JP2006284344A - Secondary charged particle producing device - Google Patents

Secondary charged particle producing device Download PDF

Info

Publication number
JP2006284344A
JP2006284344A JP2005104063A JP2005104063A JP2006284344A JP 2006284344 A JP2006284344 A JP 2006284344A JP 2005104063 A JP2005104063 A JP 2005104063A JP 2005104063 A JP2005104063 A JP 2005104063A JP 2006284344 A JP2006284344 A JP 2006284344A
Authority
JP
Japan
Prior art keywords
secondary charged
charged particle
target
proton beam
particle generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005104063A
Other languages
Japanese (ja)
Other versions
JP4704788B2 (en
Inventor
Ichiro Watanabe
一郎 渡辺
Norimoto Sagawa
準基 佐川
Rinichi Asano
林一 浅野
Yutaka Yamanoi
豊 山野井
Michifumi Minagawa
道文 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
High Energy Accelerator Research Organization
Original Assignee
Hitachi Engineering Co Ltd
High Energy Accelerator Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, High Energy Accelerator Research Organization filed Critical Hitachi Engineering Co Ltd
Priority to JP2005104063A priority Critical patent/JP4704788B2/en
Publication of JP2006284344A publication Critical patent/JP2006284344A/en
Application granted granted Critical
Publication of JP4704788B2 publication Critical patent/JP4704788B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently, continuously and quickly cool and remove a plenty of heat generated by nuclear spallation reaction in a metal target generating secondary charged particles by introducing proton beam. <P>SOLUTION: A secondary charged particle generation target 1 is formed in a disk shape of which the radius direction is arranged vertically and fixed to horizontal shaft 3 and rotated. A part of the lower side is directly submerged in cooling water 11 stored in a water tank 6 and overflowing so that the submerged part 22 is cooled by water. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

大強度加速施設の陽子ビームを利用する核破砕実験施設における二次荷電粒子発生装置に関する。   The present invention relates to a secondary charged particle generator in a nuclear spallation experiment facility using a proton beam of a high-intensity acceleration facility.

大強度の陽子ビーム(12kW)をターゲットに衝突させて実験に使用する二次荷電粒子(π中間子,K中間子,ミューオン,ニュートリノ,反陽子など)の生成を連続的(5000時間)に供給する設備においては、ターゲットに衝突後核破砕が生じて二次荷電粒子とともに入射エネルギーに応じた熱(約10kW)が発生する。この熱を効率的に除去する方法が求められていた。   Equipment that continuously generates (5000 hours) secondary charged particles (π meson, kaon, muon, neutrino, antiproton, etc.) used for experiments by colliding a high-intensity proton beam (12 kW) with the target In the case, in the target, nuclear fragmentation occurs after collision, and heat (about 10 kW) corresponding to incident energy is generated together with secondary charged particles. A method for efficiently removing this heat has been demanded.

特許文献1には核反応ターゲットとして、ターゲット材を蒸着した円筒体表面にビームを受け、消耗すると円筒体を平行移動させて、さらに円筒体内部に冷却水を流して長時間のビーム照射連続運転を可能にしていることが紹介されている。   In Patent Document 1, as a nuclear reaction target, a beam is received on the surface of a cylinder on which a target material is deposited, and when it is consumed, the cylinder is moved in parallel. It is introduced that makes it possible.

特許文献2にはX線管用回転ターゲットとして、高い比強度と高熱伝導度が得られる構造が示されており、ターゲットに衝突して発生した熱エネルギーを比強度と熱伝導度に優れた炭素複合材料を積層した構造が紹介されている。   Patent Document 2 shows a structure capable of obtaining a high specific strength and high thermal conductivity as a rotating target for an X-ray tube, and a carbon composite that excels in specific strength and thermal conductivity when the thermal energy generated by colliding with the target is shown. A structure in which materials are stacked is introduced.

特許文献3には18F製造ターゲットとして、陽子ビームの照射エネルギーによる熱エネルギーを効率的に取り去るためにターゲット室背面に施されたターゲット室を冷却する方式が紹介されている。   Patent Document 3 introduces a method for cooling a target chamber provided on the back surface of a target chamber in order to efficiently remove thermal energy due to irradiation energy of a proton beam as an 18F manufacturing target.

特許文献4には電子ビーム照射装置として、電子ビーム透過部の過大な熱負荷を防止するために、高原子番号及び高融点からなる円板形ターゲットを用いることが紹介されている。   Patent Document 4 introduces the use of a disk-shaped target having a high atomic number and a high melting point as an electron beam irradiation device in order to prevent an excessive heat load on the electron beam transmitting portion.

二次荷電粒子発生用ターゲットの冷却構造として1)固定ターゲット方式で中心部から発生した熱を周辺部で冷却する構造や、2)ビームが当たる箇所を変化させて発熱箇所の分散化させる構造のものが知られている。   As a cooling structure for the target for generating secondary charged particles, 1) a structure in which the heat generated from the central part is cooled in the peripheral part by the fixed target method, and 2) a structure in which the heat generating part is dispersed by changing the place where the beam hits. Things are known.

また、冷却水流路を設けて伝熱金属を介して間接的に二次荷電粒子発生用ターゲット冷却し、装置全体を回転させる構造などが知られている。   In addition, a structure in which a cooling water flow path is provided to indirectly cool a target for generating secondary charged particles via a heat transfer metal and the entire apparatus is rotated is known.

特開平8−15500号公報JP-A-8-15500 特開平8−250053号公報JP-A-8-250053 特開平9−54196号公報JP-A-9-54196 特開2000−249800号公報JP 2000-249800 A

連続した入射陽子ビームをターゲットに照射して二次荷電粒子を発生しようとした場合、ターゲットの一部に集中すると材料の変形や溶融の恐れがあり、その対策として、固定ターゲットの周辺に熱伝達率のよい冷却熱浴ブロックを設けることや、ターゲットを回転させて発熱が集中するのを避ける工夫や、回転ターゲットを水に漬けて冷却する概念が考えられてきた。さらに、熱伝導のよい金属を介して冷却水を循環させて冷却(約1kW)する方法も検討されてきた。しかしながら、大強度陽子ビームの衝突により核破砕反応から発生する多量の熱量を効率よく連続除熱できる二次荷電粒子ターゲットの除熱方式は確立されていなかった。   When trying to generate secondary charged particles by irradiating the target with a continuous incident proton beam, there is a risk of deformation or melting of the material if it concentrates on a part of the target. As a countermeasure, heat transfer around the fixed target There have been considered the concept of providing an efficient cooling heat bath block, a device for rotating the target to prevent the heat generation from concentrating, and the cooling target immersed in water. Furthermore, a method of cooling (about 1 kW) by circulating cooling water through a metal having good heat conductivity has been studied. However, no secondary charged particle target heat removal method has been established that can efficiently and continuously remove a large amount of heat generated from the spallation reaction by the collision of a high-intensity proton beam.

ターゲット円盤を水槽に入れて回転させると空気の巻き込み現象が生じてターゲット表面と冷却水との接触面積が少なくなり、その結果として冷却効率が落ちる原因となっていた。   When the target disk is placed in a water tank and rotated, an air entrainment phenomenon occurs, and the contact area between the target surface and the cooling water decreases, resulting in a decrease in cooling efficiency.

ターゲットに陽子ビームを照射した場合の放射化発熱は核破砕反応で生じる二次荷電粒子発生量の増加に伴い、ターゲット円盤厚さ方向で後流側ほど大きくなる。その結果、発熱量を抑えるために板厚を薄くするか、円盤径を大きくするか、回転数を上げる必要があった。   When the target is irradiated with a proton beam, the heat generated by activation increases as the amount of secondary charged particles generated in the nuclear spallation reaction increases in the direction of the target disk thickness. As a result, it was necessary to reduce the plate thickness, increase the disk diameter, or increase the rotational speed in order to suppress the amount of heat generated.

本発明は、かかる点に鑑み、核破砕反応から発生する多量の熱量を効率よく連続して迅速に除熱できる二次荷電粒子ターゲットを備えた二次荷電粒子発生装置を提供することを目的とする。   In view of such points, the present invention aims to provide a secondary charged particle generator equipped with a secondary charged particle target capable of efficiently and rapidly removing a large amount of heat generated from a nuclear fragmentation reaction. To do.

本発明は、大強度加速器から陽子ビームを入射して二次荷電粒子を発生させる金属性の二次荷電粒子発生ターゲットを備えた二次荷電粒子発生装置において、
前記二次荷電粒子発生ターゲットは、円板状に形成されて半径方向が縦方向に配置され、該二次荷電粒子発生ターゲットを回転する駆動装置が設けられ、前記二次荷電粒子発生ターゲットの下側一部を貯留した冷却水に直接浸漬して水冷を行う水槽が設けられることを特徴とする二次荷電粒子発生装置を提供する。
The present invention relates to a secondary charged particle generator including a metallic secondary charged particle generation target that generates a secondary charged particle by injecting a proton beam from a high-intensity accelerator.
The secondary charged particle generation target is formed in a disk shape, and the radial direction is arranged in the vertical direction, and a drive device for rotating the secondary charged particle generation target is provided, and the secondary charged particle generation target is provided below the secondary charged particle generation target. Provided is a secondary charged particle generator characterized in that a water tank is provided for performing water cooling by immersing directly in cooling water storing a part of the side.

また、前記二次荷電粒子発生ターゲットは、円板状外周端部が三角形状もしくは円弧形状とされることを特徴とする二次荷電粒子発生装置を提供する。   Further, the secondary charged particle generating target provides a secondary charged particle generating device characterized in that a disk-like outer peripheral end portion has a triangular shape or an arc shape.

また、前記二次荷電粒子発生ターゲットは、その厚さ方向において複数のターゲット板から構成され、一体駆動されることを特徴とする二次荷電粒子発生装置を提供する。   The secondary charged particle generation target is constituted by a plurality of target plates in the thickness direction thereof, and is driven integrally. The secondary charged particle generation apparatus is provided.

また、陽子ビーム入射側に配置されるターゲット板と二次荷電粒子が取り出される側に配置されるターゲット板と中間に配置されるターゲット板は、陽子ビーム入射側から順次厚さが薄くされていることを特徴とする二次荷電粒子発生装置を提供する。   In addition, the target plate arranged on the proton beam incident side, the target plate arranged on the side from which secondary charged particles are extracted, and the target plate arranged in the middle are successively made thinner from the proton beam incident side. A secondary charged particle generator is provided.

本発明は、上述のように回転する二次荷電粒子ターゲットの一部を冷却水に直接浸漬するようにしているので、核破砕反応から発生する多量の熱量を効率よく連続して迅速に除熱できる二次荷電粒子ターゲットを備えた二次荷電粒子発生装置を提供することができる。   In the present invention, since a part of the secondary charged particle target rotating as described above is directly immersed in the cooling water, a large amount of heat generated from the nuclear fragmentation reaction is efficiently and rapidly removed. A secondary charged particle generator including a secondary charged particle target that can be provided can be provided.

以下、本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、実施例1の概念を説明する図である。図1において、二次荷電粒子ターゲット1は円板(円盤)状に形成され、縦方向(垂直方向)に配置され、回転する横軸3によって回転される。二次荷電粒子ターゲット1の上部には厚さ方向からエネルギー線としての陽子ビーム9が照射される。二次荷電粒子ターゲット1は、陽子ビーム9を入射し、反射エネルギー線としての陽子ビーム9、二次荷電粒子10および二次荷電粒子10を発生もしくは通過させる。この反射エネルギー線を発生させるときに、二次荷電粒子ターゲット1は発熱して発熱部21となり、上部が昇温し、下部へと伝熱される。   FIG. 1 is a diagram for explaining the concept of the first embodiment. In FIG. 1, a secondary charged particle target 1 is formed in a disc (disk) shape, is arranged in a vertical direction (vertical direction), and is rotated by a rotating horizontal axis 3. A proton beam 9 as an energy beam is irradiated on the upper part of the secondary charged particle target 1 from the thickness direction. The secondary charged particle target 1 receives the proton beam 9 and generates or passes the proton beam 9, the secondary charged particle 10, and the secondary charged particle 10 as reflected energy rays. When this reflected energy ray is generated, the secondary charged particle target 1 generates heat and becomes a heat generating portion 21, and the upper portion is heated and transferred to the lower portion.

二次荷電粒子ターゲット1の下側の一部は浸漬部22となり、冷却水11に直接浸漬される。これによって回転する二次荷電粒子ターゲット1の発熱部21は連続して冷却水11によって冷却されることになる。浸漬される部分を22として示してある。   A part of the lower side of the secondary charged particle target 1 becomes an immersion part 22 and is directly immersed in the cooling water 11. As a result, the heat generating portion 21 of the rotating secondary charged particle target 1 is continuously cooled by the cooling water 11. The part to be immersed is shown as 22.

冷却効率を高めるために二次荷電粒子ターゲット1の上方端部に陽子ビーム9を照射するようにし、二次荷電粒子ターゲット1を回転させ(本例の場合、反時計回り)、連続して冷却する方式としている。   In order to increase the cooling efficiency, the upper end portion of the secondary charged particle target 1 is irradiated with the proton beam 9, and the secondary charged particle target 1 is rotated (in this example, counterclockwise) to continuously cool. It is a method to do.

図2および図3は、図1の構成を詳細に示す構成図である。図2は正面図、図3は側面図である。   2 and 3 are configuration diagrams showing the configuration of FIG. 1 in detail. 2 is a front view, and FIG. 3 is a side view.

これらの図において、二次荷電粒子ターゲット1は横方向配置の横軸3にキー止めによって固着されて横軸3と一体に回転する。横軸3は、両端側に軸受2が取り付けられ、軸受2を介して本体90に設けたブラケット24で保持するようにされている。横軸3の1端部には一組の傘歯車4(4A,4B)が設けられ、傘歯車4Bは縦軸5によって駆動される。縦軸5は駆動源(図示せず)に接続され、回転駆動される。このようにして駆動装置(駆動手段)が構成される。従って、駆動装置によって二次荷電粒子ターゲット1は回転される。   In these figures, the secondary charged particle target 1 is fixed to the horizontal axis 3 arranged in the horizontal direction by a key and rotates integrally with the horizontal axis 3. The horizontal shaft 3 has bearings 2 attached to both ends thereof, and is held by brackets 24 provided on the main body 90 via the bearings 2. A set of bevel gears 4 (4A, 4B) is provided at one end of the horizontal shaft 3, and the bevel gear 4B is driven by the vertical axis 5. The vertical axis 5 is connected to a drive source (not shown) and is driven to rotate. In this way, a drive device (drive means) is configured. Accordingly, the secondary charged particle target 1 is rotated by the driving device.

図3に陽子ビーム9が照射される陽子ビームスポット8を示す。陽子ビームスポット8は二次荷電粒子ターゲット1の上部であって、横部に位置している。   FIG. 3 shows a proton beam spot 8 irradiated with the proton beam 9. The proton beam spot 8 is located on the side of the upper part of the secondary charged particle target 1.

図2に二次荷電粒子ターゲット1を浸漬するための水槽6を示す。二次荷電粒子ターゲット1の下方には冷却水11が貯留された水槽6が設けられ、冷却水供給配管7から冷却水が供給されるようになっている。冷却水11は水槽6からオーバーフローする。   FIG. 2 shows a water tank 6 for immersing the secondary charged particle target 1. A water tank 6 in which cooling water 11 is stored is provided below the secondary charged particle target 1, and cooling water is supplied from a cooling water supply pipe 7. The cooling water 11 overflows from the water tank 6.

二次荷電粒子ターゲット1の下側の一部(浸漬部22)は冷却水11に直接浸漬される。   A part of the lower side of the secondary charged particle target 1 (immersion part 22) is directly immersed in the cooling water 11.

回転する二次荷電粒子ターゲット1は、冷却水の近くで照射され、直ちに浸漬部22が順次冷却水によって冷却される。この冷却は連続して迅速に行われる。   The rotating secondary charged particle target 1 is irradiated near the cooling water, and the immersion part 22 is immediately cooled by the cooling water immediately. This cooling takes place rapidly and continuously.

以上述べたように、本実施例によれば、二次荷電粒子ターゲット1を回転させることにより、局所に発熱が集中することを避けることができ、二次荷電粒子ターゲット1を水槽の冷却水11に浸すことにより、一層冷却効率が向上することができ、長時間にわたり、安定した二次荷電粒子を供給することができる。   As described above, according to the present embodiment, by rotating the secondary charged particle target 1, it is possible to avoid local concentration of heat generation, and the secondary charged particle target 1 is cooled to the cooling water 11 of the water tank. By soaking, the cooling efficiency can be further improved, and stable secondary charged particles can be supplied over a long period of time.

このように、二次荷電粒子ターゲット1を横軸3、軸受2、ブラケット24により保持し、縦軸5および傘歯車により回転駆動力を伝達させて回転させ、さらに、二次荷電粒子ターゲット1を直接冷却するための水槽6と連続冷却するための冷却水供給配管7を設けることにより、連続冷却ができ、その結果、ターゲットスポット8での発熱分散と発生する多量の熱量を効率よく連続除熱できる二次荷電粒子発生ターゲット1を提供することができる。   In this way, the secondary charged particle target 1 is held by the horizontal axis 3, the bearing 2, and the bracket 24, rotated by transmitting the rotational driving force by the vertical axis 5 and the bevel gear, and the secondary charged particle target 1 is further rotated. By providing a water tank 6 for direct cooling and a cooling water supply pipe 7 for continuous cooling, continuous cooling can be performed, and as a result, heat generation dispersion at the target spot 8 and a large amount of generated heat can be efficiently and continuously removed. The secondary charged particle generation target 1 that can be provided can be provided.

実施例2を図4および図5を用いて説明する。主要構成は実施例1と同様であり、それらの説明は実施例1の説明を採用するものとする。他の実施例についても同じである。   A second embodiment will be described with reference to FIGS. 4 and 5. The main configuration is the same as that of the first embodiment, and the description of the first embodiment is adopted for the description thereof. The same applies to the other embodiments.

図4(図4(a),図4(b)参照)に示すように、実施例1の構造のように端部が直角形状をした円板を二次荷電粒子ターゲット1として使用すると、回転速度が上昇するにつれてターゲット端部14に周辺の空気12を巻き込むおそれがある。   As shown in FIG. 4 (see FIG. 4A and FIG. 4B), when a disk having a right-angled end as in the structure of the first embodiment is used as the secondary charged particle target 1, the rotation is performed. As the speed increases, ambient air 12 may be entrained in the target end 14.

巻き込まれた空気12は気泡13となって冷却水11中で二次荷電粒子ターゲット1に沿って回転し、逆側に吐き出される。   The entrained air 12 becomes bubbles 13 and rotates along the secondary charged particle target 1 in the cooling water 11 and is discharged to the opposite side.

図5は、この空気巻き込みを防止する構造を提供する。図5(a)は正面図、図5(b)は側面図を示す。図5において、二次荷電粒子ターゲット1は、円周端部が三角端ターゲット15としてある。すなわち、円板状外周端部を三角形状としている。一部にRを設けてもよい。このようにすることによってターゲット端部14での周辺の空気12の巻き込みを極めて少ないものとすることができる。従って、二次荷電粒子ターゲット1の三角端ターゲット15と共に回転する気泡13は極めて少ないものとなる。   FIG. 5 provides a structure that prevents this air entrainment. FIG. 5A shows a front view, and FIG. 5B shows a side view. In FIG. 5, the secondary charged particle target 1 has a circumferential end as a triangular end target 15. That is, the disk-shaped outer peripheral end is triangular. R may be provided in part. By doing so, the entrainment of the surrounding air 12 at the target end 14 can be made extremely small. Therefore, the number of bubbles 13 rotating with the triangular end target 15 of the secondary charged particle target 1 is extremely small.

実施例3を図6に示す。図6(a)は正面図、図6(b)は側面図である。図6に示す構成は、実施例2の三角端ターゲット15に代えて半円端ターゲット16を採用する。効果については図5に示すものと同様である。すなわち、この構成は円板状外周端部を円弧(半円径を含む)形状としている。   Example 3 is shown in FIG. FIG. 6A is a front view, and FIG. 6B is a side view. The configuration shown in FIG. 6 employs a semicircular end target 16 instead of the triangular end target 15 of the second embodiment. The effect is the same as that shown in FIG. That is, in this configuration, the disk-like outer peripheral end portion has an arc shape (including a semicircular diameter).

このように、図5あるいは図6に示すように、二次荷電粒子ターゲット1の除熱性の向上を図るために円盤外周の構造を平坦構造から三角形、または半円形構造にすることにより、ターゲット円盤が水に入り込むときの水の跳ね上がりや空気の巻き込みを抑制することができ、冷却効率を向上させることができる二次荷電粒子発生ターゲットを供給することができる。   In this way, as shown in FIG. 5 or FIG. 6, in order to improve the heat removal property of the secondary charged particle target 1, the structure of the outer periphery of the disk is changed from a flat structure to a triangle or semicircular structure. The secondary charged particle generation target that can suppress the jumping of water and the entrainment of air when the water enters the water and can improve the cooling efficiency can be supplied.

図7は実施例4を示す。図7(a)は正面図、図7(b)は側面図である。   FIG. 7 shows a fourth embodiment. FIG. 7A is a front view, and FIG. 7B is a side view.

この実施例は、二次荷電粒子ターゲット1の冷却水11に対する接触面積を大幅に増やして冷却効果を向上させるために、二次荷電粒子ターゲット1を複数のターゲット板1a,1b,1c,1d,1eで構成している。すなわち分割ターゲット板1を採用し、それらの間に間隙17を設けている。この間隙17に冷却水11が流れ込むことになる。   In this embodiment, the secondary charged particle target 1 is divided into a plurality of target plates 1a, 1b, 1c, 1d, in order to greatly increase the contact area of the secondary charged particle target 1 with the cooling water 11 and improve the cooling effect. 1e. That is, the division | segmentation target board 1 is employ | adopted and the gap | interval 17 is provided among them. The cooling water 11 flows into the gap 17.

このように、板厚方向に分割された複数のターゲット板1a,1b,1c,1d,1eを使用して二次荷電粒子ターゲット1を構成することによって、板厚後流部の発熱分布が高くなるのを分散させることができ、冷却効果が上がる分、円盤の径や二次荷電粒子ターゲット1の回転数を抑えることができる。   Thus, by forming the secondary charged particle target 1 using the plurality of target plates 1a, 1b, 1c, 1d, and 1e divided in the plate thickness direction, the heat generation distribution in the plate thickness rear portion is high. As the cooling effect increases, the diameter of the disk and the rotational speed of the secondary charged particle target 1 can be suppressed.

このように、複数のターゲット板1a,1b,1c,1d,1eを採用することによって、すなわち板厚方向に分割することによって、冷却面積を大きくすることができ、冷却効率を向上させることができる二次荷電粒子発生ターゲットを提供することができる。   Thus, by adopting a plurality of target plates 1a, 1b, 1c, 1d, and 1e, that is, by dividing in the plate thickness direction, the cooling area can be increased and the cooling efficiency can be improved. A secondary charged particle generation target can be provided.

図8,図9は実施例5を示す。図8に示すように、分割ターゲット構成を採用すると効果が大きいが、陽子ビーム9が次々にターゲット板17(17a,17b,17c)に照射されると、二次荷電粒子10の増加と共に、熱分が広がって、行き、後段にあるターゲット板ほど発生する熱量が大きくなる。   8 and 9 show a fifth embodiment. As shown in FIG. 8, when the split target configuration is adopted, the effect is great. However, when the proton beam 9 is irradiated to the target plate 17 (17a, 17b, 17c) one after another, the secondary charged particles 10 increase and the heat increases. The amount of heat generated increases as the target plate in the latter stage spreads.

その対策として、図9に示す例を採用する。図9の例は、陽子ビーム9の入射側(入口側)に配置される不均等板厚ターゲット板18aと二次荷電粒子10が取り出される側(出口側)に配置される不均等板厚ターゲット板18eと中間に配置される不均等板厚ターゲット板18b,18cは、陽子ビーム入射側から順次厚さを薄くしている。   As a countermeasure, the example shown in FIG. 9 is adopted. In the example of FIG. 9, the uneven thickness target plate 18a disposed on the incident side (entrance side) of the proton beam 9 and the uneven thickness target disposed on the side from which the secondary charged particles 10 are extracted (exit side). The thicknesses of the non-uniform thickness target plates 18b and 18c arranged in the middle of the plate 18e are sequentially reduced from the proton beam incident side.

板厚を18a>18b>18c>18d>18eとしている。この構成によって、各不均等板厚ターゲット板18a,18b,18c,18d,18eの発熱量の均等化を図ることができるようになる。すなわち、この例は二次荷電粒子ターゲット1を不均等板厚分割ターゲット18を複数使用して構成している。   The plate thickness is 18a> 18b> 18c> 18d> 18e. With this configuration, it is possible to equalize the amount of heat generated by each of the uneven thickness target plates 18a, 18b, 18c, 18d, and 18e. That is, in this example, the secondary charged particle target 1 is configured by using a plurality of non-uniform plate thickness division targets 18.

以上のように、大強度加速器から陽子ビーム9を入射して二次荷電粒子10を発生させる金属性の二次荷電粒子発生ターゲットを備えた二次荷電粒子発生装置100は、二次荷電粒子発生ターゲット1は、円板状に形成されて半径方向が縦方向に配置され、該二次荷電粒子発生ターゲット1を回転する駆動装置が設けられ、二次荷電粒子発生ターゲットの下側一部を貯留した冷却水11に直接浸漬して水冷を行う水槽6が設けられて構成される。   As described above, the secondary charged particle generation apparatus 100 including the metallic secondary charged particle generation target that generates the secondary charged particles 10 by entering the proton beam 9 from the high-intensity accelerator generates the secondary charged particles. The target 1 is formed in a disk shape, the radial direction is arranged in the vertical direction, a drive device that rotates the secondary charged particle generation target 1 is provided, and a lower part of the secondary charged particle generation target is stored. A water tank 6 that is directly immersed in the cooling water 11 to perform water cooling is provided.

本発明の実施例の概念図。The conceptual diagram of the Example of this invention. 本発明の実施例の詳細構造を示す正面図。The front view which shows the detailed structure of the Example of this invention. 図2の側面図。The side view of FIG. 実施例1が保有する問題点を説明する図。The figure explaining the problem which Example 1 has. 他の実施例の構造を示す図で、図5(a)は正面図、図5(b)は側面図。It is a figure which shows the structure of another Example, FIG. 5 (a) is a front view, FIG.5 (b) is a side view. 他の実施例の構造を示す図で、図6(a)は正面図、図6(b)は側面図。It is a figure which shows the structure of another Example, FIG. 6 (a) is a front view, FIG.6 (b) is a side view. 他の実施例の構造を示す図で、図7(a)は正面図、図7(b)は側面図。It is a figure which shows the structure of another Example, Fig.7 (a) is a front view, FIG.7 (b) is a side view. 実施例4が保有する問題点を説明する図。The figure explaining the problem which Example 4 has. 他の実施例の構造を示す図で、図9(a)は正面図、図9(b)は側面図。It is a figure which shows the structure of another Example, Fig.9 (a) is a front view, FIG.9 (b) is a side view.

符号の説明Explanation of symbols

1…二次荷電粒子ターゲット、2…軸受、3…横軸、4…傘歯車、5…縦軸、6…水槽、7…冷却水供給配管、8…陽子ビームスポット、9…陽子ビーム、10…二次荷電粒子、11…冷却水、12…空気、13…気泡、14…ターゲット端部、15…三角端ターゲット、16…半円端ターゲット、17…ターゲット板、18…不均等板厚分割ターゲット、21…発熱部、22…浸漬部、24…ブラケット、90…本体、100…二次荷電粒子発生装置。
DESCRIPTION OF SYMBOLS 1 ... Secondary charged particle target, 2 ... Bearing, 3 ... Horizontal axis, 4 ... Bevel gear, 5 ... Vertical axis, 6 ... Water tank, 7 ... Cooling water supply piping, 8 ... Proton beam spot, 9 ... Proton beam, 10 ... secondary charged particles, 11 ... cooling water, 12 ... air, 13 ... air bubbles, 14 ... target end, 15 ... triangular end target, 16 ... semicircular end target, 17 ... target plate, 18 ... non-uniform plate thickness division Target, 21 ... Heat generating part, 22 ... Dipping part, 24 ... Bracket, 90 ... Main body, 100 ... Secondary charged particle generator.

Claims (4)

大強度加速器から陽子ビームを入射して二次荷電粒子を発生させる金属性の二次荷電粒子発生ターゲットを備えた二次荷電粒子発生装置において、
前記二次荷電粒子発生ターゲットは、円板状に形成されて半径方向が縦方向に配置され、該二次荷電粒子発生ターゲットを回転する駆動装置が設けられ、前記二次荷電粒子発生ターゲットの下側一部を貯留した冷却水に直接浸漬して水冷を行う水槽が設けられることを特徴とする二次荷電粒子発生装置。
In a secondary charged particle generator equipped with a metallic secondary charged particle generation target that generates a secondary charged particle by injecting a proton beam from a high-intensity accelerator,
The secondary charged particle generation target is formed in a disk shape, and the radial direction is arranged in the vertical direction, and a driving device for rotating the secondary charged particle generation target is provided, and the secondary charged particle generation target is provided below the secondary charged particle generation target. A secondary charged particle generator, characterized in that a water tank is provided for performing water cooling by directly immersing in a cooling water storing a part of the side.
請求項1において、前記二次荷電粒子発生ターゲットは、円板状外周端部が三角形状もしくは円弧形状とされることを特徴とする二次荷電粒子発生装置。   2. The secondary charged particle generating apparatus according to claim 1, wherein the secondary charged particle generating target has a disk-like outer peripheral end that is triangular or arcuate. 請求項1において、前記二次荷電粒子発生ターゲットは、その厚さ方向において複数のターゲット板から構成され、一体駆動されることを特徴とする二次荷電粒子発生装置。   2. The secondary charged particle generation apparatus according to claim 1, wherein the secondary charged particle generation target is constituted by a plurality of target plates in the thickness direction and is integrally driven. 請求項3において、陽子ビーム入射側に配置されるターゲット板と二次荷電粒子が取り出される側に配置されるターゲット板と中間に配置されるターゲット板は、陽子ビーム入射側から順次厚さが薄くされていることを特徴とする二次荷電粒子発生装置。
4. The target plate arranged on the proton beam incident side, the target plate arranged on the side from which secondary charged particles are taken out, and the target plate arranged in the middle are successively thinner from the proton beam incident side. Secondary charged particle generator characterized by being made.
JP2005104063A 2005-03-31 2005-03-31 Secondary charged particle generator Expired - Fee Related JP4704788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104063A JP4704788B2 (en) 2005-03-31 2005-03-31 Secondary charged particle generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104063A JP4704788B2 (en) 2005-03-31 2005-03-31 Secondary charged particle generator

Publications (2)

Publication Number Publication Date
JP2006284344A true JP2006284344A (en) 2006-10-19
JP4704788B2 JP4704788B2 (en) 2011-06-22

Family

ID=37406433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104063A Expired - Fee Related JP4704788B2 (en) 2005-03-31 2005-03-31 Secondary charged particle generator

Country Status (1)

Country Link
JP (1) JP4704788B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033512A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Target for source of neutron
WO2018142459A1 (en) * 2017-01-31 2018-08-09 住友重機械工業株式会社 Target device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314686A (en) * 1988-06-16 1989-12-19 Uinsuru:Kk Lower tip structure of bow
JPH0644934A (en) * 1992-07-22 1994-02-18 Mitsubishi Electric Corp Slow position generation device
JPH0815500A (en) * 1994-07-01 1996-01-19 Nissin High Voltage Co Ltd Nuclear reaction target
JPH08250053A (en) * 1995-03-15 1996-09-27 Tokyo Tungsten Co Ltd Rotary anode for x-ray tube
JPH0954196A (en) * 1995-08-17 1997-02-25 Nihon Medi Physics Co Ltd Target member and target system for manufacturing 18f
JPH09195995A (en) * 1996-01-19 1997-07-29 Miura Co Ltd Air sucking preventing structure of water suction pipe
JPH11238598A (en) * 1998-02-20 1999-08-31 Hitachi Ltd Neutron source solid target
JP2000162399A (en) * 1998-11-26 2000-06-16 Hitachi Ltd Neutron-generating device utilizing proton
JP2000202479A (en) * 1999-01-13 2000-07-25 Mugen:Kk Water cleaning water channel
JP2000249800A (en) * 1999-03-03 2000-09-14 Mitsubishi Heavy Ind Ltd Electron beam irradiation device
JP2002181999A (en) * 2000-12-15 2002-06-26 Ishikawajima Harima Heavy Ind Co Ltd Electron beam irradiator
JP2003259756A (en) * 2002-03-08 2003-09-16 Kanto Regional Development Bureau Ministry Of Land Infrastructure & Transport Method for protecting fish and artificial floating island therefor
JP2004251139A (en) * 2003-02-18 2004-09-09 Central Res Inst Of Electric Power Ind Floating type water-wind power generating system
JP2004337789A (en) * 2003-05-19 2004-12-02 Permachem Asia Ltd Slime monitoring device and slime preventing method
JP2007505460A (en) * 2003-09-11 2007-03-08 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Method and apparatus for generating extreme ultraviolet radiation or soft x-ray radiation

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314686A (en) * 1988-06-16 1989-12-19 Uinsuru:Kk Lower tip structure of bow
JPH0644934A (en) * 1992-07-22 1994-02-18 Mitsubishi Electric Corp Slow position generation device
JPH0815500A (en) * 1994-07-01 1996-01-19 Nissin High Voltage Co Ltd Nuclear reaction target
JPH08250053A (en) * 1995-03-15 1996-09-27 Tokyo Tungsten Co Ltd Rotary anode for x-ray tube
JPH0954196A (en) * 1995-08-17 1997-02-25 Nihon Medi Physics Co Ltd Target member and target system for manufacturing 18f
JPH09195995A (en) * 1996-01-19 1997-07-29 Miura Co Ltd Air sucking preventing structure of water suction pipe
JPH11238598A (en) * 1998-02-20 1999-08-31 Hitachi Ltd Neutron source solid target
JP2000162399A (en) * 1998-11-26 2000-06-16 Hitachi Ltd Neutron-generating device utilizing proton
JP2000202479A (en) * 1999-01-13 2000-07-25 Mugen:Kk Water cleaning water channel
JP2000249800A (en) * 1999-03-03 2000-09-14 Mitsubishi Heavy Ind Ltd Electron beam irradiation device
JP2002181999A (en) * 2000-12-15 2002-06-26 Ishikawajima Harima Heavy Ind Co Ltd Electron beam irradiator
JP2003259756A (en) * 2002-03-08 2003-09-16 Kanto Regional Development Bureau Ministry Of Land Infrastructure & Transport Method for protecting fish and artificial floating island therefor
JP2004251139A (en) * 2003-02-18 2004-09-09 Central Res Inst Of Electric Power Ind Floating type water-wind power generating system
JP2004337789A (en) * 2003-05-19 2004-12-02 Permachem Asia Ltd Slime monitoring device and slime preventing method
JP2007505460A (en) * 2003-09-11 2007-03-08 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Method and apparatus for generating extreme ultraviolet radiation or soft x-ray radiation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033512A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Target for source of neutron
WO2018142459A1 (en) * 2017-01-31 2018-08-09 住友重機械工業株式会社 Target device

Also Published As

Publication number Publication date
JP4704788B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
US11024437B2 (en) Neutron target for boron neutron capture therapy
RU2644390C2 (en) Target for neutron-generating device and method for its manufacturing
JP4288290B2 (en) An apparatus for generating extreme ultraviolet radiation by discharge at a reproducible electrode.
JP2006047115A (en) Neutron generating apparatus, target and neutron irradiation system
JP2022091813A (en) Neutron capture care system and target for particle beam generator
GB2038074A (en) Target arrangement for spallation neutron sources
JP7324839B2 (en) Ion beam target assembly for neutron generation
JP4704788B2 (en) Secondary charged particle generator
JP2018021881A (en) Target and cooling structure for neutron generator
JP2014044098A (en) Charged particle irradiation target refrigerating apparatus, charged particle irradiation target, and neutron generating method
JP2011185784A (en) Target device, and neutron capture therapy device including the same
JP5532728B2 (en) Target for neutron source
CN218482993U (en) Neutron capture therapy system and target for particle beam generating device
JP2022543968A (en) Liquid target for generating nuclear particles
WO2018142459A1 (en) Target device
JP5009278B2 (en) Beam dump
JP5548189B2 (en) X-ray generator target and processing method thereof
JP5864659B2 (en) Reduction device and method for desorbing oxygen
JP2011255291A (en) Reduction apparatus
JP2010008369A (en) Target device
TW201902531A (en) Method and system for surface modification of substrate for ion beam target
JPH0443999A (en) Sr absorber

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees