JP2006284261A - Residual magnetic flux measuring instrument - Google Patents

Residual magnetic flux measuring instrument Download PDF

Info

Publication number
JP2006284261A
JP2006284261A JP2005102112A JP2005102112A JP2006284261A JP 2006284261 A JP2006284261 A JP 2006284261A JP 2005102112 A JP2005102112 A JP 2005102112A JP 2005102112 A JP2005102112 A JP 2005102112A JP 2006284261 A JP2006284261 A JP 2006284261A
Authority
JP
Japan
Prior art keywords
voltage
magnetic flux
signal
transformer
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005102112A
Other languages
Japanese (ja)
Other versions
JP4407561B2 (en
Inventor
Hiroyuki Tsutada
広幸 蔦田
Takashi Hirai
隆史 平位
Masaru Shindoi
賢 新土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005102112A priority Critical patent/JP4407561B2/en
Publication of JP2006284261A publication Critical patent/JP2006284261A/en
Application granted granted Critical
Publication of JP4407561B2 publication Critical patent/JP4407561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a residual magnetic flux measuring instrument for a transformer capable of accurately measuring residual magnetic flux even if time has lapsed since an interruption time point. <P>SOLUTION: This residual magnetic flux measuring instrument measures residual magnetic flux by using: a transformer voltage measuring means 6 for measuring a transformer voltage; two DC voltage component calculation means 9 each calculating a DC voltage component 10 from a transformer voltage signal 8 within a prescribed past time period; two voltage integration means 11 each calculating a voltage integration signal 12 by voltage-integrating a signal obtained by removing the voltage component 10 from the voltage signal 8 at present; two magnetic flux DC component calculation means 13 each calculating a magnetic flux DC component 14 from the integration signal 12 within a prescribed past time period; and two magnetic flux calculation means 15 each finding a magnetic flux signal 16 obtained by removing the DC component 14 from the integration signal 12 at present. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、変圧器の残留磁束測定装置に関するものである。   The present invention relates to a transformer residual magnetic flux measuring device.

従来の残留磁束測定装置においては、変圧器の電圧波形を測定して積分演算することで磁束波形を求めて、磁束波形の最大値と最小値との平均値を直流成分補正項として差し引いて残留磁束を求めている(例えば、特許文献1参照)。   In the conventional residual magnetic flux measuring device, the voltage waveform of the transformer is measured and integrated to obtain the magnetic flux waveform, and the average value of the maximum value and the minimum value of the magnetic flux waveform is subtracted as a DC component correction term to remain. The magnetic flux is obtained (see, for example, Patent Document 1).

また、従来の残留磁束測定装置においては、変圧器の電圧波形を測定して積分演算することで磁束波形を求めて、このときに磁束波形の最終値と、電源遮断前の正弦波振動の中心との差を求めることで残留磁束を求めている(例えば、特許文献2参照)。   In the conventional residual magnetic flux measuring device, the voltage waveform of the transformer is measured and integrated to obtain the magnetic flux waveform. At this time, the final value of the magnetic flux waveform and the center of the sine wave vibration before the power is shut off are obtained. The residual magnetic flux is calculated | required by calculating | requiring the difference with (for example, refer patent document 2).

特開平2−179220JP 2-179220 A 特開2000−275311JP 2000-275311 A

従来の残留磁束測定装置では、変圧器の遮断前後にのみ変圧器電圧および残留磁束の変動が生じることを前提としている。しかしながら、変圧器用遮断器が極間コンデンサを装備していると、遮断前後のみならず、変圧器用遮断器が開放している状態においても、系統事故等が発生して電源電圧に大きな変動が生じた場合には、極間コンデンサを介して変圧器電圧および残留磁束が変動することがある。このような状況下においても正確に残留磁束を測定するには、常に変圧器の電圧波形を測定しておき、積分演算により残留磁束を求める必要がある。   In the conventional residual magnetic flux measuring device, it is assumed that the transformer voltage and the residual magnetic flux fluctuate only before and after the transformer is shut off. However, if the transformer circuit breaker is equipped with an inter-pole capacitor, not only before and after the circuit breaker but also when the transformer circuit breaker is open, system faults occur and the power supply voltage fluctuates. In such a case, the transformer voltage and the residual magnetic flux may fluctuate via the inter-pole capacitor. In order to accurately measure the residual magnetic flux even under such circumstances, it is necessary to always measure the voltage waveform of the transformer and obtain the residual magnetic flux by integral calculation.

従来装置の構成で残留磁束の常時測定を実現する場合、遮断直前から現時点までの全ての電圧波形を積分して磁束波形の最終値を求めることになる。よって、遮断時点から時間が経過するにつれて、長時間の電圧波形に対して電圧積分値を求める必要がある。この場合、電圧波形に重畳する直流オフセット成分のゆらぎにより電圧積分値にドリフトが発生し、時間が経過するにつれて正確な残留磁束を算出することができないという問題点があった。   When the continuous measurement of the residual magnetic flux is realized with the configuration of the conventional apparatus, the final value of the magnetic flux waveform is obtained by integrating all voltage waveforms from immediately before the interruption to the present time. Therefore, it is necessary to obtain a voltage integral value for a long-time voltage waveform as time elapses from the cutoff point. In this case, there is a problem that a drift occurs in the voltage integral value due to fluctuation of the DC offset component superimposed on the voltage waveform, and the accurate residual magnetic flux cannot be calculated as time elapses.

この発明は、上記のような問題点を解決するためになされたものであり、遮断時点から時間が経過しても正確に残留磁束を測定することを目的としている。   The present invention has been made to solve the above-described problems, and has an object to accurately measure the residual magnetic flux even when time elapses from the cutoff point.

この発明に係る残留磁束測定装置は、変圧器の電圧の電圧直流分を算出する電圧直流分算出手段と、変圧器の電圧から電圧直流分を除去して電圧積分信号を算出する電圧積分手段と、電圧積分信号から磁束直流分を算出する磁束直流分算出手段と、電圧積分信号から磁束直流分を除去して磁束信号を算出する磁束算出手段とで構成される系統を少なくとも二系統備えたことを特徴するものである。   The residual magnetic flux measuring device according to the present invention includes a voltage direct current component calculating means for calculating the voltage direct current component of the voltage of the transformer, and a voltage integrating means for calculating the voltage integral signal by removing the voltage direct current component from the voltage of the transformer. And at least two systems comprising a magnetic flux direct current component calculating means for calculating a magnetic flux direct current component from the voltage integrated signal and a magnetic flux calculating means for calculating the magnetic flux signal by removing the magnetic flux direct current component from the voltage integrated signal. It is a characteristic.

この発明に係る残留磁束測定装置は、変圧器の電圧の電圧直流分を算出する電圧直流分算出手段と、変圧器の電圧から電圧直流分を除去して電圧積分信号を算出する電圧積分手段と、電圧積分信号から磁束直流分を算出する磁束直流分算出手段と、電圧積分信号から磁束直流分を除去して磁束信号を算出する磁束算出手段とで構成される系統を少なくとも二系統備えたので、遮断時点から時間が経過しても正確に残留磁束を測定することができる。   The residual magnetic flux measuring device according to the present invention includes a voltage direct current component calculating means for calculating the voltage direct current component of the voltage of the transformer, and a voltage integrating means for calculating the voltage integral signal by removing the voltage direct current component from the voltage of the transformer. Since there are at least two systems comprising a magnetic flux direct current component calculating means for calculating the magnetic flux direct current component from the voltage integrated signal and a magnetic flux calculating means for removing the magnetic flux direct current component from the voltage integrated signal and calculating the magnetic flux signal. The residual magnetic flux can be accurately measured even if time elapses from the interruption point.

実施の形態1.
図1は本発明の実施形態を示す残留磁束測定装置のブロック図である。電源1と変圧器2との間に遮断器3が接続されている。変圧器2の一次側に接続された計器用変圧器4により変圧器電圧を測定する。なお、本実施例では変圧器2の一次側に計器用変圧器4を接続して変圧器電圧を測定しているが、二次側に接続して測定してもよいし、三次結線が存在する場合は、三次側に接続して測定してもよい。また、本実施例では単相変圧器を例として説明しているが、三相変圧器でも同様の構成で実現可能であることは言うまでもない。
Embodiment 1 FIG.
FIG. 1 is a block diagram of a residual magnetic flux measuring apparatus showing an embodiment of the present invention. A circuit breaker 3 is connected between the power source 1 and the transformer 2. The transformer voltage is measured by the instrument transformer 4 connected to the primary side of the transformer 2. In this embodiment, the transformer voltage is measured by connecting the instrument transformer 4 to the primary side of the transformer 2, but it may be measured by connecting to the secondary side, and there is a tertiary connection. When doing so, it may be measured by connecting to the tertiary side. In the present embodiment, a single-phase transformer is described as an example, but it goes without saying that a three-phase transformer can be realized with the same configuration.

なお、図において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通することである。また、明細書全文に表れている構成要素の形容は、あくまで例示であってこれらの記載に限定されるものではない。   In the drawings, the same reference numerals denote the same or corresponding parts, and this is common throughout the entire specification. Further, the description of the constituent elements appearing in the whole specification is merely an example and is not limited to these descriptions.

変圧器電圧測定手段6では、計器用変圧器4で得られた測定電圧7を所定時間間隔毎にA/D変換(アナログデジタル変換)して変圧器電圧信号8を得る。   The transformer voltage measurement means 6 obtains a transformer voltage signal 8 by performing A / D conversion (analog / digital conversion) on the measurement voltage 7 obtained by the instrument transformer 4 at predetermined time intervals.

まず、電圧直流分算出手段9では、過去の所定時間分について記憶された変圧器電圧信号8から電圧直流分10を算出する。例えば、A/D変換速度を5000サンプル/秒とし、時間長を100msecとした場合には、最近500サンプル分の変圧器電圧信号8を記憶しておく。最新の変圧器電圧信号8が1サンプル得られる毎に、直近500サンプル分の変圧器電圧信号8のデータを用いて、電圧直流分10を電圧直流分算出手段9で算出する。電圧直流分10の算出法としては、500サンプル分の変圧器電圧信号8の平均値としてもよいし、500サンプル分の変圧器電圧信号8の中央値を用いてもよいし、500サンプル分の変圧器電圧信号8の最大値と最小値との中間値を用いてもよい。このようにして、電圧直流分算出手段9で変圧器2の電圧の電圧直流分10を算出することができる。   First, the voltage DC component calculating means 9 calculates the voltage DC component 10 from the transformer voltage signal 8 stored for the past predetermined time. For example, when the A / D conversion speed is 5000 samples / second and the time length is 100 msec, the transformer voltage signal 8 for the last 500 samples is stored. Each time the latest transformer voltage signal 8 is obtained, the voltage direct current component 10 is calculated by the voltage direct current component calculation means 9 using the data of the transformer voltage signal 8 for the latest 500 samples. As a method of calculating the voltage DC component 10, the average value of the transformer voltage signal 8 for 500 samples may be used, the median value of the transformer voltage signal 8 for 500 samples may be used, or the sample for 500 samples may be used. An intermediate value between the maximum value and the minimum value of the transformer voltage signal 8 may be used. In this way, the voltage DC component 10 of the voltage of the transformer 2 can be calculated by the voltage DC component calculation means 9.

次に、電圧積分手段11では、最新の変圧器電圧信号8が1サンプル得られる毎に、直近(最新)の変圧器電圧信号8から電圧直流分10を差し引いた値を1サンプル前の電圧積分信号12に足しあわせることで、最新の電圧積分信号12を得ることができる。すなわち、電圧積分手段11は変圧器2の電圧から電圧直流分10を除去して電圧積分信号12を算出することになる。   Next, each time the latest transformer voltage signal 8 is obtained by the voltage integration means 11, the voltage integral of the previous sample is obtained by subtracting the voltage DC component 10 from the latest (latest) transformer voltage signal 8. By adding the signal 12, the latest voltage integration signal 12 can be obtained. That is, the voltage integrating unit 11 calculates the voltage integrated signal 12 by removing the voltage DC component 10 from the voltage of the transformer 2.

また、磁束直流分算出手段13では、過去の所定時間分について記憶された電圧積分信号12から磁束直流分14を算出する。例えば、先に示したA/D変換速度および時間長の場合には、最近の500サンプル分の電圧積分信号12を記憶しておく。最新の電圧積分信号12が1サンプル得られる毎に、最近500サンプル分の電圧積分信号12のデータを用いて磁束直流分14を算出する。磁束直流分14の算出法としては、500サンプル分の電圧積分信号12の平均値としてもよいし、500サンプル分の電圧積分信号12中央値を用いてもよいし、500サンプル分の電圧積分信号12の最大値と最小値との中間値を用いてもよい。このようにして、磁束直流分算出手段13は電圧積分信号12から磁束直流分14を算出することができる。   The magnetic flux direct current component calculating means 13 calculates the magnetic flux direct current component 14 from the voltage integration signal 12 stored for the past predetermined time. For example, in the case of the above-described A / D conversion speed and time length, the voltage integration signal 12 for the latest 500 samples is stored. Every time one sample of the latest voltage integration signal 12 is obtained, the flux DC component 14 is calculated using the data of the voltage integration signal 12 for the most recent 500 samples. As a calculation method of the magnetic flux direct current component 14, the average value of the voltage integrated signal 12 for 500 samples may be used, the median value of the voltage integrated signal 12 for 500 samples may be used, or the voltage integrated signal for 500 samples may be used. An intermediate value between 12 maximum values and minimum values may be used. In this way, the magnetic flux direct current component calculating means 13 can calculate the magnetic flux direct current component 14 from the voltage integration signal 12.

さらに、磁束算出手段15では、最新の電圧積分信号12が1サンプル得られる毎に、最新の電圧積分信号12から磁束直流分14を差し引いて、磁束信号16を算出することができる。なお、変圧器電圧が定格印加状態のときに磁束信号16の振幅が1となるように、磁束信号16を正規化してもよい。磁束算出手段15は電圧積分信号12から磁束直流分14を除去して磁束信号16を算出することができる。   Further, the magnetic flux calculating means 15 can calculate the magnetic flux signal 16 by subtracting the magnetic flux direct current component 14 from the latest voltage integrated signal 12 every time one sample of the latest voltage integrated signal 12 is obtained. Note that the magnetic flux signal 16 may be normalized so that the amplitude of the magnetic flux signal 16 becomes 1 when the transformer voltage is in the rated application state. The magnetic flux calculating means 15 can calculate the magnetic flux signal 16 by removing the magnetic flux direct current component 14 from the voltage integration signal 12.

以上の方法で磁束信号16を求めると、変圧器電圧信号8が過渡変化した場合には、先に示したA/D変換速度および時間長を例にすると、正しい値を出力するまでに500サンプル+500サンプル=1000サンプルのサンプル時間、すなわち200msecの遅延時間が生じることになる。   When the magnetic flux signal 16 is obtained by the above method, when the transformer voltage signal 8 changes transiently, the A / D conversion speed and time length shown above are taken as an example, and 500 samples are output until a correct value is output. A sample time of +500 samples = 1000 samples, that is, a delay time of 200 msec is generated.

電圧直流分算出手段9と電圧積分手段11と磁束直流分算出手段13と磁束算出手段15とで構成される系統は、少なくとも二系統を備えている。以下では、二系統を例にして説明する。また、この二系統をA系およびB系と呼び、それぞれの役割に応じて主系統および副系統と呼ぶことにする。   The system composed of the voltage direct current component calculating means 9, the voltage integrating means 11, the magnetic flux direct current component calculating means 13 and the magnetic flux calculating means 15 includes at least two systems. Hereinafter, two systems will be described as an example. These two systems are called A system and B system, and are called main system and sub system according to their roles.

また、制御手段17は、磁束信号16、変圧器電圧信号8、遮断器3の開閉位置と連動した信号である接点信号5等を用いて、演算制御信号19を電圧直流分算出手段9および磁束直流分算出手段13に送信し、制御することができる。また、制御手段17は残留磁束18を算出する。   The control means 17 uses the magnetic flux signal 16, the transformer voltage signal 8, the contact signal 5 which is a signal linked to the opening / closing position of the circuit breaker 3, etc. It can be transmitted to the DC component calculating means 13 and controlled. Further, the control means 17 calculates a residual magnetic flux 18.

次に、制御手段17の動作について、図2を用いて説明する。   Next, operation | movement of the control means 17 is demonstrated using FIG.

最初の時点では、A系を主系統、B系を副系統として説明する。制御手段17では、遮断器3の開閉位置と連動した信号である接点信号5を用いて遮断器3の開極点を検出すると同時に、接点信号5を用いて遮断器3が開放状態かつ変圧器電圧信号8の絶対値が閾値を越える時点である電圧発生点を常に検出している。   At the first point of time, system A will be described as a main system and system B will be described as a sub system. The control means 17 detects the opening point of the circuit breaker 3 using the contact signal 5 which is a signal interlocked with the opening / closing position of the circuit breaker 3, and at the same time uses the contact signal 5 to indicate that the circuit breaker 3 is open and the transformer voltage The voltage generation point, which is the time when the absolute value of the signal 8 exceeds the threshold, is always detected.

図2では、101の時点で開極点を検出している。開極点もしく電圧発生点を検出すると、主系統の演算制御信号19をオフにすることで、主系統の電圧直流分算出手段9および磁束直流分算出手段13の演算を停止する。これによって、主系統の電圧直流分10と磁束直流分14の値は開極直前の値に固定されたまま、以降の磁束信号16を算出することになる。   In FIG. 2, the opening point is detected at time 101. When the opening point or the voltage generation point is detected, the calculation control signal 19 of the main system is turned off, and the calculation of the voltage DC component calculation means 9 and the magnetic flux DC component calculation means 13 of the main system is stopped. As a result, the subsequent magnetic flux signal 16 is calculated while the values of the voltage DC component 10 and the magnetic flux DC component 14 of the main system are fixed to the values immediately before the opening.

次に、過去所定時間内に変圧器電圧信号8の絶対値の最大値が閾値以下になったかどうかを検出する。この所定時間を先に説明した遅延時間以上となるように設定する。ここでは、先に示した200msecを例に説明する。過去200msec間にわたり変圧器電圧信号8が閾値以下となった時点102が検出されることになる。この時点で主系統の磁束信号16が収束したとみなし、この時点の磁束信号16の収束値Δf1を記憶しておく。次に、演算制御信号19をオンし、主系統の電圧直流分算出手段9および磁束直流分算出手段13の演算を再開する。また、主系統と副系統を切り替えることで、102以降はB系が主系統となる。   Next, it is detected whether or not the maximum value of the absolute value of the transformer voltage signal 8 has become equal to or less than the threshold value within the past predetermined time. The predetermined time is set to be equal to or longer than the delay time described above. Here, explanation will be given by taking 200 msec shown above as an example. The time point 102 when the transformer voltage signal 8 has become equal to or lower than the threshold value for the past 200 msec is detected. At this time, it is considered that the magnetic flux signal 16 of the main system has converged, and the convergence value Δf1 of the magnetic flux signal 16 at this time is stored. Next, the calculation control signal 19 is turned on, and the calculation of the voltage direct current component calculating means 9 and the magnetic flux direct current component calculating means 13 of the main system is resumed. Further, by switching between the main system and the sub system, the system B becomes the main system after 102.

次に、図2中の104の時点で電圧発生点を検出している。電圧発生点を検出すると、同様に主系統の演算制御信号19をオフにし、主系統の電圧直流分算出手段9および磁束直流分算出手段13の演算を停止する。これによって、主系統の電圧直流分10と磁束直流分14の値は開極直前の値に固定されたまま、以降の磁束信号16を算出する。   Next, a voltage generation point is detected at a point 104 in FIG. When the voltage generation point is detected, similarly, the main system calculation control signal 19 is turned off, and the calculation of the main system voltage DC component calculating means 9 and the magnetic flux DC component calculating means 13 is stopped. Thus, the subsequent magnetic flux signal 16 is calculated while the values of the voltage direct current component 10 and the magnetic flux direct current component 14 of the main system are fixed to the values immediately before opening.

前出と同様に、過去200msec間にわたり変圧器電圧信号8の絶対値の最大値が閾値以下になった時点105が検出される。この時点で主系統の磁束信号が収束したとみなし、この時点の磁束信号16の収束値Δf2を追加記憶しておく。次に、演算制御信号19をオンし、主系統の電圧直流分算出手段9および磁束直流分算出手段13の演算を再開する。そして、主系統と副系統を切り替える。これによって、105以降はA系が主系統となる。   Similar to the previous case, the time point 105 at which the maximum value of the absolute value of the transformer voltage signal 8 has fallen below the threshold value over the past 200 msec is detected. At this time, it is considered that the magnetic flux signal of the main system has converged, and the convergence value Δf2 of the magnetic flux signal 16 at this time is additionally stored. Next, the calculation control signal 19 is turned on, and the calculation of the voltage direct current component calculating means 9 and the magnetic flux direct current component calculating means 13 of the main system is resumed. Then, the main system and the sub system are switched. As a result, after 105, the A system becomes the main system.

これを繰り返すことで、電圧発生点が現れる度に磁束信号16の収束値を追加記憶して残留磁束18を算出することになる。   By repeating this, every time a voltage generation point appears, the convergence value of the magnetic flux signal 16 is additionally stored and the residual magnetic flux 18 is calculated.

すなわち、制御手段17は、変圧器2の遮断器3が開極したとき、または遮断器3が開放状態で変圧器2の電圧の絶対値が閾値を越えたときには、主系統の電圧直流分10および磁束直流分14の算出を停止し、所定時間内における変圧器2の電圧の最大となる絶対値が閾値以下となったときには、主系統の電圧直流分10および磁束直流分14の算出を再開して、主系統と副系統とを切り替えている。   That is, when the circuit breaker 3 of the transformer 2 is opened, or when the circuit breaker 3 is open and the absolute value of the voltage of the transformer 2 exceeds a threshold value, the control means 17 The calculation of the DC voltage component 14 and the magnetic flux DC component 14 is stopped when the absolute value of the maximum voltage of the transformer 2 within a predetermined time becomes equal to or less than the threshold value. The main system and the sub system are switched.

残留磁束18は、遮断器3が開極してから現在までに記憶された磁束信号16の収束値の総和により求められる。図2の右端の時点での残留磁束18は、Δf1+Δf2+Δf3と計算されることになる。   The residual magnetic flux 18 is obtained from the sum of the convergence values of the magnetic flux signal 16 stored up to the present after the breaker 3 is opened. The residual magnetic flux 18 at the right end of FIG. 2 is calculated as Δf1 + Δf2 + Δf3.

制御手段17のフローチャートを図3に示す。まず、開極点検出または電圧発生点検出があった場合には、主系統の演算制御信号をオフする。次に、過去一定時間内の変圧器電圧信号8の絶対値の最大値が一定値以下であった場合には、磁束信号値を記憶する。次に、主系統の演算制御信号19をオンし、主系統と副系統とを切り替える。これを繰り返すことで、制御手段17は、算出を再開する前に主系統の磁束信号16の収束値を記憶し、遮断器3が開極してからの収束値の総和を残留磁束18として算出することができる。   A flowchart of the control means 17 is shown in FIG. First, when there is an open-point detection or a voltage generation point detection, the calculation control signal of the main system is turned off. Next, when the maximum value of the absolute value of the transformer voltage signal 8 within the past certain time is equal to or less than the certain value, the magnetic flux signal value is stored. Next, the main system calculation control signal 19 is turned on to switch between the main system and the sub system. By repeating this, the control means 17 stores the convergence value of the magnetic flux signal 16 of the main system before restarting the calculation, and calculates the sum of the convergence values after the circuit breaker 3 is opened as the residual magnetic flux 18. can do.

この発明によれば、電圧変動が発生した前後の変圧器電圧信号8のみを利用して残留磁束を算出するように構成し、測定した変圧器電圧信号8から磁束信号16を算出する際に、電圧直流分10および磁束直流分14を除去するように構成し、電圧直流分10および磁束直流分14を除去する際に発生する遅延時間部分で磁束信号値が不正確となることを補うために、演算部分を二系統で構成するように構成した。これによって、あらゆる条件の変圧器電圧信号8に対しても正確に残留磁束18を測定することができる、といった従来にない顕著な効果を奏するものである。   According to the present invention, the residual magnetic flux is calculated using only the transformer voltage signal 8 before and after the voltage fluctuation occurs, and when calculating the magnetic flux signal 16 from the measured transformer voltage signal 8, In order to compensate for the inaccuracy of the magnetic flux signal value in the delay time portion generated when the voltage DC component 10 and the magnetic flux DC component 14 are removed. The operation part is configured to have two systems. As a result, there is an unprecedented remarkable effect that the residual magnetic flux 18 can be accurately measured even with respect to the transformer voltage signal 8 under all conditions.

本発明の実施の形態1による残留磁束測定装置を示すブロック図である。It is a block diagram which shows the residual magnetic flux measuring apparatus by Embodiment 1 of this invention. 本発明の実施の形態1による残留磁束測定装置の動作を示すタイミングチャートを示す図である。It is a figure which shows the timing chart which shows operation | movement of the residual magnetic flux measuring apparatus by Embodiment 1 of this invention. 本発明の実施の形態1による残留磁束測定装置の制御手段の動作を示すフローチャートを示す図である。It is a figure which shows the flowchart which shows operation | movement of the control means of the residual magnetic flux measuring apparatus by Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 電源、2 変圧器、3 遮断器、4 計器用変圧器、5 接点信号、6 変圧器電圧測定手段、7 測定電圧、8変圧器電圧信号、9 電圧直流分算出手段、10 電圧直流分、11 電圧積分手段、12 電圧積分信号、13 磁束直流分算出手段、14 磁束直流分、15 磁束算出手段、16 磁束信号、17 制御手段、18 残留磁束。
1 power supply, 2 transformer, 3 circuit breaker, 4 instrument transformer, 5 contact signal, 6 transformer voltage measurement means, 7 measurement voltage, 8 transformer voltage signal, 9 voltage DC component calculation means, 10 voltage DC component, 11 voltage integrating means, 12 voltage integrated signal, 13 magnetic flux direct current component calculating means, 14 magnetic flux direct current component, 15 magnetic flux calculating means, 16 magnetic flux signal, 17 control means, 18 residual magnetic flux.

Claims (3)

変圧器の電圧の電圧直流分を算出する電圧直流分算出手段と、
前記変圧器の電圧から前記電圧直流分を除去して電圧積分信号を算出する電圧積分手段と、
前記電圧積分信号から磁束直流分を算出する磁束直流分算出手段と、
前記電圧積分信号から前記磁束直流分を除去して磁束信号を算出する磁束算出手段とで構成される系統を少なくとも二系統備えたことを特徴する残留磁束測定装置。
Voltage DC component calculating means for calculating the voltage DC component of the voltage of the transformer;
Voltage integration means for calculating a voltage integration signal by removing the voltage DC component from the voltage of the transformer;
Magnetic flux direct current component calculating means for calculating a magnetic flux direct current component from the voltage integration signal;
A residual magnetic flux measuring device comprising at least two systems comprising magnetic flux calculation means for calculating a magnetic flux signal by removing the magnetic flux direct current component from the voltage integration signal.
変圧器の遮断器が開極したとき、または前記遮断器が開放状態で前記変圧器の電圧の絶対値が閾値を越えたときには、主系統の電圧直流分および磁束直流分の算出を停止し、
所定時間内における前記変圧器の電圧の最大となる絶対値が閾値以下となったときには、前記主系統の前記電圧直流分および前記磁束直流分の算出を再開して、
前記主系統と副系統とを切り替える制御手段を備えたことを特徴とする請求項1記載の残留磁束測定装置。
When the transformer circuit breaker is opened, or when the circuit breaker is open and the absolute value of the voltage of the transformer exceeds the threshold, the calculation of the voltage DC component and the magnetic flux DC component of the main system is stopped,
When the absolute value of the maximum voltage of the transformer within a predetermined time is equal to or less than a threshold value, the calculation of the voltage DC component and the magnetic flux DC component of the main system is resumed,
The residual magnetic flux measuring apparatus according to claim 1, further comprising a control unit that switches between the main system and the sub system.
算出を再開する前に主系統の磁束信号の収束値を記憶し、遮断器が開極してからの前記収束値の総和を残留磁束として算出したことを特徴とする請求項2記載の残留磁束測定装置。
3. The residual magnetic flux according to claim 2, wherein the convergence value of the magnetic flux signal of the main system is stored before restarting the calculation, and the sum of the convergence values after the circuit breaker is opened is calculated as the residual magnetic flux. measuring device.
JP2005102112A 2005-03-31 2005-03-31 Residual magnetic flux measuring device Active JP4407561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102112A JP4407561B2 (en) 2005-03-31 2005-03-31 Residual magnetic flux measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102112A JP4407561B2 (en) 2005-03-31 2005-03-31 Residual magnetic flux measuring device

Publications (2)

Publication Number Publication Date
JP2006284261A true JP2006284261A (en) 2006-10-19
JP4407561B2 JP4407561B2 (en) 2010-02-03

Family

ID=37406354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102112A Active JP4407561B2 (en) 2005-03-31 2005-03-31 Residual magnetic flux measuring device

Country Status (1)

Country Link
JP (1) JP4407561B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160100A (en) * 2006-11-29 2008-07-10 Toshiba Corp Apparatus and method for suppressing exciting inrush current of transformer
WO2008136071A1 (en) * 2007-04-20 2008-11-13 Mitsubishi Electric Corporation Phase control switch and switching pole control method in phase control switch
CN102749595A (en) * 2012-07-09 2012-10-24 云南电力试验研究院(集团)有限公司电力研究院 Method for measuring residual magnetic induction density of iron core of transformer
WO2013187143A1 (en) * 2012-06-11 2013-12-19 株式会社 東芝 Magnetizing inrush current suppression device
CN103913710A (en) * 2014-03-28 2014-07-09 云南电力试验研究院(集团)有限公司电力研究院 Method for measuring residual magnetic flux density of iron core of transformer
ES2524519R1 (en) * 2012-01-10 2014-12-29 Schweitzer Engineering Laboratories, Inc. System, apparatus and procedure to reduce an inrush current in a three-phase transformer
JP6362756B1 (en) * 2017-11-10 2018-07-25 株式会社興電舎 Excitation current suppression device
CN111044945A (en) * 2019-12-26 2020-04-21 武汉理工大学 Transformer residual magnetism determination method based on small signal measurement excitation inductance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425175A (en) * 2015-12-08 2016-03-23 云南电力试验研究院(集团)有限公司 Iron core remanent magnetism elimination and measurement method based on polarity-reversal DC voltage source

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160100A (en) * 2006-11-29 2008-07-10 Toshiba Corp Apparatus and method for suppressing exciting inrush current of transformer
WO2008136071A1 (en) * 2007-04-20 2008-11-13 Mitsubishi Electric Corporation Phase control switch and switching pole control method in phase control switch
US8008810B2 (en) 2007-04-20 2011-08-30 Mitsubishi Electric Corporation Phase-control switching apparatus and switching control method for phase-control switching apparatus
JP4837093B2 (en) * 2007-04-20 2011-12-14 三菱電機株式会社 Phase control switchgear and switching pole control method in phase control switchgear
ES2524519R1 (en) * 2012-01-10 2014-12-29 Schweitzer Engineering Laboratories, Inc. System, apparatus and procedure to reduce an inrush current in a three-phase transformer
US9490627B2 (en) 2012-06-11 2016-11-08 Kabushiki Kaisha Toshiba Magnetizing inrush current suppressing device
WO2013187143A1 (en) * 2012-06-11 2013-12-19 株式会社 東芝 Magnetizing inrush current suppression device
CN102749595B (en) * 2012-07-09 2014-11-26 云南电力试验研究院(集团)有限公司电力研究院 Method for measuring residual magnetic induction density of iron core of transformer
CN102749595A (en) * 2012-07-09 2012-10-24 云南电力试验研究院(集团)有限公司电力研究院 Method for measuring residual magnetic induction density of iron core of transformer
CN103913710A (en) * 2014-03-28 2014-07-09 云南电力试验研究院(集团)有限公司电力研究院 Method for measuring residual magnetic flux density of iron core of transformer
JP6362756B1 (en) * 2017-11-10 2018-07-25 株式会社興電舎 Excitation current suppression device
WO2019093100A1 (en) * 2017-11-10 2019-05-16 株式会社興電舎 Magnetizing inrush current suppression device
JP2019091546A (en) * 2017-11-10 2019-06-13 株式会社興電舎 Excitation rush current suppression device
CN111044945A (en) * 2019-12-26 2020-04-21 武汉理工大学 Transformer residual magnetism determination method based on small signal measurement excitation inductance

Also Published As

Publication number Publication date
JP4407561B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4702373B2 (en) Residual magnetic flux measuring device
JP4407561B2 (en) Residual magnetic flux measuring device
JP4936974B2 (en) Power switching control device
US7259947B2 (en) Phase control switching device
JP3716691B2 (en) Power switchgear
JP3986810B2 (en) Power switching control device
Bedetti et al. Accurate modeling, compensation and self-commissioning of inverter voltage distortion for high-performance motor drives
JP2008153037A (en) Synchronous input method and synchronous input system of power switch
JP2008099349A (en) System combining apparatus for synchronous motor
US9779892B2 (en) Power switching control apparatus for switching timings of breaker to suppress transit voltage and current upon turning on the breaker
WO2016139803A1 (en) Power switching control device
WO2012095942A1 (en) Power switching control device and closing control method thereof
US9490627B2 (en) Magnetizing inrush current suppressing device
JP4666367B2 (en) Power switching control device
JP2014143049A (en) Excitation rush current suppression device
JP6317175B2 (en) Power supply for welding
JP2019207798A (en) Excitation rush current suppression device and power switchgear
JP2010068659A (en) Method for measuring power supply switching time and power supply switching system
JP4634740B2 (en) Power switching time measuring device
JP4045250B2 (en) Power switching time measuring method and apparatus
JP2018133853A (en) Current detection method for inverter, current detection device for inverter, and active filter
JP2005184908A (en) Method of measuring power supply switching time
JP2006345639A (en) Protective relay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R151 Written notification of patent or utility model registration

Ref document number: 4407561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250