JP2006286308A - Transparent conductive film laminate, and its manufacturing method - Google Patents

Transparent conductive film laminate, and its manufacturing method Download PDF

Info

Publication number
JP2006286308A
JP2006286308A JP2005102657A JP2005102657A JP2006286308A JP 2006286308 A JP2006286308 A JP 2006286308A JP 2005102657 A JP2005102657 A JP 2005102657A JP 2005102657 A JP2005102657 A JP 2005102657A JP 2006286308 A JP2006286308 A JP 2006286308A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
substrate
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005102657A
Other languages
Japanese (ja)
Other versions
JP4882262B2 (en
Inventor
Junko Anami
潤子 阿波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2005102657A priority Critical patent/JP4882262B2/en
Publication of JP2006286308A publication Critical patent/JP2006286308A/en
Application granted granted Critical
Publication of JP4882262B2 publication Critical patent/JP4882262B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive film laminate and its manufacturing method wherein curling and deformation prevention of a base material, and peeling-off prevention and attainment of low resistance of the transparent conductive film are enabled. <P>SOLUTION: The transparent conductive film is formed on at least one face of the base material, the transparent conductive film has a laminated constitution of at least one layer or more, the transparent conductive film is applied of an annealing treatment by ultraviolet irradiation to every layer, and the transparent conductive film is made to be the transparent conductive film laminate in which X-ray diffraction peaks caused by a crystal in which amorphous state is not mixedly existing are observed at all parts of the inside of the film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、LCDやEL等の表示素子の電極基板として幅広い用途が期待される透明導電膜積層体に関するものである。 The present invention relates to a transparent conductive film laminate which is expected to be widely used as an electrode substrate for display elements such as LCDs and ELs.

近年透明導電膜は、光学表示素子、太陽電池、光デバイス等、様々な分野で用いられており、その需要量は年々増加傾向にある。また、要求性能も年々高くなっており、現状性能よりもさらなる高透過率・低抵抗が要求されている。低抵抗化を目指し透明導電膜を結晶化させる目的で高温成膜を行うと、一般的に透明導電膜の内部応力が大きくなることから密着力の低下を引き起こし、膜が剥離する現象が観察されることがある。特に、基材としてフィルムを用いた積層体を作製する場合にはカールの発生が見られ、また、フィルム基材の耐熱性を越える熱を加えた場合にフィルム基材の変形等の問題が生じる。透明導電膜を非晶質状態で成膜し、後工程において熱アニール処理により結晶化することで低抵抗化する手段も取られている(特開2000−282225号公報、特開2003−16858号公報等)。ところが、基材としてフィルムを選択し、そのフィルム基材の耐熱温度が透明導電膜の結晶化温度以下の場合、透明導電膜内を均一かつ十分に結晶化することが難しいことから、透明導電膜を十分に低抵抗化することができない。また、レーザー光によるアニール処理に関しても報告されているが、フィルム基材を用いた場合にレーザー光が発する熱により基材が劣化してしまうために、透明導電膜の結晶化に十分な照射を行うことができない。そこで、紫外線照射、特にエキシマランプを用いた透明導電膜の低抵抗化手法(特開2003−16857号公報)を用いれば、フィルム基材にかかる熱負荷をできる限り抑えて透明導電膜全体を均一かつ効率的に結晶化させることができる。ところが、透明導電膜の厚みが増すにつれ、透明導電膜全体が結晶化した際に大きな内部応力が生じ、膜剥離の原因となってしまう。膜剥離が生じなかったとしても、フィルム基材を用いた場合にはカールの発生を無視できない。
特開2000−282225号公報 特開2003−16858号公報 特開2003−16857号公報
In recent years, transparent conductive films have been used in various fields such as optical display elements, solar cells, and optical devices, and the demand thereof has been increasing year by year. In addition, the required performance is increasing year by year, and higher transmittance and lower resistance are required than the current performance. When high-temperature film formation is performed for the purpose of crystallizing the transparent conductive film with the aim of reducing resistance, the internal stress of the transparent conductive film generally increases, causing a decrease in adhesion and a phenomenon of film peeling is observed. Sometimes. In particular, when a laminate using a film as a substrate is produced, the occurrence of curling is observed, and when heat exceeding the heat resistance of the film substrate is applied, problems such as deformation of the film substrate occur. . Means for reducing the resistance by forming a transparent conductive film in an amorphous state and crystallizing it by a thermal annealing process in a subsequent process has been taken (Japanese Patent Laid-Open Nos. 2000-282225 and 2003-16858). Gazette). However, when a film is selected as the substrate and the heat resistant temperature of the film substrate is equal to or lower than the crystallization temperature of the transparent conductive film, it is difficult to uniformly and sufficiently crystallize the transparent conductive film. Cannot be sufficiently reduced in resistance. In addition, although annealing treatment using laser light has also been reported, when a film base material is used, the base material deteriorates due to the heat generated by the laser light, so that sufficient irradiation for crystallization of the transparent conductive film is performed. I can't do it. Therefore, by using a method for reducing the resistance of a transparent conductive film using ultraviolet irradiation, particularly an excimer lamp (Japanese Patent Laid-Open No. 2003-16857), the entire transparent conductive film is uniformly suppressed while minimizing the heat load on the film substrate. And it can crystallize efficiently. However, as the thickness of the transparent conductive film increases, a large internal stress is generated when the entire transparent conductive film is crystallized, causing film peeling. Even if film peeling does not occur, the occurrence of curling cannot be ignored when a film substrate is used.
JP 2000-282225 A Japanese Patent Laid-Open No. 2003-16858 JP 2003-16857 A

本発明の課題は、基材のカールおよび変形防止、透明導電性膜の剥離防止および低抵抗化を可能にした透明導電膜積層体およびその製造方法を提供することにある。 An object of the present invention is to provide a transparent conductive film laminate that can prevent curling and deformation of a substrate, prevent peeling of a transparent conductive film, and reduce resistance, and a method for manufacturing the same.

本発明は、基材の少なくとも片面に透明導電膜が形成されており、該透明導電膜は少なくとも2層以上の積層構成であり、該透明導電膜は1層ごとに紫外線照射アニールによる結晶化処理がなされており、該透明導電膜は膜内部のどの部分においてもアモルファスの混在しない結晶に起因するX線回折ピークが観察されることを特徴とする透明導電膜積層体である。 In the present invention, a transparent conductive film is formed on at least one surface of a substrate, and the transparent conductive film has a laminated structure of at least two layers. The transparent conductive film is crystallized by ultraviolet irradiation annealing for each layer. The transparent conductive film is a transparent conductive film laminate in which an X-ray diffraction peak due to a crystal in which amorphous is not mixed is observed in any part inside the film.

ここで、前記透明導電膜の内部応力は600MPa以下である。 Here, the internal stress of the transparent conductive film is 600 MPa or less.

また、前記透明導電膜の比抵抗値が4.0×10E−4Ω・cm以下である。 The specific resistance value of the transparent conductive film is 4.0 × 10E−4 Ω · cm or less.

また、前記透明導電膜積層体は、全光線透過率が80%以上の透明導電膜積層体である。 Moreover, the said transparent conductive film laminated body is a transparent conductive film laminated body with a total light transmittance of 80% or more.

このような構成とすることで、透明導電膜積層体の基材のカールおよび変形防止、透明導電膜の剥離防止および低抵抗化ができる。 By setting it as such a structure, the curling and deformation | transformation prevention of a base material of a transparent conductive film laminated body, peeling prevention of a transparent conductive film, and low resistance can be performed.

本発明の透明導電膜積層体およびその製造方法により、基材のカールおよび変形防止、それに伴う透明導電膜のクラック発生の防止、透明導電膜の基材からの剥離防止および低抵抗化を可能にした透明導電膜積層体を製造することが可能となる。 The transparent conductive film laminate of the present invention and the manufacturing method thereof can prevent the curling and deformation of the base material, prevent the occurrence of cracks in the transparent conductive film, and prevent the peeling of the transparent conductive film from the base material and reduce the resistance. It becomes possible to manufacture the transparent conductive film laminated body.

また、本発明における真空成膜装置は、成膜室と紫外線照射アニール室を同一装置内に備えたインライン式の成膜・アニール装置である。通常、透明導電膜のキャリア密度の減少を抑える目的で真空中あるいは還元ガス中で紫外線によるアニール処理を行うが、紫外線照射によるアニール工程を成膜装置内で行うようにすれば真空排気系を共有することができる。また、1回の真空排気により透明導電膜の成膜及び紫外線によるアニール処理を行うことができ、装置の簡略化によるインフラコストの低下、及び生産効率の向上が可能となる。 The vacuum film forming apparatus according to the present invention is an in-line film forming / annealing apparatus provided with a film forming chamber and an ultraviolet irradiation annealing chamber in the same apparatus. Usually, annealing is performed with ultraviolet rays in a vacuum or reducing gas to suppress the decrease in carrier density of the transparent conductive film. However, if the annealing process by ultraviolet irradiation is performed in the film forming apparatus, the vacuum exhaust system is shared. can do. In addition, a transparent conductive film can be formed and an annealing process using ultraviolet rays can be performed by evacuation once, and the infrastructure cost can be reduced and the production efficiency can be improved by simplifying the apparatus.

また、本発明は、目標の膜厚にする過程において成膜とアニール処理を繰り返して透明導電膜を多層化することで、耐熱性に劣る基材上においても透明導電膜の均一な結晶化が容易となる。さらに、透明導電膜を多層化することで、透明導電膜の内部応力を低減することができる。 In addition, the present invention repeats film formation and annealing treatment in the process of setting the target film thickness to make the transparent conductive film multilayer, so that the transparent conductive film can be uniformly crystallized even on a substrate having poor heat resistance. It becomes easy. Furthermore, the internal stress of a transparent conductive film can be reduced by multilayering a transparent conductive film.

本発明について、その実施形態の一例を図1および図2に基づいて説明するが、これに限定されるものではない。 An example of the embodiment of the present invention will be described with reference to FIGS. 1 and 2, but the present invention is not limited to this.

まず、基材1を装着した搬送トレイ11を、搬送トレイへの基材装着室5へセットし、真空引きを行う。次に、搬送トレイ11で成膜室6まで基材1を搬送し、成膜源9を設置した成膜室6において、基材1に透明導電膜2を成膜する(図1(a)および図2)。 First, the transport tray 11 on which the substrate 1 is mounted is set in the substrate mounting chamber 5 on the transport tray, and vacuuming is performed. Next, the base material 1 is transported to the film forming chamber 6 by the transfer tray 11, and the transparent conductive film 2 is formed on the base material 1 in the film forming chamber 6 in which the film forming source 9 is installed (FIG. 1A). And FIG. 2).

基材1としてフィルムを用いる場合、どの様な用途に用いるかによって使い分けられるが、一般的にポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリカーボネート(PC)、ポリエーテルサルフォン(PES)等を用いることができる。 When a film is used as the substrate 1, it can be properly used depending on the application, but in general, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyamide (PA), polycarbonate (PC), polyether sal A phone (PES) or the like can be used.

透明導電膜2の材料としては、インジウム、亜鉛、錫のいずれかの酸化物を用いる事ができる。 As a material of the transparent conductive film 2, any one of indium, zinc and tin oxide can be used.

透明導電膜2の成膜方法としては、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法を用いることができるが、これに限るものではない。 As a method for forming the transparent conductive film 2, a vacuum vapor deposition method, a sputtering method, a CVD method, and an ion plating method can be used, but the method is not limited thereto.

次に、搬送トレイ11を紫外線照射装置10が設置されたアニール室7に移動し、透明導電膜2に紫外線を照射して透明導電膜結晶化層20を形成する(図1(b)および図2)。 Next, the transfer tray 11 is moved to the annealing chamber 7 in which the ultraviolet irradiation device 10 is installed, and the transparent conductive film 2 is irradiated with ultraviolet rays to form the transparent conductive film crystallization layer 20 (FIG. 1B and FIG. 2).

紫外線照射法としては、エキシマランプを用いた照射が好ましいが、これに限るものではない。紫外線を照射する際、熱アニールを併用することでより短時間での結晶化が可能となる。 The ultraviolet irradiation method is preferably irradiation using an excimer lamp, but is not limited thereto. When ultraviolet rays are irradiated, crystallization can be performed in a shorter time by using thermal annealing in combination.

分割成膜する場合は、上記の透明導電膜成膜工程および透明導電膜結晶化工程を必要回数繰り返す(図1(a)から(f))。 In the case of divided film formation, the transparent conductive film forming process and the transparent conductive film crystallization process are repeated as many times as necessary (FIGS. 1A to 1F).

また、透明導電膜積層体の全光線透過率と導電率のバランスを考慮すると、透明導電膜の全光線透過率は80%以上、透明導電膜の総膜厚は50〜200nm程度が好ましい。 In consideration of the balance between the total light transmittance and the conductivity of the transparent conductive film laminate, the total light transmittance of the transparent conductive film is preferably 80% or more, and the total film thickness of the transparent conductive film is preferably about 50 to 200 nm.

また、透明導電膜を分割成膜する際には、内部応力を低減するために1層の膜厚を少なくとも100nm以下にすることが好ましい。このとき、分割した層の膜厚は均等である必要はない。 In addition, when the transparent conductive film is formed in divided layers, it is preferable that the thickness of one layer be at least 100 nm or less in order to reduce internal stress. At this time, the thicknesses of the divided layers need not be equal.

まず、基材1として厚さ200μm、大きさ100mm角の透明なポリエーテルサルフォン(PES)を、搬送トレイへの基材装着室5において搬送トレイ11に装着して真空排気を行った。 First, a transparent polyethersulfone (PES) having a thickness of 200 μm and a size of 100 mm square as the substrate 1 was mounted on the transfer tray 11 in the substrate mounting chamber 5 to the transfer tray and evacuated.

次に、基材1を装着した搬送トレイ11を成膜室6まで搬送した。 Next, the transfer tray 11 on which the substrate 1 was mounted was transferred to the film forming chamber 6.

次に、成膜源9を設置した成膜室6で、基材1上に、イオンプレーティング法で透明導電膜2としてITO(Indium Tin Oxide)膜を40nm成膜した。(図1(a)および図2)。 Next, an ITO (Indium Tin Oxide) film having a thickness of 40 nm was formed as the transparent conductive film 2 on the base material 1 by the ion plating method in the film formation chamber 6 in which the film formation source 9 was installed. (FIG. 1 (a) and FIG. 2).

次に、搬送トレイ11を紫外線照射装置10が設置されたアニール室7に移動し、透明導電膜2に、ArFエキシマランプを用い、10mW/cmの条件で、5分間紫外線を照射して透明導電膜結晶化層20を形成した(図1(b)および図2)。この時、基材1の温度が140℃となるような熱アニールを併用した。 Next, the transfer tray 11 is moved to the annealing chamber 7 in which the ultraviolet irradiation device 10 is installed, and the transparent conductive film 2 is irradiated with ultraviolet rays for 5 minutes under the condition of 10 mW / cm 2 using an ArF excimer lamp. A conductive film crystallized layer 20 was formed (FIGS. 1B and 2). At this time, thermal annealing was used in combination so that the temperature of the substrate 1 was 140 ° C.

次に、搬送トレイ11を成膜室6に戻し、透明導電膜結晶化層20の上に、イオンプレーティング法で透明導電膜3としてITO膜を40nm積層した。(図1(c)および図2)。 Next, the transport tray 11 was returned to the film forming chamber 6, and an ITO film having a thickness of 40 nm was laminated on the transparent conductive film crystallization layer 20 as the transparent conductive film 3 by an ion plating method. (FIG. 1 (c) and FIG. 2).

次に、搬送トレイ11を紫外線照射装置10が設置されたアニール室7に移動し、透明導電膜3に、ArFエキシマランプを用い、10mW/cmの条件で、5分間紫外線を照射して、透明導電膜結晶化層30を形成した(図1(d)および図2)。この時、基材1の温度が140℃となるような熱アニールを併用した。 Next, the transfer tray 11 is moved to the annealing chamber 7 in which the ultraviolet irradiation device 10 is installed, and the transparent conductive film 3 is irradiated with ultraviolet rays for 5 minutes under the condition of 10 mW / cm 2 using an ArF excimer lamp. A transparent conductive film crystallized layer 30 was formed (FIG. 1 (d) and FIG. 2). At this time, thermal annealing was used in combination so that the temperature of the substrate 1 was 140 ° C.

次に、搬送トレイ11を成膜室6に戻し、透明導電膜結晶化層30の上に、イオンプレーティング法で透明導電膜4としてITO膜を40nm積層した。(図1(e)および図2)。 Next, the transfer tray 11 was returned to the film forming chamber 6, and an ITO film having a thickness of 40 nm was laminated on the transparent conductive film crystallization layer 30 as the transparent conductive film 4 by an ion plating method. (FIG. 1 (e) and FIG. 2).

次に、搬送トレイ11を紫外線照射装置10が設置されたアニール室7に移動し、透明導電膜4に、ArFエキシマランプを用い、10mW/cmの条件で、5分間紫外線を照射して、透明導電膜結晶化層40を形成した(図1(d)および図2)。この時、基材1の温度が140℃となるような熱アニールを併用した。 Next, the transfer tray 11 is moved to the annealing chamber 7 in which the ultraviolet irradiation device 10 is installed, and the transparent conductive film 4 is irradiated with ultraviolet rays for 5 minutes under the condition of 10 mW / cm 2 using an ArF excimer lamp. A transparent conductive film crystallized layer 40 was formed (FIG. 1 (d) and FIG. 2). At this time, thermal annealing was used in combination so that the temperature of the substrate 1 was 140 ° C.

得られた透明導電膜のXRDパターンを測定したところ、膜内部のどの部分においてもアモルファスは混在せず、透明導電膜の結晶に起因するシャープなX線回折ピークが観察された。 When the XRD pattern of the obtained transparent conductive film was measured, amorphous was not mixed in any part inside the film, and a sharp X-ray diffraction peak due to the crystal of the transparent conductive film was observed.

また、この透明導電膜の内部応力を測定したところ、501MPaであった。 Moreover, it was 501 MPa when the internal stress of this transparent conductive film was measured.

また、この透明導電膜の比抵抗値を測定したところ、2.4×10E−4Ω・cmであった。 Moreover, it was 2.4 * 10E-4 ohm * cm when the specific resistance value of this transparent conductive film was measured.

また、この透明導電膜積層体の全光線透過率は88%であった。
<比較例1>
Moreover, the total light transmittance of this transparent conductive film laminated body was 88%.
<Comparative Example 1>

まず、基材として厚さ200μm、大きさ100mm角の透明なポリエーテルサルフォン(PES)を、イオンプレーティング成膜装置に装着し、真空排気を行った。 First, a transparent polyethersulfone (PES) having a thickness of 200 μm and a size of 100 mm square as a substrate was attached to an ion plating film forming apparatus and evacuated.

次に、基材上に、イオンプレーティング法で透明導電膜としてITO膜を120nm成膜した。 Next, an ITO film having a thickness of 120 nm was formed as a transparent conductive film on the substrate by an ion plating method.

次に、透明導電膜に、ArFエキシマランプを用い、10mW/cmの条件で、15分間紫外線を照射して、透明導電膜結晶化層を形成した。この時、基材1の温度が140℃となるような熱アニールを併用した。 Next, an ArF excimer lamp was used for the transparent conductive film, and ultraviolet light was irradiated for 15 minutes under the condition of 10 mW / cm 2 to form a transparent conductive film crystallized layer. At this time, thermal annealing was used in combination so that the temperature of the substrate 1 was 140 ° C.

得られた透明導電膜のXRDパターンを測定したところ、膜表面は結晶化しているが、膜の内部ほどITO結晶に起因する回折ピーク強度は減少し、アモルファスに起因するX線回折ピークが観察された。 When the XRD pattern of the obtained transparent conductive film was measured, the film surface was crystallized, but the diffraction peak intensity attributed to the ITO crystal decreased toward the inside of the film, and an X-ray diffraction peak attributed to amorphous was observed. It was.

また、この透明導電膜の内部応力を測定したところ、848MPaであった。 Moreover, it was 848 MPa when the internal stress of this transparent conductive film was measured.

また、この透明導電膜の比抵抗値を測定したところ、2.8×10E−4Ω・cmであった。 Moreover, it was 2.8 * 10E-4 ohm * cm when the specific resistance value of this transparent conductive film was measured.

また、この透明導電膜積層体の全光線透過率は89%であった。
<比較例2>
Moreover, the total light transmittance of this transparent conductive film laminated body was 89%.
<Comparative example 2>

まず、基材として厚さ200μm、大きさ100mm角の透明なポリエーテルサルフォン(PES)を、イオンプレーティング成膜装置にセットし、真空排気を行った。 First, transparent polyethersulfone (PES) having a thickness of 200 μm and a size of 100 mm square as a substrate was set in an ion plating film forming apparatus, and evacuated.

次に、基材上に、イオンプレーティング法で透明導電膜としてITO膜を40nm成膜した。 Next, an ITO film having a thickness of 40 nm was formed as a transparent conductive film on the substrate by an ion plating method.

次に、透明導電膜に、180℃・60分の条件で、熱アニール処理をして、透明導電膜結晶化層を形成した。 Next, the transparent conductive film was thermally annealed at 180 ° C. for 60 minutes to form a transparent conductive film crystallized layer.

次に、透明導電膜結晶化層上に、イオンプレーティング法で透明導電膜としてITO膜を40nm積層した。 Next, an ITO film having a thickness of 40 nm was laminated as a transparent conductive film on the transparent conductive film crystallized layer by an ion plating method.

次に、この透明導電膜に、180℃・60分の条件で、熱アニール処理をして、透明導電膜結晶化層を形成した。 Next, this transparent conductive film was subjected to a thermal annealing process at 180 ° C. for 60 minutes to form a transparent conductive film crystallized layer.

次に、透明導電膜結晶化層上に、イオンプレーティング法で透明導電膜としてITO膜を40nm積層した。 Next, an ITO film having a thickness of 40 nm was laminated as a transparent conductive film on the transparent conductive film crystallized layer by an ion plating method.

次に、この透明導電膜に、180℃・60分の条件で、熱アニール処理をして、透明導電膜結晶化層を形成した。 Next, this transparent conductive film was subjected to a thermal annealing process at 180 ° C. for 60 minutes to form a transparent conductive film crystallized layer.

得られた透明導電膜のXRDパターンを測定したところ、膜表面は結晶化しているが、膜の内部ほどITO結晶に起因する回折ピーク強度は減少し、アモルファスに起因するX線回折ピークが観察された。 When the XRD pattern of the obtained transparent conductive film was measured, the film surface was crystallized, but the diffraction peak intensity attributed to the ITO crystal decreased toward the inside of the film, and an X-ray diffraction peak attributed to amorphous was observed. It was.

また、この透明導電膜の内部応力を測定したところ、687MPaであった。 Moreover, it was 687 MPa when the internal stress of this transparent conductive film was measured.

また、この透明導電膜の比抵抗値を測定したところ、3.9×10E−4Ω・cmであった。 Moreover, it was 3.9 * 10E-4 ohm * cm when the specific resistance value of this transparent conductive film was measured.

また、この透明導電膜積層体の全光線透過率は88%であった。 Moreover, the total light transmittance of this transparent conductive film laminated body was 88%.

本発明は、主に表示素子用途として適用することができる。例えばLCDやEL等の表示素子の電極基板用途として、多様な用途に利用可能である。 The present invention can be applied mainly as a display element. For example, it can be used for various applications as an electrode substrate for display elements such as LCD and EL.

本発明の透明導電膜積層体を説明する断面図である。It is sectional drawing explaining the transparent conductive film laminated body of this invention. 本発明のインライン真空成膜紫外線照射アニール装置を説明する概略図である。It is the schematic explaining the in-line vacuum film-forming ultraviolet irradiation annealing apparatus of this invention.

符号の説明Explanation of symbols

1…基材
2、3、4…透明導電膜(単層)
3…透明導電膜
5…搬送トレイへの基材装着室
6…成膜室
7…アニール室
8…搬送トレイからの基材脱着室
9…成膜源
10…紫外線照射装置
11…搬送トレイ
20、30、40…透明導電膜結晶化層
1 ... base material 2, 3, 4 ... transparent conductive film (single layer)
DESCRIPTION OF SYMBOLS 3 ... Transparent electrically conductive film 5 ... Base-material mounting chamber 6 to a conveyance tray ... Film-forming chamber 7 ... Annealing chamber 8 ... Substrate desorption chamber 9 from a conveyance tray ... Film-forming source 10 ... Ultraviolet irradiation apparatus 11 ... Conveyance tray 20, 30, 40 ... Transparent conductive film crystallization layer

Claims (8)

基材の少なくとも片面に透明導電膜が形成されており、該透明導電膜は少なくとも2層以上の積層構成であり、該透明導電膜は1層ごとに紫外線照射アニールによる結晶化処理がなされており、該透明導電膜はアモルファスの混在しない結晶に起因するX線回折ピークが観察されることを特徴とする透明導電膜積層体。 A transparent conductive film is formed on at least one surface of the substrate, and the transparent conductive film has a laminated structure of at least two layers, and the transparent conductive film is subjected to crystallization treatment by ultraviolet irradiation annealing for each layer. The transparent conductive film laminate is characterized in that an X-ray diffraction peak due to crystals in which amorphous is not mixed is observed. 前記基材が、フィルムであることを特徴とする請求項1に記載の透明導電膜積層体。 The transparent conductive film laminate according to claim 1, wherein the substrate is a film. 前記透明導電膜が、酸化インジウム、酸化錫、酸化亜鉛のうちの少なくとも1つを含む透明導電膜であることを特徴とする請求項1乃至請求項2の何れかに記載の透明導電膜積層体。 The transparent conductive film laminate according to any one of claims 1 to 2, wherein the transparent conductive film is a transparent conductive film containing at least one of indium oxide, tin oxide, and zinc oxide. . 前記透明導電膜の内部応力が600MPa以下であることを特徴とする請求項1乃至請求項3の何れかに記載の透明導電膜積層体。 The transparent conductive film laminate according to any one of claims 1 to 3, wherein an internal stress of the transparent conductive film is 600 MPa or less. 前記透明導電膜の比抵抗値が4.0×10E−4Ω・cm以下であることを特徴とする請求項1乃至請求項4の何れかに記載の透明導電膜積層体。 The specific resistance value of the said transparent conductive film is 4.0 * 10E-4 (ohm) * cm or less, The transparent conductive film laminated body in any one of Claim 1 thru | or 4 characterized by the above-mentioned. 前記積層体が、全光線透過率が80%以上の積層体であることを特徴とする請求項1乃至請求項5の何れかに記載の透明導電膜積層体。 The transparent conductive film laminate according to any one of claims 1 to 5, wherein the laminate is a laminate having a total light transmittance of 80% or more. 前記透明導電膜は、蒸着法、スパッタリング法、CVD法、イオンプレーティング法等により形成されたことを特徴とする請求項1乃至請求項6の何れかに記載の透明導電膜積層体の製造方法。 The said transparent conductive film was formed by the vapor deposition method, sputtering method, CVD method, ion plating method, etc., The manufacturing method of the transparent conductive film laminated body in any one of Claim 1 thru | or 6 characterized by the above-mentioned. . 前記透明導電膜の成膜を行う工程と、該透明導電膜の紫外線照射アニールによる結晶化処理を行う工程を、同一装置内で行うことを特徴とする請求項1乃至請求項7の何れかに記載の透明導電膜積層体の製造方法。 8. The method according to claim 1, wherein the step of forming the transparent conductive film and the step of performing crystallization treatment by ultraviolet irradiation annealing of the transparent conductive film are performed in the same apparatus. The manufacturing method of the transparent conductive film laminated body of description.
JP2005102657A 2005-03-31 2005-03-31 Method for producing transparent conductive film laminate Expired - Fee Related JP4882262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102657A JP4882262B2 (en) 2005-03-31 2005-03-31 Method for producing transparent conductive film laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102657A JP4882262B2 (en) 2005-03-31 2005-03-31 Method for producing transparent conductive film laminate

Publications (2)

Publication Number Publication Date
JP2006286308A true JP2006286308A (en) 2006-10-19
JP4882262B2 JP4882262B2 (en) 2012-02-22

Family

ID=37408015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102657A Expired - Fee Related JP4882262B2 (en) 2005-03-31 2005-03-31 Method for producing transparent conductive film laminate

Country Status (1)

Country Link
JP (1) JP4882262B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090735A1 (en) * 2010-12-27 2012-07-05 日東電工株式会社 Transparent electroconductive film and manufacturing method therefor
WO2012128051A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Method for producing transparent conductive film and method for manufacturing solar cell
JP2012219320A (en) * 2011-04-07 2012-11-12 Mitsubishi Materials Corp Method and apparatus for forming transparent conductive film for solar cell
CN102956287A (en) * 2011-08-24 2013-03-06 日东电工株式会社 Transparent conductive film and manufacturing method thereof
CN102985585A (en) * 2010-07-06 2013-03-20 日东电工株式会社 Transparent conductive film and manufacturing method therefor
CN103572208A (en) * 2012-08-08 2014-02-12 住友重机械工业株式会社 Film manufacturing method and film manufacturing device
JP2014164882A (en) * 2013-02-22 2014-09-08 Dainippon Printing Co Ltd Laminate having excellent reliability and workability and method for producing laminate
JP2015207299A (en) * 2010-12-27 2015-11-19 日東電工株式会社 Transparent conductive film and method for manufacturing the same
WO2015178298A1 (en) * 2014-05-20 2015-11-26 日東電工株式会社 Transparent conductive film and method for producing same
US9406415B2 (en) 2011-08-24 2016-08-02 Nitto Denko Corporation Method of manufacturing transparent conductive film
JP2019059170A (en) * 2017-09-27 2019-04-18 日東電工株式会社 Crystallization film
CN115298763A (en) * 2020-03-19 2022-11-04 日东电工株式会社 Transparent conductive film and method for producing transparent conductive film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298546A (en) * 1992-12-11 1994-10-25 Saint Gobain Vitrage Internatl Method for reforming thin layer of metal oxide, etc. using low ion beam
JP2000247608A (en) * 1999-02-26 2000-09-12 Kansai Research Institute Production of metal oxide film
JP2000285752A (en) * 1999-03-30 2000-10-13 Hoya Corp Transparent electrode and forming method therefor
JP2003096556A (en) * 2001-09-20 2003-04-03 Fuji Xerox Co Ltd Method and apparatus for depositing thin film of crystalline compound on sheet base material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298546A (en) * 1992-12-11 1994-10-25 Saint Gobain Vitrage Internatl Method for reforming thin layer of metal oxide, etc. using low ion beam
JP2000247608A (en) * 1999-02-26 2000-09-12 Kansai Research Institute Production of metal oxide film
JP2000285752A (en) * 1999-03-30 2000-10-13 Hoya Corp Transparent electrode and forming method therefor
JP2003096556A (en) * 2001-09-20 2003-04-03 Fuji Xerox Co Ltd Method and apparatus for depositing thin film of crystalline compound on sheet base material

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102985585A (en) * 2010-07-06 2013-03-20 日东电工株式会社 Transparent conductive film and manufacturing method therefor
CN102985585B (en) * 2010-07-06 2015-09-30 日东电工株式会社 Transparent conducting film and manufacture method thereof
KR20140146234A (en) * 2010-12-27 2014-12-24 닛토덴코 가부시키가이샤 Transparent electroconductive film and manufacturing method therefor
CN103314127A (en) * 2010-12-27 2013-09-18 日东电工株式会社 Transparent electroconductive film and manufacturing method therefor
JP2015207299A (en) * 2010-12-27 2015-11-19 日東電工株式会社 Transparent conductive film and method for manufacturing the same
KR101991545B1 (en) * 2010-12-27 2019-06-20 닛토덴코 가부시키가이샤 Transparent electroconductive film and manufacturing method therefor
JP2017228534A (en) * 2010-12-27 2017-12-28 日東電工株式会社 Transparent conductive film and method for manufacturing the same
JP2016179686A (en) * 2010-12-27 2016-10-13 日東電工株式会社 Transparent conductive film and method for manufacturing the same
US9305680B2 (en) 2010-12-27 2016-04-05 Nitto Denko Corporation Transparent conductive film and manufacturing method therefor
CN103314127B (en) * 2010-12-27 2016-03-16 日东电工株式会社 Transparent conducting film and manufacture method thereof
JP2012150779A (en) * 2010-12-27 2012-08-09 Nitto Denko Corp Transparent conductive film and method for manufacturing the same
TWI461305B (en) * 2010-12-27 2014-11-21 Nitto Denko Corp Transparent conductive film and manufacturing method thereof
WO2012090735A1 (en) * 2010-12-27 2012-07-05 日東電工株式会社 Transparent electroconductive film and manufacturing method therefor
JP5891366B2 (en) * 2011-03-24 2016-03-23 パナソニックIpマネジメント株式会社 Method for producing transparent conductive film and method for producing solar cell
US8835196B2 (en) 2011-03-24 2014-09-16 Sanyo Electric Co., Ltd. Method for producing transparent conductive film and method for manufacturing solar cell
JPWO2012128051A1 (en) * 2011-03-24 2014-07-24 三洋電機株式会社 Method for producing transparent conductive film and method for producing solar cell
WO2012128051A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Method for producing transparent conductive film and method for manufacturing solar cell
JP2012219320A (en) * 2011-04-07 2012-11-12 Mitsubishi Materials Corp Method and apparatus for forming transparent conductive film for solar cell
CN102956287B (en) * 2011-08-24 2018-06-12 日东电工株式会社 Transparent conducting film and its manufacturing method
CN102956287A (en) * 2011-08-24 2013-03-06 日东电工株式会社 Transparent conductive film and manufacturing method thereof
US9406415B2 (en) 2011-08-24 2016-08-02 Nitto Denko Corporation Method of manufacturing transparent conductive film
US9588606B2 (en) 2011-08-24 2017-03-07 Nitto Denko Corporation Transparent conductive film and manufacturing method therefor
CN103572208A (en) * 2012-08-08 2014-02-12 住友重机械工业株式会社 Film manufacturing method and film manufacturing device
JP2014164882A (en) * 2013-02-22 2014-09-08 Dainippon Printing Co Ltd Laminate having excellent reliability and workability and method for producing laminate
WO2015178298A1 (en) * 2014-05-20 2015-11-26 日東電工株式会社 Transparent conductive film and method for producing same
JP2019059170A (en) * 2017-09-27 2019-04-18 日東電工株式会社 Crystallization film
CN115298763A (en) * 2020-03-19 2022-11-04 日东电工株式会社 Transparent conductive film and method for producing transparent conductive film

Also Published As

Publication number Publication date
JP4882262B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4882262B2 (en) Method for producing transparent conductive film laminate
JP6562260B2 (en) Electronic device manufacturing method, flexible substrate manufacturing method, and electronic device
US20130188324A1 (en) Method for Manufacturing a Flexible Electronic Device Using a Roll-Shaped Motherboard, Flexible Electronic Device, and Flexible Substrate
WO2012063903A1 (en) Transparent conductive film
US9299808B2 (en) Manufacturing method of low temperature polysilicon, low temperature polysilicon film and thin film transistor
JP5528727B2 (en) Thin film transistor manufacturing apparatus, oxide semiconductor thin film manufacturing method, thin film transistor manufacturing method, oxide semiconductor thin film, thin film transistor, and light emitting device
US20130045374A1 (en) Nano-laminated film with transparent conductive property and water-vapor resistance function and method thereof
US10497893B2 (en) Method for doping graphene, method for manufacturing graphene composite electrode, and graphene structure comprising same
JP4110752B2 (en) A method of reducing the resistance of a transparent conductive film provided on a substrate.
JP2014109073A (en) Roll-to-roll sputtering method
TW201816806A (en) Method of manufacturing transparent-conductive-film-attached substrate, apparatus of manufacturing transparent-conductive-film-attached substrate, and transparent-conductive-film-attached substrate
KR20150022964A (en) Conductive film having oxide layer and method for manufacturing thereof
TWI767089B (en) Glass sheet with transparent conductive film, glass roll with transparent conductive film, and manufacturing method thereof
JP2009293097A (en) Sputtering composite target, method for producing transparent conductive film using the same and transparent conductive film-fitted base material
US20150004776A1 (en) Polysilicon layer preparing method
JP2013142034A (en) Winding device, and device and method for manufacturing laminate
US9059369B2 (en) Method for manufacturing transparent conductive film
JP2011161892A (en) Gas-barrier film with transparent conductive film
JP2010225384A (en) Substrate with transparent electrode, and method for manufacturing the same
KR101913909B1 (en) The conductive transparent substrate and fabricating method of the same
JP6484098B2 (en) Transparent conductive film, display device, transparent conductive film manufacturing method, and display device manufacturing method
JP2014173101A (en) Production method of laminate
JP7320510B2 (en) SUBSTRATE WITH TRANSPARENT ELECTRODE AND PRODUCTION METHOD THEREOF
JP6356520B2 (en) Substrate with transparent electrode and method for manufacturing the same
JP2008059785A (en) Manufacturing method of organic electron device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees