JP2006284428A - Method and device for detecting inclusion with nonlinear ultrasonic wave - Google Patents

Method and device for detecting inclusion with nonlinear ultrasonic wave Download PDF

Info

Publication number
JP2006284428A
JP2006284428A JP2005106149A JP2005106149A JP2006284428A JP 2006284428 A JP2006284428 A JP 2006284428A JP 2005106149 A JP2005106149 A JP 2005106149A JP 2005106149 A JP2005106149 A JP 2005106149A JP 2006284428 A JP2006284428 A JP 2006284428A
Authority
JP
Japan
Prior art keywords
ultrasonic
amplitude
inspection object
wave
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005106149A
Other languages
Japanese (ja)
Other versions
JP4610398B2 (en
Inventor
Yasuaki Nagata
泰昭 永田
Koichiro Kawashima
紘一郎 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nagoya Institute of Technology NUC
Original Assignee
Nippon Steel Corp
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nagoya Institute of Technology NUC filed Critical Nippon Steel Corp
Priority to JP2005106149A priority Critical patent/JP4610398B2/en
Publication of JP2006284428A publication Critical patent/JP2006284428A/en
Application granted granted Critical
Publication of JP4610398B2 publication Critical patent/JP4610398B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic inspection method and device for more accurately determining existence of an inclusion. <P>SOLUTION: An ultrasonic transmitting piece 18a and an ultrasonic receiving piece 18b are arranged so as to face one side surface of an investigated object 16, ultrasonic pulse wave is radiated towards the investigated object 16, the reflected wave is processed, and it is determined whether or not reflected wave from an internal defect of the investigated object 16 is included. When the reflected wave from the internal defect is included, ultrasonic burst wave is radiated from the ultrasonic transmitting piece 16b, and the reflected wave is processed, ratio of second harmonic amplitude of the reflected wave amplitude to ultrasonic burst incident wave amplitude is obtained. When a linear relation exists between the input voltage and the ratio of the second harmonic amplitude to the incident wave amplitude, it is determined that there is an inclusion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鋼材中に超音波を送信して該鋼材中の介在物を検出する超音波探傷方法および装置に関する。   The present invention relates to an ultrasonic flaw detection method and apparatus for detecting an inclusion in a steel material by transmitting an ultrasonic wave into the steel material.

特開2002-323481号公報には、非金属介在物と、略球形など平坦でない形状のボイド、および平坦な形状の未圧着のボイドとを識別するようにした超音波探傷方法および装置が開示されている。該公報に開示された超音波探傷装置では、超音波集束ビームを被検材に送信し、受信した反射波に基づいて、被検材中の異物からの反射波を抽出し、その反射波の振幅を測定して異物を検査する超音波探傷方法において、異物が存在する深さ方向の位置でビーム径が異なる複数の超音波集束ビームによって被検材中の異物からの反射波の振幅を測定し、その差をとることにより異物の種類を判別するようになっている。
特開2002-323481号公報
Japanese Laid-Open Patent Publication No. 2002-323481 discloses an ultrasonic flaw detection method and apparatus for discriminating non-metallic inclusions from non-flat voids such as a substantially spherical shape and flat non-crimped voids. ing. In the ultrasonic flaw detector disclosed in the publication, an ultrasonic focused beam is transmitted to a test material, a reflected wave from a foreign substance in the test material is extracted based on the received reflected wave, and the reflected wave of the reflected wave is extracted. In the ultrasonic flaw detection method that inspects foreign matter by measuring the amplitude, the amplitude of the reflected wave from the foreign matter in the test material is measured by multiple ultrasonic focused beams with different beam diameters at the position in the depth direction where the foreign matter exists. The type of the foreign matter is discriminated by taking the difference.
JP 2002-323481 A

鋼材スラブは可能な限り均質に製造されるべきであるが、結晶粒径を完全に統一することは不可能であり、非金属介在物が含まれていないとしても、一定の不均性を有している。不均質な材料に対して超音波探傷試験を行った場合、観測される波形には検出すべき介在物からの応答だけでなく、同時に材料中に存在する不均質性に基づくノイズや結晶粒界での散乱ノイズが含まれている。上記公報に開示された装置および方法では、こうしたノイズに有意な信号が紛れて介在物の検出ができない問題がある。   Steel slabs should be produced as homogeneously as possible, but it is impossible to completely unify the grain size, and even if they do not contain non-metallic inclusions, they have certain inhomogeneities. is doing. When ultrasonic testing is performed on inhomogeneous materials, the observed waveform includes not only the response from inclusions to be detected, but also noise and grain boundaries based on inhomogeneities existing in the material at the same time. Scattering noise at is included. In the apparatus and method disclosed in the above publication, there is a problem that a significant signal is lost in such noise and the inclusion cannot be detected.

このノイズの特性を調べ応答波形からノイズを取り除くことができれば、超音波探傷試験の精度向上につながると考えられる。
そこで本発明は、超音波探傷方法および装置において、被検査対象物、例えば鋼材スラブに向けて照射した超音波の反射波に含まれるノイズを分離して正確に介在物の存在有無を判定できるようにすることを目的としている。
If the noise characteristics are examined and the noise can be removed from the response waveform, it is considered that the accuracy of the ultrasonic flaw detection test is improved.
Therefore, the present invention enables an ultrasonic flaw detection method and apparatus to accurately determine the presence / absence of inclusions by separating noise contained in an ultrasonic wave reflected toward an object to be inspected, for example, a steel slab. The purpose is to be.

請求項1に記載の本発明は(a)検査対象物の一側面を臨むように超音波送信子と超音波受信子と配置する段階と、(b)前記超音波送信子から超音波バースト波を前記検査対象物に送信する段階と、(c)前記検査対象物から反射した超音波バースト波を前記超音波受信子により受信する段階と、(d)前記超音波受信子から送出される信号を処理して、入射波振幅に対する前記反射した超音波バースト波の二次高調波の振幅の比を得る段階と、(e)前記超音波送信子へ印加する入力電圧を変化させる段階と、(f)前記段階(b)〜(e)を繰り返して前記入力電圧の変化と前記入射波振幅に対する二次高調波の振幅の比の変化とを関連づける段階とを具備した検査対象物に含まれる介在物を検出する超音波探傷方法を要旨とする。   The present invention described in claim 1 includes: (a) a step of arranging an ultrasonic transmitter and an ultrasonic receiver so as to face one side of an inspection object; and (b) an ultrasonic burst wave from the ultrasonic transmitter. Transmitting to the inspection object, (c) receiving an ultrasonic burst wave reflected from the inspection object by the ultrasonic receiver, and (d) a signal transmitted from the ultrasonic receiver. To obtain the ratio of the amplitude of the second harmonic of the reflected ultrasonic burst wave to the incident wave amplitude; and (e) changing the input voltage applied to the ultrasonic transmitter; and f) repeating the steps (b) to (e) to correlate the change in the input voltage with the change in the ratio of the second harmonic amplitude to the incident wave amplitude. The gist is an ultrasonic flaw detection method for detecting an object.

請求項4に記載の本発明は、超音波探傷装置において、検査対象物を固定する手段と、前記検査対象物の一面を臨むように位置決めされて超音波バースト波を送信する超音波送信子と、前記検査対象物の前記一面を臨むように位置決めされて前記検査対象物から反射した超音波バースト波を受信する超音波受信子と、前記超音波受信子から送出される信号を処理して、入射波振幅に対する前記反射した超音波バースト波の二次高調波の振幅の比を得るための信号処理手段と、前記超音波送信子へ印加する入力電圧の変化と前記入射波振幅に対する二次高調波の振幅の比の変化とを関連づける手段と、を具備した検査対象物に含まれる介在物を検出する超音波探傷装置を要旨とする。   According to a fourth aspect of the present invention, in the ultrasonic flaw detector, a means for fixing the inspection object, and an ultrasonic transmitter for transmitting an ultrasonic burst wave positioned so as to face one surface of the inspection object; An ultrasonic receiver for receiving an ultrasonic burst wave that is positioned so as to face the one surface of the inspection object and reflected from the inspection object; and a signal transmitted from the ultrasonic receiver; Signal processing means for obtaining a ratio of the amplitude of the second harmonic of the reflected ultrasonic burst wave to the amplitude of the incident wave, a change in input voltage applied to the ultrasonic transmitter, and a second harmonic with respect to the incident wave amplitude The gist of the present invention is an ultrasonic flaw detection apparatus for detecting inclusions included in an inspection object having a means for associating with a change in the ratio of wave amplitudes.

本願発明によれば、超音波バースト波を照射してその反射波を処理して、入力電圧の変化と入射波振幅に対する反射波の二次高調波の振幅の比の変化とを関連づけることにより、前記反射波が介在物からの反射波であるように見えるときに、該反射波が欠陥信号であるかノイズ信号であるかを判定可能となる。   According to the present invention, the reflected wave is processed by irradiating an ultrasonic burst wave, and by associating the change in the input voltage with the change in the ratio of the second harmonic amplitude of the reflected wave to the incident wave amplitude, When the reflected wave appears to be a reflected wave from an inclusion, it can be determined whether the reflected wave is a defect signal or a noise signal.

以下、添付図面を参照して本発明の好ましい実施形態を説明する。
図1を参照すると、探傷装置10は、走査装置20により水槽12内において直交三軸方向に移動自在に配設された超音波素子18を具備している。超音波素子18は、水槽12内に配設されたテーブル14上に固定された検査対象材料として例えば鋼製スラブ16の一側面を臨むように配置され、中心部に配置され超音波信号を照射するハイドロフォンまたは超音波受信子18aと、その周囲に配置された超音波探触子または超音波送信子18bとから成る(図2参照)。超音波送信子18bは、超音波受信子18aの中心軸線に沿って該超音波受信子18aの端面から所定の距離の位置に焦点を結ぶように凹面を形成している。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
Referring to FIG. 1, the flaw detection apparatus 10 includes an ultrasonic element 18 that is movably disposed in three orthogonal directions in the water tank 12 by a scanning device 20. The ultrasonic element 18 is arranged so as to face one side surface of, for example, a steel slab 16 as a material to be inspected fixed on the table 14 arranged in the water tank 12, and is arranged in the center portion and radiates an ultrasonic signal. The hydrophone or ultrasonic receiver 18a and the ultrasonic probe or ultrasonic transmitter 18b disposed around the hydrophone or ultrasonic receiver 18a (see FIG. 2). The ultrasonic transmitter 18b has a concave surface so as to focus at a predetermined distance from the end surface of the ultrasonic receiver 18a along the central axis of the ultrasonic receiver 18a.

超音波素子18は、超音波送信子18bのための発振子(図示せず)を備えた制御装置24に接続されており、超音波送信子18bから送信された超音波は、スラブ16の表面、スラブ16の内部欠陥およびスラブ16の裏面で反射して超音波受信子18aにより受信され、超音波受信子18aが受信した信号が制御装置24に送信される。また、走査装置20の駆動装置22もまた制御装置24に接続されており、制御装置24において超音波素子18の位置決めが制御される。制御装置24には、更に、制御装置24に送信された信号を、超音波素子18の位置情報と共に処理するための信号処理手段としてのパーソナルコンピュータ26や、制御装置24が受信した信号をモニターするためのオシロスコープ28が接続されている。   The ultrasonic element 18 is connected to a control device 24 having an oscillator (not shown) for the ultrasonic transmitter 18b, and the ultrasonic wave transmitted from the ultrasonic transmitter 18b is the surface of the slab 16. The ultrasonic wave receiver 18 a reflects the internal defect of the slab 16 and the back surface of the slab 16, and the signal received by the ultrasonic receiver 18 a is transmitted to the control device 24. The driving device 22 of the scanning device 20 is also connected to the control device 24, and the positioning of the ultrasonic element 18 is controlled by the control device 24. The control device 24 further monitors a personal computer 26 as signal processing means for processing a signal transmitted to the control device 24 together with position information of the ultrasonic element 18 and a signal received by the control device 24. An oscilloscope 28 is connected.

以下、本実施形態の作用を説明する。
図3を参照すると、検査対象物16の典型例として板厚60mmの鋼材スラブ16′が示されており、該鋼材スラブ16′は、ドリルにより小孔16aを該鋼材スラブ16′の裏面から形成してスラブ内部の欠陥を模擬している。
Hereinafter, the operation of the present embodiment will be described.
Referring to FIG. 3, a steel slab 16 'having a thickness of 60 mm is shown as a typical example of the inspection object 16, and the steel slab 16' has a small hole 16a formed from the back surface of the steel slab 16 'by a drill. And imitate the defects inside the slab.

鋼材スラブは、一般的に溶融した鋼材を連続鋳造法等により鋳造し、冷却、凝固させた金属部材であり、精錬の段階で溶鋼中に取り込まれたスラグ、特に粒径0.5〜1mm程度の酸化アルミニウム(Al2O3)が介在物として混入している。こうした介在物は、鋼材と比較して比重が非常に小さいために、冷却過程において鋼材表面から内部へ凝固が進むときに浮力により鋼材内で浮上し、鋼材の表面から50mm程度の深さに存在することが多い。そこで、超音波送信子18bは、鋼材スラブの冷却過程において上側に配置された一側面を臨むように配置し、かつ、鋼材の表面から50mm程度の深さの位置に焦点を結ぶように形成することが好ましい。   The steel slab is a metal member that is generally a molten steel material cast by a continuous casting method, cooled and solidified, and is slag taken into the molten steel at the refining stage, particularly a particle size of about 0.5 to 1 mm. Aluminum oxide (Al2O3) is mixed as inclusions. These inclusions have a very low specific gravity compared to steel, so they float in the steel due to buoyancy when solidification progresses from the steel surface to the inside during the cooling process, and exist at a depth of about 50 mm from the surface of the steel. Often to do. Therefore, the ultrasonic transmitter 18b is arranged so as to face one side arranged on the upper side in the cooling process of the steel slab, and is formed so as to focus on a position about 50 mm deep from the surface of the steel. It is preferable.

図3に示した鋼材スラブ16′を検査対象物16として、図1に示した実験装置10で超音波送信子18bから超音波パルス信号を照射して行った実験結果を図4〜図8に示す。なお、図4は、小孔16aを備えない鋼材スラブ16′の場合であり、図3〜図8は、鋼材スラブ16′にドリルにより深さ14mm、直径0.5mm、1mm、2mm、3mmの小孔16aを夫々形成した部材を検査対象物16とした場合の実験結果である。   4 to 8 show the results of experiments conducted by irradiating an ultrasonic pulse signal from the ultrasonic transmitter 18b with the experimental apparatus 10 shown in FIG. 1 using the steel slab 16 ′ shown in FIG. 3 as the inspection object 16. FIG. Show. FIG. 4 shows a case of a steel slab 16 ′ not provided with a small hole 16a. FIGS. 3 to 8 show that the steel slab 16 ′ has a depth of 14 mm, a diameter of 0.5 mm, 1 mm, 2 mm, and 3 mm. It is an experimental result at the time of using the member in which the small hole 16a was formed as the test object 16, respectively.

図4〜図8を参照すると、超音波送信子18bから照射されたパルス波の鋼材スラブ16′の表面における反射波Iと、裏面における反射波IIとの間に欠陥、つまり小孔16aの底面での反射波IIIが現われることが理解されよう。特に、小孔16aの直径が大きくなると、欠陥での反射波IIIが大きくなり、裏面における反射波IIが小さくなっている。これは、小孔16aの直径が大きくなると、超音波送信子18bからの超音波が小孔16aの底面で反射してしまい、鋼材スラブ16′の裏面に到達できなくなっていることを示していると考えられ、鋼材の表面から50mm程度の深さの位置に焦点を結ぶように凹面を形成している効果であると考えられる。   4 to 8, a defect, that is, the bottom surface of the small hole 16a, is formed between the reflected wave I on the surface of the steel slab 16 'and the reflected wave II on the back surface of the pulse wave irradiated from the ultrasonic transmitter 18b. It will be understood that the reflected wave III appears. In particular, when the diameter of the small hole 16a is increased, the reflected wave III at the defect is increased, and the reflected wave II at the back surface is decreased. This indicates that when the diameter of the small hole 16a is increased, the ultrasonic wave from the ultrasonic transmitter 18b is reflected on the bottom surface of the small hole 16a and cannot reach the back surface of the steel slab 16 '. This is considered to be an effect of forming a concave surface so as to focus on a position at a depth of about 50 mm from the surface of the steel material.

図1の構成では、超音波送信子18bはパルス状の超音波信号を照射するので、検査時間は比較的短くて済む。一般に、鋼材スラブ中には介在物に加えて気泡が取り込まれていることもあるが、気泡は多くの場合、鋳造工程の後の圧延工程において圧潰されて問題となることは少ない。然しながら、鋼材スラブ中に介在物が存在する場合には、圧延工程で鋼帯の割れを生じたり、鋼材の出荷先である例えば自動車製造者において塑性加工を行う際に製品の割れを生じたりする。   In the configuration of FIG. 1, since the ultrasonic transmitter 18b irradiates a pulsed ultrasonic signal, the inspection time can be relatively short. In general, air bubbles may be taken into steel slabs in addition to inclusions, but in many cases, the air bubbles are less likely to be crushed in the rolling process after the casting process. However, when inclusions are present in the steel slab, the steel strip may crack in the rolling process, or the product may crack when plastic working is performed at the automobile manufacturer, for example, an automobile manufacturer. .

ここで、図9を参照すると、鋼材の母相と非金属介在物との間の結合剛性は圧縮相と引張(希薄)相で異なり、引張側が圧縮側よりも低くなっている。超音波の伝播速度はヤング率の平方根に比例するので、伝播速度は圧縮相において引張相よりも高くなる。そのため、送信子18bから検査対象物16へ向けてバースト波を照射することにより、該バースト波が検査対象物16に入射し介在物において反射した後の波形に歪みを生じ、この歪みは高調波(入射波周波数の2以上の整数倍の周波数を持つ波)の振幅で定量化することが可能である(図10参照)。従って、入射波振幅に対する反射波の高調波成分、特に二次高調波の振幅の比を得ることにより、非金属介在物の存在の有無が判定可能となる。   Here, referring to FIG. 9, the bonding rigidity between the parent phase of the steel material and the nonmetallic inclusion is different between the compression phase and the tension (diluted) phase, and the tension side is lower than the compression side. Since the propagation speed of ultrasonic waves is proportional to the square root of Young's modulus, the propagation speed is higher in the compression phase than in the tensile phase. Therefore, by irradiating a burst wave from the transmitter 18b toward the inspection object 16, a waveform is generated after the burst wave is incident on the inspection object 16 and reflected by the inclusion, and this distortion is a harmonic. It is possible to quantify with the amplitude of (a wave having a frequency that is an integer multiple of 2 or more of the incident wave frequency) (see FIG. 10). Therefore, the presence or absence of non-metallic inclusions can be determined by obtaining the ratio of the harmonic component of the reflected wave to the incident wave amplitude, particularly the amplitude of the second harmonic.

非線形応力歪みの関係は以下の式にて与えられる。
σ=E+E 2 (E2:負)…(1)
式(1)に従う弾性体の一次元波動方程式の解は以下の式にて与えられる。

Figure 2006284428
The relationship of nonlinear stress strain is given by the following equation.
σ = E + E 2 (E 2 : negative) (1)
The solution of the one-dimensional wave equation of the elastic body according to the equation (1) is given by the following equation.
Figure 2006284428

ここで、
u:変位
1:入射波振幅
1:鋼材ヤング率
2:非金属介在物ヤング率
i:虚数単位
k:波数(2π/λ(波長))
x:距離
ω:2πf(周波数)
である。
here,
u: Displacement A 1 : Incident wave amplitude E 1 : Steel Young's modulus E 2 : Nonmetallic inclusion Young's modulus i: Imaginary unit k: Wave number (2π / λ (wavelength))
x: distance ω: 2πf (frequency)
It is.

二次高調波成分の振幅をA2とすると、

Figure 2006284428
で表される。
従って、入射波振幅に対する二次高調波振幅の比は以下の式にて得られる。
Figure 2006284428
If the amplitude of the second harmonic component is A2,
Figure 2006284428
It is represented by
Therefore, the ratio of the second harmonic amplitude to the incident wave amplitude is obtained by the following equation.
Figure 2006284428

式(4)から、入射波振幅に対する二次高調波振幅の比は、入射振幅、伝播距離x、および波数の二乗に比例することが理解される。なお、鋼結晶粒間では、結晶方位の差による弾性係数の異方性が存在するが、鋼材結晶粒と結晶粒との界面では、引張相と圧縮相による剛性の差が無いので、測定装置で検出できる高調波は励起されない。また、鋼材結晶粒と気泡との界面でも、引張相と圧縮相による剛性の差が無いので、測定装置で検出できる高調波は励起されない。従って、入射超音波バースト波の反射波の高調波、特に二次高調波を求めることにより、検査対象物16の内部欠陥が気泡によるものか介在物によるものかの判定も可能となる。   From equation (4), it is understood that the ratio of the second harmonic amplitude to the incident wave amplitude is proportional to the incident amplitude, the propagation distance x, and the square of the wave number. Note that there is anisotropy in elastic modulus due to the difference in crystal orientation between the steel crystal grains, but there is no difference in rigidity between the tensile phase and the compression phase at the interface between the steel crystal grains and the crystal grains. The harmonics that can be detected with are not excited. In addition, since there is no difference in rigidity between the tensile phase and the compression phase even at the interface between the steel crystal grains and the bubbles, the harmonics that can be detected by the measuring device are not excited. Therefore, it is possible to determine whether the internal defect of the inspection object 16 is caused by bubbles or inclusions by obtaining harmonics, particularly second harmonics, of the reflected wave of the incident ultrasonic burst wave.

然しながら、超音波受信子が受信する反射波には、介在物からの反射波(欠陥信号)に加えて、介在物からの反射波とは無関係の反射波(ノイズ信号)が含まれている。このノイズ信号は、材料中に存在する不均質性に基づくノイズや結晶粒界での散乱ノイズ等、種々の原因によって発生するが、本発明は、このノイズ信号と欠陥信号と分離することを主眼としている。   However, the reflected wave received by the ultrasonic receiver includes a reflected wave (noise signal) unrelated to the reflected wave from the inclusion, in addition to the reflected wave (defect signal) from the inclusion. The noise signal is generated due to various causes such as noise based on inhomogeneity existing in the material and scattering noise at the crystal grain boundary. The present invention mainly aims to separate the noise signal from the defect signal. It is said.

以下、図11、12を参照して、ノイズ信号と欠陥信号とを分離する方法について説明する。
図11は、実験に用いたサンプルスラブを示している。サンプルスラブ30は、円柱状の下部32と、接合面36で下部32に接合された上部34とを有し、接合面34に介在物として、0.8mm、0.7mm、0.6mm、0.5mmの直径を有した4つのアルミナ系材料から成る小球38が配置されている。上部34は、下部32と同一直径の円柱部34aと該円柱部34aの上面に連結され上方に広がる円錐部34bとから成り、超音波素子18から円錐部34bの上面に向け集束する超音波を照射した。
Hereinafter, a method for separating a noise signal and a defect signal will be described with reference to FIGS.
FIG. 11 shows a sample slab used in the experiment. The sample slab 30 has a columnar lower part 32 and an upper part 34 joined to the lower part 32 by a joining surface 36, and 0.8 mm, 0.7 mm, 0.6 mm, 0 as inclusions on the joining surface 34. Small balls 38 made of four alumina-based materials having a diameter of .5 mm are arranged. The upper part 34 includes a cylindrical part 34a having the same diameter as that of the lower part 32 and a conical part 34b that is connected to the upper surface of the cylindrical part 34a and spreads upward. Irradiated.

実験は、超音波送信子へ印加する入力電圧Viを変化させて、上述した方法で入射波振幅に対する二次高調波振幅の比A2/A1を測定した。図12は、測定結果を示したグラフであり、縦軸はA2/A1をパーセント表示した値であり、横軸は最大入力電圧Vmaxに対する入力電圧Viをパーセント表示した値である。なお、図12において、図11(b)に示している球形介在物を配置した以外の、ある測定箇所の一例が測定箇所Aとして示されている。また、図12のグラフにおいて、0.8mmの小球からの信号は実線で示され、0.7mmの小球からの信号は破線で示され、0.6mmの小球からの信号は一点鎖線で示され、0.5mmの直径の小球からの信号は二点鎖線で示されている。点線は、小球38を外して超音波バースト波を照射した場合のA2/A1を示している。 In the experiment, the input voltage Vi applied to the ultrasonic transmitter was changed, and the ratio A 2 / A 1 of the second harmonic amplitude to the incident wave amplitude was measured by the method described above. Figure 12 is a graph showing the measurement result, the vertical axis is a value obtained by percentage of A 2 / A 1, the horizontal axis is the percentage value of the input voltage V i with respect to the maximum input voltage Vmax. In FIG. 12, an example of a measurement location other than the spherical inclusion shown in FIG. 11B is shown as a measurement location A. In the graph of FIG. 12, a signal from a 0.8 mm small sphere is indicated by a solid line, a signal from a 0.7 mm small sphere is indicated by a broken line, and a signal from a 0.6 mm small sphere is indicated by a one-dot chain line. The signal from a small sphere with a diameter of 0.5 mm is indicated by a two-dot chain line. The dotted line indicates A 2 / A 1 when the small sphere 38 is removed and the ultrasonic burst wave is irradiated.

図12を参照すると、小球38の各々へ向けて超音波バースト波を照射した場合には、A2/A1の値は入力電圧Viに概ね比例しているが、小球38を外して超音波バースト波を照射した場合には、A2/A1の値は入力電圧Viに比例していないことが理解される。これは、入射振幅A1が入力電圧Viに比例し、かつ、式(4)からA2/A1が入射振幅A1に比例するからである。 Referring to FIG. 12, when an ultrasonic burst wave is irradiated to each of the small spheres 38, the value of A 2 / A 1 is approximately proportional to the input voltage Vi, but the small sphere 38 is removed. It is understood that the value of A 2 / A 1 is not proportional to the input voltage Vi when the ultrasonic burst wave is irradiated. This is because the incident amplitude A 1 is proportional to the input voltage V i , and A 2 / A 1 is proportional to the incident amplitude A 1 from the equation (4).

従って、本実施形態によれば、既述した超音波パルス波または超音波バースト波をスラブに向けて照射して介在物の存在を示す信号を得た部分(欠陥候補)に関して、更に、入力電圧Viを変化させつつA2/A1の値を求めることにより、ノイズ信号を除去することができ、より正確に介在物の存在を検知可能となる。 Therefore, according to the present embodiment, the input voltage is further applied to the portion (defect candidate) obtained by irradiating the ultrasonic pulse wave or the ultrasonic burst wave described above toward the slab to obtain a signal indicating the presence of inclusions. By obtaining the value of A 2 / A 1 while changing V i , the noise signal can be removed, and the presence of inclusions can be detected more accurately.

本発明による超音波探傷装置の一例を示すブロック図である。It is a block diagram which shows an example of the ultrasonic flaw detector by this invention. 超音波素子の略示断面図である。It is a schematic sectional drawing of an ultrasonic element. 実験に用いた検査対象物としての鋼材の構造を示す模式図である。It is a schematic diagram which shows the structure of the steel material as a test target object used for experiment. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 鋼材と非金属介在物との間の結合剛性を示すグラフである。It is a graph which shows the joint rigidity between steel materials and a nonmetallic inclusion. 超音波受信子からの信号に含まれる入射波振幅と、高調波を示すグラフである。It is a graph which shows the incident wave amplitude contained in the signal from an ultrasonic receiver, and a harmonic. 実験に用いたサンプルスラブの略示図であり、(a)は側面図、(b)はサンプルスラブの下部の接合面に配置した球形介在物を示す端面図である。It is the schematic of the sample slab used for experiment, (a) is a side view, (b) is an end view which shows the spherical inclusion arrange | positioned in the joining surface of the lower part of a sample slab. 実験結果を示すグラフである。It is a graph which shows an experimental result.

符号の説明Explanation of symbols

10 探傷装置
12 水槽
14 テーブル
16 検査対象物
18 超音波素子
18a 超音波受信子
18b 超音波送信子
20 走査装置
22 駆動装置
24 制御装置
26 パーソナルコンピュータ
28 オシロスコープ
DESCRIPTION OF SYMBOLS 10 Flaw detector 12 Water tank 14 Table 16 Inspection object 18 Ultrasonic element 18a Ultrasonic receiver 18b Ultrasonic transmitter 20 Scanning device 22 Drive device 24 Control device 26 Personal computer 28 Oscilloscope

Claims (9)

(a)検査対象物の一面を臨むように超音波送信子と超音波受信子と配置する段階と、
(b)前記超音波送信子から超音波バースト波を前記検査対象物に送信する段階と、
(c)前記検査対象物から反射した超音波バースト波を前記超音波受信子により受信する段階と、
(d)前記超音波受信子から送出される信号を処理して、入射波振幅に対する前記反射した超音波バースト波の二次高調波の振幅の比を得る段階と、
(e)前記超音波送信子へ印加する入力電圧を変化させる段階と、
(f)前記段階(b)〜(e)を繰り返して前記入力電圧の変化と前記入射波振幅に対する二次高調波の振幅の比の変化とを関連づける段階を具備した検査対象物に含まれる介在物を検出する超音波探傷方法。
(A) arranging the ultrasonic transmitter and the ultrasonic receiver so as to face one surface of the inspection object;
(B) transmitting an ultrasonic burst wave from the ultrasonic transmitter to the inspection object;
(C) receiving an ultrasonic burst wave reflected from the inspection object by the ultrasonic receiver;
(D) processing a signal transmitted from the ultrasonic receiver to obtain a ratio of an amplitude of a second harmonic of the reflected ultrasonic burst wave to an incident wave amplitude;
(E) changing an input voltage applied to the ultrasonic transmitter;
(F) Repeating the steps (b) to (e) to correlate the change in the input voltage with the change in the ratio of the second harmonic amplitude to the incident wave amplitude. Ultrasonic flaw detection method to detect objects.
(g)前記入力電圧と前記入射波振幅に対する二次高調波の振幅の比との間に線形関係がある場合に介在物が存在すると判断する段階を更に含む請求項1に記載の超音波探傷方法。   The ultrasonic flaw detection according to claim 1, further comprising: (g) determining that an inclusion is present when there is a linear relationship between the input voltage and a ratio of the second harmonic amplitude to the incident wave amplitude. Method. 前記超音波送信子は、前記超音波受信子の周囲を包囲するように同心に配置されている請求項1または2に記載の超音波探傷方法。   The ultrasonic flaw detection method according to claim 1, wherein the ultrasonic transmitter is disposed concentrically so as to surround the periphery of the ultrasonic receiver. 超音波探傷装置において、
検査対象物を固定する手段と、
前記検査対象物の一面を臨むように位置決めされて超音波バースト波を送信する超音波送信子と、
前記検査対象物の前記一面を臨むように位置決めされて前記検査対象物から反射した超音波バースト波を受信する超音波受信子と、
前記超音波受信子から送出される信号を処理して、入射波振幅に対する前記反射した超音波バースト波の二次高調波の振幅の比を得るための信号処理手段と、
前記超音波送信子へ印加する入力電圧の変化と前記入射波振幅に対する二次高調波の振幅の比の変化とを関連づける手段と、
を具備した検査対象物に含まれる介在物を検出する超音波探傷装置。
In the ultrasonic flaw detector,
Means for fixing the inspection object;
An ultrasonic transmitter that transmits an ultrasonic burst wave that is positioned so as to face one surface of the inspection object;
An ultrasonic receiver for receiving an ultrasonic burst wave that is positioned so as to face the one surface of the inspection object and reflected from the inspection object;
A signal processing means for processing a signal transmitted from the ultrasonic receiver to obtain a ratio of an amplitude of a second harmonic of the reflected ultrasonic burst wave to an incident wave amplitude;
Means for associating a change in the input voltage applied to the ultrasonic transmitter with a change in the ratio of the second harmonic amplitude to the incident wave amplitude;
An ultrasonic flaw detector for detecting inclusions contained in an inspection object comprising:
前記入力電圧と前記入射波振幅に対する二次高調波の振幅の比との間に線型関係がある場合に介在物が存在すると判断する手段を更に含む請求項4に記載の超音波探傷装置。   5. The ultrasonic flaw detector according to claim 4, further comprising means for determining that an inclusion is present when there is a linear relationship between the input voltage and the ratio of the second harmonic amplitude to the incident wave amplitude. 前記超音波送信子は、前記超音波受信子の周囲を包囲するように同心に配置されている請求項4または5に記載の超音波探傷装置。   The ultrasonic flaw detector according to claim 4 or 5, wherein the ultrasonic transmitter is arranged concentrically so as to surround the periphery of the ultrasonic receiver. 更に水を貯留するための貯水手段を具備し、前記検査対象物および超音波素子を前記貯水手段により貯留された水中に浸漬するようにした請求項4から6の何れか1項に記載の記載の超音波探傷装置。   The storage device according to any one of claims 4 to 6, further comprising a water storage means for storing water, wherein the inspection object and the ultrasonic element are immersed in the water stored by the water storage means. Ultrasonic flaw detector. 前記超音波素子は、少なくとも向かい合う前記検査対象物の平面に沿って該検査対象物に対して相対的に移動可能に設けられている請求項4から7の何れか1項に記載の超音波探傷装置。   The ultrasonic flaw detection according to any one of claims 4 to 7, wherein the ultrasonic element is provided so as to be movable relative to the inspection target along at least a plane of the inspection target facing each other. apparatus. 前記検査対象物は溶融鋼材を鋳造した鋼材であり、前記超音波素子は、前記鋼材を検査対象物として配置されている請求項4から8の何れか1項に記載の超音波探傷装置。   The ultrasonic flaw detector according to any one of claims 4 to 8, wherein the inspection object is a steel material obtained by casting a molten steel material, and the ultrasonic element is arranged with the steel material as an inspection object.
JP2005106149A 2005-04-01 2005-04-01 Inclusion detection method and apparatus using nonlinear ultrasonic waves Expired - Fee Related JP4610398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106149A JP4610398B2 (en) 2005-04-01 2005-04-01 Inclusion detection method and apparatus using nonlinear ultrasonic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106149A JP4610398B2 (en) 2005-04-01 2005-04-01 Inclusion detection method and apparatus using nonlinear ultrasonic waves

Publications (2)

Publication Number Publication Date
JP2006284428A true JP2006284428A (en) 2006-10-19
JP4610398B2 JP4610398B2 (en) 2011-01-12

Family

ID=37406504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106149A Expired - Fee Related JP4610398B2 (en) 2005-04-01 2005-04-01 Inclusion detection method and apparatus using nonlinear ultrasonic waves

Country Status (1)

Country Link
JP (1) JP4610398B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069027A (en) * 2007-09-13 2009-04-02 Tokyo Metropolis Measuring method and apparatus related to heat receiving effect of refractory building by ultrasonic wave
JP2014119441A (en) * 2012-12-19 2014-06-30 Toshiba Corp Ultrasonic testing device and method
CN107561157A (en) * 2016-06-30 2018-01-09 重庆医科大学 Water quality testing meter and its method
WO2024142867A1 (en) * 2022-12-26 2024-07-04 山陽特殊製鋼株式会社 Steel material machining method, and rolling component manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103568A (en) * 1985-10-31 1987-05-14 Hitachi Constr Mach Co Ltd Split type vertical probe
JPH09138222A (en) * 1995-11-15 1997-05-27 Nippon Steel Corp Ultrasonic inspection method for cast piece or rolled steel material
JP2001305109A (en) * 2000-04-21 2001-10-31 Japan Science & Technology Corp Internal microscopic cracking detection method and apparatus using non-linear ultrasonic wave
JP2002323481A (en) * 2001-04-27 2002-11-08 Kawasaki Steel Corp Ultrasonic flaw detection method and device
JP2004340807A (en) * 2003-05-16 2004-12-02 Jfe Steel Kk Ultrasonic flaw detection method and device
JP2005106636A (en) * 2003-09-30 2005-04-21 Nippon Steel Corp Ultrasonic flaw detection method and apparatus
JP2005214846A (en) * 2004-01-30 2005-08-11 Nippon Steel Corp Method and device for detecting inclusion by nonlinear ultrasonic wave
JP2006064574A (en) * 2004-08-27 2006-03-09 Choonpa Zairyo Shindan Kenkyusho:Kk Ultrasonic material evaluation method and device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103568A (en) * 1985-10-31 1987-05-14 Hitachi Constr Mach Co Ltd Split type vertical probe
JPH09138222A (en) * 1995-11-15 1997-05-27 Nippon Steel Corp Ultrasonic inspection method for cast piece or rolled steel material
JP2001305109A (en) * 2000-04-21 2001-10-31 Japan Science & Technology Corp Internal microscopic cracking detection method and apparatus using non-linear ultrasonic wave
JP2002323481A (en) * 2001-04-27 2002-11-08 Kawasaki Steel Corp Ultrasonic flaw detection method and device
JP2004340807A (en) * 2003-05-16 2004-12-02 Jfe Steel Kk Ultrasonic flaw detection method and device
JP2005106636A (en) * 2003-09-30 2005-04-21 Nippon Steel Corp Ultrasonic flaw detection method and apparatus
JP2005214846A (en) * 2004-01-30 2005-08-11 Nippon Steel Corp Method and device for detecting inclusion by nonlinear ultrasonic wave
JP2006064574A (en) * 2004-08-27 2006-03-09 Choonpa Zairyo Shindan Kenkyusho:Kk Ultrasonic material evaluation method and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069027A (en) * 2007-09-13 2009-04-02 Tokyo Metropolis Measuring method and apparatus related to heat receiving effect of refractory building by ultrasonic wave
JP2014119441A (en) * 2012-12-19 2014-06-30 Toshiba Corp Ultrasonic testing device and method
CN107561157A (en) * 2016-06-30 2018-01-09 重庆医科大学 Water quality testing meter and its method
CN107561157B (en) * 2016-06-30 2023-08-04 重庆医科大学 Water quality detector and method thereof
WO2024142867A1 (en) * 2022-12-26 2024-07-04 山陽特殊製鋼株式会社 Steel material machining method, and rolling component manufacturing method

Also Published As

Publication number Publication date
JP4610398B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
CN107747922B (en) Method for measuring subsurface defect buried depth based on laser ultrasound
US10761066B2 (en) Micro-resolution ultrasonic nondestructive imaging method
JP4631002B2 (en) Method for detecting defects and apparatus therefor
US10564134B2 (en) Pseudo defect sample, process for producing the same, method for adjusting ultrasonic flaw detection measurement condition, method for inspecting target material, and process for producing sputtering target
US8181523B2 (en) Ultrasound inspection methods for noisy cast materials and related probes
JP5420525B2 (en) Apparatus and method for ultrasonic inspection of small diameter tube
CN113588566B (en) Laser-ultrasonic-based laser spot welding micro-welding point quality detection device and method
JP4610398B2 (en) Inclusion detection method and apparatus using nonlinear ultrasonic waves
JP4425011B2 (en) Inclusion detection method and apparatus using nonlinear ultrasonic waves
JP2012255653A (en) Method, device, and program for identifying surface profile of ultrasonic flaw detection test body, and method, device, and program for ultrasonic flaw detection test, incorporated with identification of surface profile of ultrasonic flaw detection test body
JP6598045B2 (en) Ultrasonic inspection method
JP2017161513A (en) Ultrasonic flaw detecting device, and ultrasonic flaw detecting method
JPH05333000A (en) Ultrasonic flaw detector
JP2008175796A (en) Drum inspection method, and device therefor
JP2008102071A (en) Ultrasonic flaw detecting method and ultrasonic imaging device
JP2007271267A (en) Method of inspecting damage and corrosion thickness reduction phenomenon, caused by hydrogen
JP4108030B2 (en) Ultrasonic flaw detection method and apparatus
Juhasz STUDY ON NON-DISTRUCTIVE ULTRASOUND CONTROL.
Kuo et al. Non-immersive ultrasound scanning and inspection of internal defects using a water droplet coupling device
JP2008261889A (en) Imaging method of internal defect by ultrasonic wave, and its device
Nishimura et al. Ultrasonic detection of spall damage induced by low-velocity repeated impact
JP2002040001A (en) Flaw detection method and device
RU2644438C1 (en) Method of ultrasonic controlling surface and subsurface defects of metal products and device for its implementation
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus
KR100422259B1 (en) A Method The Defect Defection With Using Digital Ultrasonic Testing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees