JP2006284694A - Focus detector, electronic camera and interchangeable lens - Google Patents

Focus detector, electronic camera and interchangeable lens Download PDF

Info

Publication number
JP2006284694A
JP2006284694A JP2005101542A JP2005101542A JP2006284694A JP 2006284694 A JP2006284694 A JP 2006284694A JP 2005101542 A JP2005101542 A JP 2005101542A JP 2005101542 A JP2005101542 A JP 2005101542A JP 2006284694 A JP2006284694 A JP 2006284694A
Authority
JP
Japan
Prior art keywords
state
light
region
optical system
focus detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005101542A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kuwata
知由己 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005101542A priority Critical patent/JP2006284694A/en
Publication of JP2006284694A publication Critical patent/JP2006284694A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a focus detector which performs focus detection in a pupil time division system, and where the flicker of an observed image in the midst of focus detection is reduced. <P>SOLUTION: A pupil division member 3 arranged between a photographic lens 2 and an imaging device 4 can turn on/off a hologram function in division areas 301 and 302 and other areas by controlling applied voltage. When voltage is applied only to the division area 301 as shown by (a), the hologram function is turned off only in the division area 301, which becomes transparent, and red light R of an area 301' is deflected to the outside of an optical path. When the voltage is applied only to the division area 302 as shown by (b), the division area 302 becomes transparent, and the red light R of an area 302' is deflected to the outside of the optical path. As a result, image shift amount is detected by alternately turning on/off the division areas 301 and 302 and receiving the red light R transmitted through the division areas 301 and 302. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、瞳時分割式の焦点検出を行う焦点検出装置、その焦点検出装置を備えた電子カメラおよび電子カメラに着脱自在に装着される交換レンズに関する。   The present invention relates to a focus detection device that performs pupil time-division focus detection, an electronic camera including the focus detection device, and an interchangeable lens that is detachably attached to the electronic camera.

従来より、デジタルスチルカメラ等の電子カメラでは、撮影用撮像素子で撮像された画像のコントラスト等の鮮鋭度を評価して、その鮮鋭度がピークとなる状態を合焦状態と判断するコントラスト検出方式の焦点検出が知られている。この方式を採用した場合、焦点検出用のセンサーを別途設ける必要がないため、カメラの低コスト化や小型化に有利であるという特徴を有するが、一方で、焦点合わせに時間がかかるという欠点を有している。   Conventionally, in an electronic camera such as a digital still camera, a contrast detection method for evaluating a sharpness such as a contrast of an image captured by a photographing image sensor and determining a state where the sharpness reaches a peak as a focused state Focus detection is known. When this method is adopted, there is no need to provide a separate focus detection sensor, which is advantageous for reducing the cost and size of the camera, but on the other hand, it takes the time to focus. Have.

上述したコントラスト検出方式と同様に撮影用撮像素子の出力信号を用いて焦点検出を行い、かつ焦点合わせの時間を短縮する方法として、瞳時分割型像ズレ検出方式の焦点検出を行うカメラが知られている(例えば、特許文献1参照)。このカメラでは、撮影レンズの射出瞳位置近傍に液晶を利用した瞳選択手段が設けられており、その瞳選択手段には液晶の透過・不透過を切り換えることにより一対の瞳開口を形成することができる。そして、一対の瞳開口の透過状態を交互に切り換えて、各瞳開口を透過した光による被写体像同士の位置ズレを検出することにより撮影レンズの焦点調節状態を検出する。   As in the contrast detection method described above, a camera that performs focus detection using the pupil time-division type image shift detection method is known as a method for performing focus detection using the output signal of the image sensor for photographing and reducing the focusing time. (For example, refer to Patent Document 1). In this camera, pupil selection means using liquid crystal is provided in the vicinity of the exit pupil position of the photographing lens, and a pair of pupil openings can be formed in the pupil selection means by switching between transmission and non-transmission of liquid crystal. it can. Then, the focus adjustment state of the photographing lens is detected by alternately switching the transmission state of the pair of pupil openings and detecting the positional deviation between the subject images due to the light transmitted through the pupil openings.

特開平6−175015号公報JP-A-6-175015

しかしながら、上述したカメラでは、焦点検出動作中においては、液晶の透過・不透過が交互に繰り返されるため、常に透過状態とされる撮影時に比べて光量が減少し画面全体が暗くなるという欠点がある。また、焦点が合っていない画像部分は、液晶切り換えと同期して像ブレが生じる。そのため、撮影用撮像素子の出力信号を電子ビューファインダに利用した場合、焦点検出中は画面が暗かったり像ブレが生じたりして、非常に見づらくなるという欠点があった。   However, the above-described camera has a disadvantage that the amount of light is reduced and the entire screen becomes darker than the time of photographing that is always in a transmissive state because transmission and non-transmission of liquid crystal are alternately repeated during the focus detection operation. . In addition, image blur occurs in an image portion that is not in focus in synchronization with the liquid crystal switching. For this reason, when the output signal of the image sensor for photographing is used in an electronic viewfinder, the screen is dark or image blurring occurs during focus detection, which makes it very difficult to see.

請求項1の発明は、被写体からの光束を撮影光学系で結像した被写体画像を撮像する撮影装置に搭載され、瞳時分割により得られた撮像信号に基づいて撮影光学系の焦点調節状態を検出する焦点検出装置に適用され、撮影光学系の被写体光路中に配設されるとともに、撮影光学系の光軸に直交する面内において重心位置が互いに異なる第1および第2の領域を有し、(a)入射被写体光のうち第1の領域に入射する所定波長域の光を偏向する第1の状態と、(b)入射被写体光のうち第2の領域に入射する所定波長域の光を偏向する第2の状態と、(c)入射被写体光をそのまま透過する第3の状態との間で切り換え可能な偏向部材と、撮影光学系の撮像面または光学的にほぼ等価な位置に配置された撮像素子と、第1の状態および第2の状態のそれぞれにおける撮像素子の撮像信号に基づいて、撮影光学系の焦点調節状態を検出する焦点検出手段と、焦点調節状態を検出する場合には偏向部材の第1の状態および第2の状態を時分割で交互に切り換え、焦点調節状態を検出しない場合には偏向部材を第3の状態に切り換える制御手段とを備えたことを特徴とする。
請求項2の発明は、請求項1に記載の焦点検出装置において、偏向部材は第1および第2の領域で構成される対領域を複数有し、焦点検出手段は焦点調節状態の検出を対領域毎に行うようにしたものである。
請求項3の発明は、請求項1または2に記載の焦点検出装置において、撮像素子は異なる分光感度特性を有する複数の画素を有し、焦点検出手段は、撮像素子に含まれる複数の画素の内の所定波長域の光に対して最も検出感度の高い画素からの信号に基づいて前記焦点調節状態を検出する。
請求項4の発明は、請求項1〜3のいずれかに記載の焦点検出装置において、偏向部材を液晶を用いた回折光学素子で構成したものである。
請求項5の発明による電子カメラは、請求項1〜4のいずれかに記載の焦点検出装置と、撮影光学系を透過した光を受光して被写体画像を撮像する撮影用撮像素子と、焦点検出装置により検出された焦点調節状態に基づいて撮影光学系の焦点調節動作を行うオートフォーカス制御手段と、焦点調節状態の検出・非検出に関わらず、焦点検出装置に含まれる撮像素子の撮像信号に基づいて画像を表示する表示手段とを備えるものである。
請求項6の発明による電子カメラは、請求項1〜4のいずれかに記載の焦点検出装置と、偏向部材を透過した光を受光して被写体画像を撮像する撮影用撮像素子と、焦点検出装置により検出された焦点調節状態に基づいて撮影光学系の焦点調節動作を行うオートフォーカス制御手段と、焦点調節状態の検出・非検出に関わらず、撮像素子の撮像信号に基づく画像を記録する記録手段とを備え、焦点検出手段は、撮影用撮像素子から出力される撮像信号に基づいて焦点調節状態を検出するものである。
請求項7の発明は、請求項5または6に記載の電子カメラにおいて、撮影用撮像素子の撮像信号に基づいて、撮像された像の鮮鋭度を表す焦点評価値を算出する評価値演算手段を備え、オートフォーカス制御手段は、焦点評価値および焦点検出装置により検出された焦点調節状態の少なくとも一方に基づいて撮影光学系の焦点調節動作を行うものである。
請求項8の発明による焦点検出装置は、被写体からの光束を結像する撮影光学系の結像面と光学的にほぼ等価な位置に配置される光電変換素子と、撮影光学系の光束の光路中に配設されるとともに、撮影光学系の光軸に直交する面内において重心位置が互いに異なる第1および第2の領域を有し、第1の領域に入射する光束の所定波長域の光を光電変換素子へと偏向する第1の状態と、第2の領域に入射する光束の所定波長域の光を光電変換素子へと偏向する第2の状態とを交互に時分割で切り換える瞳分割手段と、光電変換素子の出力信号に基づいて撮影光学系の焦点調節状態を検出する焦点検出手段とを備えたことを特徴とする。
請求項9の発明による電子カメラは、被写体からの光束を結像する撮影光学系の結像面に配置され、前記被写体からの光束を受光して被写体画像を撮像する撮像素子と、
結像面と光学的に等価な位置に配置される光電変換素子と、撮影光学系の光束の光路中に配設されるとともに、撮影光学系の光軸に直交する面内において重心位置が互いに異なる第1および第2の領域を有し、(a)入射光束のうち第1の領域に入射する所定波長域の光を光電変換素子へと偏向する第1の状態と、(b)入射光束のうち第2の領域に入射する所定波長域の光を光電変換素子へと偏向する第2の状態と、(c)入射光束をそのまま透過する第3の状態との間で切り換え可能な偏向部材と、第1の状態および第2の状態のそれぞれにおける光電変換素子の撮像信号に基づいて、撮影光学系の焦点調節状態を検出する焦点検出手段と、焦点調節状態を検出する場合には偏向部材の第1の状態および第2の状態を時分割で交互に切り換え、焦点調節状態を検出しない場合には偏向部材を第3の状態に切り換える制御手段とを備えたことを特徴とする。
請求項10の発明は、瞳時分割方式により焦点調節状態を検出する電子カメラに着脱自在に装着される交換レンズであって、撮影レンズの被写体光路中に配設され、(a)入射被写体光のうち第1の領域に入射する所定波長域の光を偏向する第1の状態と、(b)入射被写体光から前記第1の領域と重心位置が異なる第2の領域に入射する所定波長域の光を偏向する第2の状態と、(c)入射被写体光をそのまま透過する第3の状態との間で切り換え可能な偏向部材と、瞳時分割方式による焦点調節状態検出時に、偏向部材を前記第1の状態および第2の状態に交互に切り換える切換駆動部とを備えたことを特徴とする。
請求項11の発明による焦点検出装置は、被写体からの光束を結像する撮影光学系の結像面に配置され、被写体からの光束を光電変換する光電変換素子と、撮影光学系の光束の光路中に配設されるとともに、撮影光学系の光軸に直交する面内において重心位置が互いに異なる第1および第2の領域を有し、第1の領域に入射する光束の所定波長域の光を偏向する第1の状態と、第2の領域に入射する光束の所定波長域の光を偏向する第2の状態とに切り換え可能な偏向部材と、偏向部材を第1の状態と第2の状態とに交互に切り換える切換手段と、切換手段による第1の状態および第2の状態のそれぞれにおいて光電変換素子で得られる光電変換信号に基づいて、撮影光学系の被写体に対する焦点調節状態を求める焦点検出手段とを備えたことを特徴とする。
According to the first aspect of the present invention, the focus adjustment state of the photographing optical system is mounted on a photographing device that picks up a subject image in which a light flux from the subject is imaged by the photographing optical system, and based on an imaging signal obtained by pupil time division. The first and second regions are applied to a focus detection device for detection and are disposed in a subject optical path of the photographing optical system and have different centroid positions in a plane orthogonal to the optical axis of the photographing optical system. (A) a first state of deflecting light in a predetermined wavelength region incident on the first region of incident subject light; and (b) light in a predetermined wavelength region incident on the second region of incident subject light. And (c) a deflection member that can be switched between the third state in which the incident subject light is transmitted as it is and the imaging surface of the imaging optical system or an optically substantially equivalent position. Image sensor, first state and second state Focus detection means for detecting the focus adjustment state of the photographic optical system based on the imaging signal of each of the imaging elements, and when detecting the focus adjustment state, the first state and the second state of the deflecting member are And a control means for switching the deflecting member to the third state when the focus adjustment state is not detected when the focus adjustment state is not detected.
According to a second aspect of the present invention, in the focus detection apparatus according to the first aspect, the deflecting member has a plurality of paired regions each composed of the first and second regions, and the focus detection means detects the focus adjustment state. This is performed for each area.
According to a third aspect of the present invention, in the focus detection apparatus according to the first or second aspect, the imaging device has a plurality of pixels having different spectral sensitivity characteristics, and the focus detection means includes a plurality of pixels included in the imaging device. The focus adjustment state is detected based on a signal from a pixel having the highest detection sensitivity with respect to light in a predetermined wavelength region.
According to a fourth aspect of the present invention, in the focus detection apparatus according to any one of the first to third aspects, the deflecting member is composed of a diffractive optical element using liquid crystal.
According to a fifth aspect of the present invention, there is provided an electronic camera according to any one of the first to fourth aspects, a photographing imaging device that captures a subject image by receiving light transmitted through the photographing optical system, and focus detection. An autofocus control means for performing a focus adjustment operation of the photographing optical system based on a focus adjustment state detected by the apparatus, and an image pickup signal of an image pickup device included in the focus detection apparatus regardless of whether the focus adjustment state is detected or not detected Display means for displaying an image on the basis thereof.
According to a sixth aspect of the present invention, there is provided an electronic camera according to any one of the first to fourth aspects, a photographing imaging device that captures a subject image by receiving light transmitted through the deflecting member, and a focal point detecting device. Autofocus control means for performing a focus adjustment operation of the photographing optical system based on the focus adjustment state detected by the recording means, and a recording means for recording an image based on the image pickup signal of the image pickup element irrespective of whether the focus adjustment state is detected or not detected The focus detection means detects the focus adjustment state based on the imaging signal output from the imaging element for imaging.
According to a seventh aspect of the present invention, in the electronic camera according to the fifth or sixth aspect, the evaluation value calculating means for calculating a focus evaluation value representing the sharpness of the captured image based on the imaging signal of the imaging element for imaging. The autofocus control means performs a focus adjustment operation of the photographing optical system based on at least one of the focus evaluation value and the focus adjustment state detected by the focus detection device.
According to an eighth aspect of the present invention, there is provided a focus detection apparatus comprising: a photoelectric conversion element disposed at a position optically substantially equivalent to an imaging surface of a photographing optical system that forms a light beam from a subject; and an optical path of the light beam of the photographing optical system. Light having a first wavelength region and a second region different from each other in the center of gravity within a plane orthogonal to the optical axis of the photographing optical system, and having a predetermined wavelength range of a light beam incident on the first region Splitting that alternately switches in a time-division manner a first state in which the light is deflected to the photoelectric conversion element and a second state in which light in a predetermined wavelength region of the light beam incident on the second region is deflected to the photoelectric conversion element And focus detection means for detecting the focus adjustment state of the photographing optical system based on the output signal of the photoelectric conversion element.
An electronic camera according to an invention of claim 9 is disposed on an imaging surface of an imaging optical system that forms an image of a light beam from a subject, and receives an image of the subject by receiving the light beam from the subject;
The photoelectric conversion element disposed at a position optically equivalent to the imaging plane and the optical center of the photographing optical system are arranged in the optical path of the light flux of the photographing optical system, and the center of gravity position is mutually in the plane perpendicular to the optical axis of the photographing optical system. A first state having different first and second regions, (a) a first state in which light of a predetermined wavelength region incident on the first region of the incident light beam is deflected to the photoelectric conversion element; and (b) the incident light beam. A deflecting member that can be switched between a second state in which light in a predetermined wavelength region incident on the second region is deflected to the photoelectric conversion element and (c) a third state in which the incident light beam is transmitted as it is. And a focus detection means for detecting the focus adjustment state of the photographic optical system based on the imaging signals of the photoelectric conversion elements in each of the first state and the second state, and a deflection member in the case of detecting the focus adjustment state The first state and the second state are alternately switched in time division For example, if it does not detect the focus adjustment state is characterized in that a control means for switching the deflection member to the third state.
According to a tenth aspect of the present invention, there is provided an interchangeable lens that is detachably attached to an electronic camera that detects a focus adjustment state by a pupil time division method, and is provided in a subject optical path of a photographing lens. A first state of deflecting light in a predetermined wavelength region incident on the first region, and (b) a predetermined wavelength region incident on the second region having a gravity center position different from that of the first region from the incident subject light. A deflection member that can be switched between a second state of deflecting the light of (3) and a third state of transmitting the incident subject light as it is, and at the time of detecting the focus adjustment state by the pupil time division method, And a switching drive unit that switches alternately between the first state and the second state.
A focus detection device according to an eleventh aspect of the present invention is arranged on an imaging surface of a photographing optical system that forms an image of a light beam from a subject. Light having a first wavelength region and a second region different from each other in the center of gravity within a plane orthogonal to the optical axis of the photographing optical system, and having a predetermined wavelength range of a light beam incident on the first region A deflection member that can be switched between a first state for deflecting light and a second state for deflecting light in a predetermined wavelength region of a light beam incident on the second region, and the deflection member for the first state and the second state Switching means for alternately switching to a state, and a focus for obtaining a focus adjustment state for a subject of the photographing optical system based on a photoelectric conversion signal obtained by the photoelectric conversion element in each of the first state and the second state by the switching means Equipped with detection means The features.

本発明によれば、第1の状態では第1の領域に入射する所定波長域の光のみが光路外へ偏向され、第2の状態では第2の領域に入射する所定波長域の光のみが光路外へ偏向されるだけなので、第1および第2の状態を交互に切り換えて焦点検出を行っている最中において、画像のちらつきを低減することができる。   According to the present invention, in the first state, only light in a predetermined wavelength region incident on the first region is deflected out of the optical path, and in the second state, only light in a predetermined wavelength region incident on the second region is deflected. Since it is only deflected to the outside of the optical path, it is possible to reduce image flicker during focus detection while alternately switching between the first and second states.

以下、図を参照して本発明を実施するための最良の形態について説明する。図1は、本発明による焦点検出装置を電子カメラに適用した場合の概略構成を示す図である。電子カメラ1には、撮影レンズ2およびその撮影レンズ2により結像された被写体像を撮像する撮像素子4が設けられている。撮像素子4にはCCD型やCMOS型等の撮像素子が用いられる。撮影レンズ2と撮像素子4との間の光軸J上には、駆動部12により駆動される瞳分割部材3が配設されている。なお、撮影レンズ2が複数のレンズを有するレンズ群で構成される場合には、瞳分割部材3はレンズ群の間に配設される場合もある。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration when a focus detection apparatus according to the present invention is applied to an electronic camera. The electronic camera 1 is provided with a photographic lens 2 and an imaging element 4 that captures a subject image formed by the photographic lens 2. As the image sensor 4, an image sensor such as a CCD type or a CMOS type is used. On the optical axis J between the photographing lens 2 and the image sensor 4, a pupil dividing member 3 driven by the drive unit 12 is disposed. When the photographing lens 2 is configured by a lens group having a plurality of lenses, the pupil division member 3 may be disposed between the lens groups.

撮像素子4から出力された信号は制御演算部5に入力される。制御演算部5は、撮像素子4の出力信号に対して各種画像処理を施す信号処理回路を含むとともに、(a)撮像素子4および瞳分割部材3の駆動部12の制御、(b)撮像素子4の出力信号に基づいて行われる像ズレ量の演算、(c)演算された像ズレ量に基づいて行われる撮影レンズ2の焦点ズレ量(撮影レンズ2による被写体の像面と撮像素子4上の予定結像面とのずれ量とその方向を表すデフォーカス量)の演算、(d)撮像素子4の出力信号に基づく焦点評価値(被写体像のコントラスト鮮鋭度の評価値)の演算、(e)算出されたデフォーカス量や焦点評価値に基づくレンズ駆動部11の制御などを行う。   A signal output from the image sensor 4 is input to the control calculation unit 5. The control calculation unit 5 includes a signal processing circuit that performs various image processing on the output signal of the image sensor 4, and (a) controls the drive unit 12 of the image sensor 4 and the pupil dividing member 3, and (b) the image sensor. (C) Defocus amount of the photographing lens 2 performed based on the calculated image shift amount (on the image plane of the subject and the image sensor 4) (D) Calculation of focus evaluation value (evaluation value of contrast sharpness of subject image) based on output signal of image sensor 4 (D) e) The lens drive unit 11 is controlled based on the calculated defocus amount and focus evaluation value.

レンズ駆動部11は、演算制御部5の指令により撮影レンズ2のフォーカスレンズを駆動する。演算制御部5における画像処理により得られた画像情報は、記憶部6に記憶される。10は電子カメラ1に着脱可能に設けられた記録媒体であり、記憶部6に記憶された画像情報は記録媒体10に転送される。また、電子カメラ1は電子ビューファインダ7を備えており、記憶部6に記憶された画像情報をLCD等で構成される表示部8に表示し、観察光学系9により観察することができる。   The lens driving unit 11 drives the focus lens of the photographing lens 2 according to a command from the arithmetic control unit 5. Image information obtained by image processing in the arithmetic control unit 5 is stored in the storage unit 6. A recording medium 10 is detachably attached to the electronic camera 1, and image information stored in the storage unit 6 is transferred to the recording medium 10. In addition, the electronic camera 1 includes an electronic viewfinder 7, and the image information stored in the storage unit 6 can be displayed on the display unit 8 configured by an LCD or the like and can be observed by the observation optical system 9.

《瞳分割部材3の説明》
図2は瞳分割部材3を撮像素子4の方向から見た平面図である。瞳分割部材3は液晶ホログラムで構成され、2つの分割領域301,302が光軸Jに関して左右対称な位置に設けられている。すなわち、分割領域301の重心は光軸Jの左側の距離dの位置にあり、分割領域302の重心は光軸Jの右側の距離dの位置にある。分割領域301,302は、位相型の体積ホログラムとしての光学特性を備えている。
<< Description of Pupil Dividing Member 3 >>
FIG. 2 is a plan view of the pupil division member 3 as viewed from the direction of the image sensor 4. The pupil division member 3 is composed of a liquid crystal hologram, and the two division regions 301 and 302 are provided at positions symmetrical with respect to the optical axis J. That is, the center of gravity of the divided region 301 is at a position of a distance d on the left side of the optical axis J, and the center of gravity of the divided region 302 is at a position of a distance d on the right side of the optical axis J. The divided regions 301 and 302 have optical characteristics as a phase type volume hologram.

図3は、図2のA−A断面を模式的に示したものである。同図においては、説明の便利のため、分割領域301,302が実際よりも狭く描かれている。図3において311,312はガラスやプラスチック等からなる透明基板であり、透明基板311,312の互いに対向している面には透明導電膜313,314による電極パターンが形成されている。透明導電膜313,314は、分割領域301に対応する透明導電膜313b,314bと、分割領域302に対応する透明導電膜313c,314c(不図示)と、分割領域301,302以外の領域に対応する透明導電膜313a,314aとに分かれており、駆動部12は各々に対して電圧を個別に印加することができる。   FIG. 3 schematically shows an AA cross section of FIG. In the figure, for convenience of explanation, the divided areas 301 and 302 are drawn narrower than actual. In FIG. 3, reference numerals 311 and 312 denote transparent substrates made of glass, plastic or the like, and electrode patterns made of transparent conductive films 313 and 314 are formed on the surfaces of the transparent substrates 311 and 312 facing each other. The transparent conductive films 313 and 314 correspond to transparent conductive films 313b and 314b corresponding to the divided region 301, transparent conductive films 313c and 314c (not shown) corresponding to the divided region 302, and regions other than the divided regions 301 and 302. The transparent conductive films 313a and 314a are separated from each other, and the driving unit 12 can individually apply a voltage to each.

透明基板311と透明基板312との間には、高分子ポリマー315aに液晶粒子315bを分散した高分子分散液晶315が挟持されている。なお、図2の分割領域302も分割領域301と同様の構造を有している。高分子分散液晶315においては、分子ポリマー315a中に液晶粒子315bが分散しており、液晶粒子315bの密度の高い層316と液晶粒子315bの密度の低い層317とが交互に現れる層状構造となっている。この層状構造は後述する干渉縞パターンと同一の周期構造を有しており、印加電圧が低い場合入射した光に対して体積型のホログラムとして機能する。   Between the transparent substrate 311 and the transparent substrate 312, a polymer dispersed liquid crystal 315 in which liquid crystal particles 315b are dispersed in a polymer polymer 315a is sandwiched. 2 has the same structure as that of the divided region 301. The polymer dispersed liquid crystal 315 has a layered structure in which the liquid crystal particles 315b are dispersed in the molecular polymer 315a, and the high density layer 316 of the liquid crystal particles 315b and the low density layer 317 of the liquid crystal particles 315b appear alternately. ing. This layered structure has the same periodic structure as an interference fringe pattern to be described later, and functions as a volume hologram for incident light when the applied voltage is low.

このようなホログラム機能を備えた瞳分割部材3を形成する場合、まず、液晶と光硬化性モノマーとを混合してモノマー中に液晶を分散させ、その後、図4に示すように瞳分割部材3をレーザー露光する。図4は、ホログラム形成のためのレーザー露光を説明する概念図である。例えば、コンピュータにより生成された回折格子を物体光の中に配置して作成したレーザー物体光L2とレーザー参照光L1とを干渉させ、その干渉領域に瞳分割部材3を配設すると、透明基板311と312との間にも干渉縞に対応した光強度分布パターンが形成される。   When forming the pupil division member 3 having such a hologram function, first, liquid crystal and a photocurable monomer are mixed to disperse the liquid crystal in the monomer, and then the pupil division member 3 as shown in FIG. Laser exposure. FIG. 4 is a conceptual diagram illustrating laser exposure for forming a hologram. For example, when the laser object light L2 created by arranging a diffraction grating generated by a computer in the object light is caused to interfere with the laser reference light L1, and the pupil division member 3 is disposed in the interference region, the transparent substrate 311 is obtained. A light intensity distribution pattern corresponding to the interference fringes is also formed between 1 and 312.

上述した液晶と光硬化性モノマーとの混合部材は、上述したように形成された干渉縞をホログラムとして記録するための記録部材である。モノマー中に分散した液晶はモノマーが光重合する際に液晶粒子315bとなり、干渉により光強度が強くなっている部分ではモノマーの光重合が充分に進んでポリマーの密度が高くなる。逆に、光強度が弱い部分では、光強度が強い部分にモノマーが引き寄せられる分だけ液晶粒子315bの密度が高くなる。   The above-mentioned mixed member of the liquid crystal and the photocurable monomer is a recording member for recording the interference fringes formed as described above as a hologram. The liquid crystal dispersed in the monomer becomes liquid crystal particles 315b when the monomer is photopolymerized, and in the portion where the light intensity is increased by interference, the photopolymerization of the monomer proceeds sufficiently to increase the density of the polymer. On the contrary, in the portion where the light intensity is weak, the density of the liquid crystal particles 315b is increased by the amount that the monomer is attracted to the portion where the light intensity is strong.

このようにして、図3に示すような液晶粒子315bの密度の低い層317と液晶粒子315bの密度の高い層316とから成るホログラムが、高分子分散液晶315内に形成される。本実施の形態において形成されるホログラムは、瞳分割部材3に光L11を入射させたときに、特定波長域の光Rに対して回折効率が高くなるように設計される。すなわち、ホログラムを作成する場合に、特定波長域の光Rと同じ波長を有するレーザー光で露光を行う。そのため、光Rは所定角度方向に回折され、その他の波長を有する光L11’は瞳分割部材3を直進するように透過する。   In this way, a hologram composed of the low density layer 317 of the liquid crystal particles 315b and the high density layer 316 of the liquid crystal particles 315b as shown in FIG. 3 is formed in the polymer dispersed liquid crystal 315. The hologram formed in the present embodiment is designed so that the diffraction efficiency is high with respect to the light R in a specific wavelength region when the light L11 is incident on the pupil division member 3. That is, when creating a hologram, exposure is performed with a laser beam having the same wavelength as the light R in a specific wavelength region. Therefore, the light R is diffracted in a predetermined angle direction, and the light L11 'having other wavelengths is transmitted so as to travel straight through the pupil division member 3.

なお、ホログラムの偏向効果としては、例えば、(a)プリズムと同じように像高(光軸からの距離)によらず同じ角度で入射した光は全て同じ角度だけ偏向するものであっても良いし、(b)ホログラムにレンズ効果を付与して回折された光Rを所定の範囲に集光させるものであっても良い。後者の場合、回折された光Rがカメラ内部で反射して迷光となるのを防止する構成が容易となる。   As a hologram deflection effect, for example, as in the case of (a) prism, all light incident at the same angle regardless of the image height (distance from the optical axis) may be deflected by the same angle. (B) The diffracted light R may be collected in a predetermined range by applying a lens effect to the hologram. In the latter case, it becomes easy to prevent the diffracted light R from being reflected inside the camera and becoming stray light.

特定波長域の光Rは以下のように設定する。撮像素子4はCCDを構成する各画素に3種のフィルターのいずれかを配したカラーCCDであり、分光透過特性の異なる3種類の画素がモザイク状に並んだ構造を有している。図5は3種のフィルターの分光透過特性を模式的に示したものであり、横軸は波長、縦軸は感度である。第1種のフィルターFRの分光透過特性は赤色の波長にピークを有しており、第2種のフィルターFGの分光透過特性は緑色の波長にピークを有し、第3種のフィルターFBの分光透過特性は青色の波長にピークを有している。   The light R in the specific wavelength range is set as follows. The image pickup device 4 is a color CCD in which one of three types of filters is arranged for each pixel constituting the CCD, and has a structure in which three types of pixels having different spectral transmission characteristics are arranged in a mosaic pattern. FIG. 5 schematically shows the spectral transmission characteristics of the three types of filters. The horizontal axis represents wavelength and the vertical axis represents sensitivity. The spectral transmission characteristic of the first type filter FR has a peak at the red wavelength, the spectral transmission characteristic of the second type filter FG has a peak at the green wavelength, and the spectral transmission characteristic of the third type filter FB. The transmission characteristic has a peak at a blue wavelength.

後述するように、本実施の形態の電子カメラでは、第1種のフィルターFRを透過する赤色光Rを用いて焦点検出をするように構成している。そのため、瞳分割部材3に形成されるホログラムには赤色付近の回折効率が良いものを用いて、赤色光Rを回折するように構成した。なお、赤色光Rに限らず、青色光または緑色光を回折するようにホログラムを構成して、それらの光で焦点検出を行うようにしても良い。   As will be described later, the electronic camera of the present embodiment is configured to perform focus detection using red light R that passes through the first type of filter FR. Therefore, the hologram formed on the pupil division member 3 is configured to diffract the red light R by using a hologram having a high diffraction efficiency near red. In addition, not only the red light R but also a hologram may be configured to diffract blue light or green light, and focus detection may be performed using these lights.

《瞳分割部材3の動作説明》
次に、瞳分割部材3のホログラム機能のオン・オフ動作について説明する。図6は瞳分割部材3の動作状態の種類を示す図であり、(a)は第1の状態を、(b)は第2の状態を、(c)は第3の状態をそれぞれ示す。また、図7〜9は、図6の(a)〜(c)に示したA1−A1断面,A2−A2断面およびA3−A3断面をそれぞれ模式的に示したものである。
<< Explanation of operation of pupil division member 3 >>
Next, the on / off operation of the hologram function of the pupil division member 3 will be described. FIGS. 6A and 6B are diagrams showing the types of operation states of the pupil division member 3, wherein FIG. 6A shows the first state, FIG. 6B shows the second state, and FIG. 6C shows the third state. FIGS. 7 to 9 schematically show the A1-A1 cross section, the A2-A2 cross section, and the A3-A3 cross section shown in FIGS. 6A to 6C, respectively.

図6(a)に示した第1の状態では、図7に示す分割領域301の透明導電膜313b、314bに電圧を印加する。図7において318は液晶粒子315b内の液晶分子を表している。分割領域301においては、印加電圧を与えることによって液晶粒子315b内の液晶分子318の光軸を瞳分割部材3の厚さ方向に配向させ、液晶粒子315bの実効屈折率neffを等方性高分子ポリマー315aの屈折率npとほぼ等しくなるようにしている。   In the first state shown in FIG. 6A, a voltage is applied to the transparent conductive films 313b and 314b in the divided region 301 shown in FIG. In FIG. 7, reference numeral 318 represents liquid crystal molecules in the liquid crystal particles 315b. In the divided region 301, by applying an applied voltage, the optical axes of the liquid crystal molecules 318 in the liquid crystal particles 315b are aligned in the thickness direction of the pupil dividing member 3, and the effective refractive index neff of the liquid crystal particles 315b is set to be an isotropic polymer. The refractive index np of the polymer 315a is made substantially equal.

そのため、図7に示す第1の状態では、分割領域301の層316と層317との間に屈折率差がなくなり、層316,317はホログラムとして機能することがない。その結果、分割領域301は、赤色光Rに対してもその他の波長の光に対しても透明状態となり、分割領域301に入射した光L12は瞳分割部材3を直進するように透過する。   Therefore, in the first state shown in FIG. 7, there is no difference in refractive index between the layer 316 and the layer 317 in the divided region 301, and the layers 316 and 317 do not function as holograms. As a result, the divided region 301 is transparent to both the red light R and light of other wavelengths, and the light L12 incident on the divided region 301 is transmitted so as to travel straight through the pupil dividing member 3.

一方、図6(a)のハッチングを施した分割領域301以外の領域301’においては、印加電圧がオフとされる。この場合、液晶粒子315b内の液晶分子318はランダムに配向する。その結果、液晶粒子315bと等方性高分子ポリマー315aとの間に屈折率差が生じ、分割領域301以外の領域における層316,317は、赤色光に対してホログラムとして機能する。よって、入射光L11に含まれる赤色光Rは一点鎖線で示すように図示右斜め上方向の被写体光路外へ回折され、それ以外の光L11’は瞳分割部材3を直進するように透過する。   On the other hand, in the region 301 ′ other than the hatched divided region 301 in FIG. 6A, the applied voltage is turned off. In this case, the liquid crystal molecules 318 in the liquid crystal particles 315b are randomly oriented. As a result, a difference in refractive index occurs between the liquid crystal particles 315b and the isotropic polymer 315a, and the layers 316 and 317 in regions other than the divided region 301 function as holograms with respect to red light. Therefore, the red light R included in the incident light L11 is diffracted out of the subject optical path in the upper right direction in the figure as indicated by a one-dot chain line, and the other light L11 'is transmitted so as to travel straight through the pupil dividing member 3.

すなわち、第1の状態では、瞳分割部材3に入射した被写体光L11,L12から領域301’内の赤色光Rを被写体光の光路外へ偏向する。そして、残余の光(領域301’内の赤色光R以外の光L11’および分割領域301に入射した被写体光L12)を偏向することなくそのまま撮像素子4方向へと透過する。   That is, in the first state, the red light R in the region 301 ′ is deflected out of the optical path of the subject light from the subject lights L 11 and L 12 incident on the pupil division member 3. The remaining light (light L11 'other than red light R in the region 301' and subject light L12 incident on the divided region 301) is transmitted in the direction toward the image sensor 4 without being deflected.

図6(b)に示した第2の状態では、分割領域302の印加電圧をオンにして、その他の領域の印加電圧をオフとする。図8のA2−A2断面図に示すように、分割領域301には電圧が印加されていないので、液晶粒子315b内の液晶分子318の配向方向はランダムになっている。そのため、分割領域301を含む図6(b)のハッチングを施された領域302’では、図8に示すように入射光L11,L12に含まれる赤色光Rは回折され、残りの光L11’,L12’が瞳分割部材3を直進するように透過する。また、電圧が印加されている分割領域302の状態は図7に示す分割領域301と同様の状態となっており、入射光はそのまま透過される。   In the second state shown in FIG. 6B, the applied voltage in the divided region 302 is turned on and the applied voltage in other regions is turned off. As shown in the A2-A2 cross-sectional view of FIG. 8, since no voltage is applied to the divided region 301, the alignment directions of the liquid crystal molecules 318 in the liquid crystal particles 315b are random. Therefore, in the hatched region 302 ′ including the divided region 301 in FIG. 6B, the red light R included in the incident light L11 and L12 is diffracted as shown in FIG. 8, and the remaining light L11 ′, L12 ′ passes through the pupil division member 3 so as to go straight. Further, the state of the divided region 302 to which the voltage is applied is the same as that of the divided region 301 shown in FIG. 7, and the incident light is transmitted as it is.

すなわち、第2の状態では、瞳分割部材3に入射した被写体光から領域302’内の赤色光Rを被写体光の光路外へ偏向し、残余の光(領域302’内の赤色光R以外の光および分割領域302に入射した被写体光)を偏向することなくそのまま撮像素子4方向へと透過する。   That is, in the second state, the red light R in the region 302 ′ is deflected from the subject light incident on the pupil division member 3 to the outside of the optical path of the subject light, and the remaining light (other than the red light R in the region 302 ′) is deflected. The light and the subject light incident on the divided region 302 are transmitted as they are toward the image sensor 4 without being deflected.

図6(c)に示す第3の状態では、瞳分割部材3の全領域の印加電圧がオンとされる。そのため、図9に示すように、全ての領域で液晶粒子315b内の液晶分子318が電界方向に配向され、全領域においてホログラム機能が発現されない。よって、入射光L11,L12に対して瞳分割部材3の全領域が透明状態となり、入射光L11,L12はそのまま透過される。後述する瞳時分割式の焦点検出を行う場合には第1の状態および第2の状態を使用し、撮影を行う場合には全体が透明状態となる第3の状態を使用する。   In the third state shown in FIG. 6C, the applied voltage of the entire region of the pupil dividing member 3 is turned on. Therefore, as shown in FIG. 9, the liquid crystal molecules 318 in the liquid crystal particles 315b are aligned in the electric field direction in all regions, and the hologram function is not expressed in all regions. Therefore, the entire region of the pupil division member 3 is transparent with respect to the incident lights L11 and L12, and the incident lights L11 and L12 are transmitted as they are. When performing pupil time-division focus detection described later, the first state and the second state are used, and when photographing is performed, the third state in which the whole is in a transparent state is used.

《焦点検出についての説明》
本実施の形態のカメラでは、2種類の方法で撮影レンズ2の焦点状態を検出することができる。第1の方法は瞳分割部材3を利用した瞳時分割式の焦点検出であり、第2の方法は撮像された画像のコントラスト鮮鋭度を表す焦点評価値を利用したコントラスト検出方式の焦点検出である。
<Explanation of focus detection>
In the camera of the present embodiment, the focus state of the photographic lens 2 can be detected by two types of methods. The first method is a pupil time division type focus detection using the pupil division member 3, and the second method is a contrast detection type focus detection using a focus evaluation value representing the contrast sharpness of a captured image. is there.

(瞳時分割式の焦点検出)
まず、第1の方法である瞳時分割式焦点検出について説明する。図10,11は瞳分割部材3を用いた焦点検出の原理を説明する図であり、撮影レンズ2,瞳分割部材3および撮像素子4を図1のX方向から見た図である。瞳分割部材3の分割領域301,302は光軸Jを挟んで図示上下方向に並んでいる。本実施の形態における瞳分割部材3を用いた焦点検出方法は、原理的には従来の瞳時分割式焦点検出と同じであるが、被写体光に含まれる赤色光Rを用いて焦点検出を行う点が異なっている。
(Eye time-division focus detection)
First, pupil time division focus detection, which is the first method, will be described. FIGS. 10 and 11 are views for explaining the principle of focus detection using the pupil division member 3, and is a view of the photographing lens 2, the pupil division member 3 and the image sensor 4 as viewed from the X direction in FIG. The divided areas 301 and 302 of the pupil dividing member 3 are arranged in the vertical direction in the figure with the optical axis J in between. The focus detection method using the pupil division member 3 in the present embodiment is in principle the same as the conventional pupil time division focus detection, but performs focus detection using the red light R included in the subject light. The point is different.

上述したように、瞳分割部材3のホログラムは赤色光R付近で回折効率が良い構成となっており、赤色光R付近以外の光については印加電圧のオンオフにかかわらず透明状態であるといえる。そのため、図10,11では光線として赤色光Rのみを図示した。図10の(a),(b)は、撮影レンズ2の結像面の位置と撮像素子4の撮像面の位置とが一致した合焦状態を示したものである。   As described above, the hologram of the pupil division member 3 has a structure with good diffraction efficiency near the red light R, and it can be said that light other than the vicinity of the red light R is in a transparent state regardless of whether the applied voltage is on or off. Therefore, in FIGS. 10 and 11, only the red light R is illustrated as the light beam. 10A and 10B show a focused state in which the position of the imaging surface of the photographic lens 2 and the position of the imaging surface of the image sensor 4 coincide with each other.

なお、上述した図3および図6〜9では、ホログラムにより赤色光Rが光軸Jの上方へ回折される場合を例に説明した。図10,11では赤色光Rの回折と像ズレとが分かりやすいように、撮像素子4から見て光軸Jよりも右側(図示上側)の領域では赤色光Rを撮像素子4の右方向(図示上方)に回折し、光軸よりも左側(図示下側)の領域では撮像素子4の左方向(図示下方)に回折する場合を例に説明する。   3 and 6 to 9 described above, an example has been described in which the red light R is diffracted above the optical axis J by the hologram. 10 and 11, in order to make it easy to understand the diffraction and image shift of the red light R, the red light R is moved in the right direction of the image sensor 4 in the region on the right side (the upper side in the drawing) of the optical axis J when viewed from the image sensor 4. An example will be described in which diffraction is performed in the upper part of the figure and diffracted in the left direction (lower part of the figure) of the image sensor 4 in the region on the left side (lower side of the figure) of the optical axis.

図10(a)は瞳分割部材3の分割領域301に電圧を印加した場合、すなわち上述した第1の状態を示す。この場合、分割領域301に入射した赤色光Rは、回折による偏向を受けずにそのまま撮像素子4に入射する。一方、分割領域301以外の領域301’では、赤色光Rは二点差線で示すように回折により撮像素子4の左右方向に偏向され、撮像素子4に入射しない。図10(b)は瞳分割部材3を上述した第2の状態とした場合であり、分割領域302に入射した赤色光Rは偏向されずに撮像素子4に入射するが、分割領域302以外の領域302’に入射した赤色光Rは偏向されて撮像素子4に入射しない。   FIG. 10A shows a case where a voltage is applied to the divided region 301 of the pupil dividing member 3, that is, the first state described above. In this case, the red light R incident on the divided region 301 is directly incident on the image sensor 4 without being deflected by diffraction. On the other hand, in the region 301 ′ other than the divided region 301, the red light R is deflected in the left-right direction of the image sensor 4 by diffraction as indicated by a two-dot chain line, and does not enter the image sensor 4. FIG. 10B shows the case where the pupil dividing member 3 is in the second state described above. The red light R incident on the divided region 302 is incident on the image sensor 4 without being deflected. The red light R that has entered the region 302 ′ is deflected and does not enter the image sensor 4.

一方、図11の(a),(b)は、結像面の位置が撮像面の位置よりも撮影レンズ2側にある場合、すなわち焦点が前方にずれている場合を示したものである。図11の(a),(b)における瞳分割部材3の状態は図10の(a),(b)の場合と同じであり、図11(a)は分割領域301の印加電圧がオンで、図11(b)は分割領域302の印加電圧がオンである。   On the other hand, FIGS. 11A and 11B show the case where the position of the imaging plane is closer to the photographing lens 2 than the position of the imaging plane, that is, the case where the focus is shifted forward. The states of the pupil division member 3 in FIGS. 11A and 11B are the same as those in FIGS. 10A and 10B. FIG. 11A shows that the applied voltage of the divided region 301 is on. In FIG. 11B, the applied voltage of the divided region 302 is on.

図11(a)の場合、分割領域301を通過した赤色光Rにより撮像素子4の撮像面には多少ぼけた像が形成され、その像の位置は光軸Jよりも右側(図示上側)にずれている。図11(b)の場合にも分割領域302を通過した赤色光Rにより多少ぼけた像が撮像素子4の撮像面に形成されるが、像の位置は図11(a)の場合とは逆に光軸Jよりも左側(図示下側)にずれる。なお、図11の場合とは反対に焦点が撮像面の後方にずれている場合には、像のズレ方向は上述したものと逆になる。   In the case of FIG. 11A, a slightly blurred image is formed on the imaging surface of the imaging device 4 by the red light R that has passed through the divided region 301, and the position of the image is on the right side (upper side in the drawing) of the optical axis J. It's off. In the case of FIG. 11B as well, an image that is slightly blurred by the red light R that has passed through the divided region 302 is formed on the imaging surface of the imaging device 4, but the position of the image is opposite to that in the case of FIG. Is shifted to the left side (lower side in the figure) from the optical axis J. In contrast to the case of FIG. 11, when the focal point is shifted to the rear of the imaging surface, the image shift direction is opposite to that described above.

制御演算部5(図1参照)は撮像素子4の出力信号に基づいて上述した像ズレ量を算出し、算出された像ズレ量に基づいて撮影レンズ2のデフォーカス量を算出する。像ズレ量を検出する際には、制御演算部5は瞳分割部材3の印加電圧を制御して第1の状態と第2の状態とを交互に切り換える。   The control calculation unit 5 (see FIG. 1) calculates the above-described image shift amount based on the output signal of the image sensor 4, and calculates the defocus amount of the photographing lens 2 based on the calculated image shift amount. When detecting the amount of image shift, the control calculation unit 5 controls the voltage applied to the pupil dividing member 3 to alternately switch between the first state and the second state.

瞳分割部材3は赤色光R以外の光に対しては常に透明状態になっているので、赤色光R以外の光は像ズレ量検出には不要な光となる。そこで、瞳時間分割式で焦点検出を行う際には、赤色光Rを透過する第1種のフィルターFRが設けられた画素の出力信号のみを用いて像ズレ量の検出を行う。その結果、像ズレ量をより正確に検出することができる。   Since the pupil dividing member 3 is always in a transparent state with respect to light other than the red light R, the light other than the red light R becomes unnecessary light for detecting the image shift amount. Therefore, when focus detection is performed by the pupil time division method, the image shift amount is detected using only the output signal of the pixel provided with the first type filter FR that transmits the red light R. As a result, the image shift amount can be detected more accurately.

一方、電子ビューファインダ7の表示部8には、瞳時分割式で焦点検出を行っている最中も、撮像素子4からの出力信号に基づいて画像表示が行われる。液晶シャッタを用いた従来の瞳時分割式焦点検出では、焦点検出中は液晶シャッタによって遮られる光が多く、電子ビューファインダ7で観察される画像にフリッカー(ちらつき)が目立ち見難いという欠点があった。また、ボケた像が揺れて見え、やはり見難いという欠点もあった。   On the other hand, the display unit 8 of the electronic viewfinder 7 displays an image based on an output signal from the image sensor 4 even during focus detection using the pupil time division method. The conventional pupil time-division focus detection using a liquid crystal shutter has a drawback that flicker (flickering) is difficult to see in an image observed with the electronic viewfinder 7 because much light is blocked by the liquid crystal shutter during focus detection. It was. In addition, there was a drawback that the blurred image seemed to shake and was difficult to see.

しかし、本実施の形態の焦点検出装置では、赤色光Rのみで瞳時分割式焦点検出を行うようにしたので、焦点検出中であっても赤色光R以外の光は常に撮像されており、光量低下を低減することができる。表示部8に表示される画像には分割領域301,302が交互にオンオフすることによるフリッカーやボケ像の揺れが観察されるが、赤色光R以外の光は常に撮像されているため、赤色光Rに起因するフリッカーやボケ像の揺れを目立たなくすることができる。   However, in the focus detection apparatus of the present embodiment, the pupil time-division focus detection is performed using only the red light R, so light other than the red light R is always imaged even during focus detection. A decrease in the amount of light can be reduced. In the image displayed on the display unit 8, flicker and blurring of the blurred image due to alternately turning on and off the divided areas 301 and 302 are observed. However, since light other than the red light R is always captured, the red light Flicker and blurring caused by R can be made inconspicuous.

また、電子ビューファインダ7の表示部8に撮像画像を逐次表示する際に、フィルターFRが設けられた画素、すなわち赤色光Rを検出する画素の出力信号に対する重み付けを、他のフィルターFB,FGが設けられた画素の出力信号に対する重み付けよりも小さくすることにより、フリッカー等をより目立たなくすることができる。このような重み付けは、画像表示の場合だけでなく画像記録の場合にも行うことが可能である。   Further, when the captured image is sequentially displayed on the display unit 8 of the electronic viewfinder 7, the other filters FB and FG weight the output signals of the pixels provided with the filter FR, that is, the pixels for detecting the red light R. By making it smaller than the weighting for the output signal of the provided pixel, flicker or the like can be made less noticeable. Such weighting can be performed not only for image display but also for image recording.

(コントラスト検出方式の焦点検出)
次に、コントラスト検出方式の焦点検出について説明する。像のぼけの程度とコントラストとの間には相関があり、焦点が合ったときに像のコントラストは最大になる。コントラストの大小(鮮鋭度)は撮像信号の高周波成分の大小により評価することができる。この評価値は焦点評価値と呼ばれ、制御演算部5において撮像信号の高周波成分を抽出し、その高周波成分の絶対値を積分したものを焦点評価値とする。この焦点評価値は、合焦状態となってコントラストが最大となったときに最大値となる。
(Contrast detection focus detection)
Next, focus detection by contrast detection will be described. There is a correlation between the degree of image blur and contrast, and the image contrast is maximized when in focus. The magnitude of the contrast (sharpness) can be evaluated by the magnitude of the high-frequency component of the imaging signal. This evaluation value is called a focus evaluation value, and the control calculation unit 5 extracts a high frequency component of the imaging signal and integrates the absolute value of the high frequency component as a focus evaluation value. This focus evaluation value becomes the maximum value when the focus is reached and the contrast becomes maximum.

《AF動作の説明》
上述したように、本実施の形態では、素早いAF動作が可能な瞳時分割式焦点検出と、ピント合わせの速度は遅いが精度良く焦点調節を行うことができるコントラスト検出方式の2つの方式で焦点調節状態を検出することができるので、これらを使い分けることにより種々の効果的なAF動作が可能となる。本発明による焦点検出装置は静止画撮影の場合も動画撮影の場合も適用することができる。
<< Explanation of AF operation >>
As described above, in the present embodiment, the focus is divided into two methods: pupil time-division focus detection capable of quick AF operation, and contrast detection method capable of performing focus adjustment with a low speed while focusing accurately. Since the adjustment state can be detected, various effective AF operations can be performed by properly using them. The focus detection apparatus according to the present invention can be applied to both still image shooting and moving image shooting.

静止画撮影の場合はレリーズボタンが半押しされるとAF動作が行われ、全押しにより撮影が行われる。そして、AF動作においては、最初に瞳時分割式により粗調整を行った後に、コントラスト検出方式により微調整を行う。この場合、瞳時分割式によるAF動作時における電子ビューファインダ上の像のちらつき(フリッカー)を低減させることができる。   In the case of still image shooting, AF operation is performed when the release button is pressed halfway, and shooting is performed when the release button is fully pressed. In the AF operation, first, coarse adjustment is performed by the pupil time division method, and then fine adjustment is performed by the contrast detection method. In this case, image flicker (flicker) on the electronic viewfinder at the time of the pupil time division AF operation can be reduced.

動画撮影の場合には、通常はコントラスト検出公式でAFが行われるが、次のような状況においては瞳時分割式によりAFを行う。
(A)動画撮影の初期段階で行う
例えば、撮影開始時のデフォーカス量が大きい場合、コントラスト検出方式だけでAFを行うとピントが合うまでに時間がかかったり、ピント合わせができない場合がある。しかし、撮影開始時に瞳時分割方式によりAFを行うことにより、撮影開始直後からぼけのない鮮鋭な画像を撮影し記録することができる。そのため、動画の1コマを静止画像として用いる場合、撮影直後の動画から鮮鋭な静止画を切り出すことができる。また、撮影操作直後から鮮鋭な画像が撮影できるため、撮影したいシーンをボケで逃すことなく鮮鋭な画像で撮影することができる。
In the case of moving image shooting, AF is normally performed using a contrast detection formula. However, in the following situation, AF is performed using a pupil time division formula.
(A) Performing in the initial stage of moving image shooting For example, when the defocus amount at the start of shooting is large, if AF is performed only with the contrast detection method, it may take time to focus or focus may not be achieved. However, by performing AF using the pupil time division method at the start of shooting, a sharp image without blur can be shot and recorded immediately after the start of shooting. Therefore, when one frame of a moving image is used as a still image, a sharp still image can be cut out from the moving image immediately after shooting. Further, since a sharp image can be taken immediately after the photographing operation, it is possible to take a sharp image without missing the scene to be photographed.

(B)動画撮影中に急激に像ボケが生じた場合に行う
例えばカメラをパンニングした場合には像ボケが非常に大きくなるので、その時だけ瞳時分割式に切り換え、ピントが合った後にはコントラスト検出方式に再び切り換える。
(C)レリーズボタン半押しで行う
一般的には、レリーズボタンが操作されると動画撮影が開始されるが、ここでは、半押しで瞳時分割式のAF動作を行い、全押しで撮影を開始するような動作を採用する。その結果、撮影開始時から鮮鋭な画像を撮影・記録することができる。
(B) When image blur occurs suddenly during movie shooting For example, when the camera is panned, the image blur becomes very large. Switch back to the detection method.
(C) When the release button is pressed halfway In general, when the release button is operated, movie shooting starts, but here, half-pressed performs a pupil time-division AF operation, and fully presses to shoot. Use an action that starts. As a result, it is possible to shoot and record a sharp image from the start of shooting.

以上説明した実施の形態では、瞳時分割式で焦点検出を行う場合に、図6の(a)、(b)に示したように分割領域301,302を交互に透明状態にし、透明状態でない領域(ハッチングを施した領域301’,302’)については赤色光Rを回折して偏向するようにした。しかし、この関係を逆にして、ハッチングを施した領域301’,302’を透明状態にし、ハッチングを施していない分割領域301,302では赤色光Rを偏向するようにしても良い。この場合も、図6(a)のハッチング領域301’と図6(b)のハッチング領域302’とでは、各領域の重心が光軸Jを挟んで左右にずれているため、左右方向の像ズレを形成することができる。さらに、一対の分割領域301,302を設けて一方向の像ズレを検出したが、二対以上設けて二方向以上の像ズレを検出するようにしても良い。   In the embodiment described above, when focus detection is performed by the pupil time division method, the divided regions 301 and 302 are alternately made transparent as shown in FIGS. 6A and 6B, and are not transparent. The red light R is diffracted and deflected in the regions (hatched regions 301 ′ and 302 ′). However, by reversing this relationship, the hatched areas 301 ′ and 302 ′ may be made transparent, and the red light R may be deflected in the non-hatched divided areas 301 and 302. Also in this case, in the hatching area 301 ′ of FIG. 6A and the hatching area 302 ′ of FIG. 6B, the center of gravity of each area is shifted to the left and right across the optical axis J. Deviation can be formed. Furthermore, although a pair of divided regions 301 and 302 are provided to detect an image shift in one direction, two or more pairs may be provided to detect an image shift in two or more directions.

また、上述したように一つの撮像素子4で色情報を検出する単板式カラー電子カメラに限らず、3種の分光感度を三つの撮像素子に受け持たせる三板式カラー電子カメラにも本発明は適用できる。さらに、レンズ交換式のカメラの場合、撮影レンズ2および瞳分割部材3は交換レンズのレンズ鏡筒内に設けられることになる。そして、カメラボディ側に設けられた駆動部12によって瞳分割部材3に電圧が印加される。   In addition, as described above, the present invention is not limited to a single-plate color electronic camera that detects color information with a single image sensor 4, but also to a three-plate color electronic camera in which three types of spectral sensitivity are assigned to three image sensors. Applicable. Further, in the case of an interchangeable lens camera, the taking lens 2 and the pupil dividing member 3 are provided in the lens barrel of the interchangeable lens. Then, a voltage is applied to the pupil division member 3 by the drive unit 12 provided on the camera body side.

さらにまた、撮影用の撮像素子4とは別に像ズレ検出用の光電変換素子を光軸Jから外れた位置に配置し、赤色光Rをその光電変換素子へと時分割で偏向するようにしても良い。この場合、偏向された赤色光Rを光電変換素子で受光することにより像ズレを検出することにより、撮影レンズ2の焦点調節状態を検出することができる。   Further, a photoelectric conversion element for detecting an image shift is arranged separately from the image pickup element 4 for photographing so as to deflect the red light R to the photoelectric conversion element in a time division manner. Also good. In this case, the focus adjustment state of the photographic lens 2 can be detected by detecting the image shift by receiving the deflected red light R with the photoelectric conversion element.

瞳分割部材3に用いる部材としては、上述したホログラフィック高分子分散液晶に限らず、電気的または磁気的手段により回折機能をオンオフできる素子であれば良い。なお、本発明の焦点検出装置は、動画静止画兼用の電子カメラに限らず、動画専用または静止画専用の電子カメラにも適用することができる。   The member used for the pupil division member 3 is not limited to the holographic polymer dispersed liquid crystal described above, and any element that can turn on and off the diffraction function by electrical or magnetic means may be used. Note that the focus detection apparatus of the present invention is not limited to an electronic camera that is also used as a moving image and still image, but can also be applied to an electronic camera that is dedicated to moving images or dedicated to still images.

以上説明した実施の形態と特許請求の範囲の要素との対応において、撮影レンズ2は撮影光学系を、領域301’は第1の領域を、領域302’は第2の領域を、瞳分割部材3は偏向部材を、瞳分割部材3、駆動部12および演算制御部5は瞳分割手段を、演算制御手段5および駆動部12は制御手段を、駆動部12は切換駆動部および切換手段を、演算制御部5は焦点検出手段,オートフォーカス制御手段および評価値演算手段を、特定波長域の光Rは所定波長域の光を、表示部8は表示手段を、記憶部6および記録媒体10は記録手段をそれぞれ構成する。なお、以上の説明はあくまでも一例であり、発明を解釈する際、上記実施の形態の記載事項と特許請求の範囲の記載事項の対応関係に何ら限定も拘束もされない。   In the correspondence between the embodiment described above and the elements of the claims, the photographing lens 2 represents the photographing optical system, the region 301 ′ represents the first region, the region 302 ′ represents the second region, and the pupil dividing member. 3 is a deflection member, pupil dividing member 3, drive unit 12 and calculation control unit 5 are pupil division means, calculation control unit 5 and drive unit 12 are control means, drive unit 12 is a switching drive unit and switching means, The calculation control unit 5 is a focus detection unit, an autofocus control unit, and an evaluation value calculation unit, the light R in a specific wavelength range is light in a predetermined wavelength range, the display unit 8 is display means, the storage unit 6 and the recording medium 10 are Each of the recording means is configured. The above description is merely an example, and when interpreting the invention, there is no limitation or restriction on the correspondence between the items described in the above embodiment and the items described in the claims.

本発明による焦点検出装置を電子カメラに適用した場合の概略構成を示す図である。It is a figure which shows schematic structure at the time of applying the focus detection apparatus by this invention to an electronic camera. 瞳分割部材3を撮像素子4の方向から見た平面図である。FIG. 3 is a plan view of the pupil division member 3 viewed from the direction of the image sensor 4. 図2のA−A断面を示す模式図である。It is a schematic diagram which shows the AA cross section of FIG. ホログラム形成のためのレーザー露光を説明する概念図である。It is a conceptual diagram explaining the laser exposure for hologram formation. 3種のフィルターの分光透過特性を示す図である。It is a figure which shows the spectral transmission characteristic of 3 types of filters. 瞳分割部材3の動作状態の種類を示す図であり、(a)は第1の状態、(b)は第2の状態、(c)は第3の状態をそれぞれ示す。It is a figure which shows the kind of operation state of the pupil division member 3, (a) shows a 1st state, (b) shows a 2nd state, (c) shows a 3rd state, respectively. 図6(a)のA1−A1断面を示す模式図である。It is a schematic diagram which shows the A1-A1 cross section of Fig.6 (a). 図6(b)のA2−A2断面を示す模式図である。It is a schematic diagram which shows the A2-A2 cross section of FIG.6 (b). 図6(c)のA3−A3断面を示す模式図である。It is a schematic diagram which shows the A3-A3 cross section of FIG.6 (c). 合焦時における偏向状態を説明する図であり、(a)は第1の状態を、(b)は第2の状態をそれぞれ示す。It is a figure explaining the deflection | deviation state at the time of focusing, (a) shows a 1st state, (b) shows a 2nd state, respectively. 非合焦時における偏向状態を説明する図であり、(a)は第1の状態を、(b)は第2の状態をそれぞれ示す。It is a figure explaining the deflection | deviation state at the time of a non-focusing, (a) shows a 1st state, (b) shows a 2nd state, respectively.

符号の説明Explanation of symbols

1 電子カメラ
2 撮影レンズ
3 瞳分割部材
4 撮像素子
5 演算制御部
12 駆動部
301,302 分割領域
301’,302’ 領域
DESCRIPTION OF SYMBOLS 1 Electronic camera 2 Shooting lens 3 Pupil division member 4 Imaging element 5 Calculation control part 12 Drive part 301,302 Division area 301 ', 302' area

Claims (11)

被写体からの光束を撮影光学系で結像した被写体画像を撮像する撮影装置に搭載され、瞳時分割により得られた撮像信号に基づいて前記撮影光学系の焦点調節状態を検出する焦点検出装置において、
前記撮影光学系の被写体光路中に配設されるとともに、前記撮影光学系の光軸に直交する面内において重心位置が互いに異なる第1および第2の領域を有し、(a)入射被写体光のうち前記第1の領域に入射する所定波長域の光を偏向する第1の状態と、(b)入射被写体光のうち前記第2の領域に入射する所定波長域の光を偏向する第2の状態と、(c)入射被写体光をそのまま透過する第3の状態との間で切り換え可能な偏向部材と、
前記撮影光学系の撮像面または光学的にほぼ等価な位置に配置された撮像素子と、
前記第1の状態および前記第2の状態のそれぞれにおける前記撮像素子の撮像信号に基づいて、前記撮影光学系の焦点調節状態を検出する焦点検出手段と、
前記焦点調節状態を検出する場合には前記偏向部材の前記第1の状態および前記第2の状態を時分割で交互に切り換え、前記焦点調節状態を検出しない場合には前記偏向部材を前記第3の状態に切り換える制御手段とを備えたことを特徴とする焦点検出装置。
In a focus detection device that is mounted on a photographing device that captures a subject image obtained by imaging a light beam from a subject with a photographing optical system and detects a focus adjustment state of the photographing optical system based on an imaging signal obtained by pupil time division ,
(A) Incident subject light having a first and a second region disposed in the subject optical path of the photographing optical system and having different centroid positions in a plane perpendicular to the optical axis of the photographing optical system. A first state of deflecting light of a predetermined wavelength region incident on the first region, and (b) second of deflecting light of a predetermined wavelength region incident on the second region of incident subject light. And (c) a deflecting member that can be switched between the third state in which the incident subject light is transmitted as it is,
An imaging device disposed at an imaging surface of the imaging optical system or an optically substantially equivalent position;
Focus detection means for detecting a focus adjustment state of the imaging optical system based on an imaging signal of the imaging element in each of the first state and the second state;
When the focus adjustment state is detected, the first state and the second state of the deflection member are alternately switched in a time-sharing manner. When the focus adjustment state is not detected, the deflection member is switched to the third state. And a control means for switching to the above state.
請求項1に記載の焦点検出装置において、
前記偏向部材は前記第1および第2の領域で構成される対領域を複数有し、
前記焦点検出手段は前記焦点調節状態の検出を前記対領域毎に行うことを特徴とする焦点検出装置。
The focus detection apparatus according to claim 1,
The deflecting member has a plurality of paired regions composed of the first and second regions,
The focus detection device, wherein the focus detection unit detects the focus adjustment state for each paired region.
請求項1または2に記載の焦点検出装置において、
前記撮像素子は異なる分光感度特性を有する複数の画素を有し、
前記焦点検出手段は、前記撮像素子に含まれる複数の画素の内の前記所定波長域の光に対して最も検出感度の高い画素からの信号に基づいて前記焦点調節状態を検出することを特徴とする焦点検出装置。
The focus detection apparatus according to claim 1 or 2,
The image sensor has a plurality of pixels having different spectral sensitivity characteristics,
The focus detection unit detects the focus adjustment state based on a signal from a pixel having the highest detection sensitivity with respect to light in the predetermined wavelength region among a plurality of pixels included in the image sensor. Focus detection device.
請求項1〜3のいずれかに記載の焦点検出装置において、
前記偏向部材を液晶を用いた回折光学素子で構成したこと特徴とする焦点検出装置。
In the focus detection apparatus according to any one of claims 1 to 3,
A focus detection apparatus, wherein the deflecting member is composed of a diffractive optical element using liquid crystal.
請求項1〜4のいずれかに記載の焦点検出装置と、
前記撮影光学系を透過した光を受光して被写体画像を撮像する撮影用撮像素子と、
前記焦点検出装置により検出された焦点調節状態に基づいて前記撮影光学系の焦点調節動作を行うオートフォーカス制御手段と、
前記焦点調節状態の検出・非検出に関わらず、前記焦点検出装置に含まれる前記撮像素子の撮像信号に基づいて画像を表示する表示手段とを備えることを特徴とする電子カメラ。
The focus detection device according to any one of claims 1 to 4,
An image sensor for photographing that receives light transmitted through the photographing optical system and images a subject image;
Autofocus control means for performing a focus adjustment operation of the photographing optical system based on a focus adjustment state detected by the focus detection device;
An electronic camera comprising: display means for displaying an image based on an imaging signal of the imaging element included in the focus detection device regardless of whether the focus adjustment state is detected or not.
請求項1〜4のいずれかに記載の焦点検出装置と、
前記偏向部材を透過した光を受光して被写体画像を撮像する撮影用撮像素子と、
前記焦点検出装置により検出された焦点調節状態に基づいて前記撮影光学系の焦点調節動作を行うオートフォーカス制御手段と、
前記焦点調節状態の検出・非検出に関わらず、前記撮像素子の撮像信号に基づく画像を記録する記録手段とを備え、
前記焦点検出手段は、前記撮影用撮像素子から出力される撮像信号に基づいて焦点調節状態を検出することを特徴とする電子カメラ。
The focus detection device according to any one of claims 1 to 4,
An imaging element for taking a picture of a subject by receiving light transmitted through the deflection member;
Autofocus control means for performing a focus adjustment operation of the photographing optical system based on a focus adjustment state detected by the focus detection device;
Regardless of whether the focus adjustment state is detected or not detected, a recording unit that records an image based on an imaging signal of the imaging element,
The electronic camera according to claim 1, wherein the focus detection unit detects a focus adjustment state based on an imaging signal output from the imaging element for photographing.
請求項5または6に記載の電子カメラにおいて、
前記撮影用撮像素子の撮像信号に基づいて、撮像された像の鮮鋭度を表す焦点評価値を算出する評価値演算手段を備え、
前記オートフォーカス制御手段は、前記焦点評価値および前記焦点検出手段により検出された前記焦点調節状態の少なくとも一方に基づいて前記撮影光学系の焦点調節動作を行うことを特徴とする電子カメラ。
The electronic camera according to claim 5 or 6,
An evaluation value calculating means for calculating a focus evaluation value representing the sharpness of a captured image based on an imaging signal of the imaging element for photographing;
The electronic camera characterized in that the autofocus control means performs a focus adjustment operation of the photographing optical system based on at least one of the focus evaluation value and the focus adjustment state detected by the focus detection means.
被写体からの光束を結像する撮影光学系の結像面と光学的にほぼ等価な位置に配置される光電変換素子と、
前記撮影光学系の前記光束の光路中に配設されるとともに、前記撮影光学系の光軸に直交する面内において重心位置が互いに異なる第1および第2の領域を有し、前記第1の領域に入射する前記光束の所定波長域の光を前記光電変換素子へと偏向する第1の状態と、前記第2の領域に入射する前記光束の所定波長域の光を前記光電変換素子へと偏向する第2の状態とを交互に時分割で切り換える瞳分割手段と、
前記光電変換素子の出力信号に基づいて前記撮影光学系の焦点調節状態を検出する焦点検出手段とを備えたことを特徴とする焦点検出装置。
A photoelectric conversion element disposed at a position optically substantially equivalent to an imaging surface of a photographing optical system that images a light beam from a subject;
A first region and a second region which are disposed in an optical path of the light beam of the photographing optical system and have different positions of the center of gravity in a plane perpendicular to the optical axis of the photographing optical system; A first state in which light in a predetermined wavelength region of the light beam incident on the region is deflected to the photoelectric conversion element; and light in a predetermined wavelength region of the light beam incident on the second region is directed to the photoelectric conversion element. Pupil division means for alternately switching the second state to be deflected by time division;
A focus detection device comprising: focus detection means for detecting a focus adjustment state of the photographing optical system based on an output signal of the photoelectric conversion element.
被写体からの光束を結像する撮影光学系の結像面に配置され、前記前記被写体からの光束を受光して被写体画像を撮像する撮像素子と、
前記結像面と光学的に等価な位置に配置される光電変換素子と、
前記撮影光学系の前記光束の光路中に配設されるとともに、前記撮影光学系の光軸に直交する面内において重心位置が互いに異なる第1および第2の領域を有し、(a)入射光束のうち前記第1の領域に入射する所定波長域の光を前記光電変換素子へと偏向する第1の状態と、(b)入射光束のうち前記第2の領域に入射する所定波長域の光を前記光電変換素子へと偏向する第2の状態と、(c)入射光束をそのまま透過する第3の状態との間で切り換え可能な偏向部材と、
前記第1の状態および前記第2の状態のそれぞれにおける前記光電変換素子の撮像信号に基づいて、前記撮影光学系の焦点調節状態を検出する焦点検出手段と、
前記焦点調節状態を検出する場合には前記偏向部材の前記第1の状態および前記第2の状態を時分割で交互に切り換え、前記焦点調節状態を検出しない場合には前記偏向部材を前記第3の状態に切り換える制御手段とを備えたことを特徴とする電子カメラ。
An imaging element that is disposed on an imaging surface of a photographing optical system that forms a light beam from a subject, and that receives the light beam from the subject and images a subject image;
A photoelectric conversion element disposed at a position optically equivalent to the imaging plane;
The first and second regions are disposed in the optical path of the light beam of the photographing optical system and have different centroid positions in a plane orthogonal to the optical axis of the photographing optical system, and (a) incident A first state of deflecting light of a predetermined wavelength range incident on the first region of the luminous flux to the photoelectric conversion element; and (b) of a predetermined wavelength range incident on the second region of the incident luminous flux. A deflecting member that can be switched between a second state in which light is deflected to the photoelectric conversion element and (c) a third state in which the incident light beam is transmitted as it is;
Focus detection means for detecting a focus adjustment state of the photographing optical system based on an imaging signal of the photoelectric conversion element in each of the first state and the second state;
When the focus adjustment state is detected, the first state and the second state of the deflection member are alternately switched in a time-sharing manner. When the focus adjustment state is not detected, the deflection member is switched to the third state. An electronic camera comprising a control means for switching to the state.
瞳時分割方式により焦点調節状態を検出する電子カメラに着脱自在に装着される交換レンズであって、
前記撮影レンズの被写体光路中に配設され、(a)入射被写体光のうち第1の領域に入射する所定波長域の光を偏向する第1の状態と、(b)入射被写体光から前記第1の領域と重心位置が異なる第2の領域に入射する所定波長域の光を偏向する第2の状態と、(c)入射被写体光をそのまま透過する第3の状態との間で切り換え可能な偏向部材と、
前記瞳時分割方式による焦点調節状態検出時に、前記偏向部材を前記第1の状態および前記第2の状態に交互に切り換える切換駆動部とを備えたことを特徴とする交換レンズ。
An interchangeable lens that is detachably attached to an electronic camera that detects a focus adjustment state by a pupil time division method,
(A) a first state of deflecting light in a predetermined wavelength range incident on the first region of the incident subject light; and (b) the first subject from the incident subject light. It is possible to switch between a second state in which light in a predetermined wavelength region incident on a second region having a center of gravity position different from that of the first region and (c) a third state in which incident subject light is transmitted as it is. A deflection member;
An interchangeable lens, comprising: a switching drive unit that alternately switches the deflecting member between the first state and the second state when the focus adjustment state is detected by the pupil time division method.
被写体からの光束を結像する撮影光学系の結像面に配置され、前記被写体からの光束を光電変換する光電変換素子と、
前記撮影光学系の前記光束の光路中に配設されるとともに、前記撮影光学系の光軸に直交する面内において重心位置が互いに異なる第1および第2の領域を有し、前記第1の領域に入射する前記光束の所定波長域の光を偏向する第1の状態と、前記第2の領域に入射する前記光束の所定波長域の光を偏向する第2の状態とに切り換え可能な偏向部材と、
前記偏向部材を前記第1の状態と第2の状態とに交互に切り換える切換手段と、
前記切換手段による前記第1の状態および第2の状態のそれぞれにおいて前記光電変換素子で得られる光電変換信号に基づいて、前記撮影光学系の前記被写体に対する焦点調節状態を求める焦点検出手段とを備えたことを特徴とする焦点検出装置。
A photoelectric conversion element that is disposed on an imaging surface of a photographing optical system that forms an image of a light beam from a subject, and photoelectrically converts the light beam from the subject;
A first region and a second region which are disposed in an optical path of the light beam of the photographing optical system and have different positions of the center of gravity in a plane perpendicular to the optical axis of the photographing optical system; Deflection that can be switched between a first state in which light in a predetermined wavelength region of the light beam incident on the region is deflected and a second state in which light in the predetermined wavelength region of the light beam incident on the second region is deflected Members,
Switching means for alternately switching the deflection member between the first state and the second state;
Focus detecting means for obtaining a focus adjustment state of the photographing optical system with respect to the subject based on a photoelectric conversion signal obtained by the photoelectric conversion element in each of the first state and the second state by the switching means. A focus detection apparatus characterized by that.
JP2005101542A 2005-03-31 2005-03-31 Focus detector, electronic camera and interchangeable lens Pending JP2006284694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101542A JP2006284694A (en) 2005-03-31 2005-03-31 Focus detector, electronic camera and interchangeable lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101542A JP2006284694A (en) 2005-03-31 2005-03-31 Focus detector, electronic camera and interchangeable lens

Publications (1)

Publication Number Publication Date
JP2006284694A true JP2006284694A (en) 2006-10-19

Family

ID=37406727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101542A Pending JP2006284694A (en) 2005-03-31 2005-03-31 Focus detector, electronic camera and interchangeable lens

Country Status (1)

Country Link
JP (1) JP2006284694A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118359A (en) * 2007-11-09 2009-05-28 Casio Comput Co Ltd Imaging apparatus, and program and method of controlling imaging apparatus
JP2009244429A (en) * 2008-03-28 2009-10-22 Canon Inc Imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118359A (en) * 2007-11-09 2009-05-28 Casio Comput Co Ltd Imaging apparatus, and program and method of controlling imaging apparatus
JP2009244429A (en) * 2008-03-28 2009-10-22 Canon Inc Imaging apparatus

Similar Documents

Publication Publication Date Title
US10397547B2 (en) Stereoscopic image pickup unit, image pickup device, picture processing method, control method, and program utilizing diaphragm to form pair of apertures
JP4857962B2 (en) Imaging device
JP5056428B2 (en) Digital camera
JP4826507B2 (en) Focus detection apparatus and imaging apparatus
US9083879B2 (en) Focus detection apparatus, control method thereof, and image pickup apparatus
US8081843B2 (en) Image-pickup apparatus
JP2012003080A (en) Imaging apparatus
JP2008017116A (en) Imaging element and imaging device
JP2009168995A (en) Range-finding device and imaging apparatus
JP2012113171A (en) Imaging device and control method therefor
US10564391B2 (en) Imaging device and control method therefor
JP2013057761A (en) Distance measuring device, imaging device, and distance measuring method
JP2002365519A (en) Device for detecting state of focusing
WO2002099498A1 (en) Device for determining focused state of taking lens
JP2012008370A (en) Imaging device and interchangeable lens
JP2010210903A (en) Image capturing apparatus
JP2006284694A (en) Focus detector, electronic camera and interchangeable lens
JP6561437B2 (en) Focus adjustment device and imaging device
JP5858683B2 (en) Focus detection apparatus and imaging apparatus
JP2006154506A (en) Optical element and focus detector
JP4645286B2 (en) Focus detection system and photographing apparatus
KR20170015158A (en) Control apparatus, image pickup apparatus, and control method
JP6069817B2 (en) Focus adjustment device and imaging device provided with the same
JP2016071275A (en) Image-capturing device and focus control program
JP5949893B2 (en) Imaging device