 3 and a box-shaped holding box 6 that holds the electrostatic shielding grid 5.

コレクター3は箱形形状に形成され、保持ボックス6の内部に収納され、上面が開いた形状とされる。   The collector 3 is formed in a box shape, is housed inside the holding box 6, and has an open top surface.

図5に静電遮蔽グリッド5の詳細を示す。
静電遮蔽グリッド5は、50μmのワイヤー11を3mm間隔でプラズマの入射方向に対し平行に設置している。このため、入射粒子のエネルギー差による入射軌道の違いによるグリッド遮蔽効果の影響がなくなり、粒子のグリッド透過率は全ての入射粒子エネルギーに対して一定となる。静電遮蔽グリッド5による幾何学的透過率は98.3%と高く、またコリメータ1のプラズマ入射口12からコレクター3までに入射粒子が透過する静電遮蔽グリッド5は、静電遮蔽グリッド1枚なので、プラズマ入射口におけるイオン・電子の電流量は複数グリッドが重なる透過率解析が容易な構造の「単一のグリッドの幾何学的透過率」のみで決まり、正確な電流量評価が可能である。
FIG. 5 shows details of the electrostatic shielding grid 5.
The electrostatic shielding grid 5 is provided with 50 μm wires 11 parallel to the incident direction of plasma at intervals of 3 mm. For this reason, the influence of the grid shielding effect due to the difference in the incident trajectory due to the energy difference of the incident particles is eliminated, and the grid transmittance of the particles becomes constant for all the incident particle energies. The geometrical transmittance of the electrostatic shielding grid 5 is as high as 98.3%, and the electrostatic shielding grid 5 through which incident particles are transmitted from the plasma entrance 12 of the collimator 1 to the collector 3 is one electrostatic shielding grid. Therefore, the current amount of ions and electrons at the plasma entrance is determined only by the "single grid geometric transmittance" with a structure that allows easy analysis of transmittance where multiple grids overlap, allowing accurate current amount evaluation. .

図4において、入射プラズマに対して電極板2と静電遮蔽グリッド5を平行に設置し、この間に電場を形成してイオンと電子の軌道偏向を行う。電極板に正の電圧を印加するとイオンが、負の電圧を印加すると電子がグリッド側に偏向される。   In FIG. 4, the electrode plate 2 and the electrostatic shielding grid 5 are installed in parallel with respect to the incident plasma, and an electric field is formed between them to deflect the trajectory of ions and electrons. When a positive voltage is applied to the electrode plate, ions are deflected, and when a negative voltage is applied, electrons are deflected to the grid side.

イオン電流量計測器を小型化するために、入射荷電粒子が偏向するまでの距離を短くし、偏向電場を強くすることを行う。一方、奥行き5 cmのダクト内に多数個設置するので、電極板2からの放電を抑えるため、印加電圧は数kV以下とする。他方でイオンを捕集するときは、コレクター3の前面の電場が強くなると、外部磁場による二次電子自己回収機能よりも電場による二次電子放出の効果が強くなり、二次電子が自己回収されない。更に偏向電場により二次電子放出比も大きくなる。これらの問題点を解決するため、「電場による荷電粒子の軌道偏向」と「外部磁場(プラズマ閉じ込め磁場)を利用しラーマー運動でコレクター3に自ら戻らせるという二次電子自己回収機能」を用い、静電遮蔽グリッド5を配設した。   In order to reduce the size of the ion current measuring instrument, the distance until the incident charged particles are deflected is shortened to increase the deflection electric field. On the other hand, since many pieces are installed in a duct having a depth of 5 cm, the applied voltage is set to several kV or less in order to suppress discharge from the electrode plate 2. On the other hand, when the ions are collected, if the electric field at the front surface of the collector 3 becomes strong, the effect of secondary electron emission by the electric field becomes stronger than the secondary electron self-collecting function by the external magnetic field, and the secondary electrons are not self-collected. . Further, the secondary electron emission ratio is increased by the deflection electric field. In order to solve these problems, "orbital deflection of charged particles by electric field" and "secondary electron self-recovery function that can return itself to collector 3 by Larmor motion using an external magnetic field (plasma confinement magnetic field)" An electrostatic shielding grid 5 was provided.

静電遮蔽グリッド5を電極板2とコレクター3の間に設置することにより、計測器内部、すなわち電極板2とコレクター3との間の空間は粒子軌道偏向部と粒子捕集部の2つの領域に分割される。電極板2と静電遮蔽グリッド5の距離を狭くすることにより、低電圧印加でも高電場の発生を可能にできる。一方、粒子捕集部は静電遮蔽グリッド5により偏向電場から遮蔽され、コレクター前面の電場は弱くなるため、二次電子自己回収機能が回復する。電極板2には、例えば1.5kVが、そして静電遮蔽グリッド5には−0.1kVの電圧が印加される。   By installing the electrostatic shielding grid 5 between the electrode plate 2 and the collector 3, the space inside the measuring instrument, that is, the space between the electrode plate 2 and the collector 3, is divided into two regions, a particle trajectory deflecting unit and a particle collecting unit. It is divided into. By reducing the distance between the electrode plate 2 and the electrostatic shielding grid 5, it is possible to generate a high electric field even when a low voltage is applied. On the other hand, the particle collection unit is shielded from the deflection electric field by the electrostatic shielding grid 5, and the electric field in front of the collector becomes weak, so that the secondary electron self-recovery function is restored. For example, a voltage of 1.5 kV is applied to the electrode plate 2, and a voltage of −0.1 kV is applied to the electrostatic shielding grid 5.

静電遮蔽手段4は箱形で、その内部に箱形のコレクター3を設置している。静電遮蔽グリッド5が電場形成を行うため、荷電粒子の効率的な捕集のためコレクター形状を最適化することが可能となった。   The electrostatic shielding means 4 is box-shaped, and a box-shaped collector 3 is installed therein. Since the electrostatic shielding grid 5 forms an electric field, the collector shape can be optimized for efficient collection of charged particles.

図6は、イオン計測の場合に最適化した電圧を印加した場合の電位分布を示す。図7は静電遮蔽グリッド5を設けない場合の電位分布を比較のため示す。また図に寸法をそれぞれ記入した。   FIG. 6 shows a potential distribution when a voltage optimized in the case of ion measurement is applied. FIG. 7 shows the potential distribution when the electrostatic shielding grid 5 is not provided for comparison. The dimensions were also entered in the figure.

静電遮蔽グリッド5に0.1kVの電圧を印加することにより、プラズマ入射口付近の電位が0kVとなるため、本実施例では、プラズマ入射口付近に生じる不整電場を補正するために前述の端損失イオン電流量絶対計測器で必要とされた不整電場補正板が不要となった。   By applying a voltage of 0.1 kV to the electrostatic shielding grid 5, the potential in the vicinity of the plasma entrance becomes 0 kV. Therefore, in this embodiment, in order to correct the irregular electric field generated in the vicinity of the plasma entrance, the above-described end is used. The irregular electric field correction plate required for the absolute measuring device of the loss ion current is no longer necessary.

前述のように、静電遮蔽グリッド5を設置することにより、粒子軌道偏向部と粒子捕集部とに計測器内部が分離された構造となる。粒子軌道の偏向電場は電極板2と静電遮蔽グリッド5の間で形成される。従って、粒子捕集部におけるコレクター形状の変化は全く軌道偏向電場に影響を与えない。軌道偏向電場の役割はコレクター3に粒子を落とし込むことではなく、粒子捕集部に落とし込むことになる。対照的にコレクター3の役割は粒子捕集部に入射した粒子を確実に取り込むことになり、コレクター形状を最適化することが可能になる。   As described above, by installing the electrostatic shielding grid 5, the inside of the measuring instrument is separated into the particle trajectory deflecting unit and the particle collecting unit. A deflection electric field of the particle trajectory is formed between the electrode plate 2 and the electrostatic shielding grid 5. Therefore, the change in the collector shape in the particle collecting portion does not affect the orbital deflection electric field at all. The role of the orbital deflection electric field is not to drop particles into the collector 3, but to drop into the particle collecting section. In contrast, the role of the collector 3 is to reliably take in the particles incident on the particle collecting portion, and the collector shape can be optimized.

静電遮蔽グリッド5に数百ボルトの負電圧を印加すると、入射口付近の電位分布は図6に示されているように、静電遮蔽グリッド5に負電圧を印加することで電位0ラインの位置を入射口付近に移動させることができる。実際には入射口12から電極板2までの距離を調節することで電場配位を最適化しているが、もはや粒子の入射を妨げるような電場配位ではなくなっていることが、この電位分布の図から分かる。   When a negative voltage of several hundred volts is applied to the electrostatic shielding grid 5, the potential distribution in the vicinity of the entrance is applied to the electrostatic shielding grid 5 as shown in FIG. The position can be moved near the entrance. Actually, the electric field configuration is optimized by adjusting the distance from the entrance 12 to the electrode plate 2, but it is no longer the electric field configuration that prevents the incidence of particles. You can see from the figure.

以上のように、静電遮蔽グリッド5に負電圧を印加して電極板の位置を調整することで、奥行き数十mmの不整電場補正板を設置する必要のない構造にすることができる。   As described above, by applying a negative voltage to the electrostatic shielding grid 5 and adjusting the position of the electrode plate, a structure that does not require the installation of an irregular electric field correction plate having a depth of several tens of mm can be achieved.

次にコレクター3の形状の詳細について述べる。粒子軌道偏向電場への影響を考えることなくコレクター3の形状を変えることができることは既に述べたが、シミュレーションおよび加工が複雑にならない様に、できる限りシンプルでかつ粒子を確実に捕集できるコレクター形状にした。   Next, details of the shape of the collector 3 will be described. As described above, the shape of the collector 3 can be changed without considering the influence on the electric field for deflecting the particle trajectory. However, the collector shape is as simple as possible and reliably collects particles so that the simulation and processing are not complicated. I made it.

今、コレクター3が捕集すべき粒子は入射イオンとコレクター3からの二次電子である。また、捕集してはいけない粒子としては、入射電子および、静電遮蔽グリッド5からの二次電子、さらに電極板に当たった入射電子による反跳電子が考えられる。   Now, the particles to be collected by the collector 3 are incident ions and secondary electrons from the collector 3. Further, as particles that should not be collected, incident electrons, secondary electrons from the electrostatic shielding grid 5, and recoil electrons due to incident electrons hitting the electrode plate can be considered.

これらを磁場に平行な方向と、垂直な方向の二つに場合分けして考えてみる。
まず、平行な方向についてであるが、捕集すべきイオンの内、keV以上の高エネルギー・イオンは閉じ込め磁場の影響をほとんど受けることなくコレクター3まで到達する。これに対し、数百eV程度のイオンは入射位置によって、偏向電場を受けすぎてコレクターの入射口側に強く偏向されるものと、静電遮蔽グリッド5への印加電圧と閉じ込め磁場の影響で回転運動をしながら計測器後方に流れてしまうものに分けられる。
Consider these in two cases: a direction parallel to the magnetic field and a direction perpendicular to the magnetic field.
First, as for the parallel direction, among the ions to be collected, high-energy ions of keV or higher reach the collector 3 with almost no influence of the confined magnetic field. On the other hand, ions of several hundreds eV are rotated by the influence of the applied voltage to the electrostatic shielding grid 5 and the confinement magnetic field, depending on the incident position, which is excessively deflected by the deflecting electric field and strongly deflected to the collector entrance side. It can be divided into those that flow behind the instrument while exercising.

したがって、このように多様に振舞う粒子を確実に捕集するためには“コの字型”の形状を採用することが望ましい。   Therefore, it is desirable to adopt a “U-shaped” shape in order to reliably collect such variously behaving particles.

次に、垂直な方向であるが、主に関係ある粒子は磁場の影響で回転する電子である。このうち入射電子は電極板側へと偏向されるので考えなくても良く、また、静電遮蔽グリッド5からの二次電子についても静電遮蔽グリッド5の面積が非常に小さいことと放出された二次電子の回転半径が数mm程度であるため、深さを数十mmに設計すれば影響は無視できる。残りの電子は、コレクター3からの二次電子と、電極板からの反跳電子であるが、両者の回転方向は正反対であることから、コレクター3からの二次電子が集まる側には二次電子を捕集しやすいようにコレクター3を立てた形にし、反跳電子が集まる側にはコレクターがない構造にすればよい。よって、こちらの方向では“L字型”の構造を採用することになる。   Next, in the vertical direction, mainly relevant particles are electrons that rotate under the influence of a magnetic field. Of these, incident electrons are deflected to the electrode plate side, so there is no need to think about them. Also, secondary electrons from the electrostatic shielding grid 5 are emitted because the area of the electrostatic shielding grid 5 is very small. Since the rotation radius of secondary electrons is about several millimeters, the influence can be ignored if the depth is designed to be several tens of millimeters. The remaining electrons are secondary electrons from the collector 3 and recoil electrons from the electrode plate. However, since the rotation directions of the two are opposite to each other, the secondary electrons on the side where the secondary electrons from the collector 3 gather are collected. The collector 3 may be erected so that the electrons are easily collected, and the collector may not be provided on the side where the recoil electrons are collected. Therefore, the “L-shaped” structure is adopted in this direction.

深さについては、イオンとコレクター3からの二次電子を静電遮蔽グリッド5に−0.1kVを印加した場合に、確実に捕集できる11mmを軌道計算により見い出し、結局、コレクターの形状の深さ11mmの“ちりとり型”となった。最終的なコレクター3はこのように開放されている箇所があるため、排気効果も期待できる。   As for the depth, when −0.1 kV of ions and secondary electrons from the collector 3 are applied to the electrostatic shielding grid 5, 11 mm which can be reliably collected is found by orbital calculation. It became a 11 mm “duster type”. Since the final collector 3 is open in this way, an exhaust effect can be expected.

1.5kVを電極板2、静電遮蔽グリッド5には−0.1kVを印加した場合に、50eV、100eV、1keV、3keV、5keVのエネルギーをもつ入射イオンの軌道計算結果を求めた。軌道計算結果によると、不整電場補正板がなくても低エネルギーのイオンを計測できていることが分かった。また、端損失イオンの計測に十分な範囲のエネルギー領域(主に1〜2keV)の計測性能も満たせている。   When 1.5 kV was applied to the electrode plate 2 and −0.1 kV was applied to the electrostatic shielding grid 5, the trajectory calculation result of incident ions having energies of 50 eV, 100 eV, 1 keV, 3 keV, and 5 keV was obtained. According to the trajectory calculation results, it was found that low-energy ions could be measured without an irregular electric field correction plate. Moreover, the measurement performance of the energy range (mainly 1-2 keV) sufficient for the measurement of edge loss ion is also satisfy | filled.

磁力線に巻きつきながら磁力線と殆ど水平方向に端損失してくるイオンはイオン電流量計測器100に対し、入射角度(ピッチ角)を持つことになる。その最大の入射角度θmaxは、ガンマ10スロート部磁場強度Bmax=30.13kGと計測器設置位置の磁場強度Bdetector=0.08kGを用いて、

Figure 2006286548

と与えられる。 The ions that end up almost horizontally with the magnetic field lines while wrapping around the magnetic field lines have an incident angle (pitch angle) with respect to the ion current measuring instrument 100. The maximum incident angle θ max is determined by using gamma 10 throat part magnetic field intensity B max = 30.13 kG and magnetic field intensity B detector = 0.08 kG at the measuring device installation position,

Figure 2006286548

And given.

ピッチ角3度では、コレクター3へ粒子が入射する位置が前後・左右へズレているイオンのすべてをコレクター3に導くことができ、ピッチ角のズレがイオン計測に影響を与えない。コレクター3の形状は、図4からも判るように入射イオンが衝突し易い構成であればよく、箱形にしなくても断面L字状としても効果がある。入射電子の軌道計算は、電極板1.5kV、静電遮蔽グリッド0.1kV、磁場強度80 Gaussの下で行った。各軌道は、エネルギーが0.1keV、1keV、5keVの入射電子のものである。1.5kVの電圧を10mmの距離に印加しているため、強い電場が形成されており、入射してきた電子は強い電場偏向を受け電極板2に入射している。また、5keVを超えるようなエネルギーの電子については計測器後方へと流れて行ってしまう。   When the pitch angle is 3 degrees, all of the ions whose positions where the particles are incident on the collector 3 are shifted from front to back and from side to side can be guided to the collector 3, and the pitch angle deviation does not affect the ion measurement. The shape of the collector 3 may be any configuration as long as incident ions easily collide as can be seen from FIG. The calculation of the trajectory of incident electrons was performed under the conditions of an electrode plate of 1.5 kV, an electrostatic shielding grid of 0.1 kV, and a magnetic field strength of 80 Gauss. Each orbit is of incident electrons with energy of 0.1 keV, 1 keV, 5 keV. Since a voltage of 1.5 kV is applied to a distance of 10 mm, a strong electric field is formed, and incident electrons are subjected to a strong electric field deflection and are incident on the electrode plate 2. Further, electrons with energy exceeding 5 keV flow to the back of the measuring instrument.

この軌道計算の結果から、入射電子は、コレクター3に入射することがない。計測器内部に存在する電子として考えられるものの多くは入射電子や二次電子であるが、本実施例では入射電子が電極板2に衝突するため、この他に反跳電子や電極板からの二次電子も考慮する必要がある。入射電子(3keV)が電極板2に衝突した際の反跳電子と二次電子の軌道計算結果について述べる。   From the result of this orbit calculation, incident electrons do not enter the collector 3. Many of the electrons that can be considered as electrons existing inside the measuring instrument are incident electrons and secondary electrons, but in this embodiment, incident electrons collide with the electrode plate 2. It is also necessary to consider secondary electrons. The trajectory calculation results of recoil electrons and secondary electrons when incident electrons (3 keV) collide with the electrode plate 2 will be described.

ここでは放出比の高い100eV程度の低エネルギーの二次電子については回転半径がとても小さいため1keV程度までの電子であれば確実に再回収されていることが分った。また、放出比の低い1keVを超えるエネルギーの電子についても、電極板に再回収されるか、イオン捕集部に設けられた反跳電子を逃すための開き領域から計測器外部へ導かれている。   Here, it has been found that low energy secondary electrons with a high emission ratio of about 100 eV have a very small radius of rotation, so that electrons up to about 1 keV are reliably recovered. Electrons with energy exceeding 1 keV, which has a low emission ratio, are either recovered again by the electrode plate or guided outside the measuring instrument from the open region for releasing recoil electrons provided in the ion collector. .

以上のように、本実施例であるイオン電流量計測器100によれば、入射プラズマに平行に設置された電極板と箱形のコレクターの間に静電遮蔽グリッドを一枚挟んだ簡易構造からなり、入射電子・二次電子の影響を抑制した正確なイオン計測が可能である。   As described above, according to the ion current measuring instrument 100 according to the present embodiment, the simple structure in which one electrostatic shielding grid is sandwiched between the electrode plate installed in parallel with the incident plasma and the box-shaped collector. Therefore, accurate ion measurement is possible while suppressing the influence of incident electrons and secondary electrons.

静電遮蔽グリッド5により、計測器内部の生成電場を二分し(電極板側を粒子軌道偏向部、他方をイオン捕集部)、その機能を明確に分離する事で低電圧化・小型化を実現している。   The electrostatic shielding grid 5 divides the generated electric field inside the measuring instrument into two parts (the particle orbit deflecting part on the electrode plate side and the ion collecting part on the other side), and the functions are clearly separated to reduce the voltage and size. Realized.

まず、粒子軌道偏向部では、入射プラズマに垂直な電場生成により(1)電子とイオンとを完全に分離し、イオンのみを選択的にイオン捕集部に導く。この際、(2)電極板とグリッドの間に生成される偏向電場の距離を短くする事で、低電圧ながらも強電場を生成できる。   First, in the particle trajectory deflecting unit, (1) electrons and ions are completely separated by generating an electric field perpendicular to the incident plasma, and only ions are selectively guided to the ion collecting unit. At this time, (2) by reducing the distance of the deflection electric field generated between the electrode plate and the grid, a strong electric field can be generated even at a low voltage.

一方イオン捕集部では、(3)コレクター板に平行な計測器外部のプラズマ閉じ込め磁場を利用したラーマ−回転運動に、静電遮蔽グリッド(−0.1kV)とコレクター(GND)の間に生成された電子放出抑制電場の効果を加える事により、コレクターより放出する二次電子の回転半径をより小さく抑えてコレクターに再回収させ、二次電子によるノイズを完全に抑制する事が可能である。このとき、(4)外部磁場を利用しているため、計測器の小型化が実現できている。また、(5)イオン捕集部の電場が粒子軌道偏向電場から独立しているため、コレクターの形状を箱形にする事が出来、加えて、(6)静電遮蔽グリッドに負の電圧を印加に伴い、プラズマ入射口直後の領域に電場の荷電粒子を妨げにくい電位分布を形成する事が出来るため、比較的低エネルギーの領域を含む幅広いエネルギー領域(100eV〜5keV)のイオンを計測可能としている。   On the other hand, in the ion collector, (3) generated between the electrostatic shielding grid (-0.1 kV) and the collector (GND) by the Larmor rotation motion using the plasma confinement magnetic field outside the measuring instrument parallel to the collector plate. By adding the effect of the suppressed electron emission electric field, it is possible to suppress the rotation radius of the secondary electrons emitted from the collector to a smaller value and cause the collector to recover again, thereby completely suppressing the noise caused by the secondary electrons. At this time, (4) since an external magnetic field is used, the size of the measuring instrument can be reduced. (5) Since the electric field of the ion collector is independent from the particle orbital deflection electric field, the collector can be shaped like a box. In addition, (6) a negative voltage is applied to the electrostatic shielding grid. Along with the application, a potential distribution that hardly disturbs charged particles in the electric field can be formed in the region immediately after the plasma entrance, so that ions in a wide energy region (100 eV to 5 keV) including a relatively low energy region can be measured. Yes.

開放端型プラズマ閉じ込め装置であるタンデム・ミラー型装置ガンマ10の概略構成を示す図。The figure which shows schematic structure of the tandem mirror type apparatus gamma 10 which is an open end type plasma confinement apparatus. タンデム・ミラー型装置ガンマ10の装置端部を示す図。The figure which shows the apparatus edge part of the tandem mirror type | mold apparatus gamma10. 端損失イオン電流量絶対値計測器の概略構成を示す図。The figure which shows schematic structure of an end loss ion current amount absolute value measuring device. 本発明の実施例であるイオン電流量計測器の構成を示す図。The figure which shows the structure of the ion current amount measuring device which is an Example of this invention. 静電遮蔽グリッドの詳細を示す図。The figure which shows the detail of an electrostatic shielding grid. 静電遮蔽グリッドを設置した場合にイオン電流量計測器内部に発生する電位分布を示す図。The figure which shows the electric potential distribution which generate | occur | produces inside an ion current amount measuring device when an electrostatic shielding grid is installed. 静電遮蔽グリッドを設けない場合の電位分布を示す図。The figure which shows electric potential distribution when not providing an electrostatic shielding grid.

符号の説明Explanation of symbols

1…コリメータ、2…電極板、3…コレクター、4…静電遮蔽手段(装置)、5…静電遮蔽グリッド、6…保持ボックス、11…ワイヤー、12…プラズマ入射口、100…イオン電流量計測器。
DESCRIPTION OF SYMBOLS 1 ... Collimator, 2 ... Electrode plate, 3 ... Collector, 4 ... Electrostatic shielding means (apparatus), 5 ... Electrostatic shielding grid, 6 ... Holding box, 11 ... Wire, 12 ... Plasma inlet, 100 ... Ion current amount Measuring instrument.

Claims (6)

電極板とコレクターとの間に入射した入射プラズマについてのイオン電流を計測するイオン電流量計測器において、
前記電極板と前記コレクターとの空間に電極板側に粒子軌道偏向部を形成し、コレクター側にイオン捕集部を形成する静電遮蔽手段を設けたこと
を特徴とするイオン電流量計測器。
In the ion current measuring device that measures the ion current of the incident plasma incident between the electrode plate and the collector,
An ion current measuring device characterized in that in the space between the electrode plate and the collector, a particle orbital deflection unit is formed on the electrode plate side, and electrostatic shielding means is formed on the collector side to form an ion collection unit.
請求項1において、前記電極板にプラス電圧を、そして前記静電遮蔽手段にマイナス電圧を印加する手段を有して、入射イオンと平行方向の外部磁場によりコレクターから発生する二次電子を回収することを特徴とするイオン電流量計測器。   2. The secondary electron generated from the collector according to claim 1, further comprising means for applying a positive voltage to the electrode plate and a negative voltage to the electrostatic shielding means, and recovering secondary electrons generated from the collector by an external magnetic field parallel to the incident ions. An ion current measuring instrument characterized by that. 請求項1において、前記静電遮蔽手段は、前記電極板と前記コレクターとの間に設けた静電遮蔽グリッドと、該静電遮蔽グリッドを保持する箱形であって、イオンのコレクターとして働く保持ボックスからなることを特徴とするイオン電流量計測器。   2. The electrostatic shielding means according to claim 1, wherein the electrostatic shielding means is an electrostatic shielding grid provided between the electrode plate and the collector, and a box shape that holds the electrostatic shielding grid, and serves as an ion collector. An ion current measuring instrument characterized by comprising a box. 請求項1において、前記コレクターは箱形形状にもしくはL字状に形成されることを特徴とするイオン電流量計測器。   2. The ion current measuring device according to claim 1, wherein the collector is formed in a box shape or an L shape. 請求項3において、前記コレクターは箱形形状にもしくはL字状に形成されて、前記保持ボックス内に収納されることを特徴とするイオン電流量計測器。   4. The ion current measuring device according to claim 3, wherein the collector is formed in a box shape or an L shape and is housed in the holding box. 請求項5において、前記静電遮蔽グリッドは入射プラズマの方向と平行な磁力線に対し、平行に設置されたワイヤーを等間隔で配設して形成されることを特徴とするイオン電流量計測器。
6. The ion current measuring device according to claim 5, wherein the electrostatic shielding grid is formed by arranging wires arranged in parallel to the lines of magnetic force parallel to the direction of the incident plasma at equal intervals.
JP2005108081A 2005-04-04 2005-04-04 Ion current meter Active JP4797158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005108081A JP4797158B2 (en) 2005-04-04 2005-04-04 Ion current meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005108081A JP4797158B2 (en) 2005-04-04 2005-04-04 Ion current meter

Publications (2)

Publication Number Publication Date
JP2006286548A true JP2006286548A (en) 2006-10-19
JP4797158B2 JP4797158B2 (en) 2011-10-19

Family

ID=37408219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005108081A Active JP4797158B2 (en) 2005-04-04 2005-04-04 Ion current meter

Country Status (1)

Country Link
JP (1) JP4797158B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101853294B1 (en) 2015-09-07 2018-04-30 광운대학교 산학협력단 Apparatus for measuring anion in plasma
CN113092125A (en) * 2021-04-06 2021-07-09 江苏深蓝航天有限公司 Blocking potential analyzer capable of collecting in multiple directions
CN113466921A (en) * 2021-07-01 2021-10-01 兰州空间技术物理研究所 Electrostatic field ion energy analyzer suitable for plume diagnosis of electric thruster

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162994A (en) * 1996-11-27 1998-06-19 Hitachi Ltd Ion current monitor circuit
JP2000268993A (en) * 1999-03-15 2000-09-29 Toshiba Corp Plasma measuring probe, plasma measuring device and plasma generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162994A (en) * 1996-11-27 1998-06-19 Hitachi Ltd Ion current monitor circuit
JP2000268993A (en) * 1999-03-15 2000-09-29 Toshiba Corp Plasma measuring probe, plasma measuring device and plasma generator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010060468, M.Hirata et. al., "Novel compact electrostatic ion−current detector u", REVIEW OF SCIENTIFIC INSTRUMENTS, 20041005, Vol.75、No.10, pp.3631−3633, US, American Institute of Phy *
JPN6010060472, Y.Sakamoto et. al., "A differential−spectrum ion−energy analyzer with e", REVIEW OF SCIENTIFIC INSTRUMENTS, 19951114, Vol.66 No.10, pp.4928−4936, US, American Institute of Phy *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101853294B1 (en) 2015-09-07 2018-04-30 광운대학교 산학협력단 Apparatus for measuring anion in plasma
CN113092125A (en) * 2021-04-06 2021-07-09 江苏深蓝航天有限公司 Blocking potential analyzer capable of collecting in multiple directions
CN113466921A (en) * 2021-07-01 2021-10-01 兰州空间技术物理研究所 Electrostatic field ion energy analyzer suitable for plume diagnosis of electric thruster

Also Published As

Publication number Publication date
JP4797158B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
Stebbings et al. Collisions of Electrons with Hydrogen Atoms. V. Excitation of Metastable 2 S Hydrogen Atoms
JP5204417B2 (en) Ion detection system with reduced neutron noise
Medley et al. Invited review article: contemporary instrumentation and application of charge exchange neutral particle diagnostics in magnetic fusion energy experiments
JP4797158B2 (en) Ion current meter
KR20150114039A (en) Faraday cup assembly
Chernyshev et al. A compact neutral-particle analyzer for plasma diagnostics
CN109565923A (en) Ion beam filter for accelerator for neutron production
Achenbach et al. Strange hadrons–strangeness in strongly interacting particles: Strangeness production with KAOS at MAMI
Prümper et al. Combining high mass resolution and velocity imaging in a time-of-flight ion spectrometer using pulsed fields and an electrostatic lens
Rieker et al. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode
Emmert et al. Atomic and molecular effects on spherically convergent ion flow. II. Multiple molecular species
Ruf Reconstruction of negative hydrogen ion beam properties from beamline diagnostics
Mladjenović Magnetic electron spectrometers and their in-beam use
Molvik et al. Quantitative experiments with electrons in a positively charged beam
US9263222B2 (en) Target extender in radiation generator
Grente et al. The SOFIA experiment: Measurement of 236U fission fragment yields in inverse kinematics
CN108565202B (en) Isotope-resolved ion velocity imager and control method thereof
US20110215236A1 (en) Electron Cooling System and Method for Increasing the Phase Space Intensity and Overall Intensity of Ion Beams in Multiple Overlap Regions
Kislyakov et al. Chapter 8: Particle diagnostics
Deacon Updates to the CLIC Post Collision Line
Calvey et al. Electron cloud mitigation investigations at CESRTA
Reinhardt-Nickoulin et al. Beam parameters measurements by ionization cross section monitor on proton linac of INR RAS
Liang et al. 96 42Mo l-shell X-ray production cross sections by 2.0–6.0 MeV 15263Eu ions
Lee et al. A laserwire beam profile measuring device for the RAL Front End Test Stand
Macek et al. Diagnostic for Electron Clouds Trapped in Quadrupoles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150