JP2006283690A - Fuel injection control method for internal combustion engine - Google Patents

Fuel injection control method for internal combustion engine Download PDF

Info

Publication number
JP2006283690A
JP2006283690A JP2005105914A JP2005105914A JP2006283690A JP 2006283690 A JP2006283690 A JP 2006283690A JP 2005105914 A JP2005105914 A JP 2005105914A JP 2005105914 A JP2005105914 A JP 2005105914A JP 2006283690 A JP2006283690 A JP 2006283690A
Authority
JP
Japan
Prior art keywords
injection
main
internal combustion
combustion engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005105914A
Other languages
Japanese (ja)
Other versions
JP4603921B2 (en
Inventor
Tomohiro Otani
知広 大谷
Keiichiro Yuzaki
啓一朗 湯▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2005105914A priority Critical patent/JP4603921B2/en
Publication of JP2006283690A publication Critical patent/JP2006283690A/en
Application granted granted Critical
Publication of JP4603921B2 publication Critical patent/JP4603921B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent generation of bluish white smoke and deterioration of engine sound feeling in transition from a cold condition to a hot condition even if total demand injection quantity in relation to change of an operation condition decreases. <P>SOLUTION: In this fuel injection control method for an internal combustion engine, an accumulator type fuel injection device capable of multiple stage injection is provided, and main injection F and at least one of sub injection of sub injection preceding the main injection F, in an embodiment, sub injection delayed from pilot injections P1, P2 or main injection F, post injection R for example, are performed. An engine operation condition discrimination sensor discriminating the engine operation condition cold or hot is provided. Fuel total injection quantity is increased not to make sub injection such as pilot injection P2 extinct by retarding timing of main injection in the hot condition than timing of main injection F in the cold condition when the operation condition discrimination sensor detects change from the cold condition to the hot condition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多段噴射可能な蓄圧式燃料噴射装置を備え、メイン噴射と、該メイン噴射に先立つサブ噴射又はメイン噴射より遅れるサブ噴射のいずれかのサブ噴射を行う内燃機関の燃料噴射制御方法に関する。   The present invention relates to a fuel injection control method for an internal combustion engine that includes a pressure-accumulation fuel injection device capable of multi-stage injection, and performs either sub-injection of main injection and sub-injection prior to main injection or sub-injection delayed from main injection. .

図13は、この種の内燃機関における多段噴射パターンの一例を示しており、1回のメイン噴射Fと、該メイン噴射Fに先立つ2つのサブ噴射、すなわち第1、第2のパイロット噴射P1,P2と、前記メイン噴射Fから遅れるサブ噴射、すなわちポスト噴射Rを有している。   FIG. 13 shows an example of a multi-stage injection pattern in this type of internal combustion engine. One main injection F and two sub-injections preceding the main injection F, that is, first and second pilot injections P1, P2 and sub-injection delayed from the main injection F, that is, post-injection R.

この多段噴射の従来の制御は、エンジンの運転状態により、総噴射量と、サブ噴射の噴射回数及び各噴射量を求め、総噴射量よりすべてのサブ噴射量を引いて、メイン噴射量を算出するようになっている。また、各サブ噴射P1,P2,Rとメイン噴射Fには噴射優先度が設定されており、予め設定されている最低値(しきい値)より、算出値が小さくなった時は、優先度の最も低い噴射から停止することにより、優先度の高い噴射量を充分に確保するようになっている。   The conventional control of this multi-stage injection is to calculate the main injection amount by subtracting all the sub injection amounts from the total injection amount by calculating the total injection amount, the number of sub injections and each injection amount according to the operating state of the engine. It is supposed to be. Further, the injection priority is set for each of the sub-injections P1, P2, R and the main injection F, and when the calculated value becomes smaller than the preset minimum value (threshold value), the priority is set. By stopping from the lowest injection, an injection amount with a high priority is sufficiently secured.

図12は、図13の多段噴射における噴射の優先度、各噴射の冷態時噴射量、最低噴射量及び暖態時の噴射量の一例を示している。図12において、噴射の優先度の第1位は当然メイン噴射Fであり、第2位はメイン噴射Fに近い側の第1のパイロット噴射P1であり、第3位はポスト噴射Rであり、そして第4位がメイン噴射Fより遠い側の第2のパイロット噴射P2である。最低噴射量は、メイン噴射Fが2mm3/st、各サブ噴射P1,P2,Rがそれぞれ0.5mm3/stとなっている。また、冷態時の噴射量は、たとえば総噴射量が9mm3/stである場合には、メイン噴射Fは4mm3/st、第1及び第2のパイロット噴射P1、P2はそれぞれ1mm3/st、ポスト噴射Rは3mm3/stとなっている。   FIG. 12 shows an example of the injection priority in the multi-stage injection of FIG. 13, the cold injection amount, the minimum injection amount, and the warm injection amount of each injection. In FIG. 12, the first priority of the injection priority is naturally the main injection F, the second is the first pilot injection P1 on the side close to the main injection F, and the third is the post injection R. The fourth place is the second pilot injection P2 on the side farther from the main injection F. The minimum injection amount is 2 mm3 / st for the main injection F and 0.5 mm3 / st for each of the sub-injections P1, P2, R. Further, for example, when the total injection amount is 9 mm 3 / st, the injection amount in the cold state is 4 mm 3 / st for the main injection F, 1 mm 3 / st for the first and second pilot injections P 1 and P 2, and the post The injection R is 3 mm3 / st.

なお、多段噴射パターンを有する内燃機関の公知技術文献としては、特許文献1等がある。
特開平11−93735号公報
Patent Document 1 and the like are known technical documents of an internal combustion engine having a multi-stage injection pattern.
JP-A-11-93735

図12及び図13のような多段噴射パターンの内燃機関の制御において、燃料の要求総噴射量は、エンジンの温度、潤滑油温度又は冷却水温度等によって左右されるものであり、エンジン(シリンダ)の温度が低い場合は、潤滑油の粘度が高いために機械ロスが大きく、要求総噴射量が増大し、一方、機関が暖まると、潤滑油の粘度が下がるために機械ロスが減り、要求総噴射量が減少する。 In the control of an internal combustion engine having a multi-stage injection pattern as shown in FIGS. 12 and 13, the required total injection amount of fuel depends on the engine temperature, the lubricating oil temperature, the cooling water temperature, or the like. When the temperature of the engine is low, the mechanical loss is large because the viscosity of the lubricating oil is high and the required total injection amount is increased.On the other hand, when the engine is warmed, the viscosity of the lubricating oil is decreased and the mechanical loss is reduced. The injection amount decreases.

たとえば、図12のように、冷態時のアイドリング回転における要求総噴射量が9mm3/stとすると、同アイドリング回転の暖態時には、同じ機関回転数でも、潤滑油の粘性が低下することにより機械ロスが減り、要求総噴射量は7.5mm3/stまで減少する。この要求総噴射量の減少過程において、図12の中段に示すように、サブ噴射P1、P2、Rの噴射量は原則として一定値に維持するように制御されるため、それぞれ1mm3/st、1mm3/st及び3mm3/stの噴射量を保ち、一方、メイン噴射Fの噴射量のみが1.5mm3/stまで減少することになる。
For example, as shown in FIG. 12, if the required total injection amount in idling rotation at the time of cold is 9 mm3 / st, the viscosity of the lubricating oil decreases at the same engine speed when the idling rotation is warm. Loss is reduced and the required total injection quantity is reduced to 7.5mm3 / st. In the process of decreasing the required total injection amount, as shown in the middle part of FIG. 12, the injection amounts of the sub-injections P1, P2, and R are controlled so as to be maintained at a constant value in principle, so that 1 mm3 / st, 1 mm3, respectively. The injection amount of / st and 3 mm3 / st is maintained, while only the injection amount of the main injection F is reduced to 1.5 mm3 / st.

ところが、メイン噴射Fの最低噴射量が2mm3/stに設定されていることにより、この最低噴射量を充分に確保するために、図12の下段に示すように、優先度の最も低い第2のパイロット噴射P2を停止して噴射量を0とし、該第2のパイロット噴射P2の噴射量相当分をメイン噴射Fに加算するように制御されるのである。   However, since the minimum injection amount of the main injection F is set to 2 mm <3> / st, in order to sufficiently secure this minimum injection amount, as shown in the lower part of FIG. The pilot injection P2 is stopped, the injection amount is set to 0, and the amount corresponding to the injection amount of the second pilot injection P2 is controlled to be added to the main injection F.

このように、冷態から暖態に移行する際、サブ噴射の1つが停止し、噴射しなくなると、パイロット噴射の機能が低減する。たとえば青白煙の発生防止効果が低減する。   As described above, when one of the sub-injections is stopped and no longer injects when shifting from the cold state to the warm state, the function of the pilot injection is reduced. For example, the effect of preventing the generation of blue-white smoke is reduced.

また、冷態から暖態に移行した際のメイン噴射量の算出値が、最低噴射量2.0mm3/stの近くで変動している場合には、第2のパイロット噴射P2が停止と噴射を交互に繰り返すことになり、機関音のフィーリングが悪くなり、機関運転者に対して不快感を与えることになる。   In addition, when the calculated value of the main injection amount at the transition from the cold state to the warm state fluctuates near the minimum injection amount of 2.0 mm3 / st, the second pilot injection P2 stops and injects. It will be repeated alternately, the feeling of engine sound will be worse, and the engine driver will be uncomfortable.

[発明の目的]
本発明の目的は、多段噴射パターンを有する内燃機関の燃料噴射制御方法において、運転状態の変化に対して、総要求噴射量が減少しても、パイロット噴射又はポスト噴射のようなサブ噴射を停止させることのないように制御することにより、たとえば、冷態時から暖態時への移行の際における青白煙の発生防止や、機関音のフィーリングの悪化防止を行えるようにすることである。
[Object of invention]
An object of the present invention is to stop a sub-injection such as a pilot injection or a post-injection in a fuel injection control method for an internal combustion engine having a multi-stage injection pattern even if the total required injection amount decreases with respect to a change in operating state. For example, by controlling so as not to be generated, it is possible to prevent the generation of blue and white smoke during the transition from the cold state to the warm state and to prevent deterioration of the engine sound feeling.

上記課題を解決するため、本願請求項1記載の発明は、多段噴射可能な蓄圧式燃料噴射装置を備え、メイン噴射と、該メイン噴射に先立つサブ噴射又はメイン噴射より遅れるサブ噴射の少なくともいずれかのサブ噴射を行う内燃機関の燃料噴射制御方法において、エンジン運転状態が冷態か暖態かを判別するエンジン運転状態判別センサーを備え、前記運転状態判別センサーにより冷態から暖態への変化を検出した時に、暖態時のメイン噴射の時期を、冷態時のメイン噴射の時期よりも遅角させることにより、サブ噴射が消滅しないように燃料の総噴射量を増加させる。   In order to solve the above-mentioned problem, the invention according to claim 1 of the present application is provided with a pressure accumulation type fuel injection device capable of multi-stage injection, and at least one of main injection and sub-injection prior to main injection or sub-injection delayed from main injection. In the fuel injection control method for an internal combustion engine that performs sub-injection of the engine, an engine operation state determination sensor that determines whether the engine operation state is cold or warm is provided, and the operation state determination sensor changes the state from cold to warm. When detected, the timing of the main injection in the warm state is retarded from the timing of the main injection in the cold state, thereby increasing the total fuel injection amount so that the sub-injection does not disappear.

請求項2記載の発明は、請求項1記載の内燃機関の燃料噴射制御方法において、前記運転状態判別センサーにより冷態から暖態への変化を検出した時に、暖態時のメイン噴射の時期を、冷態時のメイン噴射の時期よりも遅角させると共に、メイン噴射に先立つサブ噴射も遅角させることにより、サブ噴射が消滅しないように燃料の総噴射量を増加させる。   According to a second aspect of the present invention, in the fuel injection control method for the internal combustion engine according to the first aspect, when the change from the cold state to the warm state is detected by the operating state determination sensor, the timing of the main injection during the warm state is determined. The total fuel injection amount is increased so that the sub-injection does not disappear by retarding the timing of the main injection in the cold state and also retarding the sub-injection prior to the main injection.

請求項3記載の発明は、請求項1記載の内燃機関の燃料噴射制御方法において、前記運転状態判別センサーにより冷態から暖態への変化を検出した時に、暖態時のメイン噴射の時期を、冷態時のメイン噴射の時期よりも遅角させると共に、メイン噴射よりも遅れるサブ噴射も遅角させることにより、サブ噴射が消滅しないように燃料の総噴射量を増加させる。   According to a third aspect of the present invention, in the fuel injection control method for an internal combustion engine according to the first aspect, when the change from the cold state to the warm state is detected by the operating state determination sensor, the timing of the main injection during the warm state is determined. The total fuel injection amount is increased so that the sub-injection is not extinguished by retarding the timing of the main injection in the cold state and also retarding the sub-injection later than the main injection.

請求項4記載の発明は、多段噴射可能な蓄圧式燃料噴射装置を備え、メイン噴射と、該メイン噴射に先立つサブ噴射又はメイン噴射より遅れるサブ噴射の少なくともいずれかのサブ噴射を行う内燃機関の燃料噴射制御方法において、前記メイン噴射を第1のメイン噴射とし、該第1のメイン噴射と同等の取り扱い、すなわち要求噴射量の変化に伴い噴射量の増減を行う第2のメイン噴射を追加している。   According to a fourth aspect of the present invention, there is provided an internal combustion engine including an accumulator type fuel injection device capable of multi-stage injection and performing at least one of main injection and sub-injection prior to the main injection or sub-injection delayed from the main injection. In the fuel injection control method, the main injection is set as the first main injection, and a second main injection that increases or decreases the injection amount with a change in the required injection amount is added, which is the same handling as the first main injection. ing.

請求項5記載に発明は、請求項4記載の内燃機関の燃料噴射制御方法において、前記両メイン噴射は、噴射量が均等である。   According to a fifth aspect of the present invention, in the fuel injection control method for an internal combustion engine according to the fourth aspect, the two main injections have equal injection amounts.

請求項6記載の発明は、請求項4記載の内燃機関の燃料噴射制御方法において、前記両メイン噴射は、噴射量が互いに異なっている。   According to a sixth aspect of the present invention, in the fuel injection control method for an internal combustion engine according to the fourth aspect, the two main injections have different injection amounts.

請求項7記載の発明は、多段噴射可能な蓄圧式燃料噴射装置を備え、メイン噴射と、該メイン噴射に先立つサブ噴射又はメイン噴射より遅れるサブ噴射の少なくともいずれかのサブ噴射を行う内燃機関の燃料噴射制御方法において、機関運転状態により燃料の総噴射量、噴射回数及び各噴射量の総噴射量に対する割合を算出し、各噴射毎に総噴射量と噴射量割合の積により噴射量を算出する。   The invention according to claim 7 includes an accumulator type fuel injection device capable of multi-stage injection, and is an internal combustion engine that performs at least one of main injection and sub-injection preceding the main injection or sub-injection delayed from the main injection. In the fuel injection control method, the total fuel injection amount, the number of injections, and the ratio of each injection amount to the total injection amount are calculated according to the engine operating state, and the injection amount is calculated by the product of the total injection amount and the injection amount ratio for each injection. To do.

請求項8記載の発明は、前記請求項1〜7に記載の各噴射制御を、エンジン運転状態に応じて切り替える。   The invention according to an eighth aspect switches the injection control according to the first to seventh aspects according to the engine operating state.

(1)機関を冷態から暖態に移行する時、潤滑油の粘性低下等により、要求総噴射量が減少するが、請求項1記載の発明では、メイン噴射の時期を冷態時よりも遅らせて燃費を増加(悪化)させることにより、要求総噴射量の減少を抑制し、それによりパイロット噴射等のサブ噴射の停止を回避する。したがって、前記移行時における青白煙の発生及び機関音のフィーリング悪化を防止できる。 (1) When the engine is shifted from the cold state to the warm state, the required total injection amount decreases due to a decrease in the viscosity of the lubricating oil, etc. In the first aspect of the invention, the timing of the main injection is set lower than that during the cold state. By delaying and increasing (deteriorating) the fuel consumption, it is possible to suppress a decrease in the required total injection amount, thereby avoiding the stop of sub-injection such as pilot injection. Therefore, it is possible to prevent the generation of blue and white smoke and the deterioration of the feeling of engine sound during the transition.

(2)請求項2、3及び4記載の発明では、冷態から暖態への移行時に、メイン噴射と共に、パイロット噴射又はポスト噴射のようなサブ噴射の時期も遅らせることにより、効果的に前記移行時の要求総噴射量の減少を抑制し、サブ噴射の停止を回避できる。 (2) In the inventions according to claims 2, 3 and 4, the main injection and the sub-injection time such as the pilot injection or the post injection are delayed at the time of transition from the cold state to the warm state. A decrease in the required total injection amount at the time of transition can be suppressed, and stoppage of sub-injection can be avoided.

(3)請求項5の発明では、前記メイン噴射の回数を増加させることにより、要求総噴射量の減少に伴う各メイン噴射の減少を抑制し、それにより、パイロット噴射又はポスト噴射等のサブ噴射の停止を回避する。したがって、前記移行時における青白煙の発生及び機関音のフィーリング悪化を防止できる。この場合、請求項6のように、第1のメイン噴射の噴射量と第2のメイン噴射の噴射量とを均等にすると、制御が簡単になり、一方、両噴射量を異なるものとし、機関の特性等に応じて各メイン噴射量を設定すると、前記のように、青白煙等の発生を防止しつつ、機関性能を向上させることができる。 (3) In the invention of claim 5, by increasing the number of times of the main injection, a decrease in each main injection accompanying a decrease in the required total injection amount is suppressed, whereby a sub-injection such as pilot injection or post injection is performed. Avoid stopping. Therefore, it is possible to prevent the generation of blue and white smoke and the deterioration of the feeling of engine sound during the transition. In this case, as in claim 6, when the injection amount of the first main injection and the injection amount of the second main injection are made equal, the control is simplified, while the two injection amounts are different, and the engine If each main injection amount is set according to the characteristics of the engine, the engine performance can be improved while preventing the generation of blue-white smoke and the like as described above.

(4)請求項7のように、要求総噴射量の変化に対してサブ噴射量を一定とせずに、要求総噴射量に対する各サブ噴射量及びメイン噴射量の割合を一定に維持するようにしていると、たとえば、総噴射量の変化によるメイン噴射量の変化への影響を少なくでき、冷態から暖態への移行時におけるパイロット噴射等のサブ噴射の停止を回避できる。 (4) As in claim 7, the ratio of each sub-injection amount and main injection amount to the required total injection amount is kept constant without making the sub-injection amount constant with respect to the change in the required total injection amount. For example, the influence on the change in the main injection amount due to the change in the total injection amount can be reduced, and the stop of the sub-injection such as the pilot injection at the time of transition from the cold state to the warm state can be avoided.

(5)請求項8のように、請求項1〜請求項7の噴射パターンの制御を、エンジンの運転状態に応じて切り替えることにより、各運転状態に応じてエンジン性能を向上させることができる。 (5) As in the eighth aspect, the engine performance can be improved in accordance with each operation state by switching the injection pattern control in the first to seventh aspects in accordance with the operation state of the engine.

[実施の形態1]
(内燃機関の構成及び制御)
図1〜図3は本発明の第1の実施の形態であり、多段噴射パターンの燃料噴射制御装置を備えた内燃機関を示す図1において、多気筒内燃機関(たとえばディーゼル機関)1の各気筒にはそれぞれ燃料噴射用のインジェクター2が設けられており、各インジェクター2の燃料入口は燃料高圧管4を介してコモンレール(蓄圧管)3に集合している。コモンレール3の燃料入口3aは燃料供給管5を介して高圧ポンプ6に接続し、高圧ポンプ6の吸い込み口は燃料タンク10に接続している。コモンレール3の余剰燃料出口3bはオーバーフローバルブ9及び燃料余剰管7を介して燃料タンク10に接続し、前記燃料余剰管7には、各インジェクター2の余剰燃料出口11が接続している。
[Embodiment 1]
(Configuration and control of internal combustion engine)
1 to 3 show a first embodiment of the present invention, in which each cylinder of a multi-cylinder internal combustion engine (for example, a diesel engine) 1 in FIG. 1 showing an internal combustion engine provided with a fuel injection control device of a multi-stage injection pattern. Each is provided with an injector 2 for fuel injection, and the fuel inlet of each injector 2 is gathered in a common rail (accumulation tube) 3 via a fuel high-pressure tube 4. The fuel inlet 3 a of the common rail 3 is connected to the high pressure pump 6 through the fuel supply pipe 5, and the suction port of the high pressure pump 6 is connected to the fuel tank 10. The surplus fuel outlet 3 b of the common rail 3 is connected to the fuel tank 10 via the overflow valve 9 and the fuel surplus pipe 7, and the surplus fuel outlet 11 of each injector 2 is connected to the fuel surplus pipe 7.

各インジェクター2の開閉作動部(ソレノイド等)は、それぞれ配線13を介して機関コントロールユニット16に電気的に接続しており、機関コントロールユニット16からの開閉指示信号により、各インジェクター2を所定の開閉時期で開閉し、高圧の燃料を気筒内に噴射できるようになっている。   The opening / closing operation parts (solenoids, etc.) of each injector 2 are electrically connected to the engine control unit 16 via wires 13, respectively, and each injector 2 is opened / closed by a predetermined opening / closing instruction signal from the engine control unit 16. It opens and closes at certain times, allowing high-pressure fuel to be injected into the cylinder.

機関コントロールユニット16の入力部には、運転状態判別センサーとして、たとえばカム軸に設けられた気筒判別センサー21、クランク軸に設けられた機関回転数・位相検出センサー22、アクセルセンサー23、ブースト圧センサー24、潤滑油温度センサー25、冷却水温度センサー26及び燃料温度センサー27等が電気的に接続し、各センサーが検出した加速度、回転数、アクセル開度、ブースト圧、潤滑油温度、冷却水温度及び燃料温度を機関コントロールユニット16に入力するようになっている。また、コモンレール3の燃料入口3aの付近にはレール圧(蓄圧)センサー30が設けられ、機関コントロールユニット16に電気的に接続しており、検出したレール圧を機関コントロールユニット16に入力するようになっている。   As an operation state determination sensor, for example, a cylinder determination sensor 21 provided on the camshaft, an engine speed / phase detection sensor 22 provided on the crankshaft, an accelerator sensor 23, a boost pressure sensor are provided at the input portion of the engine control unit 16. 24, the lubricating oil temperature sensor 25, the cooling water temperature sensor 26, the fuel temperature sensor 27, etc. are electrically connected, and the acceleration, rotation speed, accelerator opening, boost pressure, lubricating oil temperature, cooling water temperature detected by each sensor. The fuel temperature is input to the engine control unit 16. A rail pressure (accumulation) sensor 30 is provided in the vicinity of the fuel inlet 3 a of the common rail 3 and is electrically connected to the engine control unit 16 so that the detected rail pressure is input to the engine control unit 16. It has become.

図3は多段噴射パターンを示しており、1つのメイン噴射Fと、該メイン噴射Fに先立って噴射する2つの第1,第2パイロット噴射P1,P2と、前記メイン噴射Fから遅れた時期のポスト噴射Rから構成されている。前記メイン噴射Fの噴射量は、ガバナ等と連動し回転数・機関負荷の増大(減少)に伴って増量(減量)されるが、パイロット噴射P1,P2およびポスト噴射Rの噴射量は回転数・機関の負荷の増大とは独立に制御されている。   FIG. 3 shows a multi-stage injection pattern, in which one main injection F, two first and second pilot injections P1, P2 injected prior to the main injection F, and a time delayed from the main injection F are shown. It consists of post injection R. The injection amount of the main injection F is increased (decreased) as the rotational speed / engine load increases (decreases) in conjunction with the governor etc., but the injection amounts of the pilot injections P1, P2 and the post injection R are the rotational speeds.・ It is controlled independently of the increase in engine load.

図3の上段は冷態時における噴射パターンであり、下段は暖態時の噴射パターンである。暖態時のメイン噴射Fの噴射時期(噴射開始時期)T2は、冷態時のメイン噴射Fの噴射時期(噴射開始時期)T1よりも一定角度θ1だけ遅角するように設定されている。前記遅角量θ1は、冷態から暖態に運転状態を移行する場合に、メイン噴射Fの噴射時期を少なくとも前記遅角量θ1だけ遅角させることにより、燃費を増加させ、それによりメイン噴射Fの噴射量が最低噴射量以上に維持できる大きさ(角度)に設定されている。   The upper part of FIG. 3 is an injection pattern in a cold state, and the lower part is an injection pattern in a warm state. The injection timing (injection start timing) T2 of the main injection F in the warm state is set to be delayed by a fixed angle θ1 from the injection timing (injection start timing) T1 of the main injection F in the cold state. The retardation amount θ1 increases the fuel consumption by retarding the injection timing of the main injection F by at least the retardation amount θ1 when the operating state is shifted from the cold state to the warm state. The F injection amount is set to a size (angle) that can be maintained above the minimum injection amount.

図2の上段は、噴射の優先度と、冷態時の噴射量と、各噴射の最低噴射量を示し、中段は、暖態時における補正前(メイン噴射遅角前)の噴射量を示し、下段は暖態時における補正後(メイン噴射遅角後)の噴射量を示している。   The upper part of FIG. 2 shows the priority of injection, the injection quantity in the cold state, and the minimum injection quantity of each injection, and the middle part shows the injection amount before the correction in the warm state (before the main injection delay angle). The lower row shows the injection amount after correction (after the main injection retardation) in the warm state.

(作用)
(1)機関冷態でのアイドル回転時、要求総噴射量及び各噴射における噴射量は、図2の上段に示すようになっている。すなわち、要求総噴射量が9mm3/st、メイン噴射Fの噴射量が4mm3/st、第1、第2パイロット噴射P1,P2の噴射量がそれぞれ1mm3/st、そしてポスト噴射Rの噴射量が3mm3/stとなっている。
(Function)
(1) During idle rotation in the engine cold state, the required total injection amount and the injection amount in each injection are as shown in the upper part of FIG. That is, the required total injection amount is 9 mm3 / st, the injection amount of the main injection F is 4 mm3 / st, the injection amounts of the first and second pilot injections P1, P2 are 1 mm3 / st, respectively, and the injection amount of the post injection R is 3 mm3 / st.

(2)前記冷態から暖機運転を行い、図1の潤滑油温度センサー25又は冷却水温度センサー26により、潤滑油温度又は冷却水温度が一定値以上になるのを検出すると、内燃機関が冷態から暖態に移行したと判別し、図3の下段のように、メイン噴射Fの噴射時期をT1からT2に遅角する。なお、上記冷態から暖態に移行したことを判別するためのパラメータは、潤滑油温度又は冷却水温度には限定されず、シリンダ温度や排気温度等、各種パラメータを利用することができる。 (2) When the warm-up operation is performed from the cold state and the lubricating oil temperature sensor 25 or the cooling water temperature sensor 26 in FIG. 1 detects that the lubricating oil temperature or the cooling water temperature becomes a certain value or more, the internal combustion engine It is determined that the state has shifted from the cold state to the warm state, and the injection timing of the main injection F is retarded from T1 to T2, as shown in the lower part of FIG. Note that the parameter for determining the transition from the cold state to the warm state is not limited to the lubricating oil temperature or the cooling water temperature, and various parameters such as the cylinder temperature and the exhaust temperature can be used.

(3)仮に、メイン噴射Fの噴射時期が冷態時のT1のままだとすると、暖態時の要求総燃料噴射量は、図2の中段に示すように7.5mm3/stまで減少する。この場合、各サブ噴射の噴射量は一定であり、メイン噴射Fの噴射量だけ減少するので、メイン噴射Fは前記図12の場合と同様に1.5mm3/stとなり、メイン噴射Fの最低噴射量(2.0mm3/st)を下回り、優先度の最も低い第2のパイロット噴射P2が停止する事態になる。 (3) If the injection timing of the main injection F remains at T1 in the cold state, the required total fuel injection amount in the warm state decreases to 7.5 mm 3 / st as shown in the middle stage of FIG. In this case, since the injection amount of each sub-injection is constant and decreases by the injection amount of the main injection F, the main injection F is 1.5 mm 3 / st as in the case of FIG. The second pilot injection P2 having the lowest priority and lower than the amount (2.0 mm3 / st) is stopped.

これを回避するため、本実施の形態では、メイン噴射Fの噴射時期を遅角させることにより(T1→T2)、冷態から暖態への移行時の要求総噴射量の減少を抑制する。たとえば図2の下段に示すように噴射量の低下を8.5mm3/stまでに抑制し、これにより、メイン噴射Fの噴射量を、最低噴射量よりも大きい3.5mm3/stまでの減少に抑える。したがって、前記図12の従来例のようにサブ噴射を停止するという現象は回避でき、青白煙の発生又は機関音のフィーリングの悪化を防止できるのである。   In order to avoid this, in the present embodiment, by delaying the injection timing of the main injection F (T1 → T2), a decrease in the required total injection amount during the transition from the cold state to the warm state is suppressed. For example, as shown in the lower part of FIG. 2, the decrease in the injection amount is suppressed to 8.5 mm 3 / st, thereby reducing the injection amount of the main injection F to 3.5 mm 3 / st, which is larger than the minimum injection amount. suppress. Therefore, the phenomenon of stopping the sub-injection as in the conventional example of FIG. 12 can be avoided, and the generation of blue and white smoke or the deterioration of the feeling of engine sound can be prevented.

[第2の実施の形態]
図4は第2の実施の形態を示しており、冷態から暖態への移行時に、メイン噴射Fの噴射時期をθ1だけ遅角させると同時に、パイロット噴射P1,P2及びポスト噴射Rの噴射時期もθ1だけ遅角させる制御方法である。その他の基本的な制御は、前記第1の実施の形態と同様であり、詳細な説明は省略する。
[Second Embodiment]
FIG. 4 shows a second embodiment. At the time of transition from the cold state to the warm state, the injection timing of the main injection F is retarded by θ1, and at the same time, the pilot injections P1, P2 and the post injection R are injected. This is a control method in which the timing is retarded by θ1. Other basic controls are the same as those in the first embodiment, and a detailed description thereof will be omitted.

なお、メイン噴射Fと共にパイロット噴射P1.P2だけを遅角させる制御とすることも、メイン噴射Fと共にポスト噴射Rのみを遅角させる制御とすることも可能である。   Note that it is possible to set the control to retard only the pilot injection P1.P2 together with the main injection F, or to control only the post injection R together with the main injection F.

[第3の実施の形態]
図5及び図6は第3の実施の形態であり、従来のメイン噴射を第1のメイン噴射F1とし、このメイン噴射F1から遅れた時期に、該メイン噴射F1と同等の取り扱いをする第2のメイン噴射F2を追加した例であり、ポスト噴射は行うようになっていない。第1のメイン噴射F1と第2のメイン噴射F2の噴射量は均等に設定されている。
[Third Embodiment]
5 and 6 show a third embodiment, in which the conventional main injection is the first main injection F1, and at the time delayed from the main injection F1, the second is handled in the same manner as the main injection F1. This is an example in which the main injection F2 is added, and post injection is not performed. The injection amounts of the first main injection F1 and the second main injection F2 are set equally.

上記第2のメイン噴射F2と同等の取り扱いとは、第1及び第2のパイロット噴射P1,P2のように、青白煙防止等の目的のために常時一定量で噴射するように設定された噴射と異なり、第1のメイン噴射F1と同様に、たとえば機関出力の増減に応じて増減調節される。   The handling equivalent to the second main injection F2 is an injection set to always inject at a constant amount for the purpose of preventing blue and white smoke, such as the first and second pilot injections P1 and P2. Unlike the first main injection F1, for example, the increase / decrease is adjusted according to the increase / decrease in engine output.

図6は第3の実施の形態における多段噴射パターンを示しており、2つの第1,第2のメイン噴射F1,F2と、該メイン噴射F1,F2に先立って噴射する2つの第1,第2パイロット噴射P1,P2とから構成されている。両メイン噴射F1,F2の噴射量は前述のように均等であり、ガバナ等と連動し回転数・機関負荷の増大(減少)に伴って増量(減量)されるが、パイロット噴射P1,P2およびポスト噴射Rの噴射量は回転数・機関の負荷の増大とは独立に制御されている。   FIG. 6 shows a multi-stage injection pattern according to the third embodiment. The two first and second main injections F1 and F2 and the two first and first injections prior to the main injections F1 and F2. It consists of two pilot injections P1, P2. The injection amounts of the two main injections F1 and F2 are equal as described above, and increase (decrease) as the engine speed and engine load increase (decrease) in conjunction with the governor etc., but the pilot injections P1, P2 and The injection amount of the post injection R is controlled independently of the increase in the rotational speed and the engine load.

図6の上段のグラフは冷態時における噴射パターンであり、下段のグラフは暖態時の噴射パターンである。冷態から暖態に運転状態を移行する場合に、要求総噴射量の減少に伴って、両メイン噴射F1,F2の噴射量は同等に減少するようになっている。   The upper graph in FIG. 6 is an injection pattern in a cold state, and the lower graph is an injection pattern in a warm state. When the operating state is shifted from the cold state to the warm state, the injection amounts of both the main injections F1 and F2 are equally reduced as the required total injection amount decreases.

図5の上段は、メイン噴射量の割合と、噴射の優先度と、冷態時の噴射量と、各噴射の最低噴射量を示し、下段は、暖態時における噴射量を示している。   The upper part of FIG. 5 shows the ratio of the main injection quantity, the priority of injection, the injection quantity in the cold state, and the minimum injection quantity of each injection, and the lower part shows the injection amount in the warm state.

作用を説明する。
(1)機関冷態でのアイドル回転時、要求総噴射量及び各噴射における噴射量は、図5の上段に示すようになっている。すなわち、要求総噴射量が9mm3/st、各メイン噴射F1,F2の噴射量がそれぞれ3.5mm3/st,第1、第2パイロット噴射P1,P2の噴射量がそれぞれ1mm3/stとなっている。
The operation will be described.
(1) During idle rotation in the engine cold state, the required total injection amount and the injection amount in each injection are as shown in the upper part of FIG. That is, the required total injection amount is 9 mm 3 / st, the injection amounts of the main injections F 1 and F 2 are 3.5 mm 3 / st, respectively, and the injection amounts of the first and second pilot injections P 1 and P 2 are 1 mm 3 / st, respectively. .

(2)前記冷態から暖機運転を行い、図1の潤滑油温度センサー25又は冷却水温度センサー26により、潤滑油温度又は冷却水温度が一定値以上になるのを検出すると、冷態から暖態に移行したと判別し、図5の下段のような噴射量に変化する。すなわち、潤滑油温度の粘性が低下することにより要求総噴射量は9mm3/stから7.5mm3/stに減少し、これに対して、第1、第2パイロット噴射P1,P2の噴射量は冷態時と同じ1mm3/stに維持され、一方、両メイン噴射F1,F2の噴射量は前記要求総噴射量の減少に応じてそれぞれ2.75mm3/stに減少する。該実施の形態において、メイン噴射を2回に増やしているので、前記図12の従来例と比較して、各メイン噴射の噴射量の減少量は少なく、最低噴射量2mm3/sよりも大きい値に維持され、図12の従来例のようにサブ噴射を停止するという現象は回避でき、青白煙の発生又は機関音のフィーリングの悪化を防止できるのである。また、第1、第2のメイン噴射F1、F2の噴射量が均等なので、制御が容易になる。なお、上記冷態から暖態に移行したことを判別するためのパラメータは、潤滑油温度又は冷却水温度には限定されず、シリンダ温度や排気温度等、各種パラメータを利用することができる。 (2) When the warm-up operation is performed from the cold state and it is detected by the lubricating oil temperature sensor 25 or the cooling water temperature sensor 26 in FIG. It is determined that the state has shifted to the warm state, and the injection amount changes as shown in the lower part of FIG. That is, the required total injection amount is reduced from 9 mm 3 / st to 7.5 mm 3 / st as the viscosity of the lubricating oil temperature decreases, whereas the injection amounts of the first and second pilot injections P 1 and P 2 are cold. On the other hand, the injection amount of both the main injections F1 and F2 is reduced to 2.75 mm3 / st in accordance with the decrease of the required total injection amount. In this embodiment, since the main injection is increased twice, the amount of decrease in the injection amount of each main injection is small compared to the conventional example of FIG. 12, and a value larger than the minimum injection amount 2 mm 3 / s. Thus, the phenomenon of stopping the sub-injection as in the conventional example of FIG. 12 can be avoided, and the generation of blue-white smoke or the deterioration of the feeling of engine sound can be prevented. Further, since the injection amounts of the first and second main injections F1 and F2 are equal, the control becomes easy. Note that the parameter for determining the transition from the cold state to the warm state is not limited to the lubricating oil temperature or the cooling water temperature, and various parameters such as the cylinder temperature and the exhaust temperature can be used.

なお、メイン噴射を3以上に増加させることも可能である。   Note that the main injection can be increased to 3 or more.

[第4の実施の形態]
図7及び図8は第4の実施の形態であり、第3の実施の形態と同様に、従来のメイン噴射を第1のメイン噴射F1とし、このメイン噴射F1から遅れた時期に、該メイン噴射F1と同等の取り扱いをする第2のメイン噴射F2を追加した例であり、ポスト噴射は行うようになっていない。前記第3の実施の形態と異なる構成は、第1のメイン噴射F1と第2のメイン噴射F2の噴射量が異なっていることである。具体的には、第1のメイン噴射F1の噴射量を第2のメインの噴射F2の噴射量よりも大きく設定しており、その比は4:3となっている。その他の構成は第3の実施の形態と同じであり、詳しい説明は省略する。
[Fourth Embodiment]
7 and 8 show the fourth embodiment. As in the third embodiment, the conventional main injection is the first main injection F1, and the main injection F1 is delayed from the main injection F1. This is an example in which a second main injection F2 that is handled in the same manner as the injection F1 is added, and post injection is not performed. A different configuration from the third embodiment is that the injection amounts of the first main injection F1 and the second main injection F2 are different. Specifically, the injection amount of the first main injection F1 is set larger than the injection amount of the second main injection F2, and the ratio is 4: 3. Other configurations are the same as those of the third embodiment, and detailed description thereof is omitted.

作用を説明する。
(1)機関冷態でのアイドル回転時、要求総噴射量及び各噴射における噴射量は、図7の上段に示すようになっている。すなわち、要求総噴射量が9mm3/st、第1のメイン噴射の噴射F1の噴射量が4mm3/st,第2のメイン噴射の噴射F2の噴射量が3mm3/st、そして第1、第2パイロット噴射P1,P2の噴射量がそれぞれ1mm3/stとなっている。
The operation will be described.
(1) During idle rotation in the engine cold state, the required total injection amount and the injection amount in each injection are as shown in the upper part of FIG. That is, the required total injection amount is 9 mm 3 / st, the injection amount of the first main injection F 1 is 4 mm 3 / st, the injection amount of the second main injection F 2 is 3 mm 3 / st, and the first and second pilots The injection amounts of the injections P1 and P2 are 1 mm3 / st, respectively.

(2)前記冷態から暖機運転を行い、図1の潤滑油温度センサー25又は冷却水温度センサー26により、潤滑油温度又は冷却水温度が一定値以上になるのを検出すると、冷態から暖態に移行したと判別し、図7の下段のような噴射量に変化する。すなわち、潤滑油温度の粘性が低下することにより要求総噴射量は9mm3/stから7.5mm3/stに減少し、これに対して、第1、第2パイロット噴射P1,P2の噴射量は冷態時と同じ1mm3/stに維持され、一方、両メイン噴射F1,F2の噴射量は前記要求総噴射量の減少に応じてそれぞれ3.14mm3/stと2.36mm3/stに減少する。該実施の形態においては、メイン噴射を2回に増やしているので、前記図13の従来例と比較して、噴射量の少ない第2のメイン噴射P2でも最低噴射量2mm3/sよりも大きい値で維持され、図12の従来例のようにサブ噴射を停止するという現象は回避でき、青白煙の発生又は機関音のフィーリングの悪化を防止できるのである。また、両メイン噴射F1,F2の噴射量を異ならせているが、機関の運転状況又は機関の種類等に応じて、機関性能が向上するように、両メイン噴射F1,F2の噴射量の比率を設定することができる。なお、上記冷態から暖態に移行したことを判別するためのパラメータは、潤滑油温度又は冷却水温度には限定されず、シリンダ温度や排気温度等、各種パラメータを利用することができる。 (2) When the warm-up operation is performed from the cold state and it is detected by the lubricating oil temperature sensor 25 or the cooling water temperature sensor 26 in FIG. It is determined that the state has shifted to the warm state, and the injection amount changes as shown in the lower part of FIG. That is, the required total injection amount is reduced from 9 mm 3 / st to 7.5 mm 3 / st as the viscosity of the lubricating oil temperature decreases, whereas the injection amounts of the first and second pilot injections P 1 and P 2 are cold. While maintaining the same 1 mm 3 / st as in the state, the injection amounts of both the main injections F 1 and F 2 are reduced to 3.14 mm 3 / st and 2.36 mm 3 / st, respectively, as the required total injection amount decreases. In this embodiment, since the main injection is increased to twice, the second main injection P2 having a small injection amount is larger than the minimum injection amount 2 mm3 / s as compared with the conventional example of FIG. Thus, the phenomenon of stopping the sub-injection as in the conventional example of FIG. 12 can be avoided, and the generation of blue-white smoke or the deterioration of the feeling of engine sound can be prevented. Also, the injection amounts of both main injections F1, F2 are made different, but the ratio of the injection amounts of both main injections F1, F2 is improved so that the engine performance is improved according to the operating state of the engine or the type of engine. Can be set. Note that the parameter for determining the transition from the cold state to the warm state is not limited to the lubricating oil temperature or the cooling water temperature, and various parameters such as the cylinder temperature and the exhaust temperature can be used.

[第5の実施の形態]
図9及び図10は第5の実施の形態であり、要求総噴射量に対する各噴射の噴射量割合を固定した構成となっている。
[Fifth Embodiment]
9 and 10 show a fifth embodiment, which has a configuration in which the injection amount ratio of each injection to the required total injection amount is fixed.

図10は本実施の形態における多段噴射パターンを示しており、1つのメイン噴射Fと、該メイン噴射Fに先立って噴射する2つの第1,第2パイロット噴射P1,P2と、前記メイン噴射Fから遅れた時期のポスト噴射Rから構成されている。前記メイン噴射Fの噴射量は、ガバナ等と連動し、機関負荷、回転数及び出力の増減に応じて増減するように調節され、また、パイロット噴射P1,P2及びポスト噴射Rの噴射量も、相互の割合を一定に維持しつつガバナ等と連動し、機関負荷、回転数及び出力の増減に応じて増減するように調節される。要するに、機関運転状態により燃料の総噴射量、噴射回数及び各噴射量の総噴射量に対する割合を算出し、各噴射毎に総噴射量と噴射量割合の積により噴射量を算出することになる。   FIG. 10 shows a multistage injection pattern in the present embodiment. One main injection F, two first and second pilot injections P1, P2 injected prior to the main injection F, and the main injection F It is comprised from the post-injection R of the time delayed from. The injection amount of the main injection F is adjusted so as to increase / decrease in accordance with the increase / decrease of engine load, rotation speed and output in conjunction with the governor etc. Also, the injection amounts of the pilot injections P1, P2 and the post injection R are The ratio is adjusted so as to increase / decrease in accordance with the increase / decrease of engine load, rotation speed, and output in conjunction with the governor while maintaining the mutual ratio constant. In short, the total injection amount of fuel, the number of injections, and the ratio of each injection amount to the total injection amount are calculated according to the engine operating state, and the injection amount is calculated by the product of the total injection amount and the injection amount ratio for each injection. .

図10の上段のグラフは冷態時における噴射パターンであり、下段のグラフは暖態時の噴射パターンである。冷態から暖態に運転状態を移行する場合に、要求総噴射量の減少にしたがって、すべての噴射F、P1、P2及びRは、相互の割合を一定に維持しつつ、噴射量が減少する。   The upper graph in FIG. 10 is an injection pattern in a cold state, and the lower graph is an injection pattern in a warm state. When the operating state is shifted from the cold state to the warm state, all the injections F, P1, P2 and R decrease in the injection amount while maintaining the mutual ratio constant as the required total injection amount decreases. .

(作用)
(1)機関冷態でのアイドル回転時、要求総噴射量及び各噴射における噴射量は、図9の上段に示すように、要求総噴射量が9mm3/st、メイン噴射Fの噴射量が4mm3/st、第1、第2パイロット噴射P1,P2の噴射量がそれぞれ1mm3/st、そしてポスト噴射Rの噴射量が3mm3/stとなっている。
(Function)
(1) During idle rotation in the engine cold state, the required total injection amount and the injection amount in each injection are as follows: the required total injection amount is 9 mm 3 / st, and the main injection F injection amount is 4 mm 3 / st, the injection amounts of the first and second pilot injections P1, P2 are 1 mm3 / st, respectively, and the injection amount of the post injection R is 3 mm3 / st.

(2)前記冷態から暖機運転を行い、図1の潤滑油温度センサー25又は冷却水温度センサー26により、潤滑油温度又は冷却水温度が一定値以上になるのを検出すると、冷態から暖態に移行したと判別し、要求総噴射量を下段に示すように9mm3/stから7.5mm3/stまで減少する。この場合、メイン噴射Fと共にパイロット噴射P1P2及びポスト噴射Rも同一比率で減少するので、メイン噴射Fの減少は3.11mm3/stまでとなり、メイン噴射Fの最低噴射量(2.0mm3/st)より大きい値となる。したがって、前記図12の従来例のようにサブ噴射を停止するという現象は回避でき、青白煙の発生又は機関音のフィーリングの悪化を防止できるのである。なお、上記冷態から暖態に移行したことを判別するためのパラメータは、潤滑油温度又は冷却水温度には限定されず、シリンダ温度や排気温度等、各種パラメータを利用することができる。 (2) When the warm-up operation is performed from the cold state and it is detected by the lubricating oil temperature sensor 25 or the cooling water temperature sensor 26 in FIG. It is determined that the state has shifted to the warm state, and the required total injection amount is decreased from 9 mm3 / st to 7.5 mm3 / st as shown in the lower part. In this case, since the pilot injection P1P2 and the post injection R are reduced at the same ratio together with the main injection F, the reduction of the main injection F is up to 3.11 mm3 / st, and the minimum injection amount of the main injection F (2.0 mm3 / st) Greater value. Therefore, the phenomenon of stopping the sub-injection as in the conventional example of FIG. 12 can be avoided, and the generation of blue and white smoke or the deterioration of the feeling of engine sound can be prevented. Note that the parameter for determining the transition from the cold state to the warm state is not limited to the lubricating oil temperature or the cooling water temperature, and various parameters such as the cylinder temperature and the exhaust temperature can be used.

[その他の実施の形態]
前記第1の実施の形態から第5の実施の形態の各燃料噴射制御を、1つの内燃機関において、運転状態に応じて切り替えるようにすることも可能である。
[Other embodiments]
It is also possible to switch each fuel injection control of the first to fifth embodiments according to the operating state in one internal combustion engine.

たとえば、図11は1つの内燃機関の機関回転数と燃料噴射量のグラフであり、低速回転領域X1においては、前記第5の実施の形態の制御方法、すなわち、メイン噴射とサブ噴射の割合を常時一定とする制御方法を採用し、中速回転域で燃料噴射量が中間域の領域X2では、前記第4の実施の形態の制御方法、すなわち、メイン噴射を増加させた制御方法を採用する。また、残りの領域X3においては、図12及び図13のような従来の制御方法を採用する。   For example, FIG. 11 is a graph of the engine speed and fuel injection amount of one internal combustion engine. In the low speed rotation region X1, the control method of the fifth embodiment, that is, the ratio of main injection to sub injection is shown. A control method that is always constant is adopted, and the control method of the fourth embodiment, that is, a control method in which main injection is increased is adopted in the region X2 in which the fuel injection amount is in the intermediate region in the medium speed rotation region. . In the remaining region X3, the conventional control method as shown in FIGS. 12 and 13 is adopted.

本発明が適用される内燃機関の配管図である。1 is a piping diagram of an internal combustion engine to which the present invention is applied. 本発明の第1の実施の形態における噴射優先度、冷態時噴射量、最低噴射量、補正前の暖態時噴射量及び補正後の暖態時噴射量の関係を表で示す図である。It is a figure which shows the relationship between the injection priority in the 1st Embodiment of this invention, the injection quantity at the time of cold, the minimum injection quantity, the injection quantity at the time of warming before correction | amendment, and the injection quantity at the time of warming after correction | amendment. . 本発明の第1の実施の形態における冷態時噴射パターンと暖態時噴射パターンを示す図である。It is a figure which shows the injection pattern at the time of cold and the injection pattern at the time of warm in the 1st Embodiment of this invention. 本発明の第2の実施の形態における冷態時噴射パターンと暖態時噴射パターンを示す図である。It is a figure which shows the injection pattern at the time of cold and the injection pattern at the time of warm in the 2nd Embodiment of this invention. 本発明の第3の実施の形態における噴射優先度、冷態時噴射量、最低噴射量及び暖態時噴射量の関係を表で示す図である。It is a figure which shows the relationship between the injection priority in the 3rd Embodiment of this invention, the cold injection quantity, the minimum injection quantity, and the warm injection quantity by a table | surface. 本発明の第3の実施の形態における冷態時噴射パターンと暖態時噴射パターンを示す図である。It is a figure which shows the injection pattern at the time of cold and the injection pattern at the time of warm in the 3rd Embodiment of this invention. 本発明の第4の実施の形態における噴射優先度、冷態時噴射量、最低噴射量及び暖態時噴射量の関係を表で示す図である。It is a figure which shows the relationship between the injection priority in the 4th Embodiment of this invention, the cold injection quantity, the minimum injection quantity, and the warm injection quantity by a table | surface. 本発明の第4の実施の形態における冷態時噴射パターンと暖態時噴射パターンを示す図である。It is a figure which shows the injection pattern at the time of cold and the injection pattern at the time of warm in the 4th Embodiment of this invention. 本発明の第5の実施の形態における噴射割合、噴射優先度、冷態時噴射量、最低噴射量及び暖態時噴射量の関係を表で示す図である。It is a figure which shows the relationship between the injection ratio in the 5th Embodiment of this invention, the injection priority, the injection quantity at the time of cold, the minimum injection quantity, and the injection quantity at the time of warm. 本発明の第5の実施の形態における冷態時噴射パターンと暖態時噴射パターンを示す図である。It is a figure which shows the injection pattern at the time of a cold state, and the injection pattern at the time of a warm state in the 5th Embodiment of this invention. 機関回転数と燃料噴射量とのグラフ上に、各実施の形態の制御方法を組み合わせて利用する場合の各利用領域を示す図である。It is a figure which shows each utilization area | region in the case of using combining the control method of each embodiment on the graph of an engine speed and fuel injection amount. 従来例におけるにおける噴射優先度、冷態時噴射量、最低噴射量、補正前の暖態時噴射量及び補正後の暖態時噴射量の関係を表で示す図である。It is a figure which shows the relationship between the injection priority in the prior art example, the injection quantity at the time of cold, the minimum injection quantity, the injection quantity at the time of warming before correction | amendment, and the injection quantity at the time of warming after correction | amendment. 従来例における冷態時噴射パターンと暖態時噴射パターンを示す図である。It is a figure which shows the injection pattern at the time of cold in a prior art example, and the injection pattern at the time of warm.

符号の説明Explanation of symbols

1 内燃機関
2 インジェクター
3 コモンレール(蓄圧管)
6 高圧ポンプ
16 機関コントロールユニット
25 潤滑油温度センサー(機関運転状態判別センサーの一例)
26 冷却水温度センサー(機関運転状態判別センサーの一例)
1 Internal combustion engine 2 Injector 3 Common rail (pressure accumulator)
6 High-pressure pump 16 Engine control unit 25 Lubricating oil temperature sensor (an example of an engine operating state determination sensor)
26 Cooling water temperature sensor (an example of an engine operating state determination sensor)

Claims (8)

多段噴射可能な蓄圧式燃料噴射装置を備え、メイン噴射と、該メイン噴射に先立つサブ噴射又はメイン噴射より遅れるサブ噴射の少なくともいずれかのサブ噴射を行う内燃機関の燃料噴射制御方法において、
エンジン運転状態が冷態か暖態かを判別するエンジン運転状態判別センサーを備え、
前記運転状態判別センサーにより冷態から暖態への変化を検出した時に、暖態時のメイン噴射の時期を、冷態時のメイン噴射の時期よりも遅角させることにより、サブ噴射が消滅しないように燃料の総噴射量を増加させることを特徴とする内燃機関の燃料噴射制御方法。
In a fuel injection control method for an internal combustion engine, comprising an accumulator fuel injection device capable of multi-stage injection, and performing at least one of main injection and sub-injection prior to the main injection or sub-injection delayed from the main injection,
Equipped with an engine operating state determination sensor for determining whether the engine operating state is cold or warm,
When the change from the cold state to the warm state is detected by the operation state determination sensor, the sub-injection does not disappear by delaying the main injection timing in the warm state from the main injection timing in the cold state. A fuel injection control method for an internal combustion engine, characterized by increasing the total fuel injection amount.
請求項1記載の内燃機関の燃料噴射制御方法において、
前記運転状態判別センサーにより冷態から暖態への変化を検出した時に、暖態時のメイン噴射の時期を、冷態時のメイン噴射の時期よりも遅角させると共に、メイン噴射に先立つサブ噴射も遅角させることにより、サブ噴射が消滅しないように燃料の総噴射量を増加させることを特徴とする内燃機関の燃料噴射制御方法。
The fuel injection control method for an internal combustion engine according to claim 1,
When the change from the cold state to the warm state is detected by the operation state determination sensor, the timing of the main injection during the warm state is delayed from the timing of the main injection during the cold state, and the sub-injection prior to the main injection The fuel injection control method for an internal combustion engine is characterized by increasing the total fuel injection amount so that the sub-injection does not disappear by retarding.
請求項1記載の内燃機関の燃料噴射制御方法において、
前記運転状態判別センサーにより冷態から暖態への変化を検出した時に、暖態時のメイン噴射の時期を、冷態時のメイン噴射の時期よりも遅角させると共に、メイン噴射よりも遅れるサブ噴射も遅角させることにより、サブ噴射が消滅しないように燃料の総噴射量を増加させることを特徴とする内燃機関の燃料噴射制御方法。
The fuel injection control method for an internal combustion engine according to claim 1,
When the change from the cold state to the warm state is detected by the operation state determination sensor, the timing of the main injection in the warm state is retarded from the timing of the main injection in the cold state and is delayed from the main injection. A fuel injection control method for an internal combustion engine, wherein the total injection amount of fuel is increased by retarding injection so that the sub-injection does not disappear.
多段噴射可能な蓄圧式燃料噴射装置を備え、メイン噴射と、該メイン噴射に先立つサブ噴射又はメイン噴射より遅れるサブ噴射の少なくともいずれかのサブ噴射を行う内燃機関の燃料噴射制御方法において、
前記メイン噴射を第1のメイン噴射とし、該第1のメイン噴射と同等の取り扱いを行う第2のメイン噴射を追加していることを特徴とする内燃機関の燃料噴射制御方法。
In a fuel injection control method for an internal combustion engine, comprising an accumulator fuel injection device capable of multi-stage injection, and performing at least one of main injection and sub-injection prior to the main injection or sub-injection delayed from the main injection,
A fuel injection control method for an internal combustion engine, characterized in that the main injection is a first main injection, and a second main injection that is handled in the same manner as the first main injection is added.
請求項4記載の内燃機関の燃料噴射制御方法において、
前記両メイン噴射は、噴射量が均等であることを特徴とする内燃機関の燃料噴射制御方法。
The fuel injection control method for an internal combustion engine according to claim 4,
2. A fuel injection control method for an internal combustion engine, wherein the two main injections have equal injection amounts.
請求項4記載の内燃機関の燃料噴射制御方法において、
前記両メイン噴射は、噴射量が互いに異なっていることを特徴とする内燃機関の燃料噴射制御方法。
The fuel injection control method for an internal combustion engine according to claim 4,
The fuel injection control method for an internal combustion engine, wherein the two main injections have different injection amounts.
多段噴射可能な蓄圧式燃料噴射装置を備え、メイン噴射と、該メイン噴射に先立つサブ噴射又はメイン噴射より遅れるサブ噴射の少なくともいずれかのサブ噴射を行う内燃機関の燃料噴射制御方法において、
機関運転状態により燃料の総噴射量、噴射回数及び各噴射量の総噴射量に対する割合を算出し、各噴射毎に総噴射量と噴射量割合の積により噴射量を算出することを特徴とする内燃機関の燃料噴射制御方法。
In a fuel injection control method for an internal combustion engine, comprising an accumulator fuel injection device capable of multi-stage injection, and performing at least one of main injection and sub-injection prior to the main injection or sub-injection delayed from the main injection,
The total injection amount of fuel, the number of injections, and the ratio of each injection amount to the total injection amount are calculated according to the engine operating state, and the injection amount is calculated by the product of the total injection amount and the injection amount ratio for each injection. A fuel injection control method for an internal combustion engine.
前記請求項1〜7に記載の各噴射制御を、エンジン運転状態に応じて切り替えて実施することを特徴とする内燃機関の燃料噴射制御方法。
8. A fuel injection control method for an internal combustion engine, wherein each injection control according to claim 1 is performed by switching according to an engine operating state.
JP2005105914A 2005-04-01 2005-04-01 Fuel injection control method for internal combustion engine Expired - Fee Related JP4603921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105914A JP4603921B2 (en) 2005-04-01 2005-04-01 Fuel injection control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105914A JP4603921B2 (en) 2005-04-01 2005-04-01 Fuel injection control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006283690A true JP2006283690A (en) 2006-10-19
JP4603921B2 JP4603921B2 (en) 2010-12-22

Family

ID=37405872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105914A Expired - Fee Related JP4603921B2 (en) 2005-04-01 2005-04-01 Fuel injection control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4603921B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130777A1 (en) * 2008-04-24 2009-10-29 トヨタ自動車株式会社 Multifuel internal-combustion engine
JP2009287526A (en) * 2008-05-30 2009-12-10 Honda Motor Co Ltd Control device for internal combustion engine
JP2011085103A (en) * 2009-10-19 2011-04-28 Nippon Soken Inc Fuel injection system of internal combustion engine
KR101124158B1 (en) * 2011-07-27 2012-03-27 황선보 Diesel engine
JP2013019350A (en) * 2011-07-12 2013-01-31 Mitsubishi Motors Corp Fuel injection control device of internal combustion engine
JP2013224599A (en) * 2012-04-20 2013-10-31 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP2016142239A (en) * 2015-02-05 2016-08-08 富士重工業株式会社 Injection timing learning control device and injection timing learning control method
JPWO2015162797A1 (en) * 2014-04-25 2017-04-13 日産自動車株式会社 Internal combustion engine and control method for internal combustion engine
JP2017186941A (en) * 2016-04-05 2017-10-12 ボッシュ株式会社 Fuel injection control method and common rail type fuel injection control device
JP2021042703A (en) * 2019-09-10 2021-03-18 マツダ株式会社 Control device for diesel engine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118244A (en) * 1991-10-25 1993-05-14 Toyota Motor Corp Internal combustion engine
JPH1193735A (en) * 1997-09-18 1999-04-06 Nissan Motor Co Ltd Control device of diesel engine
JP2000073820A (en) * 1998-08-26 2000-03-07 Mazda Motor Corp Control device for cylinder injection type engine
JP2000097077A (en) * 1998-09-21 2000-04-04 Nippon Soken Inc Control method for fuel injection mode at starting of engine
JP2000320386A (en) * 1999-03-10 2000-11-21 Mazda Motor Corp Fuel injection system for diesel engine
JP2001065397A (en) * 1999-08-24 2001-03-13 Mazda Motor Corp Fuel injection control device for engine
JP2003065121A (en) * 2001-08-30 2003-03-05 Toyota Motor Corp Diesel engine
JP2003343331A (en) * 2002-05-24 2003-12-03 Denso Corp Injection ratio controller for internal combustion engine
JP2004204765A (en) * 2002-12-25 2004-07-22 Isuzu Motors Ltd Fuel injection control device
JP2005048747A (en) * 2003-07-31 2005-02-24 Nissan Motor Co Ltd Combustion control device for internal combustion engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118244A (en) * 1991-10-25 1993-05-14 Toyota Motor Corp Internal combustion engine
JPH1193735A (en) * 1997-09-18 1999-04-06 Nissan Motor Co Ltd Control device of diesel engine
JP2000073820A (en) * 1998-08-26 2000-03-07 Mazda Motor Corp Control device for cylinder injection type engine
JP2000097077A (en) * 1998-09-21 2000-04-04 Nippon Soken Inc Control method for fuel injection mode at starting of engine
JP2000320386A (en) * 1999-03-10 2000-11-21 Mazda Motor Corp Fuel injection system for diesel engine
JP2001065397A (en) * 1999-08-24 2001-03-13 Mazda Motor Corp Fuel injection control device for engine
JP2003065121A (en) * 2001-08-30 2003-03-05 Toyota Motor Corp Diesel engine
JP2003343331A (en) * 2002-05-24 2003-12-03 Denso Corp Injection ratio controller for internal combustion engine
JP2004204765A (en) * 2002-12-25 2004-07-22 Isuzu Motors Ltd Fuel injection control device
JP2005048747A (en) * 2003-07-31 2005-02-24 Nissan Motor Co Ltd Combustion control device for internal combustion engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130777A1 (en) * 2008-04-24 2009-10-29 トヨタ自動車株式会社 Multifuel internal-combustion engine
US8516991B2 (en) 2008-04-24 2013-08-27 Toyota Jidosha Kabushiki Kaisha Multi-fuel internal combustion engine
US8532903B2 (en) 2008-05-30 2013-09-10 Honda Motor Co., Ltd. Control system for internal combustion engine
JP2009287526A (en) * 2008-05-30 2009-12-10 Honda Motor Co Ltd Control device for internal combustion engine
JP2011085103A (en) * 2009-10-19 2011-04-28 Nippon Soken Inc Fuel injection system of internal combustion engine
JP2013019350A (en) * 2011-07-12 2013-01-31 Mitsubishi Motors Corp Fuel injection control device of internal combustion engine
KR101124158B1 (en) * 2011-07-27 2012-03-27 황선보 Diesel engine
JP2013224599A (en) * 2012-04-20 2013-10-31 Toyota Motor Corp Fuel injection control device for internal combustion engine
JPWO2015162797A1 (en) * 2014-04-25 2017-04-13 日産自動車株式会社 Internal combustion engine and control method for internal combustion engine
JP2016142239A (en) * 2015-02-05 2016-08-08 富士重工業株式会社 Injection timing learning control device and injection timing learning control method
JP2017186941A (en) * 2016-04-05 2017-10-12 ボッシュ株式会社 Fuel injection control method and common rail type fuel injection control device
JP2021042703A (en) * 2019-09-10 2021-03-18 マツダ株式会社 Control device for diesel engine
JP7379966B2 (en) 2019-09-10 2023-11-15 マツダ株式会社 Diesel engine control device

Also Published As

Publication number Publication date
JP4603921B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP4603921B2 (en) Fuel injection control method for internal combustion engine
JP4492351B2 (en) Dual injection type internal combustion engine
JP4649142B2 (en) Ignition timing control device for internal combustion engine
JP3815100B2 (en) Engine control device
JP5967064B2 (en) Control device for internal combustion engine
JP5979030B2 (en) Variable cylinder engine
JP4449706B2 (en) Control device for internal combustion engine
JP2009103096A (en) Control device of internal combustion engine
JP5051086B2 (en) Control device for spark ignition engine
JP2006057594A (en) Ignition timing control method for internal combustion engine
JP3721873B2 (en) Engine fuel injection control device
JP2005307889A (en) Control device for ignition timing of internal combustion engine
JP4637036B2 (en) Control device for internal combustion engine
JP4742633B2 (en) Control device for internal combustion engine
JP5282636B2 (en) Control device for internal combustion engine
JP3882630B2 (en) Control device for spark ignition direct injection engine
JP6183004B2 (en) Engine control device
JP4640526B2 (en) Dual injection type internal combustion engine
JP2010138829A (en) Automatic combustion control system of diesel engine
JP4058940B2 (en) Engine fuel supply system
JP2005201074A (en) Controller of internal combustion engine
JP2007321707A (en) Fuel injection control device for internal combustion engine
JP2009209769A (en) Fuel injection device for internal combustion engine
JP2008014207A (en) Fuel injection device for engine
JPH10103143A (en) Injection timing control device for diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4603921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141008

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees