JP2006284918A - 電気泳動表示装置の駆動方法 - Google Patents
電気泳動表示装置の駆動方法 Download PDFInfo
- Publication number
- JP2006284918A JP2006284918A JP2005104656A JP2005104656A JP2006284918A JP 2006284918 A JP2006284918 A JP 2006284918A JP 2005104656 A JP2005104656 A JP 2005104656A JP 2005104656 A JP2005104656 A JP 2005104656A JP 2006284918 A JP2006284918 A JP 2006284918A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- potential
- charged particles
- display
- electrophoretic display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
【課題】 中間調表示の高速化および安定化が可能な電気泳動表示装置の駆動方法を提供する。
【解決手段】 第1ステップにおいて、所定間隙を開けた状態に配置される一対の基板1,2の一方に設けられた第1電極102と、一対の基板1,2の間に配置された隔壁部材3に設けられた第2電極101,103の間に電位差を発生させよう第1電極102、第2電極101,103及び一対の基板の他方に設けられた第3電極104に電圧を印加することにより、帯電粒子Pが第1電極102と第2電極101,103の間を移動するようにする。そして、第2ステップにおいて、第3電極104と第1電極102、及び第3電極104と第2電極101,103との間に電位差を発生させるよう第1電極102、第2電極101,103及び第3電極104に電圧を印加するにより、帯電粒子Pに第1電極102または第2電極101,103に向かう力を与えるようにする。
【選択図】 図1
【解決手段】 第1ステップにおいて、所定間隙を開けた状態に配置される一対の基板1,2の一方に設けられた第1電極102と、一対の基板1,2の間に配置された隔壁部材3に設けられた第2電極101,103の間に電位差を発生させよう第1電極102、第2電極101,103及び一対の基板の他方に設けられた第3電極104に電圧を印加することにより、帯電粒子Pが第1電極102と第2電極101,103の間を移動するようにする。そして、第2ステップにおいて、第3電極104と第1電極102、及び第3電極104と第2電極101,103との間に電位差を発生させるよう第1電極102、第2電極101,103及び第3電極104に電圧を印加するにより、帯電粒子Pに第1電極102または第2電極101,103に向かう力を与えるようにする。
【選択図】 図1
Description
本発明は、電気泳動表示装置の駆動方法に関し、特に階調表示を行う際の駆動方法に関する。
近年、情報機器の発達に伴い、各種情報のデータ量は拡大の一途をたどり、情報の出力も様々な形態を持ってなされている。一般に、情報の出力は、ブラウン管や液晶などを用いたディスプレイ表示とプリンタなどによる紙へのハードコピー表示とに大別できる。ここで、ディスプレイ表示においては、低消費電力且つ薄型の表示装置のニーズが増しており、中でも液晶表示装置は、こうしたニーズに対応できる表示装置として活発な開発が行われ商品化されている。
しかしながら、現在の液晶表示装置は、画面を見る角度や反射光により、画面上の文字が見づらく、また光源のちらつき、低輝度等から生じる視覚へ負担が未だ十分に解決されていない。また、ブラウン管を用いたディスプレイ表示では、コントラストや輝度は液晶表示と比較して十分あるものの、ちらつきが発生するなど後述するハードコピー表示と比較して十分な表示品位があるとはいえない。また装置が大きく重いため携帯性が極めて低い。
一方、ハードコピー表示は情報の電子化により不要になるものと考えられていたが、実際には依然膨大な量のハードコピー出力が行われている。その理由として、情報をディスプレイ表示した場合、前述した表示品位に係わる問題点に加えて、その解像度も一般的には最大でも120dpi程度と紙へのプリント・アウト(通常300dpi以上)と比較して相当に低い。従って、ディスプレイ表示ではハードコピー表示と比較して視覚への負担が大きくなる。
その結果、ディスプレイ上で確認可能であっても、一旦ハードコピー出力することがしばしば行われることになる。また、ハードコピーされた情報は、ディスプレイ表示のように表示領域がディスプレイのサイズに制限されることなく、多数並べたり、また複雑な機器操作を行わずに並べ替えたり、順に確認していくことができることも、ディスプレイ表示可能であってもハードコピー表示が併用される大きな理由である。
さらには、ハードコピー表示は、表示を保持するためのエネルギーは不要であり、情報量が極端に大きくない限り、何時でもどこでも情報を確認することが可能であるという優れた携帯性を有する。このように、動画表示や頻繁な書き換えなどが要求されない限り、ハードコピー表示はディスプレイ表示と異なる様々な利点を有するが、その一方、紙を大量に消費するという欠点がある。
そこで、近年においては、視認性の高い画像の記録・消去サイクルが多数回可能であり、表示の保持にエネルギーを必要としない記録媒体であるリライタブル記録媒体の開発が盛んに進められている。なお、こうしたハードコピーの持つ特性を継承した書き換え可能な第3の表示装置はペーパーライクディスプレイと呼ばれる。また、このペーパーライクディスプレイの必要条件は、書き換えが可能であること、表示の保持にエネルギーを要さないか若しくは十分に小さいこと、即ちメモリー性を有すること、携帯性に優れること、表示品位が優れていること等である。
ここで、現在、ペーパーライクディスプレイとみなせる表示装置としては、例えばサーマルプリンターヘッドで記録・消去する有機低分子・高分子樹脂マトリックス系を用いた可逆表示媒体を用いたものを挙げることができる(例えば、特許文献1、2参照。)。しかし、この表示装置は一部プリペイドカードの表示部分として利用されているが、コントラストが余り高くないことや、記録・消去の繰り返し回数が150〜500回程度と比較的少ないなどの課題を有している。
また別のペーパーライクディスプレイとして利用可能な表示装置として、Harold D.Lees等により発明された電気泳動表示装置が知られている(例えば、特許文献3参照。)。
この電気泳動表示装置は、絶縁性液体中に電気泳動性を有する着色された帯電粒子を分散させてなる分散系と、この分散系を挟持する上下方向に対向して配された一対の基板と、この一対の基板に設けられた電極とを備えた電気泳動表示素子を具備しており、このような電気泳動表示素子においては、電極を介して分散系に電圧を印加することにより、帯電粒子の電気泳動性によって帯電粒子を粒子自身が持つ電荷と反対極性の電極側にクーロン力により吸着させるようにしている。
そして、この電気泳動表示素子では、表示は、この帯電粒子の色と染色された絶縁性液体の色の違いを利用して行われる。例えば、帯電粒子を観測者に近い光透過性の第1電極表面に吸着させた場合には帯電粒子の色が観察され、逆に観測者から遠い第2電極表面に吸着させた場合には、帯電粒子と光学的特性が異なるように染色された絶縁性液体の色が観察される。
しかしながら、このように帯電粒子を対向配置された電極間を移動させることにより表示を行う電気泳動表示素子(以下、垂直移動型の電気泳動表示素子という)では、絶縁性液体に染料やイオンなどの発色材を混合しなくてはならず、このような発色材の存在は、新たな電荷の授受をもたらすことから電気泳動動作において不安定要因として作用しやすく、表示装置としての性能や寿命、安定性を低下させる場合があった。
そこで、従来は、このような問題を解決するために、第1電極及び第2電極からなる電極対を同一基板上に配置し、観察者から見て着色された帯電粒子を水平に移動させることにより表示を行う電気泳動表示素子を備えた電気泳動表示装置が提案されている(例えば、特許文献4参照)。
ここで、このような着色帯電粒子を水平に移動させる電気泳動表示素子(以下、水平移動型の電気泳動表示素子という)を備えた従来の電気泳動表示装置の駆動方法としては、第1電極及び第2電極に電圧を印加することにより、着色した帯電粒子を絶縁性液体中で第1電極面及び第2電極面間を、基板面と水平に移動させるようにしている。
そして、このように帯電粒子を移動させて帯電粒子の分布を変化させることにより、表示を行うものである。なお、このような水平移動型の電気泳動表示素子においては、絶縁性液体が透明である場合が多く、観察者側から見て、第1電極と第2電極が異なる着色を呈し、いずれか一方の色を帯電粒子の色と一致させている。例えば、第1電極の色を黒色、第2電極の色を白色、帯電粒子の色を黒色とすると、帯電粒子が第1電極上に分布する場合には、第2電極が露出し白色を呈し、帯電粒子が第2電極上に分布する場合には帯電粒子の色である黒色を呈する。
しかし、このような従来の水平移動型の電気泳動表示素子においては、着色された帯電粒子が電極から電極へ移動して電極面を覆うことが必要になるため、一般には帯電粒子の移動距離は垂直移動型の電気泳動表示素子よりも長い。加えて、第1電極と第2電極を同一基板上に配置している場合、取り巻く空間における局所的な電界強度に差が生じ、場所により帯電粒子の移動に違いが現れる。
即ち、帯電粒子の帯電量が変わらない場合、従来の電気泳動表示装置の駆動方法においては、強い電界によって速い泳動を示す部分と弱い電界によってゆっくりした泳動を示す部分が生じてしまうことになる。そして、このように電界強度の小さな部分における帯電粒子の移動速度低下は、表示速度低下と階調表示の安定性低下を引き起こす。
例えば図20に示したものは、既述した特許文献4に見られる水平移動型の電気泳動表示素子(セル)の一つの画素における電界分布を概念的に示した図であり、第1電極201と第2電極202にはそれぞれ異なった電圧V1,V2が印加されている。
ここで、このように第1及び第2電極201,202にそれぞれ異なった電圧V1,V2を印加した場合、図20に示すように両電極201,202の近接領域Bほど大きな電界が生じる反面、画素の中心部に近い領域Aほど電界が小さく、かつ場合によってはセルから外にはみ出した電界が生じている。この結果、この領域A付近では帯電粒子に働く力が小さくなり、この領域A付近に分布している帯電粒子は動きが遅くなる。
したがって、このセル構成では画素中心付近で、かつ第1電極201上にある帯電粒子を第2電極202に移動させるためには大きな電界をかける必要がある。そして、例えば、第1電極201上にすべての帯電粒子が存在している状態である黒表示状態から中間調を表示させる場合、帯電粒子にある程度の高速性を持たせるために大きな電圧をかけると、画素内のほぼすべての帯電粒子が電気力線に沿って舞上がる。この後、ある中間調に応じた量の帯電粒子を、それに応じた時間で第2電極202に回収することにより中間調が表示される。
ところが、駆動を終了すると、回収されていない帯電粒子は画素内に浮遊している状況になる。ここで、この状態で第1電極201の上部にある帯電粒子の個数に大きな変化がない場合には階調は安定して表示できるが、実際には浮遊している帯電粒子は重力の影響、絶縁膜のわずかな帯電の影響、絶縁性液体中の空間電荷分布によって生じる内部電界等により、駆動終了後にその中間調は変化していく。したがって、長期間安定して中間調を保持するためには、帯電粒子が浮遊している状況は好ましくない。
そこで、本発明は、このような現状に鑑みてなされたものであり、中間調表示の高速化および安定化が可能な電気泳動表示装置の駆動方法を提供することを目的とするものである。
本発明は、所定間隙を開けた状態に配置される一対の基板と、前記一対の基板の間に配置された隔壁部材と、前記一対の基板と前記隔壁部材とに囲まれた空間に配された帯電粒子と、前記一対の基板の一方に設けられた第1電極と、前記一対の基板の一方又は前記隔壁部材に設けられた第2電極と、前記一対の基板の他方に設けられた第3電極とを備え、前記第1電極、前記第2電極及び前記第3電極間に生じる電界により前記帯電粒子の分布を変化させて表示を行う電気泳動表示素子を具備した電気泳動表示装置の駆動方法において、前記第1電極と前記第2電極の間に電位差を発生させ、前記帯電粒子が前記第1電極と前記第2電極の間を移動するよう前記第1電極、前記第2電極及び前記第3電極に電圧を印加する第1ステップと、前記第1電極と前記第3電極、及び前記第2電極と前記第3電極との間に電位差を発生させ、前記第1電極と前記第2電極の間にある前記帯電粒子に前記第1電極または前記第2電極に向かう力を与えるよう前記第1電極、前記第2電極及び前記第3電極に電圧を印加する第2ステップと、を備えたことを特徴とするものである。
本発明のように、第1ステップにおいて帯電粒子が第1電極と第2電極の間を移動するようにし、第2ステップにおいて第3電極と第1電極、及び第3電極と第2電極との間に電位差を発生させるよう第1電極、第2電極及び第3電極に電圧を印加することによって帯電粒子に第1電極または第2電極に向かう力を与えるようにすることにより、中間調表示の高速化および安定化が可能となる。
以下、図面を参照して、本発明を実施するための最良の形態について説明する。
図1は、本発明の第1の実施の形態に係る電気泳動表示装置の駆動方法により駆動される電気泳動表示装置に具備される電気泳動表示素子の概略構成を示す図であり、図1に示すように、この電気泳動表示素子は、所定間隙を空けた状態に配置された一対の基板である観察者側の第1基板である透明基板1及び対向側の第2基板である電極基板2と、これらの基板1,2の間に配置され、基板1,2の間隙を一定に保持するための隔壁部材である隔壁3と、基板1,2と隔壁3に囲まれた空間内に充填された透明な絶縁性液体である分散媒110と、分散媒110に分散された複数の微小粒子である帯電粒子の一例としての着色帯電粒子Pと、を備えている。
なお、この電気泳動表示素子は、基板上にマトリクス配置した画素を有するものであり、隔壁3は隣接する画素間での着色帯電粒子Pの移動を防止する機能を併せ持っている。
また、電極基板2上には第1電極である表示電極102が、また隔壁3には第1電極102と異なる電圧が印加される第2電極であるコレクト電極101,103が設けられており、これら表示電極102及びコレクト電極101,103によって着色帯電粒子Pの空間分布を制御する電場を形成することにより、着色帯電粒子Pを表示電極102とコレクト電極101,103との間で移動させることができる。
ここで、本実施の形態では、着色帯電粒子Pの色は黒色、表示電極102の色は白色であり、着色帯電粒子Pが点線で示すコレクト電極側の位置にあるとき、電気泳動表示素子は表示電極102の白色を画素の色として表示し、また着色帯電粒子Pが表示電極102上にあるときには、表示電極102を覆い隠すことによって黒色を画素の色として表示させることが可能である。なお、本実施の形態においては、着色帯電粒子Pの色は黒色、表示電極102の色は白色としているが、着色帯電粒子P及び表示電極102の色としては、表示に必要な色を用いることができる。
また、図1において、109は封止層で、セルを密閉するのに十分な強度を持つプラスティックフィルムを用いている。また、105〜108は、表示電極102及びコレクト電極101,103の表面に配された絶縁性を有する薄い絶縁膜であり、このような絶縁膜105〜108を配することにより、金属表面と分散媒110とが直接接触し、電圧が印加されることによって発生する着色帯電粒子P、分散媒110等の電気化学的変化を防ぐことができる。
さらに、この薄膜105〜108によって電流を制限することが可能となる。ここで、後述する電気泳動表示装置の駆動方法では、着色帯電粒子Pに電界が印加されることが必要であって、電流を流すことは必要ではないため、これら絶縁性の薄膜105〜108は駆動に影響を与えない。
ところで、本実施の形態における水平移動型の電気泳動表示素子は、透明な分散媒内を着色帯電粒子Pが移動し、着色帯電粒子Pの分布が変化することにより白、又は黒を表示すると共に、表示電極102の表面を覆う着色帯電粒子Pの割合を変化させた場合に見え方が異なることを利用して中間調表示を行なうものである。このことから、表示電極102をいかに効率よく着色帯電粒子Pによって覆うことができるかが、このタイプの表示装置の性能を左右する。
ここで、このようなタイプの表示素子は、既述した図20に示すような電界分布となった場合、既述したように図20に示すA領域に浮遊している粒子は経時的にも安定せず、表示電極201を効率よく覆うことは難しいが、粒子同士や、粒子と画素の内壁は、吸着力の効果等により、適当な距離接近すると凝集や吸着を起こすことから、粒子を内壁に移動させるようにすれば粒子を安定化することができる。つまり、粒子を内壁付近に運ぶことができれば、粒子が動かない安定した状態を形成することが可能となる。
そこで、本実施の形態においては、図1に示すように、表示電極102に対向させてITO等で構成される透明な押付電極104を設け、この第3電極である押付電極104に電圧を付加して図2に示すように押付電極104と表示電極102の間および押付電極104とコレクト電極101,103の間に電界を生じさせることにより、画素中心付近に浮遊している着色帯電粒子Pを高速で表示電極102またはコレクト電極101,103上に移動させて安定化させるようにしている。
ここで、中間調表示を行うための最適な電圧についてはV3〜V5で決まるが、着色帯電粒子Pを押付電極104によって表示電極102に押し付けるため力(電気力線)は、V3=V4とし、着色帯電粒子Pの帯電特性に応じてV5の固定電圧を印加することで発生させることができる。
次に、このように着色帯電粒子Pを表示電極102に押し付けるように駆動する電気泳動表示装置の駆動方法について説明する。
まず、最初に表示電極102に印加する電圧を制御することにより、着色帯電粒子Pを表示電極102に押し付けるように駆動する第1の駆動方法について図3及び図4を用いて説明する。
図3の(a)はコレクト電極101,103に対する表示電極102の電位変化、図3の(b)は押付電極104の電位変化、図3の(c)は画素の反射率を示している。なお、便宜上コレクト電極101,103の電位を0(V)とした。また、着色帯電粒子Pの帯電特性を正帯電とした。これにより、表示電極102に負の電圧を加えると、表示電極102上に着色帯電粒子Pを集めることができる。なお、着色帯電粒子Pを負帯電とした場合には、正の電圧を加えることによって表示電極102上に着色帯電粒子Pを集めることができる。
この駆動方法においては、図3の(a)に示すように、まず表示電極102に負の電圧を加えることにより、すべての着色帯電粒子Pを電極上に集め(黒リセット)、その後、中間調を書き込むようにしている。ここで、黒リセット時、押付電極104、コレクト電極101,103の電位を同電位0(V)とし、表示電極102の電位をマイナスとして低くする。これにより、電界は図4の(a)に示すようになり、この結果、黒色の着色帯電粒子Pが表示電極上に集まる。
次に、中間調を書き込む場合には、例えば第1ステップとして、表示電極102に、図3の(a)の(1)に示す押付電極104の電圧V5と同じ大きさの正の電圧V5を加え、押付電極104と表示電極102の電位を同電位としてコレクト電極101,103の電位よりも大きくすることにより、図4の(b)に示すような電界分布を形成し、着色帯電粒子Pに矢印方向の力を与える。これにより、画素内の着色帯電粒子Pはコレクト電極方向に引き寄せられる。なお、画素内には多数の着色帯電粒子Pがあるが、図4では一つに着目して説明している。
次に、この正の電圧V5を一定時間印加した後、第2ステップとして、表示電極102の電位をコレクト電極101,103の電位と等しく設定し、押付電極104の電位を表示電極102及びコレクト電極101,103の電位よりも大きくすることにより、図2に示す電界分布が形成される。この結果、表示電極102とコレクト電極101,103の間を移動中で、画素内に浮遊していた着色帯電粒子Pは、その位置に応じて表示電極102またはコレクト電極101,103に押し付けられ、階調表示が安定化する。
なお、これまでは表示電極102と押付電極104の電位が同じ場合について述べてきたが、第1ステップにおいて、表示電極102に図3の(a)の(2)又は(3)に示すような押付電極104の電圧V5以下の正の電圧を加えた場合には、画素内の電界分布は図4の(c)に示すようになる。この場合、コレクト電極101に近い着色帯電粒子Paはコレクト電極方向に引き寄せられるが、表示電極102の中央部分のB領域にある着色帯電粒子Pbは押付電極104の電圧が表示電極102の電圧よりも高いため、電極上に押付力が働き、動かない。
これは、言い換えればB領域には着色帯電粒子Pbを表示電極102へ押し付ける方向の電界のみ働いており、着色帯電粒子Pbを横に移動させる電界が発生していないことによる。ここで、電圧が低いほど着色帯電粒子Paの移動速度は遅くなるため、図3の(c)に示すように反射率の立ち上がりは、印加する電圧が大きい場合の(1)に比べ、(2)又は(3)は緩やかになる。また上記理由により動かない粒子も多くなってくる。
次に、一定時間経過後、電圧印加を止める。このとき、画素内にはコレクト電極101,103に集められた着色帯電粒子P、表示電極102の上方に漂っている着色帯電粒子P、表示電極102上に留まっている着色帯電粒子Pが存在するが、各々の量は電極間の電位差によって生じた電界の分布と強度に依存するために中間調が表示可能である。
この後、第2ステップとして、表示電極102の電位がコレクト電極101,103の電位に設定されると、押付電極104による押付電界が大きくなり、漂っている着色帯電粒子Pは表示電極102またはコレクト電極101,103上に集められる。この動作によって階調は高速に安定化される。即ち、図3の(c)に示す(1)、(2)及び(3)のように安定した中間調の反射特性を維持することが可能になる。
つまり、第1ステップにおいて押付電極104の電位を表示電極102の電位以上とし、第2ステップにおいて押付電極104の電位を表示電極102の電位及びコレクト電極101,103の電位以上とすることにより、安定した中間調の反射特性を維持することが可能になる。
なお、これまでは着色帯電粒子Pが正帯電の場合について述べたが、着色帯電粒子Pが負帯電の場合には、第1ステップにおいて押付電極104の電位を表示電極102の電位と同じ、又はそれ以下とし、第2ステップにおいて押付電極104の電位を表示電極102の電位及びコレクト電極101,103の電位以下とすることにより、安定した中間調の反射特性を維持することが可能になる。
次に、パルス幅変調によって表示電極102に印加する電圧印加時間を制御することにより、着色帯電粒子Pを表示電極102に押し付けるように駆動する第2の駆動方法について図5を用いて説明する。
図5の(a)は表示電極102のコレクト電極101,103に対する電位を示しており、上矢印は表示信号の立ち上り、a、b、cの位置での下矢印は表示信号の立下りを示す。なお、パルスの高さは+Vである。ここでもコレクト電極101,103の電位を便宜上0と表した。
図5の(b)は押付電極104の駆動信号であり、そのパルス高は電極と同じ+Vである。そして、この場合、表示電極102、押付電極104に+Vが印加されるタイミングでは、電界分布は既述した図4の(a)に示すようになる。なお、押付電極104の駆動信号の立ち上がりは表示電極102の立ち上がりに合わせる。
これにより、第1ステップである黒リセット後の書き込み開始時において、着色帯電粒子Pに働く上下方向の力はコレクト電極101,103と電極間、コレクト電極101,103と押付電極間に生じる電界によるもののみとなる。
図5の(c)は、このときの反射率を示しており、反射率の立ち上がりはa、b、cともに同じ曲線を示すが、書き込み電圧の印加時間の幅がta、tb、tcと変化することによって曲線が緩やかになることから、立ち上りの曲線を利用して階調を表示することができる。
次に、一定時間、表示電極102に+Vを印加した後、第2ステップとして表示電極102の電位をコレクト電極101,103と同じにすることにより、その瞬間に押付電極104による電極押し付け電界が生じ、これにより各階調表示の高速安定化を実現できる。
つまり、階調表示を行う場合には、第1ステップにおいて表示電極102とコレクト電極101,103の間に電位差を生じさせる時間を表示階調に応じて変化させることにより、各階調表示の高速安定化を実現できる。
なお、本駆動方法では、表示電極102とコレクト電極101,103の間に電位差を生じさせる時間をリセット動作が終了したときを基準に変化させるようにしたが、リセット動作が終了してから所定時間内に変化させるようにしても良い。
図6は、このように表示電極102とコレクト電極101,103の間に電位差を生じさせる時間をリセット動作が終了してから所定時間内に変化させるようにした第3の駆動方法を示すものであり、この駆動方法においては、図6に示すように、第1ステップとしてリセット後の書き込みパルスの立ち上がりを表示階調に応じてずらし、終了を一致させるようにしている。なお、図6において、(a)は階調表示をさせる場合の表示電極102の駆動波形、(b)は押付電極104の駆動波形、(c)は反射率を示している。なお、ここでもコレクト電極101,103の電位を便宜上0と表した。
ここで、(a)において、上矢印が各a、b、cの階調表示を行なうために必要な電圧の立ち上り部であり、これらの各位置から立ち上がって下矢印で信号がゼロになるまでの間にコレクタ電極101,103に回収された着色帯電粒子Pに応じた階調a、b、cが表示される。
この場合も、パルス幅がta、tb、tcのパルスを印加後、第2ステップとして、押付電極104による表示電極102への粒子押し付け電界を生じさせることにより、パルス幅に応じた階調状態を高速に安定表示することが可能となる。なお、この場合の押付電極104の電位の立ち上がりは、もっとも長いパルスの立ち上がりに合わせる必要がある。
次に、既述した第1の駆動方法と第2の駆動方法を組み合わせることにより、着色帯電粒子Pを表示電極102に押し付けるように駆動する第4の駆動方法について説明する。
既述したように着色帯電粒子Pを速く移動させるためには大きな電圧を印加し、大きな電界を発生させる必要があるが、印加時間制御の場合には、図6に示したように、反射率の立ち上がりの傾きが大きく、低い階調側を精度良く表示するためには非常に厳格な時間制御を行なわなければならない。一方、電圧制御による階調表示は、図3に示したように印加電圧が低いほど反射率の立ち上がりが緩やかになるために、時間制御が厳しい低階調側には非常に有利となる。
そこで、本駆動方法では、図7に示すような駆動波形を用いて駆動している。即ち、図7の(a)の波形において、低階調側を(1)のような波高値のパルスによってその幅だけを変化させて表示させるためには、非常に時間分解能の高いパルス幅制御を行なう必要があるが、(2)のような低い波高値のパルスにより表示するように制御すれば、コレクト電極への移動のための電界強度が小さくなるため、図7の(c)の(2)に示すように反射率の立ち上がりが緩やかになる。
さらに、既述した黒リセットによる書き込み方法を用いた場合には、低階調側では着色帯電粒子Pの移動が少ないために速度についても有利である。即ち、コレクト電極101,103の近辺の電界の大きな領域にある着色帯電粒子Pのみコレクト電極に回収されれば良いため、着色帯電粒子Pの移動距離も、移動する着色帯電粒子Pの数も小さいことが有利に働いている。
次に、このような押付電極による効果を導入した平行移動型の電気泳動表示素子をマトリクスアレイ上に配置し、表示パネル化したアクティブマトリクス平行移動型の電気泳動表示装置について説明する。
図8は、このようなアクティブマトリクス平行移動型の電気泳動表示装置における画素の構成を説明する図である。
図8において、801、803はコレクタ電極であり、この装置おいては、このコレクタ電極801,803は各画素に対して共通であるため、以下、コモン電極と言う。804は押付電極、802は表示電極であり、薄膜トランジスタ811のドレイン電極に接続されている。なお、この薄膜トランジスタ811は、今日一般的なアクティブマトリクスによる液晶ディスプレイと同様にアモルファスシリコンやポリシリコンにより形成されている。
810は着色帯電粒子Pが分散されている分散媒、805〜808は電極801〜804と分散媒810を直接接触させないための薄い絶縁膜、809はセルを安定に保持するための封止層である上部層である。なお、図8においては、着色帯電粒子Pが表示電極802上に集まった場合の状態を示している。
また、図9は、1画素の等価回路図であり、一つの画素は横のゲートライン707と縦のソースライン708との交点に形成される。ここで、図9において、700は電気泳動表示素子を駆動する駆動部である画素回路の1ブロック、701は薄膜トランジスタ(TFT)であり、702は表示部の静電容量、703は補助容量である。
また、信号Vtは押付電極駆動信号、704、705はそれぞれ表示電極と押付電極、コモン電極と押付電極間の静電容量を示している。Vcomはコモン電極の信号である。なお、このVcomは固定であり駆動しないため、通常はゼロ電圧としておいても不都合はない。
以上のようなセットがm×nのマトリクス状に並ぶ。例えば図10に示すものは、8×8画素のマトリクスパネルを示したもので、ソースドライブ回路901とソース線904、ゲートドライブ回路902とゲート線905を示してある。ここで、903は図9の回路700に相当するブロックである。
ところで、図8に示す押付電極804は各画素毎にドライブできると表示に柔軟性を持たせることが可能であるが、実際には製作工程の複雑さや制御の煩雑さを増加させることから、押付電極804は各画素に共通にすることが求められる。
しかし、これによって作製の複雑さを回避することができる反面、押付電極804の駆動はすべての画素に影響を及ぼすことになる。そこで、このように共通とした押付電極804を一括駆動する場合においても十分な効果を得ることができるよう、本電気泳動表示装置では、その駆動方法として既述した印加時間制御による駆動方法を用いる。
そして、この駆動方式を用いれば押付動作を各画素同時に行なうことが可能となる。例えば、図11は、駆動タイミング等の例を示すものであり、図11において、Fはフレーム同期信号であり、各パルスは各フレームの先頭で出力される。
RST信号はリセット動作を行なうための制御信号であり、このRST信号がオンになった時、ドレイン電圧VDはリセットのための電圧となり、これに伴い反射率Rが黒(最低階調)にセットされる。ここで、このリセット電圧は少なくともTR分、即ち、図11においては、8フレーム分印加される。
そして、このようなリセット動作の後、第1ステップとして書き込みフレーム列TWに入るが、指定パルス幅(S)を印加するために、はじめの数フレームはリセット電圧を印加しつづける。また、このように書き込みフレーム列TWに入るタイミングと同時に押付電極804にもPUSH信号が入力され、これにより押付電極804が駆動される。なお、このPUSH信号の電位は、この後、表示電極802に印加される電位と同じである。
次に、書き込みフレーム列TWの残りがSフレーム分になったとき、第2ステップとしてドレイン電圧VDを指定電圧VG分変化させる。それにより反射率Rが立ち上がる。なお、このときの表示電極802の電位は押付電極804の電位と同じであり、押付力は働かない。
この後、Sフレーム経過し、TPフレーム列に入ると表示電極802の電位が下がる。そして、このように表示電極802の電位が下がると、押付電極804との電位差によって電極方向への押付力が生じ、着色帯電粒子Pが電極方向に高速に移動する。この後、押付電極804の駆動が終了しても材料特有の吸着力や凝集力により着色帯電粒子Pは電極近傍に安定に集合し、表示の安定性が実現される。
このように、第1ステップにおいて着色帯電粒子Pが表示電極102とコレクト電極101,103の間を移動するようにし、第2ステップにおいて表示電極102と押付電極104、及びコレクト電極101,103と押付電極104との間に電位差を発生させるようにすることによって着色帯電粒子Pに移動方向の力を与えるようにすることにより、中間調表示の高速化および安定化が可能となる。
ところで、粒子と壁、粒子と粒子の間に保持能力がある場合においても、押付電極と電極、押付電極とコレクト電極との間の電界により電荷の分布が生じている。例えば、帯電粒子と極性の異なる電荷を持つカウンターイオンやその他添加材料等が解離して生じるイオンによって特定のイオンが特定の電極に移動することによって、電荷の偏りが生じている。また、電極と分散媒との間にある誘電体膜などにも電荷の注入や誘電分極によって電荷の偏りが生じている。
このため、この状態で押付電極と表示電極の間の電位差を無くし、生じている電界を取り去ると、即ち押付電極と表示電極の電位を最後に等しくすると、セル内部は電荷の偏りによる分極によって内部電界が顕在化する場合がある。
図12及び図13は、内部に電荷の偏りが生じているとき電位の関係を説明する図である。なお、図12及び図13において、左側の電極は表示電極102、右側は押付電極104であり、両電極上にはある厚さの絶縁膜(誘電体)105,108が存在している。また、真中の層は分散媒、白丸に+マークは帯電粒子、−マークは陰イオン、+マークは陽イオン、矢印は電気力線を示している。
図12の(a)は押付電極104に電圧を印加した直後の状態であり、このときは、印加直後なのでイオンや帯電粒子の移動は起こっていないため、分散媒中には内部電界が生じていない。このため、電位は、グラフのようにほぼ直線で電位が上昇している。
図12の(b)は、ある時間が経過し、帯電粒子とイオンが移動を終えたときの状態を示しており、この時、帯電粒子とイオンとにより生じる内部電界が外部電界の一部を打ち消すために分散媒中の電界強度が低下する。したがって、電位関係は、グラフに示すように、絶縁膜と分圧した形になる。
図13は、この状態のとき、瞬時に押付電極104を表示電極102と同電位に落した直後の状態を示しており、このとき分散媒内では外部電界が消失するので空間電荷分極によって生じた内部電界が顕在化し、印加時とは逆の電界が発生する。ここで、両電極102,104は同電位になっているので、発生した内部電界による電圧は両電極上の絶縁膜に印加されることになる。このとき、顕在化した内部電界が帯電粒子の凝集力や吸着力よりも強い場合には、この内部電界によってイオンと一緒に帯電粒子も移動してしまうことになる。
なお、図14は、このような移動が起こった場合の印加波形と光学応答を示すものであり、図14の(a)は表示電極102に印加する波形を示しており、t1〜t2がリセット、t2〜t3が第1ステップにおける書き込み表示、t2〜t4が第2ステップにおける押し付け電圧印加時間である。図14の(b)は押付電圧の波形である。
図14の(c)は、内部電界が発生した場合の光学応答(反射率)を示しており、リセット時(t1〜t2)には帯電粒子の黒により反射率が低下し、第2ステップとして表示電極102に電圧Vpが印加されると(t2〜t3)、白の明るさとなるが、帯電粒子に与えた移動方向の力をゼロとするよう表示電極102の電位とコレクト電極101,103の電位と押付電極104の電位とを同じにする第3ステップとして押付電極104の電圧をゼロに落とした瞬間(t4)、画素の明るさが低下している。
これは、押付電極104と表示電極102との間で上記に示したような内部電界による影響が顕在化し、一旦は表示電極102に集められた帯電粒子が内部電界により画素内に放出された結果として生じる現象である。なお、以上のような現象は、帯電粒子の物性や壁の物性、表面構造、分散媒の特性、イオン量、駆動環境など、系を構成する様々な状況により、凝集力、内部電界の大きさ、吸着力、移動度が決定されるため、制御が難しく問題となっている。
ここで、イオンの移動度は帯電粒子の移動度よりも大きいため、外部電界をイオンが緩和できる程度にゆっくりと落とすことによって大きな内部電界が発生しないようにすることが可能であることから、例えば第3ステップにおいて押し付け電界を所定の時定数をもって減少させることにより、このような内部電界の影響を減少させることができる。
次に、このように押し付け電界を所定の時定数をもって減少させるようにした本発明の第2の実施の形態について説明する。
図15は、表示電極102に印加する電圧を制御することにより、着色帯電粒子Pを表示電極102に押し付けるように駆動するようにした電気泳動表示装置の第1の駆動方法における波形を示すものである。ここで、図15の(a)はコレクト電極101,103に対する表示電極102の電位変化、図15の(b)は押付電極104の電位変化、図15の(c)は画素の反射率を示している。
なお、図15の(a)に示すコレクト電極101,103に対する表示電極102の電位変化は、既述した図3に示した駆動方法における表示電極102の電位変化と同じである。また、便宜上コレクト電極101,103の電位を0(V)とした。
そして、この駆動方法においては、第3ステップにおいて図15の(b)に示すように、押付電極304に印加した電圧VPを所定の時定数に応じた所定の傾きでゆっくり落とし、その間にイオンを動かすことで、内部電界の大きさを着色帯電粒子Pの移動が生じる程大きく顕在化させないようにしている。これにより、着色帯電粒子Pが移動することはなくなり、設定した明るさを保持することができる。
また、図16は、電圧印加時間を制御することにより、着色帯電粒子Pを表示電極102に押し付けるように駆動する第2の駆動方法における波形を示すものである。ここで、図16の(a)はコレクト電極101,103に対する表示電極102の電位変化、図16の(b)は押付電極104の電位変化、図16の(c)は画素の反射率を示している。
そして、このような駆動方法においても、第3ステップにおいて図16の(b)に示すように押付電極に印加した電位+Vを所定の時定数に応じた、所定の傾きでおとすことによって、押し付け電界を消失させるときに生じる内部電界の表示への影響を除去できる。
図17は、電圧印加時間を制御することにより階調表示を行う第3の駆動方法を示すものであり、この駆動方法においては、図17に示すように、リセット後の書き込みパルスの立ち上がりを表示階調に応じてずらし、終了を一致させるようにしている。なお、図17において、(a)は階調表示をさせる場合の表示電極102の駆動波形、(b)は押付電極104の駆動波形、(c)は反射率を示している。なお、ここでもコレクト電極101,103の電位を便宜上0と表した。
そして、このような駆動方法においても、第3ステップにおいて図17の(b)に示すように押付電極に印加した電位+Vを所定の時定数に応じた、所定の傾きでおとすことによって押し付け電界を消失させるときに生じる内部電界の表示への影響を除去できる。
図18は、既述した第1の駆動方法と第2の駆動方法を組み合わせることにより、着色帯電粒子Pを表示電極102に押し付けるように駆動する第4の駆動方法を示すものであり、この駆動方法においても、第3ステップにおいて図18の(b)に示すように印加終了後、押付電極の電位をゼロに戻す際に所定の傾きで落とすことによって、押し付け電界を消失させるときに生じる内部電界の表示への影響を除去できる。
また、平行移動型電気泳動表示素子をマトリクスアレイ上に配置し表示パネル化したアクティブマトリクス平行移動型の電気泳動表示装置においても、第3ステップにおいて押付電圧の印加を終了するが、その際、内部電界の発生とそれによる表示の乱れを回避するため、図19に示すように、PUSH電圧をt5〜t6の間、G時間をある傾きで押付電極804に印加した電圧を減衰させる。なお、図19において、図11と同一符号は、同一又は相当部分を示している。
なお、この減衰の期間は押付動作の行なわれるTPのフレーム列の最後に置かれ、TFTはオンの状態を保つ。これにより、ゆっくり外部電界が消失し、それに応答してイオンによる緩和が起こるために内部電界の発生を抑えることが可能となり、この結果、表示は安定した状態で維持される。
このように、第3ステップにおいて、着色帯電粒子Pに移動方向の力を与えるための電界を徐々に取り去ることにより、分散媒中に大きな内部電界の顕在化が生じるのを抑えることができ、これにより押付動作終了時に起こる粒子移動を抑え、表示を更に安定化させることができる。
1 透明基板
2 電極基板
3 隔壁
101 コレクト電極
102 表示電極
103 コレクト電極
104 押付電極
110 分散媒
700 画素回路の1ブロック
801 コレクタ電極
802 表示電極
803 コレクタ電極
804 押付電極
811 薄膜トランジスタ
810 分散媒
P 着色帯電粒子
2 電極基板
3 隔壁
101 コレクト電極
102 表示電極
103 コレクト電極
104 押付電極
110 分散媒
700 画素回路の1ブロック
801 コレクタ電極
802 表示電極
803 コレクタ電極
804 押付電極
811 薄膜トランジスタ
810 分散媒
P 着色帯電粒子
Claims (12)
- 所定間隙を開けた状態に配置される一対の基板と、前記一対の基板の間に配置された隔壁部材と、前記一対の基板と前記隔壁部材とに囲まれた空間に配された帯電粒子と、前記一対の基板の一方に設けられた第1電極と、前記一対の基板の一方又は前記隔壁部材に設けられた第2電極と、前記一対の基板の他方に設けられた第3電極とを備え、前記第1電極、前記第2電極及び前記第3電極間に生じる電界により前記帯電粒子の分布を変化させて表示を行う電気泳動表示素子を具備した電気泳動表示装置の駆動方法において、
前記第1電極と前記第2電極の間に電位差を発生させ、前記帯電粒子が前記第1電極と前記第2電極の間を移動するよう前記第1電極、前記第2電極及び前記第3電極に電圧を印加する第1ステップと、
前記第1電極と前記第3電極、及び前記第2電極と前記第3電極との間に電位差を発生させ、前記第1電極と前記第2電極の間にある前記帯電粒子に前記第1電極または前記第2電極に向かう力を与えるよう前記第1電極、前記第2電極及び前記第3電極に電圧を印加する第2ステップと、
を備えたことを特徴とする電気泳動表示装置の駆動方法。 - 前記帯電粒子に与えた移動方向の力をゼロとするよう前記第1電極の電位と前記第2電極の電位と前記第3電極の電位とを同じにする第3ステップを備えたことを特徴とする請求項1記載の電気泳動表示装置の駆動方法。
- 前記第1ステップにおいて、前記帯電粒子が正帯電の場合には前記第3電極の電位を前記第1電極の電位以上とし、負帯電の場合には前記第3電極の電位を前記第1電極の電位と同じ、又はそれ以下とすることを特徴とする請求項1又は2記載の電気泳動表示装置の駆動方法。
- 階調表示を行う場合には、前記第1ステップにおいて前記第1電極と前記第2電極の間に電位差を生じさせる時間を表示階調に応じて変化させることを特徴とする請求項1乃至3のいずれか1項に記載の電気泳動表示装置の駆動方法。
- 前記第1ステップの前にリセット動作を設け、前記第1電極と前記第2電極の間に電位差を生じさせる時間を前記リセット動作が終了したときを基準に変化させることを特徴とする請求項4記載の電気泳動表示装置の駆動方法。
- 前記第1ステップの前にリセット動作を設け、前記第1電極と前記第2電極の間に電位差を生じさせる時間を前記リセット動作が終了してから所定時間内に変化させることを特徴とする請求項4記載の電気泳動表示装置の駆動方法。
- 階調表示を行う場合には、前記第1ステップにおいて前記第1電極と前記第2電極の間の電位差を表示階調に応じて変化させることを特徴とする請求項1乃至3のいずれか1項に記載の電気泳動表示装置の駆動方法。
- 前記第2ステップにおいて、前記帯電粒子が正帯電の場合には前記第3電極の電位を前記第1電極の電位及び前記第2電極の電位以上とし、負帯電の場合には前記第3電極の電位を前記第1電極の電位及び前記第2電極の電位以下とすることを特徴とする請求項1乃至7のいずれか1項に記載の電気泳動表示装置の駆動方法。
- 前記第3ステップにおいて、前記第2ステップの際、前記第3電極に印加した電圧を所定の時定数により減少させ、前記帯電粒子に与えた移動方向の力をゼロにすることを特徴とする請求項2記載の電気泳動表示装置の駆動方法。
- 前記所定の時定数は、イオンの移動による電界の緩和と同程度か、それよりも大きい時定数であることを特徴とする請求項9記載の電気泳動表示装置の駆動方法。
- 前記電気泳動表示素子を駆動する駆動部を備え、前記電気泳動表示素子を前記駆動部により、前記請求項1乃至10のいずれか1項に記載の駆動方法によって駆動することを特徴とする電気泳動表示装置の駆動方法。
- 前記駆動部は、マトリクス状に配置され、前記第1電極に電圧を印加する複数の薄膜トランジスタを備えていることを特徴とする請求項11記載の電気泳動表示装置の駆動方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005104656A JP2006284918A (ja) | 2005-03-31 | 2005-03-31 | 電気泳動表示装置の駆動方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005104656A JP2006284918A (ja) | 2005-03-31 | 2005-03-31 | 電気泳動表示装置の駆動方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006284918A true JP2006284918A (ja) | 2006-10-19 |
Family
ID=37406918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005104656A Pending JP2006284918A (ja) | 2005-03-31 | 2005-03-31 | 電気泳動表示装置の駆動方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006284918A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008111315A1 (ja) | 2007-03-13 | 2008-09-18 | Panasonic Corporation | リチウム二次電池用負極およびその製造方法、ならびにリチウム二次電池用負極を備えたリチウム二次電池 |
US7781101B2 (en) | 2006-02-14 | 2010-08-24 | Panasonic Corporation | Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery |
KR101818150B1 (ko) * | 2010-09-30 | 2018-01-12 | 엘지디스플레이 주식회사 | 전기영동 표시장치 및 그 제조 방법 |
-
2005
- 2005-03-31 JP JP2005104656A patent/JP2006284918A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7781101B2 (en) | 2006-02-14 | 2010-08-24 | Panasonic Corporation | Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery |
US8268484B2 (en) | 2006-02-14 | 2012-09-18 | Panasonic Corporation | Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery |
WO2008111315A1 (ja) | 2007-03-13 | 2008-09-18 | Panasonic Corporation | リチウム二次電池用負極およびその製造方法、ならびにリチウム二次電池用負極を備えたリチウム二次電池 |
US8771874B2 (en) | 2007-03-13 | 2014-07-08 | Panasonic Corporation | Negative electrode contacting silicon oxide active material layers for lithium secondary battery and method for producing the same |
KR101818150B1 (ko) * | 2010-09-30 | 2018-01-12 | 엘지디스플레이 주식회사 | 전기영동 표시장치 및 그 제조 방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101366924B1 (ko) | 전기 영동 표시 장치, 전기 영동 표시 장치의 구동 방법 및전자 기기 | |
US10319313B2 (en) | Methods for driving video electro-optic displays | |
US11935496B2 (en) | Electro-optic displays, and methods for driving same | |
JP4862589B2 (ja) | 電気泳動表示パネル制御装置及び電気泳動表示装置 | |
KR20170110657A (ko) | 암 모드 및 명 모드에서 디스플레이하는 전기-광학 디스플레이들, 및 관련된 장치 및 방법들 | |
TWI658312B (zh) | 用於在白模式中操作電光顯示器的方法及設備 | |
US11568827B2 (en) | Methods for driving electro-optic displays to minimize edge ghosting | |
JP5406526B2 (ja) | 面内スイッチング表示装置 | |
JP2004101938A (ja) | 電気光学装置、電気光学装置の駆動方法及び電子機器 | |
JP2023529161A (ja) | 電気光学ディスプレイおよびそれを駆動する方法 | |
US20190266956A1 (en) | Electro-optic displays, and methods for driving same | |
JP2005351992A (ja) | 粒子移動型表示装置の駆動方法 | |
KR101531379B1 (ko) | 입자들의 움직임을 사용하는 전자 디바이스 | |
JP2006284918A (ja) | 電気泳動表示装置の駆動方法 | |
EP3743909A1 (en) | Electro-optic displays, and methods for driving same | |
US11450262B2 (en) | Electro-optic displays, and methods for driving same | |
US11289036B2 (en) | Methods for driving electro-optic displays | |
US20230139743A1 (en) | Methods for driving electro-optic displays | |
KR20070105119A (ko) | 전자종이 표시장치의 구동방법 |