JP5360428B2 - Method for estimating surface temperature of exhaust system parts - Google Patents

Method for estimating surface temperature of exhaust system parts Download PDF

Info

Publication number
JP5360428B2
JP5360428B2 JP2010215973A JP2010215973A JP5360428B2 JP 5360428 B2 JP5360428 B2 JP 5360428B2 JP 2010215973 A JP2010215973 A JP 2010215973A JP 2010215973 A JP2010215973 A JP 2010215973A JP 5360428 B2 JP5360428 B2 JP 5360428B2
Authority
JP
Japan
Prior art keywords
exhaust system
surface temperature
temperature
system component
thermal diffusivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010215973A
Other languages
Japanese (ja)
Other versions
JP2012073038A (en
Inventor
宗光 王
哲嗣 浮田
毅 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2010215973A priority Critical patent/JP5360428B2/en
Publication of JP2012073038A publication Critical patent/JP2012073038A/en
Application granted granted Critical
Publication of JP5360428B2 publication Critical patent/JP5360428B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for estimating a surface temperature of an exhaust system component, capable of estimating the surface temperature of the exhaust system component quickly and accurately. <P>SOLUTION: A method for estimating a surface temperature of an exhaust system component with a exhaust gas passing therethrough, comprises calculating the surface temperature by setting a thermal diffusivity of the exhaust system component to a level 10 to 1000 times greater than an actual one thereof using a non-steady heat conduction equation for the exhaust system component. The method comprises calculating the surface temperature by setting a specific heat or density of the exhaust system component to a level less than an actual one thereof to increase the thermal diffusivity. The method comprises calculating the surface temperature as a time average temperature during one cycle. Accordingly, the method can maintain the accuracy of the estimated temperature even when the thermal diffusivity is significantly changed. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、排気系部品の表面温度推定方法に関し、特に、排気系部品として、自動車のエキゾーストマニホールドの表面温度を推定する方法に関する。   The present invention relates to a method for estimating the surface temperature of exhaust system parts, and more particularly to a method for estimating the surface temperature of an exhaust manifold of an automobile as an exhaust system part.

従来、自動車開発期間の短縮並びに低コスト化のため、開発段階で、自動車の排気系部品を始め各部品がどの程度の温度になるかを推定する必要がある。かかる部品温度の推定はできるだけ高精度に行うのが好ましいが、精度を向上させればさせるほど、計算時間が増大する。   Conventionally, in order to shorten the automobile development period and reduce the cost, it is necessary to estimate the temperature of each part including the exhaust system part of the automobile at the development stage. Although it is preferable to estimate the component temperature with as high accuracy as possible, the calculation time increases as the accuracy is improved.

例えば、エキゾーストマニホールドの表面温度を精度よく予測するためには、排気ガスの非定常性、エキゾーストマニホールドからエンジンブロックへの熱伝導を考慮し、非定常伝熱解析を実施する必要がある。しかし、排気ガスの最高流速は音速より速く、固体流体熱連成の非定常解析を発散させないために、微小な時間刻みを与えなければならない。一方、エキゾーストマニホールドの温度変化は遅く、温度安定まで非常に時間がかかり、場合によっては数十分間もかかる場合がある。   For example, in order to accurately predict the surface temperature of the exhaust manifold, it is necessary to perform an unsteady heat transfer analysis in consideration of unsteady exhaust gas and heat conduction from the exhaust manifold to the engine block. However, the maximum flow rate of exhaust gas is faster than the speed of sound, and in order not to diverge the unsteady analysis of solid-fluid thermal coupling, a minute time step must be given. On the other hand, the temperature change of the exhaust manifold is slow, and it takes a very long time to stabilize the temperature, and in some cases, it may take several tens of minutes.

そこで、部品温度の解析をより早期に完了させるものとして、熱伝達率変化の時間平均を演算によって算出して、これを用いて定常計算によって排気管内壁の温度を推定する方法が提案されている(特許文献1参照)。   Therefore, as a method for completing the analysis of the component temperature earlier, a method of calculating the time average of the heat transfer coefficient change by calculation and using this to estimate the temperature of the exhaust pipe inner wall by steady calculation has been proposed. (See Patent Document 1).

しかしながら、特許文献1の方法では、本来非定常計算法によって計算すべきものを定常計算に置き換えているため、精度の面で問題があった。   However, the method of Patent Document 1 has a problem in terms of accuracy because what is originally calculated by the unsteady calculation method is replaced with the steady calculation.

また、解析時間を短縮するために、排気ガスとエキゾーストマニホールド本体を分離し、区切り面で境界条件を互いにマッピングし、流体の熱流場解析において小さい時間刻みを与え、固体の温度解析において大きい時間刻みを与える手法もあるが、マッピングが難しく精度が落ちる可能性があり、構造が複雑なエキゾーストマニホールドへの対応は困難であった。   Also, in order to shorten the analysis time, the exhaust gas and the exhaust manifold main body are separated, the boundary conditions are mapped to each other on the partition surface, a small time step is given in the heat flow field analysis of the fluid, and a large time step in the solid temperature analysis However, mapping is difficult and accuracy may be reduced, making it difficult to handle exhaust manifolds with complex structures.

特開2004−257355号公報JP 2004-257355 A

本発明は、上記事情に鑑み、排気系部品の表面温度を、高精度で、かつ高速に推定することができる排気系部品の表面温度推定方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a method for estimating the surface temperature of an exhaust system component that can estimate the surface temperature of the exhaust system component with high accuracy and at high speed.

上記目的を達成する本発明の第1の態様は、内部に排気ガスが流通する排気系部品の表面温度を推定する排気系部品の表面温度推定方法であって、排気系部品の非定常熱伝導方程式を用い、当該排気系部品の熱拡散率を実際の数値より大きく設定して表面温度を算出することを特徴とする排気系部品の表面温度推定方法にある。   A first aspect of the present invention that achieves the above object is a method for estimating the surface temperature of an exhaust system component that estimates the surface temperature of the exhaust system component through which exhaust gas flows, and the non-steady heat conduction of the exhaust system component An exhaust system component surface temperature estimation method is characterized in that an equation is used to calculate a surface temperature by setting a thermal diffusivity of the exhaust system component to be larger than an actual numerical value.

かかる第1の態様では、熱拡散率を実際より大きく設定することにより、安定温度に至るまでの時間を大幅に短縮することにより計算時間を大幅に低減することができる。   In the first aspect, by setting the thermal diffusivity larger than the actual one, it is possible to significantly reduce the calculation time by significantly reducing the time to reach the stable temperature.

本発明の第2の態様は、前記非定常熱伝導方程式が下記式(1)で表され、式(2)で表される境界条件を用い、排気系部品の熱拡散率(λ/ρ・c)を実際の数値より大きく設定して表面温度を算出することを特徴とする請求項1に記載の排気系部品の表面温度推定方法にある。   In the second aspect of the present invention, the unsteady heat conduction equation is represented by the following equation (1), and the boundary condition represented by the equation (2) is used, and the thermal diffusivity (λ / ρ · 2. The exhaust system part surface temperature estimation method according to claim 1, wherein the surface temperature is calculated by setting c) larger than an actual numerical value.

c:排気系部品の比熱、ρ:排気系部品の密度、λ:排気系部品の熱伝導率、qs:熱流束、n:法線方向 c: specific heat of exhaust system parts, ρ: density of exhaust system parts, λ: thermal conductivity of exhaust system parts, qs: heat flux, n: normal direction

かかる第2の態様では、所定の非定常熱伝導方程式を用いて、熱拡散率を実際より大きく設定することにより、安定温度に至るまでの時間を大幅に短縮することにより計算時間を大幅に低減することができる。   In the second aspect, by using a predetermined unsteady heat conduction equation and setting the thermal diffusivity larger than the actual one, the time to reach a stable temperature is greatly shortened, thereby greatly reducing the calculation time. can do.

本発明の第3の態様は、熱拡散率を実際の数値の10倍から1000倍の数値とすることを特徴とする第1又は2の態様に記載の排気系部品の表面温度推定方法にある。   A third aspect of the present invention is the exhaust system part surface temperature estimation method according to the first or second aspect, wherein the thermal diffusivity is set to a value that is 10 to 1000 times the actual value. .

かかる第3の態様では、熱拡散率を10倍から1000倍の数値とすることにより、演算時間を約1/10〜1/1000程度に短縮することができる。   In the third aspect, the calculation time can be reduced to about 1/10 to 1/1000 by setting the thermal diffusivity to a numerical value of 10 to 1000 times.

本発明の第4の態様では、前記排気系部品の比熱又は密度を実際の数値より小さく設定することにより、熱拡散率を大きくすることを特徴とする第1〜3の何れか1つの態様に記載の排気系部品の表面温度推定方法にある。   In a fourth aspect of the present invention, in any one of the first to third aspects, the thermal diffusivity is increased by setting the specific heat or density of the exhaust system component to be smaller than an actual numerical value. It is in the surface temperature estimation method of the exhaust system part of description.

かかる第4の態様では、比熱c又は密度ρを実際の数値より小さくすることにより熱拡散率を大きく設定することができ、境界条件を変更することなく、非定常伝熱解析を行うことができる。   In the fourth aspect, the thermal diffusivity can be set large by making the specific heat c or density ρ smaller than the actual numerical value, and unsteady heat transfer analysis can be performed without changing the boundary conditions. .

本発明の第5の態様は、算出された温度の一周期内の時間平均温度を表面温度とすることを特徴とする第1〜4の何れか1つの態様に記載の排気系部品の表面温度推定方法にある。   According to a fifth aspect of the present invention, the surface temperature of the exhaust system component according to any one of the first to fourth aspects is characterized in that the time average temperature within one cycle of the calculated temperature is defined as the surface temperature. In the estimation method.

かかる第5の態様では、表面温度を一周期内の時間平均温度として算出することにより、熱拡散率を大きく変えても、推定温度の精度を保つことができる。   In the fifth aspect, by calculating the surface temperature as the time average temperature within one cycle, the accuracy of the estimated temperature can be maintained even if the thermal diffusivity is greatly changed.

本発明によれば、非定常伝熱解析において熱拡散率を実際より大きく設定することにより、精度を保ったまま、高速解析を行うことができ、排気系の表面温度を、高精度で、かつ高速に推定することができる排気系部品の表面温度推定方法が提供される。   According to the present invention, by setting the thermal diffusivity larger than actual in the unsteady heat transfer analysis, high-speed analysis can be performed while maintaining accuracy, the surface temperature of the exhaust system can be set with high accuracy, and A method for estimating the surface temperature of an exhaust system component that can be estimated at high speed is provided.

解析例に使用した排気ガスとステンレスパイプの簡易モデルを示す説明図である。It is explanatory drawing which shows the simple model of the exhaust gas and stainless steel pipe which were used for the analysis example. 解析例の簡易モデル解析におけるモニタポイントの温度変化と熱拡散率の倍率との関係を示すグラフである。It is a graph which shows the relationship between the temperature change of the monitor point in the simple model analysis of an analysis example, and the magnification of a thermal diffusivity. 解析例の熱拡散率の倍率と演算時間と平均温度との関係を示すグラフである。It is a graph which shows the relationship of the magnification of the thermal diffusivity of an analysis example, calculation time, and average temperature. 実施例の結果を示す説明図である。It is explanatory drawing which shows the result of an Example. 実施例におけるいくつかのモニタポイントにおける温度の解析結果と実際の測定試験結果と比較したグラフである。It is the graph compared with the analysis result of the temperature in the some monitor point in an Example, and the actual measurement test result. 実施例のモニタポイント8点の瞬時温度と平均温度の変化を示すグラフである。It is a graph which shows the change of the instantaneous temperature and average temperature of eight monitor points of an Example.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の排気系部品の表面温度推定方法は、内部に排気ガスが流通する排気系部品の表面温度を推定するためのものであり、例えば、自動車のエキゾーストマニホールドの表面温度を推定するために好適に用いることができる。以下、エキゾーストマニホールドを例にとって説明する。   The method for estimating the surface temperature of an exhaust system component of the present invention is for estimating the surface temperature of an exhaust system component in which exhaust gas circulates. For example, the method is suitable for estimating the surface temperature of an exhaust manifold of an automobile. Can be used. Hereinafter, the exhaust manifold will be described as an example.

エキゾーストマニホールドは、形状が複雑で、シリンダーヘッドへの伝熱も無視できないので、その表面温度を推定するためにはエキゾーストマニホールド本体の熱伝導解析が必要になるが、内部を流れる排気ガスの非定常性がエキゾーストマニホールド表面の温度分布に与える影響が大きいので、非定常解析を行わないと正しい温度分布が得られない。   The exhaust manifold is complicated in shape and the heat transfer to the cylinder head cannot be ignored.To estimate the surface temperature of the exhaust manifold, it is necessary to analyze the heat transfer of the exhaust manifold body. The effect on the temperature distribution of the exhaust manifold surface is large, so the correct temperature distribution cannot be obtained unless a transient analysis is performed.

エキゾーストマニホールドの物性値である比熱c、密度ρ、及び熱伝導率λが一定であり、且つ内部発熱がない場合には,非定常熱伝導方程式は下記式(1)のように表される。   When the specific heat c, density ρ, and thermal conductivity λ, which are physical properties of the exhaust manifold, are constant and there is no internal heat generation, the unsteady heat conduction equation is expressed as the following equation (1).

また、境界条件は、下記式(2)で表される。 The boundary condition is expressed by the following formula (2).

ここで、qは熱流束、nは法線方向を表す。 Here, q s represents the heat flux, and n represents the normal direction.

本発明では、かかる非定常熱伝導方程式で表面温度を推定するにあたって、熱拡散率(λ/ρ・c)を大きく設定すれば、すなわち、熱伝導率λを大きく設定するか、密度ρ又は比熱cを小さく設定して解析を行う。かかる本発明は、熱拡散率を実際の数値より大きく設定すれば、エキゾーストマニホールドが安定温度に至るまでの温度を短縮することができ、これにより、解析のための演算時間を大幅に短縮することができるが、推定される表面温度には大きな影響が出ないという知見に基づくものである。   In the present invention, in estimating the surface temperature by such an unsteady heat conduction equation, if the thermal diffusivity (λ / ρ · c) is set large, that is, the thermal conductivity λ is set large, the density ρ or the specific heat. Analysis is performed by setting c small. In the present invention, if the thermal diffusivity is set larger than the actual numerical value, the temperature until the exhaust manifold reaches a stable temperature can be shortened, thereby greatly reducing the calculation time for analysis. However, this is based on the knowledge that the estimated surface temperature has no significant effect.

ここで、熱拡散率をどの程度大きく設定するかは、演算時間の短縮の程度と、推定される表面温度への影響の度合いとを考慮して設定すればよい。例えば、演算時間は、熱拡散率を10倍に設定すると、おおよそ1/10程度、100倍に設定すると、1/100程度、1000倍に設定すると、1/1000程度に短縮でき、また、100倍に設定した場合には、推定温度は十分な精度を保っているので、目的に応じて設定すればよい。熱拡散率を10倍に設定すれば、十分な効果が得られ、また、1000倍に設定しても、精度上問題ないので、熱拡散率を10〜1000倍程度に設定するのが好ましいが、これに限定されるものではない。   Here, how large the thermal diffusivity is set may be set in consideration of the degree of shortening the calculation time and the estimated degree of influence on the surface temperature. For example, when the thermal diffusivity is set to 10 times, the computation time can be reduced to about 1/10, when set to 100 times, about 1/100, when set to 1000 times, it can be reduced to about 1/1000, When set to double, the estimated temperature maintains sufficient accuracy, and may be set according to the purpose. If the thermal diffusivity is set to 10 times, a sufficient effect can be obtained, and even if it is set to 1000 times, there is no problem in accuracy, so it is preferable to set the thermal diffusivity to about 10 to 1000 times. However, the present invention is not limited to this.

また、熱拡散率を大きく設定する場合、熱伝導率λを大きく設定すると、式(2)で表される境界条件も変化してしまうので、密度ρ又は比熱cを小さく設定するのが好ましい。   Further, when the thermal diffusivity is set to be large, if the thermal conductivity λ is set to be large, the boundary condition represented by the equation (2) is also changed. Therefore, it is preferable to set the density ρ or the specific heat c to be small.

また、熱拡散率の設定倍率を10倍程度にしても、周期性の入力条件に対して、安定時の表面温度変化がほとんどなかったが、熱拡散率の設定倍率をさらに大きくすると、表面温度の振動周期は変わらないが、温度振幅が大きくなることが後述する解析結果からわかった。しかしながら、この場合にも、安定時における1周期内のモニタ点の時間平均温度を算出すると、熱拡散率を大きく変化させても、平均温度の変化は大きくないので、これを表面温度とすればよいことがわかった。   Even when the thermal diffusivity setting magnification was about 10 times, there was almost no change in the surface temperature at the time of stability with respect to the periodic input conditions. However, when the thermal diffusivity setting magnification was further increased, the surface temperature From the analysis results described later, it was found that the temperature amplitude increases, although the vibration period of the above does not change. However, in this case as well, if the time average temperature of the monitoring points within one cycle at the stable time is calculated, even if the thermal diffusivity is largely changed, the change in the average temperature is not large. I found it good.

(解析例:簡易モデル解析)
図1に示す排気ガスとステンレスパイプの簡易モデルを利用し、非定常熱連成解析にて熱拡散率と温度変化との関係を求めた。
(Example of analysis: Simple model analysis)
Using the simple model of exhaust gas and stainless steel pipe shown in FIG. 1, the relationship between thermal diffusivity and temperature change was obtained by unsteady thermal coupled analysis.

簡易モデルは、ステンレスパイプ1の入口2側及び出口3側に流体としての空気の入口助走空間4及び出口助走空間5を配置し、ステンレスパイプ1の外壁面に10箇所のモニタポイント6〜610を設けたものである。解析条件は、ステンレスパイプ1の入口2側の入口助走空間4の流体に、周期2π×0.01秒の正弦波の温度と流速条件を与え、ステンレスパイプ1の外壁面のモニタポイント6〜610の時系列変化を出力するものとした。そして、ステンレスパイプ1の熱拡散率を10倍、100倍、1000倍に設定し、入口2近くで非定常性の影響を受けやすいモニタポイント6の温度変化と、熱拡散率の倍率との関係を図2に示す。解析例1〜3は、熱拡散率をそれぞれ10倍、100倍、1000倍としたものであり、比較解析例は実際の熱拡散率として算出した例である。詳細は、以下の通りである。 In the simple model, an inlet run-up space 4 and an exit run-up space 5 of air as fluid are arranged on the inlet 2 side and the outlet 3 side of the stainless steel pipe 1, and 10 monitor points 6 1 to 6 on the outer wall surface of the stainless steel pipe 1. 10 is provided. As analysis conditions, a temperature and flow rate condition of a sine wave with a period of 2π × 0.01 seconds are given to the fluid in the inlet run-up space 4 on the inlet 2 side of the stainless steel pipe 1, and the monitor points 6 1 to 6 on the outer wall surface of the stainless steel pipe 1. 6 10 Time series changes were output. Then, 10 times the thermal diffusivity of the stainless steel pipe 1, 100-fold, and set to 1000 times, with an inlet 2 close and the temperature change of the non-stationarity sensitive monitor point 61, the thermal diffusivity ratio and the The relationship is shown in FIG. In Analysis Examples 1 to 3, the thermal diffusivity is 10 times, 100 times, and 1000 times, respectively, and the comparative analysis example is an example calculated as an actual thermal diffusivity. Details are as follows.

比較解析例:ステンレスパイプ1の密度、熱伝導率、比熱を不変としたもの
解析例1:密度を0.1倍、すなわち、熱拡散率を10倍としたモデル
解析例2:密度を0.01倍、すなわち、熱拡散率を100倍としたモデル
解析例3:密度を0.001倍、すなわち、熱拡散率を1000倍としたモデル
解析条件
解析タイプ :非定常解析
乱流モデル :応力乱流モデル
時間刻み :0.001Sec
壁関数 :標準壁関数
ガス密度 :温度関数
管壁壁面条件 :温度と熱抵抗一定
出口条件 :自然流出
初期温度条件 :20℃
固体物性 :ステンレス
:熱伝導率λ:43W/mK
:密度ρ:7800kg/m
:比熱c:475J/kgK
流体物性 :空気
Comparative analysis example: the density, thermal conductivity, and specific heat of the stainless steel pipe 1 are unchanged. Analysis example 1: model in which the density is 0.1 times, that is, the thermal diffusivity is 10 times. 01 times, that is, model with thermal diffusivity 100 times Analysis example 3: Model with density 0.001 times, ie, thermal diffusivity 1000 times Analysis conditions Analysis type: Unsteady analysis Turbulence model: Stress turbulence Flow model time step: 0.001Sec
Wall function: Standard wall function Gas density: Temperature function Tube wall surface condition: Constant temperature and thermal resistance Exit condition: Natural outflow Initial temperature condition: 20 ℃
Solid physical properties: Stainless steel
: Thermal conductivity λ: 43 W / mK
: Density ρ: 7800 kg / m 3
: Specific heat c: 475 J / kgK
Fluid physical properties: Air

図2の結果より、ステンレスパイプ1の熱拡散率を10倍程度まで拡大した場合、すなわち、解析例1の場合には、周期性の入力条件に対し、安定時のパイプ外表面温度であるモニタポイント6の温度が比較解析例とほとんど同じで、温度変化がほとんどなかったが、熱拡散率の設定倍率を大きくすると、その振動周期は変わらないが、温度振幅が大きくなるが、安定時における1周期内のモニタポイント6の時間平均温度を算出すると、変化が極めて小さいことがわかった。 From the result of FIG. 2, when the thermal diffusivity of the stainless steel pipe 1 is increased to about 10 times, that is, in the case of Analysis Example 1, the monitor is the pipe outer surface temperature at the time of stability with respect to the periodic input condition. Point 61 The temperature at 1 was almost the same as the comparative analysis example, and there was almost no temperature change, but when the thermal diffusivity setting magnification was increased, the oscillation period did not change, but the temperature amplitude increased, but at the stable time When calculating the time average temperature of the monitoring point 6 1 in one period, it was found that the change is very small.

例えば、解析例2では、モニタポイント6の温度振幅が数百倍に増大するが、安定時における1周期内のモニタポイント6の時間平均温度の変化は、2℃以内であった。 For example, the second analyzing example, the temperature amplitude of the monitor points 61 is increased to several hundred times, changes in the time-averaged temperature of the monitoring point 6 1 in one period in the stable time was within 2 ° C..

よって、ステンレスパイプ1の熱拡散率の倍率を大きく変えた解析例2、3、特に解析例3の場合には、表面温度として1周期内の時間平均温度を採用するのがよいことがわかった。   Therefore, in the case of analysis examples 2 and 3 in which the magnification of the thermal diffusivity of the stainless steel pipe 1 is greatly changed, especially analysis example 3, it was found that the time average temperature within one cycle should be adopted as the surface temperature. .

図3には、熱拡散率の倍率と、演算時間と、平均温度との関係を示す。 図3から、さらに、温度安定までのコンピュータの演算時間は、ステンレスパイプ1の熱拡散率の倍率との逆比例関係があることがわかった。従って、平均温度を表面温度とすれば、ステンレスパイプ1の熱拡散率の倍率を大きくしても、解析精度を保持しながら、熱連成の計算時間を大幅に短縮できることがわかった。   FIG. 3 shows the relationship between the thermal diffusivity magnification, the calculation time, and the average temperature. From FIG. 3, it was further found that the computing time until the temperature was stabilized had an inversely proportional relationship with the magnification of the thermal diffusivity of the stainless steel pipe 1. Therefore, it was found that if the average temperature is the surface temperature, the calculation time of the thermal coupling can be greatly shortened while maintaining the analysis accuracy even if the magnification of the thermal diffusivity of the stainless pipe 1 is increased.

(実施例)
上述した簡易モデル解析で得た結論に従い、エキゾーストマニホールドの熱拡散率を大きく設定し、以下の通り、非定常解析を行った。なお、乱流モデルは他のモデルを利用しても同様な結果になることがわかっている。
(Example)
In accordance with the conclusion obtained by the simple model analysis described above, the thermal diffusivity of the exhaust manifold was set large, and the unsteady analysis was performed as follows. It is known that the turbulent flow model gives the same result even when other models are used.

本実施例の解析条件は以下の通りである。   The analysis conditions of this example are as follows.

Analysis mode: Transient
Turbulence model: k-ε/RNG
Inlet conditions: Instantaneous T,V,Density
Outlet conditions: Instantaneous pressure
Wall conditions: Heat flux
Flange conditions: Constant T & Thermal resistance
Exhaust manifold properties: Thermal diffusivity is Expanded
Analysis mode: Transient
Turbulence model: k-ε / RNG
Inlet conditions: Instantaneous T, V, Density
Outlet conditions: Instantaneous pressure
Wall conditions: Heat flux
Flange conditions: Constant T & Thermal resistance
Exhaust manifold properties: Thermal diffusivity is Expanded

予備解析結果のアウトプットファイルを利用し、エキゾーストマニホールドの外壁面における周辺との対流輻射熱交換の境界条件を設定した。なお、この解析を車体フルモデル解析に用いる場合に、車体モデルとエキゾーストマニホールドモデルの計算格子サイズが違う場合でも高精度に整合できるため、空間3点補間のマッピングプログラムにより、格子を作成した。また、冷却されているシリンダーヘッドの温度はほぼ一定で、エキゾーストマニホールドとヘッドの締め付けトルクから接触熱抵抗を算出し、エキゾーストマニホールドフランジの熱伝導境界条件を設定した。最終の表面温度分布については、安定時の1サイクル内の各境界セルの時間平均値を算出し、表面計算格子に与えて表示した。   Using the output file of the preliminary analysis results, boundary conditions for convective radiant heat exchange with the surroundings on the outer wall of the exhaust manifold were set. When this analysis is used for full body model analysis, even if the calculation lattice sizes of the vehicle body model and the exhaust manifold model are different, the lattice can be created with a spatial three-point interpolation mapping program. In addition, the temperature of the cylinder head being cooled was almost constant, the contact thermal resistance was calculated from the tightening torque of the exhaust manifold and the head, and the heat conduction boundary condition of the exhaust manifold flange was set. For the final surface temperature distribution, the time average value of each boundary cell within one cycle at the time of stabilization was calculated and displayed on the surface calculation grid.

この結果を図4に示す。   The result is shown in FIG.

エキゾーストマニホールドの密度を1/1000として解析した結果、温度安定までの時間は、通常の非定常解析では約1000秒であるところ、約1秒であり、演算時間は、予想で約2.5年であるところ、約22時間であった。   As a result of analyzing the density of the exhaust manifold as 1/1000, the time until temperature stabilization is about 1000 seconds in the normal unsteady analysis, but about 1 second, and the calculation time is about 2.5 years as expected. It was about 22 hours.

また、エキゾーストマニホールド表面のいくつかのモニタポイントにおける温度の解析結果と、実際の測定試験結果と比較した。この結果を図5に示す。   In addition, the temperature analysis results at several monitor points on the exhaust manifold surface were compared with the actual measurement test results. The result is shown in FIG.

図5の結果によると絶対温度の誤差が最大6%で、温度分布の傾向も大体一致しており、良好な精度が確認できた。   According to the results of FIG. 5, the absolute temperature error was 6% at the maximum, and the tendency of the temperature distribution was almost the same, and good accuracy could be confirmed.

この結果、演算時間を1/1000程度に短縮しても、解析精度を維持できることが確認された。   As a result, it was confirmed that the analysis accuracy can be maintained even when the calculation time is reduced to about 1/1000.

なお、このようなエキゾーストマニホールド解析で得た表面時間平均温度は、車体フルモデル解析に使用する場合、平均温度をアウトプットファイルに書き出し、車体フルモデルの本解析に用いることができる。   In addition, when the surface time average temperature obtained by such an exhaust manifold analysis is used for the vehicle body full model analysis, the average temperature can be written in an output file and used for the main analysis of the vehicle body full model.

図6には、モニタポイント8点の瞬時温度と平均温度の変化を示した。   FIG. 6 shows changes in instantaneous temperature and average temperature at 8 monitor points.

この結果、基礎検討モデルと同じように、瞬時温度は変化していること、並びに1サイクル内の平均温度は短時間で安定になっていることが確認された。   As a result, as in the basic study model, it was confirmed that the instantaneous temperature was changed and that the average temperature in one cycle was stable in a short time.

本発明の排気系部品の表面温度推定方法は、自動車の排気系部品の表面温度、特にエキゾーストマニホールドの表面温度の推定の他、各種交通機関や産業機械の部品であって内部に排気ガスが流れて非定常性を有する排気系部品の表面温度を推定する場合に適用できる。   The method for estimating the surface temperature of exhaust system parts according to the present invention is used to estimate the surface temperature of exhaust system parts of automobiles, in particular, the surface temperature of exhaust manifolds, as well as various transportation and industrial machine parts. This can be applied to the estimation of the surface temperature of exhaust system parts having non-stationarity.

1 ステンレスパイプ
2 入口
3 出口
4 入口助走空間
5 出口助走空間
〜610 モニタポイント
1 stainless steel pipe 2 inlet 3 outlet 4 inlets approach the space 5 exit runway space 61 through 10 monitor points

Claims (5)

内部に排気ガスが流通する排気系部品の表面温度を推定する排気系部品の表面温度推定方法であって、
排気系部品の非定常熱伝導方程式を用い、当該排気系部品の熱拡散率を実際の数値より大きく設定して表面温度を算出することを特徴とする排気系部品の表面温度推定方法。
A method for estimating the surface temperature of an exhaust system part for estimating the surface temperature of an exhaust system part through which exhaust gas flows,
A method for estimating a surface temperature of an exhaust system component, wherein the surface temperature is calculated using an unsteady heat conduction equation of the exhaust system component and setting a thermal diffusivity of the exhaust system component to be larger than an actual numerical value.
前記非定常熱伝導方程式が下記式(1)で表され、式(2)で表される境界条件を用い、排気系部品の熱拡散率(λ/ρ・c)を実際の数値より大きく設定して表面温度を算出することを特徴とする請求項1に記載の排気系部品の表面温度推定方法。
c:排気系部品の比熱、ρ:排気系部品の密度、λ:排気系部品の熱伝導率、qs:熱流束、n:法線方向
The unsteady heat conduction equation is represented by the following formula (1), and the boundary condition represented by the formula (2) is used to set the thermal diffusivity (λ / ρ · c) of the exhaust system component to be larger than the actual numerical value. The surface temperature of the exhaust system component according to claim 1, wherein the surface temperature is calculated as follows.
c: specific heat of exhaust system parts, ρ: density of exhaust system parts, λ: thermal conductivity of exhaust system parts, qs: heat flux, n: normal direction
熱拡散率を実際の数値の10倍から1000倍の数値に設定することを特徴とする請求項1又は2に記載の排気系部品の表面温度推定方法。   The method for estimating the surface temperature of an exhaust system component according to claim 1 or 2, wherein the thermal diffusivity is set to a value 10 to 1000 times the actual value. 前記排気系部品の比熱又は密度を実際の数値より小さく設定することにより、熱拡散率を大きくすることを特徴とする請求項1〜3の何れか1項に記載の排気系部品の表面温度推定方法。   The surface temperature estimation of an exhaust system component according to any one of claims 1 to 3, wherein the thermal diffusivity is increased by setting the specific heat or density of the exhaust system component to be smaller than an actual numerical value. Method. 算出された温度の一周期内の時間平均温度を表面温度とすることを特徴とする請求項1〜4の何れか1項に記載の排気系部品の表面温度推定方法。   The method for estimating the surface temperature of exhaust system parts according to any one of claims 1 to 4, wherein the time-average temperature within one cycle of the calculated temperature is defined as the surface temperature.
JP2010215973A 2010-09-27 2010-09-27 Method for estimating surface temperature of exhaust system parts Expired - Fee Related JP5360428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010215973A JP5360428B2 (en) 2010-09-27 2010-09-27 Method for estimating surface temperature of exhaust system parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215973A JP5360428B2 (en) 2010-09-27 2010-09-27 Method for estimating surface temperature of exhaust system parts

Publications (2)

Publication Number Publication Date
JP2012073038A JP2012073038A (en) 2012-04-12
JP5360428B2 true JP5360428B2 (en) 2013-12-04

Family

ID=46169383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215973A Expired - Fee Related JP5360428B2 (en) 2010-09-27 2010-09-27 Method for estimating surface temperature of exhaust system parts

Country Status (1)

Country Link
JP (1) JP5360428B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109145388B (en) * 2018-07-25 2023-02-28 中国航发沈阳发动机研究所 Thermal analysis method for aircraft engine component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05143175A (en) * 1991-11-20 1993-06-11 Kawasaki Steel Corp Temperature calculating method using one-dimensional heat diffusion equation
JP2004257355A (en) * 2003-02-27 2004-09-16 Toyota Motor Corp Method of estimating exhaust pipe temperature

Also Published As

Publication number Publication date
JP2012073038A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP5079815B2 (en) Method for estimating exhaust gas temperature at output of EGR circuit of combustion engine
Burke et al. Heat transfer in turbocharger turbines under steady, pulsating and transient conditions
Eriksson Mean value models for exhaust system temperatures
Padzillah et al. Influence of speed and frequency towards the automotive turbocharger turbine performance under pulsating flow conditions
Serrano et al. A study on the internal convection in small turbochargers. Proposal of heat transfer convective coefficients
Lu et al. A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline
CN204389421U (en) Heat-transfer pipe life estimate device
Ebrahimi-Fizik et al. Entropy generation analysis of wet-steam flow with variation of expansion rate using NURBS-based meshing technique
CN102375931B (en) Method for simulating instantaneous heat transfer and temperature distribution of aluminum castings during water quenching
JP5408185B2 (en) Method for estimating the temperature of a solid
CN109885885B (en) Method for estimating wall temperature of nozzle rod based on gas-solid-liquid three-phase coupling heat transfer
Tanno et al. Validation of virtual flux method for forced convection flow
JP4321777B2 (en) Thermal analysis method and program thereof
JP5360428B2 (en) Method for estimating surface temperature of exhaust system parts
Mukutmoni et al. Numerical simulation of transient thermal convection of a full vehicle
CN110738011A (en) Temperature evaluation method and system for structural components in engines
Jander et al. Modeling Thermal Engine Behavior Using Artificial Neural Network
JP6357954B2 (en) Heat loss measurement system for steam piping and its arithmetic unit
JP2005315581A (en) Thermal fatigue evaluation system for piping
Holland et al. Modeling Approach to Estimate EGR Cooler Thermal Fatigue Life
JP2004257355A (en) Method of estimating exhaust pipe temperature
JP2008151739A (en) Temperature estimation method and device
Papadopoulos An auxiliary potential velocity method for incompressible viscous flow
KR101397566B1 (en) Thermal stress calculation method using 3D-Greenfunction and weight factor
CN113283190A (en) Simulation method and device of cylinder cover temperature field based on boiling heat exchange model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R151 Written notification of patent or utility model registration

Ref document number: 5360428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees