JP2006284214A - Thermal analyzing method and its program - Google Patents

Thermal analyzing method and its program Download PDF

Info

Publication number
JP2006284214A
JP2006284214A JP2005101032A JP2005101032A JP2006284214A JP 2006284214 A JP2006284214 A JP 2006284214A JP 2005101032 A JP2005101032 A JP 2005101032A JP 2005101032 A JP2005101032 A JP 2005101032A JP 2006284214 A JP2006284214 A JP 2006284214A
Authority
JP
Japan
Prior art keywords
calculation
procedure
heat transfer
thermal analysis
cooling fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005101032A
Other languages
Japanese (ja)
Other versions
JP4321777B2 (en
Inventor
Yasusuke Takahashi
易資 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005101032A priority Critical patent/JP4321777B2/en
Publication of JP2006284214A publication Critical patent/JP2006284214A/en
Application granted granted Critical
Publication of JP4321777B2 publication Critical patent/JP4321777B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal analyzing method for performing the thermal analysis of the inside of matter in a short time in consideration of the effect of the fluid flowing through the periphery of the matter while ensuring sufficient precision, and its program. <P>SOLUTION: The division of a target region for dividing the matter into a finite number of elements is performed and the wall boundary condition in the calculation of the matter is adapted to the division result of the target region to perform the thermal analysis of the inside of the matter. This thermal analyzing method includes first procedure for calculating the behavior of the cooling fluid flowing through the periphery of the matter to calculate the flow velocity and turbulent flow component of the cooling fluid, second procedure for calculating the heat conductivity in the heat conduction boundary of the outer wall of the matter with the cooling fluid on the basis of the flow velocity and turbulent flow component of the cooling fluid and third procedure for utilizing the calculated heat conductivity to perform the thermal analysis of the inside of the matter. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱解析方法およびそのプログラムに係り、特に、物体の周囲で流動する流体の影響を考慮した物体内部の熱解析に好適な熱解析方法およびそのプログラムに関する。   The present invention relates to a thermal analysis method and a program thereof, and more particularly, to a thermal analysis method and a program thereof suitable for thermal analysis inside an object considering the influence of a fluid flowing around the object.

物体内部の熱解析を行う技術として、特許文献1には、エンジンブロックの内壁面(シリンダブロックやシリンダヘッドの表面)と筒内ガスとの境界条件として、熱伝達が生じる熱伝達境界面および各境界面における入熱および出熱に対応した熱伝達率を設定し、さらに仮想の熱伝達境界面の温度および前記熱伝達率を用いて熱解析を実施し、解析結果と目標値との偏差が基準範囲内に収まるまで熱解析を繰り返す技術が開示されている。
特開2003−42984号公報
As a technique for performing thermal analysis inside an object, Patent Document 1 discloses a heat transfer boundary surface where heat transfer occurs and boundary conditions between an inner wall surface of an engine block (the surface of a cylinder block or a cylinder head) and in-cylinder gas. The heat transfer coefficient corresponding to the heat input and output heat at the boundary surface is set, and the thermal analysis is performed using the temperature of the virtual heat transfer boundary surface and the heat transfer coefficient, and the deviation between the analysis result and the target value is A technique for repeating thermal analysis until it falls within the reference range is disclosed.
JP 2003-42984 A

物体内部の定常状態における熱解析を行う場合は、物体内部のみの熱解析を行えば良い。図5は、エンジンの定常状態における燃焼変化のみを解析する手順を示した図であり、ステップS51では、各種初期条件と共に熱伝達境界面の温度等の条件が実測値または仮定値として入力される。ステップS52では、入力された初期条件からエンジンブロック内壁の熱境界条件が設定される。ステップS53では、設定された熱境界条件を用いて、筒内ガス流動解析および燃焼解析が実行され、ステップS54において、熱解析結果が出力される。   When performing thermal analysis in a steady state inside an object, it is only necessary to perform thermal analysis only inside the object. FIG. 5 is a diagram showing a procedure for analyzing only the combustion change in the steady state of the engine. In step S51, conditions such as the temperature of the heat transfer boundary surface are input as measured values or assumed values together with various initial conditions. . In step S52, the thermal boundary condition of the engine block inner wall is set from the input initial conditions. In step S53, in-cylinder gas flow analysis and combustion analysis are executed using the set thermal boundary condition, and in step S54, the thermal analysis result is output.

しかしながら、物体の外部で流動する流体が存在する場合には、この流体の流動が物体に与える熱的影響を考慮して物体内部の熱解析を行う必要がある。この場合でも、物体外部の流動解析と物体内部の熱解析との連成計算を行えば、理論的には物体外部の流体の流動を考慮した物体内部の熱解析が可能である。   However, when there is a fluid that flows outside the object, it is necessary to perform a thermal analysis inside the object in consideration of the thermal effect of the fluid flow on the object. Even in this case, if a coupled calculation between the flow analysis outside the object and the heat analysis inside the object is performed, it is theoretically possible to perform a heat analysis inside the object considering the flow of the fluid outside the object.

図6は、筒内ガス、エンジンブロックおよび冷却流体の3つの熱連成計算を行って燃焼解析を行う手順を示したフローチャートであり、エンジンブロックの内壁面と筒内ガスとの境界条件を設定し、さらにエンジンブロックの外壁面と冷却流体との境界条件を設定し、さらに各熱伝達境界部において、熱解析結果と目標値との偏差が基準範囲内に収まるまで熱解析を繰り返さなければならない。したがって、計算量が膨大になって収束計算に長時間を要してしまうという技術課題があった。   FIG. 6 is a flowchart showing a procedure for performing combustion analysis by performing three thermal coupling calculations of in-cylinder gas, engine block and cooling fluid, and setting boundary conditions between the inner wall surface of the engine block and in-cylinder gas Furthermore, the boundary condition between the outer wall of the engine block and the cooling fluid must be set, and the thermal analysis must be repeated until the deviation between the thermal analysis result and the target value falls within the reference range at each heat transfer boundary. . Therefore, there has been a technical problem that the calculation amount becomes enormous and it takes a long time for the convergence calculation.

本発明の目的は、上記した従来技術の課題を解決し、物体の周囲を流れる流体の影響を考慮した物体内部の熱解析を、十分な精度を確保しながら短時間で行える熱解析方法およびそのプログラムを提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art, and to perform a thermal analysis inside the object in consideration of the influence of the fluid flowing around the object in a short time while ensuring sufficient accuracy, and its To provide a program.

上記した目的を達成するために、本発明は、物体を有限個の要素に分割する対象領域分割を行い、この対象領域分割結果に対して、物体の熱伝導計算の壁境界条件を適用して前記物体内部の熱解析を行う熱解析方法において、以下のような手段を講じた点に特徴がある。
(1)物体の周囲を流動する冷却流体の挙動を計算して、その流速および乱流成分を求める第1手順と、前記物体の外壁と冷却流体との熱伝達境界における熱伝達率を、前記冷却流体の流速および乱流成分に基づいて計算する第2手順と、前記算出された熱伝達率を利用して、前記物体内部の熱解析を行う第3手順とを含むことを特徴とする。
(2)前記物体が、その内部に燃焼室が形成されたエンジンブロックであり、エンジンブロック内外壁の熱境界条件を更新する第4手順と、燃焼ガス流動および燃焼計算を行う第5手順と、前記計算結果に基づいて、前記エンジンブロック内壁の境界条件を更新する第6手順と、前記境界条件が収束するまで、前記第4手順から第6手順までを繰り返させる第7手順とを含むことを特徴とする。
(3)前記冷却流体の挙動計算が、運動量保存式の計算、圧力方程式の計算および乱流モデルの計算を含み、エネルギ保存式の計算を含まないことを特徴とする。
(4)前記第1手順において、前記冷却流体の挙動計算が任意の複数点の車両速度に関して実行され、前記第2手順において、物体の外壁と冷却流体との熱伝達境界における熱伝達率が前記複数点の車両速度ごとに計算され、さらに、車両速度ごとに計算された熱伝達率に基づいて、前記複数点以外の車両速度における熱伝達率を補間することを特徴とする。
(5)請求項1ないし4のいずれかに記載の熱解析方法をコンピュータに実行させる熱解析プログラムであることを特徴とする。
In order to achieve the above-described object, the present invention performs target area division to divide an object into a finite number of elements, and applies the wall boundary condition of the heat conduction calculation of the object to the target area division result. The thermal analysis method for performing thermal analysis inside the object is characterized in that the following measures are taken.
(1) The first procedure for calculating the flow velocity and turbulence component of the cooling fluid flowing around the object, the heat transfer coefficient at the heat transfer boundary between the outer wall of the object and the cooling fluid, The method includes a second procedure for calculating based on a flow velocity and a turbulent component of the cooling fluid, and a third procedure for performing a thermal analysis inside the object using the calculated heat transfer coefficient.
(2) the object is an engine block in which a combustion chamber is formed; a fourth procedure for updating a thermal boundary condition of the inner and outer walls of the engine block; a fifth procedure for performing combustion gas flow and combustion calculation; A sixth procedure for updating a boundary condition of the inner wall of the engine block based on the calculation result; and a seventh procedure for repeating the fourth to sixth procedures until the boundary condition converges. Features.
(3) The cooling fluid behavior calculation includes a momentum conservation equation calculation, a pressure equation calculation, and a turbulence model calculation, and does not include an energy conservation equation calculation.
(4) In the first procedure, the behavior calculation of the cooling fluid is performed with respect to an arbitrary plurality of vehicle speeds, and in the second procedure, the heat transfer coefficient at the heat transfer boundary between the outer wall of the object and the cooling fluid is It is calculated for each vehicle speed at a plurality of points, and further, based on the heat transfer coefficient calculated for each vehicle speed, the heat transfer coefficient at vehicle speeds other than the plurality of points is interpolated.
(5) A thermal analysis program for causing a computer to execute the thermal analysis method according to any one of claims 1 to 4.

本発明によれば、以下のような効果が達成される。
(1)請求項1,5の発明によれば、物体の周囲に流れる流体が物件内部に与える影響を固定的な熱伝達率として、物体内部の熱解析に用いる事が可能であるため、物体内部の熱解析時に流体の解析を同時に行ない、収束計算を行う事が不要となる。したがって、収束計算が省略される事により、物体内部の熱解析を短時間で行えるようになる。
(2)請求項2の発明によれば、エンジンブロックのように内部に燃焼室を有し、物体内部に燃焼解析を要するような熱解析であっても、物体外部の流体の流動計算は連成させる必要がないので、エンジンブロック周囲に流れる流体の冷却を考慮した燃焼室内の熱解析が短時間で行えるようになる。
(3)請求項3の発明によれば、冷却流体の挙動計算においてエネルギ方程式の計算が不要になるので、冷却流体の挙動計算が簡単になる。
(4)請求項4の発明によれば、数点の車両速度における熱伝達計算を行うのみで、物体周囲の流動計算を完了する事ができる。
According to the present invention, the following effects are achieved.
(1) According to the first and fifth aspects of the invention, the influence of the fluid flowing around the object on the inside of the object can be used as a fixed heat transfer coefficient for the thermal analysis inside the object. It is not necessary to perform a convergence calculation by simultaneously analyzing the fluid during the internal thermal analysis. Therefore, by omitting the convergence calculation, the thermal analysis inside the object can be performed in a short time.
(2) According to the invention of claim 2, the flow calculation of the fluid outside the object is continuously performed even in the case of thermal analysis that has a combustion chamber inside like an engine block and requires combustion analysis inside the object. Therefore, it is possible to quickly analyze the heat in the combustion chamber in consideration of cooling of the fluid flowing around the engine block.
(3) According to the invention of claim 3, calculation of the behavior of the cooling fluid is simplified because the calculation of the energy equation is not required in the calculation of the behavior of the cooling fluid.
(4) According to the invention of claim 4, the flow calculation around the object can be completed only by performing the heat transfer calculation at several vehicle speeds.

以下、図面を参照して本発明の好ましい実施の形態について詳細に説明する。図1は、本発明に係る熱解析装置の主要部の構成を示したブロック図であり、熱伝達率の初期値や特定点の温度等を入力するキーボード、マウス、ジョグダイヤル等を含む入力装置1と、各種の関数計算を実行して熱解析を行う解析部2と、熱解析結果を出力する表示部3と、解析対象となる物体の形状データとして、その3次元モデルまたは有限要素分割モデルが記憶されているファイルシステム4を主要な構成としている。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a main part of a thermal analysis apparatus according to the present invention, and an input device 1 including a keyboard, a mouse, a jog dial, etc. for inputting an initial value of a heat transfer coefficient, a temperature at a specific point, and the like. The analysis unit 2 that performs thermal analysis by executing various function calculations, the display unit 3 that outputs the thermal analysis result, and the three-dimensional model or finite element division model as the shape data of the object to be analyzed The stored file system 4 is the main component.

図7は、前記熱解析装置の機能ブロック図であり、解析対象となる物体の形状データを出力する形状データ出力部31と、前記形状データに基づいて熱伝達率計算を行う熱伝達率計算部32と、前記形状データ出力部31から形状データを読み込み、さらに熱伝達率計算部32から熱伝達率を読み込んで熱伝導解析を行う熱伝導解析部33と、前記熱伝導解析の結果として得られる温度分布を表示する温度分布出力部34とを含んでいる。前記熱伝達率計算部32は、流体の挙動計算を行う機能32aと、この解析結果に基づいて熱伝達率を計算する機能32bとを含んでいる。   FIG. 7 is a functional block diagram of the thermal analysis device, a shape data output unit 31 that outputs shape data of an object to be analyzed, and a heat transfer rate calculation unit that calculates a heat transfer coefficient based on the shape data. 32, a heat conduction analysis unit 33 that reads shape data from the shape data output unit 31 and further reads a heat transfer coefficient from the heat transfer coefficient calculation unit 32 to perform heat transfer analysis, and is obtained as a result of the heat transfer analysis. And a temperature distribution output unit 34 for displaying the temperature distribution. The heat transfer coefficient calculation unit 32 includes a function 32a for calculating fluid behavior and a function 32b for calculating a heat transfer coefficient based on the analysis result.

図8は、本実施形態において解析対象とされるエンジン10の主要部の構成を示したブロック図であり、エンジンブロック11と、その内部で上下動するピストン12と、前記ピストン12の上下動を回転運動に変換するクランク機構13とを含み、その燃焼室14の容積はピストン12の位置に応じて変化する。エンジンブロック11の周囲では流体が流動している。   FIG. 8 is a block diagram showing the configuration of the main part of the engine 10 to be analyzed in the present embodiment. The engine block 11, the piston 12 that moves up and down inside the engine block 11, and the up and down movement of the piston 12 are shown. And a crank mechanism 13 that converts it into rotational motion, and the volume of the combustion chamber 14 changes according to the position of the piston 12. A fluid flows around the engine block 11.

図1において、前記解析部2は、エンジンの3次元モデルを作成し、FEM解析のために3次元モデルの領域分割(メッシュ切り)を行って有限要素を作成する形状算出部20と、エンジンブロックの外壁面近傍における冷却流体の流速と乱流成分とに基づいて、前記エンジンブロック外壁面での熱伝達率分布αn(α1,α2…)を算出する熱伝達率算出部21と、前記有限要素に分割されたエンジンブロックの内壁面の複数位置における熱流束分布qn(q1,q2…)を用いて当該エンジンブロックの温度分布を求める温度分布算出部22と、求められた温度分布からエンジンブロック内壁の熱流束分布を求める熱流束算出部23と、求められたエンジンブロック内壁の熱流束と仮定したエンジンブロック内壁の熱流束との偏差を求め、この偏差が所定範囲内か否かを判別する偏差算出・判別部24と、前記偏差が所定範囲外と判別されたとき前記熱流束分布qnを更新する熱流束更新部25とを機能的に備えている。   In FIG. 1, the analysis unit 2 creates a three-dimensional model of an engine, performs a region division (mesh cutting) of the three-dimensional model for FEM analysis, and creates a finite element, and an engine block A heat transfer coefficient calculator 21 for calculating a heat transfer coefficient distribution αn (α1, α2...) On the outer wall surface of the engine block based on the flow velocity and turbulence component of the cooling fluid in the vicinity of the outer wall surface, and the finite element. A temperature distribution calculation unit 22 for obtaining a temperature distribution of the engine block using heat flux distributions qn (q1, q2,...) At a plurality of positions on the inner wall surface of the engine block divided into two, and the engine block inner wall from the obtained temperature distribution. The deviation between the heat flux calculation unit 23 for obtaining the heat flux distribution of the engine block and the obtained heat flux of the engine block inner wall and the heat flux of the inner wall of the engine block is obtained, and whether the deviation is within a predetermined range. A deviation calculating / determining unit 24 for determining whether or not and a heat flux updating unit 25 for updating the heat flux distribution qn when the deviation is determined to be outside a predetermined range are functionally provided.

次いで、本発明に係る熱解析方法を、図2,3,4のフローチャートを参照して説明する。プログラムが開始されると、はじめに入力装置1から入力された3次元モデル、あるいはファイルシステム4から読み込まれた3次元モデルが、前記形状算出部20により、FEM解析のためのメッシュまたは有限要素に分割される。なお、ファイルシステム4から読み込まれた形状データが既に有限要素に分割されている場合には、当該分割処理は省略される。   Next, the thermal analysis method according to the present invention will be described with reference to the flowcharts of FIGS. When the program is started, the 3D model first input from the input device 1 or the 3D model read from the file system 4 is divided into meshes or finite elements for FEM analysis by the shape calculation unit 20. Is done. If the shape data read from the file system 4 has already been divided into finite elements, the division process is omitted.

有限要素分割が終了すると、図2のステップS1において、エンジンブロックの有限要素分割された形状データが入力されると共に、初期条件として車両速度、大気圧力および流体の粘性係数が入力される。さらに、後述するステップS4で参照される外気温とエンジンブロック外壁面の温度分布および内壁面の熱流束分布に初期値が設定される。ステップS2では、前記メッシュまたは有限要素分割モデルに対して、運動量保存式、圧力方程式および乱流モデル式の基礎方程式を利用して、エンジンブロック外壁面近傍での流体の挙動解析が行われ、各部の流速および乱流成分が求められる。この解析は、前記熱伝達率計算部32の流体挙動解析機能32aにより行われ、その解析結果が熱伝達率計算機能32bへ出力される。   When the finite element division ends, in step S1 of FIG. 2, the shape data of the engine block divided into finite elements is input, and the vehicle speed, atmospheric pressure, and fluid viscosity coefficient are input as initial conditions. Further, initial values are set for the outside air temperature, the temperature distribution on the outer wall surface of the engine block, and the heat flux distribution on the inner wall surface, which are referred to in step S4 described later. In step S2, fluid behavior analysis in the vicinity of the outer wall surface of the engine block is performed on the mesh or the finite element division model using the basic equations of the momentum conservation equation, the pressure equation, and the turbulent flow model equation. Velocities and turbulence components are required. This analysis is performed by the fluid behavior analysis function 32a of the heat transfer coefficient calculator 32, and the analysis result is output to the heat transfer coefficient calculation function 32b.

図3は、前記流体の挙動解析手順を示したフローチャートであり、ステップS101では、流速分布、圧力分布および粘性係数の仮定値をパラメータとして、x,y,zの各軸の運動量保存式が計算され、前記仮定された流速分布が更新される。ステップS102では、質量方程式から導かれた圧力方程式を前記更新後の流速分布に適用し、前記仮定された圧力分布が修正される。ステップS103では、更新後の流速分布を用いて、乱流モデル式により乱流を考慮した粘性係数が計算される。本実施形態では、外壁境界条件を考慮して低レイノルズ数型k-ε乱流モデルと壁関数とを組み合わせたモデルを用いて、壁面近傍での冷却流体の流速および乱流成分が求められる。   FIG. 3 is a flowchart showing a procedure for analyzing the behavior of the fluid. In step S101, momentum conservation equations for each of the x, y, and z axes are calculated using the flow velocity distribution, the pressure distribution, and the assumed viscosity coefficient as parameters. And the assumed flow velocity distribution is updated. In step S102, the pressure equation derived from the mass equation is applied to the updated flow velocity distribution to correct the assumed pressure distribution. In step S103, the viscosity coefficient in consideration of turbulent flow is calculated by the turbulent flow model equation using the updated flow velocity distribution. In the present embodiment, the flow velocity and the turbulent component of the cooling fluid in the vicinity of the wall surface are obtained using a model combining a low Reynolds number type k-ε turbulent model and a wall function in consideration of the outer wall boundary condition.

なお、従来技術では前記ステップS103の乱流モデル式の計算に続いてエネルギ保存式が計算され、熱伝達境界面に流出入する熱量が求められるが、本実施形態では、エンジンブロックの外壁に関しては熱伝達率分布αnが特定の車速に対して固定的に求められるので当該手順が省略されている。したがって、本実施形態では冷却流体の挙動計算が簡単になる。ステップS104では収束判定が行われ、流体の流速分布、圧力分布および粘性係数の全ての計算結果が所定の収束条件を満足するまで上記した各処理が繰り返される。   In the prior art, the energy conservation equation is calculated following the calculation of the turbulent flow model equation in step S103, and the amount of heat flowing into and out of the heat transfer boundary surface is obtained. In this embodiment, the outer wall of the engine block is Since the heat transfer coefficient distribution αn is fixedly obtained for a specific vehicle speed, this procedure is omitted. Therefore, the behavior calculation of the cooling fluid is simplified in this embodiment. In step S104, convergence determination is performed, and the above-described processes are repeated until all calculation results of the fluid flow velocity distribution, pressure distribution, and viscosity coefficient satisfy predetermined convergence conditions.

図2へ戻り、ステップS3では、前記ステップS2で求められた流体の流速分布およびその乱流成分に基づいて、エンジンブロック外壁の熱伝達率分布αnが、その熱境界条件として求められる。本実施形態では、次式(1)に示したように、強制対流場での熱伝達率を求めるカルマン(T.von Karman)のアナロジーに基づいて熱伝達率α1が計算される。この熱伝達率は、前記熱伝達率計算部32の熱伝達率計算機能32bにより行われる。   Returning to FIG. 2, in step S3, the heat transfer coefficient distribution αn of the engine block outer wall is obtained as the thermal boundary condition based on the flow velocity distribution of the fluid obtained in step S2 and its turbulent flow component. In the present embodiment, as shown in the following equation (1), the heat transfer coefficient α1 is calculated based on T. von Karman's analogy for obtaining the heat transfer coefficient in the forced convection field. This heat transfer coefficient is performed by the heat transfer coefficient calculation function 32b of the heat transfer coefficient calculator 32.

Figure 2006284214
Figure 2006284214

ここで、「ρ」は冷却流体の密度、「Us」は壁面近傍での冷却流体の流速、「τw」はせん断応力、「Pr」はプラントル数であり、前記せん断応力「τw」は前記エンジンブロック壁面近傍での乱流成分から求められる。   Here, “ρ” is the density of the cooling fluid, “Us” is the flow velocity of the cooling fluid near the wall surface, “τw” is the shear stress, “Pr” is the Prandtl number, and the shear stress “τw” is the engine It is obtained from the turbulent flow component near the block wall surface.

続くステップS4以降では、前記熱伝導解析部33によって熱伝導解析が行われる。ステップS4では、前記ステップS3で求められた熱伝達率分布αnから次式(2)を用いて外壁の熱流束分布qoが求められる。さらに、ここで求められた外壁の熱流束分布qoと内壁の熱流束分布とを用いて、前記エンジンブロックの内外壁および内部の温度が、エネルギー保存式の計算を、その計算結果が収束するまで繰り返すことにより求められる。   In subsequent step S4, the heat conduction analysis unit 33 performs heat conduction analysis. In step S4, the heat flux distribution qo of the outer wall is obtained from the heat transfer coefficient distribution αn obtained in step S3 using the following equation (2). Furthermore, by using the heat flux distribution qo of the outer wall and the heat flux distribution of the inner wall obtained here, the inner and outer walls and the temperature of the engine block calculate the energy conservation equation until the calculation result converges. It is calculated by repeating.

(数2)
qo=α(T−Tx) ・・・(2)
(Equation 2)
qo = α (T−Tx) (2)

ここで、「T」は外壁温度、「Tx」は外気温である。ステップS5では、前記ステップS4で求められた熱伝導計算結果に基づいて、前記熱流束更新部25により、エンジンブロックの内外壁境界条件である外壁温度と内壁の熱流束分布とが更新される。ステップS6では、前記ステップS4で求められた内壁温度を用いて燃焼ガス流動および燃焼計算が行われる。   Here, “T” is the outer wall temperature, and “Tx” is the outside air temperature. In step S5, based on the heat conduction calculation result obtained in step S4, the heat flux updating unit 25 updates the outer wall temperature and the inner wall heat flux distribution, which are the inner and outer wall boundary conditions of the engine block. In step S6, combustion gas flow and combustion calculation are performed using the inner wall temperature obtained in step S4.

図4は、前記燃焼ガス流動および燃焼計算の手順を示したフローチャートであり、ステップS201では運動量保存式が計算される。ステップS202では、質量方程式から導かれた圧力方程式が計算される。ステップS203では、乱流モデル式の計算が行われる。ステップS204では、噴霧粒子の輸送モデル式が計算される。ステップS205では、化学反応および発熱量が計算される。ステップS206では、エネルギー保存式が計算される。ステップS207では、気体の状態方程式やガス輸送(拡散方程式)の計算が行われる。ステップS208では収束判定が行われ、各計算結果が収束するまでステップS201へ戻って上記した各処理が繰り返される。   FIG. 4 is a flowchart showing the combustion gas flow and the combustion calculation procedure. In step S201, a momentum conservation equation is calculated. In step S202, a pressure equation derived from the mass equation is calculated. In step S203, a turbulent model equation is calculated. In step S204, a spray particle transport model equation is calculated. In step S205, the chemical reaction and the calorific value are calculated. In step S206, an energy conservation equation is calculated. In step S207, calculation of a gas state equation and gas transport (diffusion equation) is performed. In step S208, a convergence determination is made, and the process returns to step S201 until each calculation result converges, and the above-described processes are repeated.

図2へ戻り、ステップS7では、エンジンブロック内壁の境界条件が更新される。すなわち、前記エネルギー保存式の計算(ステップS206)で求められたエンジンブロック内壁面の熱流束分布の値が、次のエンジンブロック内の熱伝導計算(ステップS4)の境界条件として用いられるようにする。ステップS8では収束判定が行われ、前記ステップS6で求められた内壁の熱流束分布およびステップS5で更新された外壁温度と前記ステップS4での計算の際に用いられた内壁の熱流束分布と外壁温度との差が比較される。両者の偏差が基準値を超えており、未だに収束していないと判定されれば、ステップS4へ戻って上記した各処理が繰り返される。ステップS8において、両者の偏差が基準値を下回っており、既に収束していると判定されればステップS9へ進む。ステップS9では解析結果が出力される。   Returning to FIG. 2, in step S7, the boundary condition of the inner wall of the engine block is updated. That is, the value of the heat flux distribution on the inner wall surface of the engine block obtained in the calculation of the energy conservation formula (step S206) is used as the boundary condition for the heat conduction calculation in the next engine block (step S4). . In step S8, a convergence determination is made. The heat flux distribution of the inner wall obtained in step S6 and the outer wall temperature updated in step S5 and the heat flux distribution and outer wall of the inner wall used in the calculation in step S4. The difference with temperature is compared. If it is determined that the deviation between the two exceeds the reference value and has not yet converged, the process returns to step S4 and the above-described processes are repeated. If it is determined in step S8 that the deviation between the two is below the reference value and has already converged, the process proceeds to step S9. In step S9, the analysis result is output.

ステップS10では、クランク角度が所定の角度だけ更新される。すなわち、本実施形態では、エンジンブロック内でクランク軸の回転に伴い上下動するピストンの位置によって燃焼室形状が連続的に変化するため、ステップS10では、クランク角度が所定の角度だけ更新され、その後、ステップS4へ戻って上記した各処理が繰り返される。   In step S10, the crank angle is updated by a predetermined angle. That is, in this embodiment, the combustion chamber shape continuously changes depending on the position of the piston that moves up and down with the rotation of the crankshaft in the engine block, so in step S10, the crank angle is updated by a predetermined angle, and thereafter Returning to step S4, the above-described processes are repeated.

なお、前記ステップS1において、数点の車両速度を初期条件として設定し、ステップS2における冷却流体の挙動計算を前記数点の車両速度に関して実行し、ステップS3において、前記数点の車両速度に対応する熱伝達率を算出すると共に、これに基づいて数点以外の車両速度での熱伝達率を補間により求め、車両速度ごとに求められた熱伝達率を用いてステップS4以降の計算を行い、エンジンブロック内の燃焼解析を行なうようにすれば、熱伝達率計算を車両速度の連続的変化に対応して、それぞれ計算する必要がないため、冷却流体の挙動計算回数を削減できるようになる。   In step S1, several vehicle speeds are set as initial conditions, and the behavior calculation of the cooling fluid in step S2 is executed with respect to the several vehicle speeds. In step S3, the vehicle speeds correspond to the several vehicle speeds. A heat transfer coefficient to be calculated, and based on this, heat transfer coefficients at vehicle speeds other than a few are obtained by interpolation, and the calculation after step S4 is performed using the heat transfer coefficient determined for each vehicle speed, If the combustion analysis in the engine block is performed, it is not necessary to calculate the heat transfer coefficient corresponding to the continuous change in the vehicle speed, so that the number of cooling fluid behavior calculations can be reduced.

本発明に係る熱解析装置のブロック図である。It is a block diagram of the thermal analysis apparatus which concerns on this invention. 本発明に係る熱解析方法の手順を示したフローチャートである。It is the flowchart which showed the procedure of the thermal analysis method which concerns on this invention. 冷却流体の挙動計算手順を示したフローチャートである。It is the flowchart which showed the behavior calculation procedure of the cooling fluid. 筒内ガス流動および燃焼計算手順を示したフローチャートである。It is the flowchart which showed the cylinder gas flow and combustion calculation procedure. 従来の熱解析手順の一例を示したフローチャートである。It is the flowchart which showed an example of the conventional thermal analysis procedure. 従来の熱解析手順の他の一例を示したフローチャートである。It is the flowchart which showed another example of the conventional thermal analysis procedure. 熱解析装置の機能ブロック図である。It is a functional block diagram of a thermal analysis apparatus. 解析対象とされるエンジンの主要部の構成を示したブロック図である。It is the block diagram which showed the structure of the principal part of the engine made into analysis object.

符号の説明Explanation of symbols

1…入力装置,2…解析部,3…表示部,20…形状算出部,21…熱伝達率算出部,22…温度分布算出部,23…特定点温度算出部,24…偏差算出・判別部,25…熱伝達率更新部   DESCRIPTION OF SYMBOLS 1 ... Input device, 2 ... Analysis part, 3 ... Display part, 20 ... Shape calculation part, 21 ... Heat transfer coefficient calculation part, 22 ... Temperature distribution calculation part, 23 ... Specific point temperature calculation part, 24 ... Deviation calculation and discrimination | determination Part, 25 ... heat transfer coefficient update part

Claims (5)

物体を有限個の要素に分割する対象領域分割を行い、この対象領域分割結果に対して、物体の熱伝導計算の壁境界条件を適用して前記物体内部の熱解析を行う熱解析方法において、
物体の周囲を流動する冷却流体の挙動を計算して、その流速および乱流成分を求める第1手順と、
前記物体の外壁と冷却流体との熱伝達境界における熱伝達率を、前記冷却流体の流速および乱流成分に基づいて計算する第2手順と、
前記算出された熱伝達率を利用して、前記物体内部の熱解析を行う第3手順とを含むことを特徴とする熱解析方法。
In a thermal analysis method for performing a thermal analysis inside the object by performing a target area division to divide the object into a finite number of elements and applying a wall boundary condition of the heat conduction calculation of the object to the target area division result,
A first procedure for calculating the behavior of the cooling fluid flowing around the object and determining its flow velocity and turbulence component;
A second procedure for calculating a heat transfer coefficient at a heat transfer boundary between the outer wall of the object and the cooling fluid based on a flow velocity and a turbulent flow component of the cooling fluid;
And a third procedure for performing a thermal analysis inside the object using the calculated heat transfer coefficient.
前記物体が、その内部に燃焼室が形成されたエンジンブロックであり、
エンジンブロック内外壁の熱境界条件を更新する第4手順と、
燃焼ガス流動および燃焼計算を行う第5手順と、
前記計算結果に基づいて、前記エンジンブロック内壁の境界条件を更新する第6手順と、
前記境界条件が収束するまで、前記第4手順から第6手順までを繰り返させる第7手順とを含むことを特徴とする請求項1に記載の熱解析方法。
The object is an engine block in which a combustion chamber is formed;
A fourth procedure for updating the thermal boundary condition of the inner and outer walls of the engine block;
A fifth procedure for performing combustion gas flow and combustion calculation;
A sixth procedure for updating a boundary condition of the inner wall of the engine block based on the calculation result;
The thermal analysis method according to claim 1, further comprising a seventh procedure in which the fourth to sixth steps are repeated until the boundary condition converges.
前記冷却流体の挙動計算が、運動量保存式の計算、圧力方程式の計算および乱流モデルの計算を含み、エネルギ保存式の計算を含まないことを特徴とする請求項2に記載の熱解析方法。   The thermal analysis method according to claim 2, wherein the behavior calculation of the cooling fluid includes a momentum conservation formula calculation, a pressure equation calculation, and a turbulent flow model calculation, and does not include an energy conservation formula calculation. 前記第1手順において、前記冷却流体の挙動計算が任意の複数点の車両速度に関して実行され、
前記第2手順において、物体の外壁と冷却流体との熱伝達境界における熱伝達率が前記複数点の車両速度ごとに計算され、さらに、車両速度ごとに計算された熱伝達率に基づいて、前記複数点以外の車両速度における熱伝達率を補間することを特徴とする請求項1または2に記載の熱解析方法。
In the first procedure, the behavior calculation of the cooling fluid is performed with respect to an arbitrary plurality of vehicle speeds;
In the second procedure, the heat transfer coefficient at the heat transfer boundary between the outer wall of the object and the cooling fluid is calculated for each of the plurality of vehicle speeds, and further, based on the heat transfer coefficient calculated for each vehicle speed, The thermal analysis method according to claim 1, wherein the heat transfer coefficient at a vehicle speed other than a plurality of points is interpolated.
請求項1ないし4のいずれかに記載の熱解析方法をコンピュータに実行させるための熱解析プログラム。   A thermal analysis program for causing a computer to execute the thermal analysis method according to claim 1.
JP2005101032A 2005-03-31 2005-03-31 Thermal analysis method and program thereof Expired - Fee Related JP4321777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101032A JP4321777B2 (en) 2005-03-31 2005-03-31 Thermal analysis method and program thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101032A JP4321777B2 (en) 2005-03-31 2005-03-31 Thermal analysis method and program thereof

Publications (2)

Publication Number Publication Date
JP2006284214A true JP2006284214A (en) 2006-10-19
JP4321777B2 JP4321777B2 (en) 2009-08-26

Family

ID=37406309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101032A Expired - Fee Related JP4321777B2 (en) 2005-03-31 2005-03-31 Thermal analysis method and program thereof

Country Status (1)

Country Link
JP (1) JP4321777B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186475A (en) * 2009-02-11 2010-08-26 Livermore Software Technology Corp Thermal fluid-structure interaction simulation in finite element analysis
JP2011257351A (en) * 2010-06-11 2011-12-22 Toyota Motor Corp Heat treatment simulation method
WO2013027240A1 (en) * 2011-08-24 2013-02-28 株式会社 日立製作所 Numerical analysis system
JP2013076593A (en) * 2011-09-30 2013-04-25 Nippon Steel & Sumitomo Metal Method for predicting temperature distribution in metal plate and method of manufacturing metal plate
JP2013134110A (en) * 2011-12-26 2013-07-08 Nippon Steel & Sumitomo Metal Method for predicting temperature of cooled body, and method for manufacturing metal plate
WO2016118917A1 (en) * 2015-01-23 2016-07-28 Pinnacle Engines, Inc. Predictive wall temperature modeling for control of fuel delivery and ignition in internal combustion engines
CN109472039A (en) * 2017-12-15 2019-03-15 中国航发沈阳发动机研究所 It is a kind of for have discrete pore structure two-dimensional axial symmetric heat analysis method
CN111625960A (en) * 2020-05-27 2020-09-04 海南热带汽车试验有限公司 CFD-based E10 ethanol gasoline engine combustion three-dimensional simulation method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186475A (en) * 2009-02-11 2010-08-26 Livermore Software Technology Corp Thermal fluid-structure interaction simulation in finite element analysis
JP2011257351A (en) * 2010-06-11 2011-12-22 Toyota Motor Corp Heat treatment simulation method
WO2013027240A1 (en) * 2011-08-24 2013-02-28 株式会社 日立製作所 Numerical analysis system
JP5678192B2 (en) * 2011-08-24 2015-02-25 株式会社日立製作所 Numerical analysis system
JP2013076593A (en) * 2011-09-30 2013-04-25 Nippon Steel & Sumitomo Metal Method for predicting temperature distribution in metal plate and method of manufacturing metal plate
JP2013134110A (en) * 2011-12-26 2013-07-08 Nippon Steel & Sumitomo Metal Method for predicting temperature of cooled body, and method for manufacturing metal plate
WO2016118917A1 (en) * 2015-01-23 2016-07-28 Pinnacle Engines, Inc. Predictive wall temperature modeling for control of fuel delivery and ignition in internal combustion engines
CN109472039A (en) * 2017-12-15 2019-03-15 中国航发沈阳发动机研究所 It is a kind of for have discrete pore structure two-dimensional axial symmetric heat analysis method
CN111625960A (en) * 2020-05-27 2020-09-04 海南热带汽车试验有限公司 CFD-based E10 ethanol gasoline engine combustion three-dimensional simulation method
CN111625960B (en) * 2020-05-27 2023-09-01 海南热带汽车试验有限公司 CFD-based E10 ethanol gasoline engine combustion three-dimensional simulation method

Also Published As

Publication number Publication date
JP4321777B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4321777B2 (en) Thermal analysis method and program thereof
CN108304684B (en) Rocket engine tail jet flow simulation method and system
Galindo et al. Development and validation of a radial variable geometry turbine model for transient pulsating flow applications
Schramm et al. Shape Optimization of a Labyrinth Seal Applying the Simulated Annealing Method.
JP5408185B2 (en) Method for estimating the temperature of a solid
Reilly et al. Process modeling of low-pressure die casting of aluminum alloy automotive wheels
Sanders et al. Rotor–stator interactions in a 2.5-stage axial compressor—part II: impact of aerodynamic modeling on forced response
JP4797157B2 (en) Method and program for estimating fluid and thermal characteristics of turbulent flow with buoyancy
Lavagnoli et al. Analysis of the heat transfer driving parameters in tight rotor blade tip clearances
Fransen et al. Steady and unsteady modeling for heat transfer predictions of high pressure turbine blade internal cooling
JP2017072922A (en) Axial fan analysis method, analysis device, and analysis program
Bader et al. On the setup of a test bench for predicting laminar-to-turbulent transition on a flat plate
Shevchenko et al. Verification of thermal models of internally cooled gas turbine blades
Amatriain et al. Generalized wall-modeled large eddy simulation model for industrial applications
JP2008129953A (en) Method and device for evaluating pressure loss of flow in duct
Renberg 1D engine simulation of a turbocharged SI engine with CFD computation on components
Gomes et al. The Concept of Adiabatic Heat Transfer Coefficient and Its Application to Turbomachinery
JP5235573B2 (en) Strength analysis method, strength analysis apparatus, and strength analysis program
Marciniak Modeling flows in low-pressure turbine cascades at very low Reynolds numbers
Dixit et al. A novel approach for flow simulation and back pressure prediction of cold end exhaust system
JP5360428B2 (en) Method for estimating surface temperature of exhaust system parts
Vikhorev et al. Experimental and numerical flow analysis of an engine-realistic state-of-the-art turbine rear structure
JP5397634B2 (en) Thermal analysis method
Wei et al. Study of an Industrial Scale Counter Pressure Casting Process Using an Advanced Thermal-Stress Model
Gullberg et al. Modeling of closed fans using cfd and steady state assumption of fluid flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140612

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees