JP2006283327A - Structure for external heat insulating prestressed construction - Google Patents

Structure for external heat insulating prestressed construction Download PDF

Info

Publication number
JP2006283327A
JP2006283327A JP2005102406A JP2005102406A JP2006283327A JP 2006283327 A JP2006283327 A JP 2006283327A JP 2005102406 A JP2005102406 A JP 2005102406A JP 2005102406 A JP2005102406 A JP 2005102406A JP 2006283327 A JP2006283327 A JP 2006283327A
Authority
JP
Japan
Prior art keywords
concrete
wall
prestressed
heat insulating
heat insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005102406A
Other languages
Japanese (ja)
Other versions
JP4063831B2 (en
Inventor
Hikari Jo
光 徐
Takamitsu Sakuraba
高光 櫻庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSD KK
Tokai Information System Consultation
Original Assignee
JSD KK
Tokai Information System Consultation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSD KK, Tokai Information System Consultation filed Critical JSD KK
Priority to JP2005102406A priority Critical patent/JP4063831B2/en
Publication of JP2006283327A publication Critical patent/JP2006283327A/en
Application granted granted Critical
Publication of JP4063831B2 publication Critical patent/JP4063831B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To construct an external heat insulting prestressed concrete building in quiet working environment without noise in the construction field and in a short construction period using a precast method and a prestressed method jointly. <P>SOLUTION: In a structure for prestressed construction, a heat insulating panel 2 formed by laminating and integrating an extrusion molded cement plate 2A with line grooves AG, AG' vertically juxtaposed on the inner surface, and a heat insulating layer 2B, is integrally attached to the outer surface of a concrete wall W of each of precast concrete bodies 1A, 1'A having concrete walls W, and spiral sheaths 3A, 3B for isnerting PC steel members 7A, 7B for introducing prestress are embedded beforehand inside the precast concrete bodies 1A, 1'A. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プレキャストコンクリート構造体1A,1´Aに、外断熱機能を付与する断熱パネル2と、プレストレスを導入するためのPC鋼材挿通穴3A,3Bを付設した、プレストレスト建築用構造体1,1´に関するものであり、該構造体相互にプレストレスを導入しながら結合すれば、鉄筋コンクリート外断熱建築物が簡便に構築出来るものであって、特に、小規模の鉄筋コンクリート建物に好適な発明であり、建築の技術分野に属するものである。   The present invention is a prestressed building structure 1 in which a precast concrete structure 1A, 1'A is provided with a heat insulating panel 2 for providing an external heat insulating function and PC steel material insertion holes 3A, 3B for introducing prestress. , 1 ', and by connecting the structures while introducing pre-stress, it is possible to easily construct a reinforced concrete external heat insulating building, and is particularly suitable for small-scale reinforced concrete buildings. Yes, it belongs to the technical field of architecture.

プレキャストコンクリートは、コンクリートの型成形であるため、成形形態に自由度があり、且つ耐火性にも優れているため、近年、建築分野にあっても各種技術が提案されている。
また、コンクリート建物を外断熱とする技術も、耐火性、優れた熱環境性等の面より、近年評価され、プレキャストコンクリート建物での外断熱も提案されている。
Since precast concrete is a concrete molding, since the molding form has a degree of freedom and is excellent in fire resistance, various techniques have been proposed in the construction field in recent years.
In addition, the technology of making concrete buildings external heat insulation has recently been evaluated in terms of fire resistance and excellent thermal environment, and external heat insulation in precast concrete buildings has also been proposed.

〔従来例1(図14)〕
従来例1(図14)は、特開2002−339451号として提案された、プレキャストコンクリート板を用いる外断熱コンクリート建築に関するものである。
即ち、プレキャストコンクリート板(PC板)は、図14(A)に示す如く、外装コンクリート板と内装コンクリート板とを、断熱材及び空気層形成材を介在させてラチス筋で一体化したものであり、PC板の内装コンクリート板には、図14(B)の如く、周縁部適所に段差部を形成しておき、建築物の構築時に、図14(C)の如く、内装コンクリート板の該段差部を柱等に当接して、構造体としての柱とPC板とを接合金具で強固に取付け、断熱材で内装コンクリート板を外断熱とすると共に、空気層形成材で形成した通気層によって断熱材の吸湿機能低下を阻止したものである。
[Conventional example 1 (FIG. 14)]
Conventional Example 1 (FIG. 14) relates to an outer heat insulating concrete architecture using a precast concrete plate, which was proposed as Japanese Patent Laid-Open No. 2002-339451.
That is, as shown in FIG. 14A, the precast concrete board (PC board) is obtained by integrating an exterior concrete board and an interior concrete board with a lattice by interposing a heat insulating material and an air layer forming material. As shown in FIG. 14 (B), the PC board interior concrete board is formed with a step at an appropriate position on the periphery, and when the building is constructed, the level difference of the interior concrete board as shown in FIG. 14 (C). The part is brought into contact with a pillar, etc., and the pillar as a structure and the PC board are firmly attached with a joint metal fitting, and the interior concrete board is made externally insulated with a heat insulating material, and is also insulated with a ventilation layer formed with an air layer forming material. This prevents the material from absorbing moisture.

〔従来例2(図15)〕
従来例2(図15)は、特開2002−276071号として提案された外断熱建築物の壁、柱、梁などに取付ける断熱PC(プレキャスト)コンクリート板の発明であり、図15(A),(B)に示す如く、内側の厚肉のPC板と、外板としての薄肉のPC板とを断熱層及び通気層を介してラチス筋で一体化した断熱PCコンクリート板である。
図15(C)は、その製造手法を示すものであり、(イ)に示す如く、型枠でラチス筋を突出させた形態に外板(PC板)を形成し、(ロ)に示す如く、型枠内に外板を載置して、ラチス筋間に、通気層を形成しつつ断熱材を敷き詰め、(ハ)に示す如く、ラチス筋頂部に亘って第2壁筋を配置して断熱材上にコンクリート打設してPCコンクリート板を形成する。
特開2002−339451号公報 特開2002−276071号公報
[Conventional example 2 (FIG. 15)]
Conventional Example 2 (FIG. 15) is an invention of a heat insulating PC (precast) concrete board attached to a wall, a pillar, a beam, etc. of an external heat insulating building proposed as JP 2002-276071. As shown to (B), it is a heat insulation PC concrete board which integrated the inner thick PC board and the thin PC board as an outer board with the lattice line through the heat insulation layer and the ventilation layer.
FIG. 15 (C) shows the manufacturing method. As shown in FIG. 15 (A), an outer plate (PC plate) is formed in a form in which a lattice is protruded by a mold, and as shown in FIG. Place the outer plate in the formwork, spread the heat insulating material while forming a ventilation layer between the lattice muscles, and place the second wall reinforcement over the top of the lattice muscles as shown in (c) Concrete is placed on the heat insulating material to form a PC concrete board.
JP 2002-339451 A JP 2002-276071 A

従来例1のPC板を用いる建物にあっては、外断熱工法通気層型となり、内部結露や熱日射の影響が少ないが、PC板の製作は、トラス筋によって断熱層及び空気層の形成の作業性が悪く、また、断熱材を貫通するトラス筋が熱橋となる。
しかも、PC板は帳壁にしかすぎず、柱、梁、耐力壁等の主要構造体でないため、接合金具で主要構造体に強固に取付ける必要があり、接合金具での取付構造によって内装仕上げが制約を受け、コンクリート素地仕上げには対応出来ない。
In the building using the PC board of the conventional example 1, it becomes an outer heat insulation method ventilation layer type, and there is little influence of internal condensation and thermal solar radiation, but the manufacture of the PC board is the formation of the heat insulation layer and the air layer by the truss bars. The workability is poor, and the truss bar that penetrates the heat insulating material becomes a thermal bridge.
Moreover, since the PC board is only a book wall and not a main structure such as a pillar, beam, or bearing wall, it is necessary to attach it firmly to the main structure with a joint fitting. Due to restrictions, it cannot be used for concrete base finishing.

また、従来例2の技術にあっても、外断熱工法通気層型となり、内部結露問題、熱日射による伸縮、反りの問題は改善されるものの、従来例1同様に、ラチス筋により、通気層及び断熱層を形成する作業性が悪く、しかも、ラチス筋が断熱層を貫通して熱橋となる。
従って、従来例1及び2は、共に、壁体を工場生産するだけであって、コンクリート外断熱建築物の建築の合理化は期待出来ない。
即ち、従来は、PC鉄筋コンクリートにプレストレスを導入して鉄筋コンクリート建物の躯体を構築することはおろか、PC鉄筋コンクリート構造物のみで鉄筋コンクリート建物を構築することすらなかった。
Further, even in the technique of Conventional Example 2, although it becomes an outer heat insulating method ventilation layer type and the problems of internal dew condensation, expansion / contraction due to thermal solar radiation, and warp problems are improved, as in Conventional Example 1, the ventilation layer And the workability | operativity which forms a heat insulation layer is bad, and also a lattice muscle penetrates a heat insulation layer and becomes a thermal bridge.
Therefore, both of the conventional examples 1 and 2 only produce the wall body in the factory, and the rationalization of the construction of the heat insulating building outside the concrete cannot be expected.
That is, conventionally, a prestress is introduced into PC reinforced concrete to construct a reinforced concrete building frame, and a reinforced concrete building is not constructed with only a PC reinforced concrete structure.

本発明は、土木、橋梁分野で採用されているプレストレスト技法を、新規にRC造建築分野にも適用可能とするものであって、断熱パネル2をコンクリート壁と一体化したコンクリート構造体を工場でプレキャスト成形し、建物の構築に際しては、各プレキャストコンクリート構造体相互をプレストレスを導入しながら連結一体化するだけでプレストレスト鉄筋コンクリート建物と出来る、新規なプレストレスト建築用構造体を提供するものであって、建築分野の外断熱PCコンクリート技術に、土木橋梁分野のコンクリート構造物でのプレストレス導入技術を新規に総合することにより、従来の問題点を一挙に解決する、画期的な外断熱コンクリート建築物の提供を可能とするものである。   In the present invention, the prestressed technique adopted in the civil engineering and bridge fields can be newly applied to the RC building field, and a concrete structure in which the heat insulating panel 2 is integrated with a concrete wall is installed in a factory. When building a building by precast molding, it provides a new prestressed building structure that can be a prestressed reinforced concrete building by simply connecting and integrating each precast concrete structure while introducing prestress, A groundbreaking outer heat insulating concrete building that solves the conventional problems all at once by integrating new prestressing technology for concrete structures in the civil engineering bridge field with external heat insulating PC concrete technology in the building field. Can be provided.

本発明は、例えば図1、図12に示す如く、プレキャストコンクリート体1A,1´Aの、コンクリート壁Wの外面には、条溝AG,AG´を内面に並列縦設した押出成形セメント板2Aと断熱層2Bの層着一体化した断熱パネル2を備え、コンクリート壁W内部には、プレストレスを導入するPC鋼材7A,7Bを挿通する穴部3A,3Bを備えている、プレストレスト建築用の構造体1,1´である。
尚、穴部3A,3Bは、典型的には、プレストレスを導入するPC鋼材挿通用のスパイラルシースであって、プレキャストコンクリート体1A,1´Aの成型時に、PC鋼材7A,7B挿通位置に慣用のスパイラルシース3A,3Bを埋設しておけば良い。
この場合、構造体形成コンクリートとしては、高強度コンクリートを採用すれば良く、典型的には、圧縮強度500kg/cm、スランプ8cm、水セメント比38%、空気量3%の高強度コンクリートである。
In the present invention, for example, as shown in FIG. 1 and FIG. 12, an extruded cement board 2A in which pre-cast concrete bodies 1A and 1′A have longitudinal grooves AG and AG ′ arranged in parallel with the inner surface on the outer surface of the concrete wall W. And a heat insulating layer 2B and a heat insulating layer 2B, and the concrete wall W has holes 3A and 3B for inserting prestressed PC steel materials 7A and 7B. Structures 1 and 1 '.
Note that the holes 3A and 3B are typically spiral sheaths for inserting PC steel material into which prestress is introduced, and when the precast concrete bodies 1A and 1'A are molded, the PC steel materials 7A and 7B are inserted into the positions. Conventional spiral sheaths 3A and 3B may be embedded.
In this case, high-strength concrete may be employed as the structure-forming concrete, and is typically high-strength concrete having a compressive strength of 500 kg / cm 2 , a slump of 8 cm, a water cement ratio of 38%, and an air volume of 3%. .

また、断熱パネル2の、プレキャストコンクリート体1A,1´Aの壁Wへの一体化は、断熱パネル2を壁のコンクリート型枠として用いても一体化することが可能であるが、プレキャストコンクリート体1A,1´Aが接着機能を有するフレッシュコンクリート状態下で、断熱パネル2をコンクリート壁W外面に当接一体化するのが、不陸の防止、及び接着界面での隙間発生の阻止の点で好ましい。
また、床スラブS内のスパン方向のPC鋼材の壁W面での端部保持は、図7(A)の如く、断熱パネル2の対応位置を切落して切欠孔H1を形成しておき、壁W外面に、ポケットフォーマー等の慣用の型を用いて欠込みH1´を形成すれば、欠込みH1´内に支圧板6及びアンカーヘッド6Cが配置可能であり、また、壁W内を上下に貫通するPC鋼材の上端部保持は、図7(A)に示す如く、ポケットフォーマー等の慣用の型で、壁W上面に欠込みH1”形成しておけば良い。
Further, the heat-insulating panel 2 can be integrated with the wall W of the precast concrete bodies 1A and 1′A even if the heat-insulating panel 2 is used as a concrete formwork for the wall. In the state of fresh concrete where 1A and 1'A have an adhesive function, the heat insulating panel 2 is brought into contact with and integrated with the outer surface of the concrete wall W in terms of preventing unevenness and preventing gaps at the bonding interface. preferable.
Moreover, the end holding | maintenance in the wall W surface of the PC steel material of the span direction in the floor slab S is cut off the corresponding position of the heat insulation panel 2 as shown in FIG. 7 (A), and the notch hole H1 is formed, If a notch H1 ′ is formed on the outer surface of the wall W using a conventional mold such as a pocket former, the bearing plate 6 and the anchor head 6C can be arranged in the notch H1 ′. As shown in FIG. 7 (A), the upper end portion of the PC steel material penetrating vertically can be retained by forming a notch H1 ″ on the upper surface of the wall W with a conventional mold such as a pocket former.

従って、本発明構造物で構築する建築物は、図1に示す構造体1にあっては、該構造体相互をプレストレス導入で結合するだけで、また、図12に示す構造体1´にあっては、別体の床スラブ構造体1”を併用して、該構造体1´相互をプレストレス導入で結合し、床スラブ構造体1”をプレストレス導入で張設するだけで、壁W及び床スラブSから成る建物躯体全体がプレストレスト構造と出来るため、鉄筋コンクリートの短所である、曲げ応力に対して亀裂の入り易い問題が大幅に改善され、抗張力が増加して構造材としての強度が向上するため、使用コンクリート量も軽減出来、鉄筋コンクリート造(RC造)の長所である、耐火性、耐久性に優れた利点を備えながら、通常のRC造に対して20%の軽量化が図れる。   Therefore, in the structure constructed by the structure of the present invention, in the structure 1 shown in FIG. 1, only the structures are coupled by prestressing, and the structure 1 ′ shown in FIG. In this case, a separate floor slab structure 1 ″ can be used together, the structures 1 ′ can be joined together by introducing prestress, and the floor slab structure 1 ″ can be simply stretched by introducing prestress. Since the entire building frame consisting of W and floor slab S can be prestressed, the problem of being easily cracked against bending stress, which is a disadvantage of reinforced concrete, is greatly improved, and the tensile strength is increased and the strength as a structural material is increased. In order to improve, the amount of concrete used can also be reduced, and while providing the advantages of the reinforced concrete structure (RC structure), which is excellent in fire resistance and durability, the weight can be reduced by 20% compared to a normal RC structure.

また、プレストレスト建築用構造体1,1´は、工場生産となるため、品質管理の行き届いた環境の下での均斉な高品質の構造体1,1´が、天候に左右されずに製造出来て、建築工事期間も通常のRC造より大幅(約1/2)に短縮出来る。
そして、建築現場では、コンクリート躯体の建付けは、クレーンによる吊込みとプレストレス導入の作業となって、静かな環境下での建築作業となる。
しかも、建物密集地の挟小な土地での施工も可能となる。
In addition, the prestressed building structures 1 and 1 'are manufactured at the factory, so that a uniform and high-quality structure 1 and 1' can be manufactured without being influenced by the weather in an environment where quality control is carefully performed. Therefore, the construction period can be shortened significantly (about 1/2) compared to normal RC construction.
And at the construction site, the construction of the concrete frame is a work of hanging with a crane and introducing prestress, and it is a work in a quiet environment.
In addition, construction on a small area of a densely packed building is also possible.

また、本発明の構造体1は、図1の如く、プレキャストコンクリート体1Aが、上部からコンクリート床スラブSを延出しているのが好ましい。
この場合は、床スラブS内には、スパン方向のPC鋼材7B挿通用のスパイラルシース3B、及びスパン直交方向のPC鋼材7B挿通用のスパイラルシース3Cを埋設しておき、且つ、床スラブS両側縁では、欠込みH3,H3´内にスパイラルシース3C端を露出しておけば、構造体の接合時のPC鋼材処理が容易となる。
Moreover, as for the structure 1 of this invention, it is preferable that the precast concrete body 1A extends the concrete floor slab S from the upper part like FIG.
In this case, a spiral sheath 3B for inserting the PC steel material 7B in the span direction and a spiral sheath 3C for inserting the PC steel material 7B in the span orthogonal direction are embedded in the floor slab S, and both sides of the floor slab S At the edge, if the end of the spiral sheath 3C is exposed in the notches H3 and H3 ′, the PC steel material processing at the time of joining the structures becomes easy.

従って、床スラブSを一体化した構造体1は、構築時の壁Wと床スラブSの結合作業が不要となり、建築物構築の合理化が図れる。
そして、プレキャストコンクリート体1Aは、壁Wと床スラブSとの断面L形状となるため、型枠組みが若干複雑となるが、図4の如く、粘性の高いコンクリートの使用により、山形状で、上面の開放した型組みで実施出来、プレキャスト成型、及び断熱パネル2の張着が容易となる。
Therefore, the structure 1 in which the floor slab S is integrated does not require the work of connecting the wall W and the floor slab S during construction, and the building construction can be rationalized.
Since the precast concrete body 1A has a cross-sectional L shape between the wall W and the floor slab S, the formwork is slightly complicated. However, as shown in FIG. Therefore, precast molding and heat insulation panel 2 can be easily attached.

しかも、比較的小型の構造体1として工場で製造するので、部材の品質管理が徹底出来て信頼度の高い構造材となり、高品質のPCコンクリート構造外断熱建築物が、現場工事を大幅に合理化したプレハブ建築施工により短期間に建築可能となる。
また、建築現場は、基礎工事と、プレストレスト建築用構造体1の建付け及びプレストレス導入であるため、騒音が少なく、静かできれいな環境での作業となる。
Moreover, since it is manufactured at the factory as a relatively small structure 1, it is possible to thoroughly control the quality of parts and to make it a highly reliable structural material, and the high-quality PC concrete structure heat insulation building greatly streamlines on-site construction. Prefabricated construction can be built in a short time.
In addition, since the construction site is the foundation work, the construction of the prestressed building structure 1 and the prestress introduction, the work is performed in a quiet and clean environment with little noise.

そして、建築作業も、断面L形状の比較的小さな構造体1の、クレーンによる吊込み建付け、及びプレストレス導入が、外部足場を用いず作業することが出来、クレーンの大きさや、設置場所、資材置場の確保などの適切な計画により、狭小地での建築も可能となる。
従って、断熱パネルでコンクリート躯体への熱負荷が阻止された、高耐久で、耐震性に優れ、且つ、大空間を創出する外断熱鉄筋コンクリート建築物が、従来のRC造よりも、少量の資材(コンクリート)使用により、より短期間で、且つ現場騒音の抑制下で構築出来る。
And construction work can also be carried out without using an external scaffolding, with suspension construction by crane and introduction of prestress of relatively small structure 1 with L-shaped cross section. Appropriate planning, such as securing a material storage area, will also enable construction in narrow spaces.
Therefore, the heat-insulated panels prevent the heat load on the concrete frame, and are highly durable, excellent in earthquake resistance, and create a large space. By using (concrete), it can be constructed in a shorter period of time and with reduced noise on site.

また、本発明のプレストレスト建築用構造体1(1´)にあっては、押出成形セメント板2Aの条溝AG,AG´群のうち、少なくとも、両端、及び中央部の条溝AG´は、断面形状が左右対称で、最内部の平坦背面AFと、両側の等角度で内方に拡開形態で傾斜した傾斜側面ASとを備えて、前部が開口OGした台形であるのが好ましい。
この場合、標準パネル2にあっては、条溝AG´の断面寸法は、図11(B)の如く、背面AFの長さL22が44mm、開口OGの長さL22´が30mm、深さgdが13mmであり、両側の傾斜側面ASが60°である。
In addition, in the prestressed building structure 1 (1 ′) of the present invention, at least both ends and the groove AG ′ at the center portion of the groove AG, AG ′ group of the extruded cement plate 2A are: The trapezoidal shape is preferably a trapezoid having a symmetrical cross section, an innermost flat back surface AF, and an inclined side surface AS that is inclined inwardly at an equal angle on both sides, with an opening OG.
In this case, in the standard panel 2, as shown in FIG. 11B, the cross-sectional dimension of the groove AG ′ is 44 mm for the back AF length L22, 30 mm for the opening OG length L22 ′, and the depth gd. Is 13 mm, and the inclined side surfaces AS on both sides are 60 °.

従って、図11(B)に示す如く、屈曲形状の固定部16Aと、両側縁に60°傾斜の小幅Wa(標準:3mm)のアンカー片16B´と、ねじボルト16Cと、ナット16Dとからなる新規な取付金具16の条溝AG´内のへの挿入、圧接固着が、セメント板2Aのどの部分をも損傷することなく、確実、且つ容易に実施出来、本発明構造体で構築した建築物への腰水切の付設は、図11(A)の如く、取付金具16を、固定部16Aの下部をセメント板2A下端から10cm垂下した状態でセメント板2Aに圧接固着し、腰水切立上り辺15Aをドリルねじ15Cで止着することにより、腰水切15の簡単、且つ、きれいな取付けを可能とする。   Accordingly, as shown in FIG. 11 (B), it is composed of a bending-shaped fixing portion 16A, anchor pieces 16B ′ having a small width Wa (standard: 3 mm) inclined at 60 ° on both side edges, screw bolts 16C, and nuts 16D. The building constructed with the structure of the present invention can be implemented reliably and easily without damaging any part of the cement board 2A by inserting the new mounting bracket 16 into the groove AG 'and pressing and fixing it. As shown in FIG. 11A, the attachment bracket 16 is pressure-bonded to the cement plate 2A with the lower portion of the fixing portion 16A suspended from the lower end of the cement plate 2A, as shown in FIG. Is secured with a drill screw 15C, so that the waist drainer 15 can be easily and cleanly attached.

また、本発明にあっては、断熱パネル2は、図5(A)に示す如く、断熱層2Bをコンクリートの壁Wの外面Wfと層着一体化し、皿ねじ9D´を、押出成形セメント板2Aの外面から貫入して、コンクリート壁Wの外面に埋設したプラスチック製KPコン9B内に螺着し、且つ、皿ねじ9D´の先端が、KPコン9Bを螺着保持したコンクリート壁W内のねじ9C端と間隔S9を保っているのが好ましい。
この場合、コンクリート壁W内のねじ9C端とセメント板2Aからの皿ねじ9D´端とは、共にプラスチック製KPコン9Bに螺合保持されるが、皿ねじ9D´端とねじ9C端との間には間隔S9が存在するため、皿ねじ9D´は、ねじ9Cに対しても、コンクリート壁Wに対しても熱橋とはならない。
Further, in the present invention, as shown in FIG. 5 (A), the heat insulating panel 2 is formed by integrating the heat insulating layer 2B with the outer surface Wf of the concrete wall W, and the countersunk screw 9D ' 2A penetrates from the outer surface of the concrete wall W and is screwed into a plastic KP con 9B embedded in the outer surface of the concrete wall W, and the tip of the countersunk screw 9D 'is screwed into the concrete wall W holding the KP con 9B. It is preferable to maintain an interval S9 from the end of the screw 9C.
In this case, the screw 9C end in the concrete wall W and the countersunk screw 9D ′ end from the cement plate 2A are both screwed and held in the plastic KP con 9B, but the countersunk screw 9D ′ end and the screw 9C end Since there is an interval S9 between them, the countersunk screw 9D ′ does not become a thermal bridge for the screw 9C or the concrete wall W.

また、本発明のプレストレスト建築用構造体1の断熱パネル2は、プレキャストコンクリート体1A,1´Aがフレッシュコンクリートの状態のコンクリート壁Wに、断熱層2Bを層着一体化するのが好ましい。
この場合、図1に示す床スラブ一体化の構造体1にあっては、図4に示す如く、山形状の上部開放型枠の壁W部でのフレッシュコンクリート面上に断熱パネル2の断熱層2Bを載置することとなり、図12に示す、コンクリート壁Wと断熱パネル2の層着形態の構造体1´にあっては、図13に示す如く、平坦配置のコンクリート壁Wのフレッシュコンクリート面上への断熱パネル2の断熱層2Bを載置することとなるが、コンクリート壁Wがフレッシュコンクリートであるため、断熱パネル2のセメント板2A面からの叩き調整が可能で、コンクリート壁W面と断熱層2B面との界面には空気隙間が発生せず、且つセメント板2A表面に不陸の生じない層着となる。
従って、硬化コンクリート壁Wへの断熱パネル2の接着剤による後貼り皿ねじ固定より、はるかに均斉、且つ断熱機能の保証された、高品質の構造体となる。
In addition, in the heat insulating panel 2 of the prestressed building structure 1 of the present invention, it is preferable that the heat insulating layer 2B is layered and integrated with the concrete wall W in which the precast concrete bodies 1A and 1′A are fresh concrete.
In this case, in the floor slab integrated structure 1 shown in FIG. 1, as shown in FIG. 4, the heat insulation layer of the heat insulation panel 2 on the fresh concrete surface at the wall W portion of the mountain-shaped upper open mold. 12B, in the structure 1 ′ in a layered form of the concrete wall W and the heat insulation panel 2 shown in FIG. 12, the fresh concrete surface of the flatly arranged concrete wall W as shown in FIG. The heat insulation layer 2B of the heat insulation panel 2 is placed on the top, but since the concrete wall W is fresh concrete, the beating adjustment from the cement plate 2A surface of the heat insulation panel 2 is possible. An air gap does not occur at the interface with the surface of the heat insulating layer 2B, and the layering is such that no unevenness occurs on the surface of the cement board 2A.
Therefore, it becomes a high-quality structure that is far more uniform and has a guaranteed heat insulating function than the post-fixing countersunk screw fixing to the hardened concrete wall W by the adhesive of the heat insulating panel 2.

また、本発明にあっては、断熱パネル2は、断熱層2Bが、図3(B)に示す如く、押出成形セメント板2Aの各条溝AG,AG´の対向面に、断面矩形の通気増進用の切欠溝BGを備えているのが好ましい。
本発明のプレストレスト建築用構造体1(1´)で構築した外断熱建築物は、断熱パネル2内の条溝AG,AG´が、図10に示す如く、腰水切15から笠木17まで外気を貫流させる通気層となり、また、空気の自然対流は、空気粘性の為に通気層厚(深さ)が10mm以上必要である。
そして、本発明の切欠溝BGの深さは標準10mmとする。
従って、得られる建築物の外壁の通気層厚は,条溝AG,AG´の深さgd(標準:13mm)プラス切欠溝BG深さ(標準:10mm)となり、腰水切15から笠木17までの外気の自然対流が、各条溝AG,AG´全てで完全に保証される。
Further, according to the present invention, the heat insulating panel 2 has a heat insulating layer 2B having a rectangular cross section on the opposing surface of each groove AG, AG 'of the extruded cement plate 2A as shown in FIG. 3 (B). It is preferable to provide a cutout groove BG for enhancement.
In the external heat insulating building constructed with the prestressed building structure 1 (1 ′) of the present invention, the grooves AG, AG ′ in the heat insulating panel 2 allow the outside air from the waist drainer 15 to the headboard 17 as shown in FIG. The ventilation layer to be flown through, and the natural convection of air requires a thickness (depth) of 10 mm or more because of air viscosity.
And the depth of the notch groove BG of this invention shall be 10 mm as a standard.
Therefore, the ventilation layer thickness of the outer wall of the resulting building is the depth gd (standard: 13 mm) of the groove AG, AG 'plus the notch groove BG (standard: 10 mm). Natural convection of the outside air is completely guaranteed in all the grooves AG, AG ′.

また、本発明のプレストレスト建築用構造体1(1´)は、図2(A)、図8(A)に示す如く、コンクリート壁Wの一側縁WLでは、壁Wと断熱層2Bとが面一で、セメント板2Aが断熱層2Bから突出段差d1を備え、他側縁WRでは、断熱層2Bが、壁Wから、突出段差d1より大きな突出段差d2を備え、且つセメント板2Aと壁Wとが面一であるのが好ましい。
この場合、標準の、壁長さL8が2480mmのプレストレスト建築用構造体1(1´)にあっては、図2(A)の如く、5枚の断熱パネル2を衝合してコンクリート壁Wに一体化し、d1は10mm、d2は20mmである。
Moreover, as shown in FIG. 2 (A) and FIG. 8 (A), the prestressed building structure 1 (1 ′) of the present invention has a wall W and a heat insulating layer 2B at one side edge WL of the concrete wall W. In the same plane, the cement plate 2A has a protruding step d1 from the heat insulating layer 2B, and at the other side edge WR, the heat insulating layer 2B has a protruding step d2 larger than the protruding step d1 from the wall W, and the cement plate 2A and the wall W is preferably flush with the surface.
In this case, in the standard prestressed building structure 1 (1 ′) having a wall length L8 of 2480 mm, as shown in FIG. And d1 is 10 mm and d2 is 20 mm.

そして、各構造体1(1´)を並列結合するに際し、図8(A)の如く、両側端縁で断熱層2B同士を衝合すれば、衝合部では、セメント板2A間にはd5(10mm)の目地28B用間隔が、コンクリート壁W間ではd2(20mm)の目地28A用間隔が容易に形成出来、セメント板2Aと断熱層2Bとの相欠け接合となり、目地28Bに充填するシーリングに、例え損傷があっても、外気が、断熱層2Bの当接部、或いは、断熱層2Bと壁Wとの接着不良により生じた隙間に廻り込むこともなく、断熱機能低下は生じない。   When the structures 1 (1 ′) are coupled in parallel, as shown in FIG. 8A, if the heat insulating layers 2B are brought into contact with each other at both side edges, d5 is provided between the cement plates 2A at the abutting portion. The spacing for the joint 28B of (10 mm) can be easily formed between the concrete walls W, and the spacing for the joint 28A of d2 (20 mm), and the cement plate 2A and the heat insulating layer 2B are joined together to form a sealing filling the joint 28B. In addition, even if there is damage, the outside air does not enter the contact portion of the heat insulating layer 2B or the gap formed by the poor adhesion between the heat insulating layer 2B and the wall W, and the heat insulating function does not deteriorate.

尚、この場合、図8(B),(C)の如く、構造体のコンクリート壁上端、及び下端でも段差d3を配置して上下接合を相欠け接合とすることにより、断熱機能低下を抑制するのが好ましい。
しかも、各プレストレスト建築用構造体1,1´相互の並列衝合部には、コンクリート壁W相互間には、d2(標準:20mm)の目地間隔が存在するため、建築物の構築時には、該目地間隔により、施工誤差、建方誤差、製品誤差の吸収(調整)が可能となる。
In this case, as shown in FIGS. 8B and 8C, the step d3 is also arranged at the upper and lower ends of the concrete wall of the structure to suppress the lowering of the heat insulation function by making the upper and lower joints phase-matching. Is preferred.
Moreover, since there is a joint interval of d2 (standard: 20 mm) between the concrete walls W in the parallel abutting portions between the prestressed building structures 1 and 1 ', when building a building, Depending on the joint spacing, it is possible to absorb (adjust) construction errors, construction errors, and product errors.

そして、建込み作業は、各プレストレスト建築用構造体1(1´)の断熱層2B同士の衝合当接の実施となり、コンクリート損壊を生ずることなく、スムーズに実施出来る。
尚、壁目地28A間隔d2(20mm)は、プレストレスト建築用構造体1(1´)相互の建付け完了後に、慣用の無収縮モルタルを充填するが、断熱層2Bの壁W側縁からのd2(20mm)の突出は、壁目地28Aに無収縮モルタルを充填する際の型枠機能を奏する。
Then, the erection work is performed by abutting contact between the heat insulating layers 2B of the prestressed building structures 1 (1 '), and can be smoothly performed without causing concrete damage.
The wall joint 28A interval d2 (20 mm) is filled with a conventional non-shrink mortar after completion of the prestressed construction structure 1 (1 ′), but d2 from the wall W side edge of the heat insulating layer 2B. The protrusion of (20 mm) provides a formwork function when filling the wall joint 28A with non-shrink mortar.

また、本発明のプレストレスト建築用構造体1は、図1に示す如く、壁Wの内面にはリブR群を、床スラブS下面にはジョイスト梁G群を備え、各リブRとジョイスト梁Gとは、弯曲接合部C2を介して連続しているのが好ましい。
この場合、リブR、ジョイスト梁G共、図1に示す如く、端部から接合部C2へ突出長RL,GHを漸増した形態が好ましい。
Further, as shown in FIG. 1, the prestressed building structure 1 of the present invention includes a rib R group on the inner surface of the wall W and a joist beam G group on the lower surface of the floor slab S, and each rib R and the joist beam G Is preferably continuous through the bent joint C2.
In this case, as shown in FIG. 1, the ribs R and the joist beam G preferably have a configuration in which the projecting lengths RL and GH are gradually increased from the end to the joint C2.

即ち、例えば図1に示す、コンクリート躯体の、幅L7が4m、高さL5が3m、床スラブ厚TSが100mm、壁厚TWが150mmの実施例のタイプにあっては、リブ先端突出長RL、及びジョイスト梁先端突出長GHが共に125mm、リブ基端突出長RL´及びジョイスト梁基端突出長GH´が共に250mm、接合部C2の曲率半径450mm、リブR及びジョイスト梁Gの間隔は500mm、リブ基端幅(元端幅)RW´及びジョイスト梁基端幅(元端幅)GW´が共に140mm、リブ先端幅RW及びジョイスト梁先端幅GWが共に100mmとするのが好ましい。   That is, for example, in the case of the concrete type shown in FIG. 1 in which the width L7 is 4 m, the height L5 is 3 m, the floor slab thickness TS is 100 mm, and the wall thickness TW is 150 mm, the rib tip protrusion length RL , And the joist beam tip protrusion length GH is 125 mm, the rib base end protrusion length RL ′ and the joist beam base end protrusion length GH ′ are both 250 mm, the radius of curvature of the joint C2 is 450 mm, the interval between the rib R and the joist beam G is 500 mm, and the rib It is preferable that the base end width (original end width) RW ′ and the joist beam base end width (original end width) GW ′ are both 140 mm, and the rib front end width RW and the joist beam front end width GW are both 100 mm.

リブR、及びジョイスト梁Gの形態、寸法は、強度計算面と製造面を勘案して決定すれば良いが、リブR及びジョイスト梁Gの存在により、壁W及び床スラブSの肉厚が合理的に軽減出来、しかも、壁W内でのPC鋼材(PC鋼棒7A)挿通用スパイラルシースの配置、及び床スラブS内でのPC鋼材(PC鋼より線7B)挿通用スパイラルシースの配置が、リブR、ジョイスト梁G、及び接合部C2の存在により、使用セメント量の軽減の下に支障無く実施出来、PC鋼材のストレス導入の下での配置固定が、必要、且つ、充分な張力付与の下に、プレキャストコンクリート体1Aにコンクリート損壊を生ずることなく実施可能となる。   The shape and dimensions of the rib R and the joist beam G may be determined in consideration of the strength calculation surface and the manufacturing surface. However, the wall W and the floor slab S are reasonably thick due to the presence of the rib R and the joist beam G. The arrangement of the spiral sheath for inserting the PC steel material (PC steel rod 7A) in the wall W and the arrangement of the spiral sheath for inserting the PC steel material (PC steel stranded wire 7B) in the floor slab S can be reduced. , Rib R, joist beam G, and joint C2 can be carried out without any problems while reducing the amount of cement used, and it is necessary to place and fix PC steel under stress and to provide sufficient tension. The precast concrete body 1A can be carried out without causing concrete damage.

また、本発明に用いるプレストレスト建築用構造体1は、図1(B)に示す如く、壁Wの上端に、床スラブ表面Sfより突出した上面平坦な受台Bを備えているのが好ましい。
この場合、受台Bは、図6の如く、上方のプレストレスト建築用構造体1のコンクリート壁Wを載置固定する機能を奏すると共に、図7(A)で明らかな如く、床スラブSに配置したPC鋼材(PC鋼より線7B)を定着するための、支圧板6及びアンカーヘッド6Cを配置する壁Wの欠込みH1´と、壁Wに配置したPC鋼材(PC鋼棒7A)を定着するための、アンカープレート4G及びナット4Eを配置する受台Bの欠込みH1”とを離した形態と出来る。
Moreover, it is preferable that the prestressed building structure 1 used in the present invention includes a flat top cradle B protruding from the floor slab surface Sf at the upper end of the wall W, as shown in FIG.
In this case, the cradle B has a function of placing and fixing the concrete wall W of the upper prestressed building structure 1 as shown in FIG. 6 and is disposed on the floor slab S as is clear from FIG. For fixing fixed PC steel (PC steel stranded wire 7B), fixing notch H1 'of wall W where support plate 6 and anchor head 6C are arranged, and PC steel (PC steel rod 7A) arranged on wall W For this purpose, the anchor plate 4G and the notch H1 ″ of the cradle B on which the nut 4E is arranged can be separated.

従って、受台Bが各PC鋼材7A,7Bの定着部の補強構造を提供し、受台Bによって、PC鋼材の引張り応力によるPC鋼材定着部でのコンクリート破損が阻止出来、プレストレスト建築用構造体1の、プレストレスを導入した相互結合による建築物の構築が、コンクリート使用量の軽減の下に可能となる。
しかも、受台Bは、上面BTが、床スラブ表面Sfよりも高さBH(標準:100mm)だけ突出しているため、床スラブ表面Sfに、図10の如く、慣用の鋼製床下地30を配置し、フローリング30Aを受台Bの上面BTのレベルに二重床として張設することにより、フローリングと床スラブ表面Sfとのスペースを、情報機器用の配線、配管等の設備用空間として用いることが出来、床スラブSを損壊することなく配線、配管の敷設及び変更が可能となり、インテリジェントビルとしての内装も簡便に実施出来る。
Therefore, the cradle B provides a reinforcement structure for the fixing portion of each of the PC steel materials 7A and 7B, and the cradle B can prevent the concrete breakage at the PC steel material fixing portion due to the tensile stress of the PC steel material. The construction of the building by the mutual connection which introduce | transduced the 1 prestress becomes possible under reduction of the amount of concrete used.
Moreover, since the upper surface BT of the cradle B protrudes by a height BH (standard: 100 mm) from the floor slab surface Sf, a conventional steel floor foundation 30 is provided on the floor slab surface Sf as shown in FIG. By arranging and extending the flooring 30A as a double floor on the level of the upper surface BT of the cradle B, the space between the flooring and the floor slab surface Sf is used as a space for equipment such as wiring and piping for information equipment. The wiring and piping can be laid and changed without damaging the floor slab S, and the interior as an intelligent building can be easily implemented.

しかも、屋上部では、図10の如く、受台上面BTと一般防水層19とに段差が付与出来、雨水、融雪水が外壁を伝って外壁を汚損することも防止出来る。
即ち、本発明は、受台Bの存在により、プレストレスト建築用構造体1相互の上下載置結合を確実にすると共に、屋上から外壁面への流水防止機能も奏し、しかも、PCコンクリートへのプレストレスの導入がコンクリートを損壊することなく実施可能となり、同時に、床下の配線、配管の更新、変更が容易な二重床が形成出来る。
Moreover, on the rooftop, as shown in FIG. 10, a step can be provided between the cradle upper surface BT and the general waterproof layer 19, and rainwater and snowmelt water can be prevented from being polluted along the outer wall.
That is, according to the present invention, due to the presence of the cradle B, the prestressed construction structure 1 can be connected to each other in a vertical manner, and also has a function of preventing water from flowing from the roof to the outer wall surface. Stress can be introduced without damaging the concrete, and at the same time, a double floor can be formed that is easy to renew and change the wiring and piping under the floor.

本発明のプレストレスト建築用構造体1,1´で構築した建築物は、壁W及び床スラブSがプレキャストコンクリートでのプレストレスト構造と出来るため、鉄筋コンクリートの短所である亀裂の入り易い問題が改善され、抗張力がプレストレスト構造で増加して構造材としての強度が向上し、鉄筋コンクリート造の長所である耐火性、耐久性に優れた利点を備えた建築物が、通常の鉄筋コンクリート造よりも軽量(20%軽量)化の下に構築出来る。
しかも、外断熱工法を適用したため、耐久性はRC造よりはるかに向上した建築物となる。
Since the building constructed with the prestressed building structure 1, 1 ′ of the present invention can have the wall W and the floor slab S as a prestressed structure made of precast concrete, the problem of easy cracking, which is a disadvantage of reinforced concrete, is improved. The strength increases as a structural material by increasing the tensile strength in the prestressed structure, and the buildings with the advantages of fire resistance and durability, which are the advantages of reinforced concrete construction, are lighter than ordinary reinforced concrete construction (20% lighter) ) Can be built under
Moreover, since the outer heat insulation method is applied, the building has a much improved durability compared to the RC structure.

また、プレキャストコンクリート体1A,1´Aを採用するため、工場生産と出来、部品、製造品の品質管理が出来て、信頼度の高い構造材が得られ、建築物の施工期間は、通常のRC造の1/2程度に短縮出来る。
また、プレキャストコンクリート体が、図11に示す壁Wのみのコンクリート体1´Aの場合は勿論、図1に示す、壁Wと床スラブSの一体化した断面L字形態のコンクリート体1Aの場合でさえ、粘性の大な高強度コンクリートを採用することにより、プレキャスト成形時には、型枠は上面開放形態に型組み出来、コンクリート打設、及び打設コンクリート壁への断熱パネル2の張設固定が容易に実施出来る。
しかも、建築現場は、主として、クレーンでの吊込みと、PC鋼材によるプレキャスト導入作業となり、騒音が少なく、静かできれいな作業環境下での作業となる。
Moreover, since precast concrete bodies 1A and 1'A are adopted, factory production can be performed, quality control of parts and manufactured products can be performed, and highly reliable structural materials can be obtained. It can be shortened to about 1/2 of RC construction.
In addition, the case where the precast concrete body is a concrete body 1′A having only the wall W shown in FIG. 11, as well as the concrete body 1A having an L-shaped cross section in which the wall W and the floor slab S are integrated as shown in FIG. However, by adopting high-viscosity concrete with high viscosity, the mold can be molded into an open top form at the time of precast molding, and the concrete panel can be cast and the insulation panel 2 can be stretched and fixed to the cast concrete wall. Easy to implement.
In addition, the construction site is mainly suspended by a crane and precast introduction work using PC steel, and is performed in a quiet and clean working environment with less noise.

そして、建築作業は、外部足場を用いず作業することが出来、クレーンの大きさや設置場所、資材置場の確保などを適切に計画することにより、狭小地での建築も可能となる。
従って、本発明のプレストレスト建築用構造体1,1´は、断熱パネルでコンクリート躯体が熱的に保護された、高品質で高耐久の外断熱鉄筋コンクリート建築物を、従来のRC造よりも、少量の資材(セメント)使用の下で、工期の短期間化の下で、且つ、現場騒音の低減の下で建築可能とする。
And construction work can be performed without using an external scaffold, and construction in a narrow area is also possible by appropriately planning the size, installation location, and material storage of the crane.
Therefore, the prestressed building structure 1, 1 'of the present invention is a small amount of high-quality and highly durable outer heat-insulated reinforced concrete building in which the concrete frame is thermally protected by a heat insulating panel, compared to conventional RC structures. The construction is possible under the use of the material (cement), the construction period is shortened, and the site noise is reduced.

〔実施例:外壁と床スラブ一体化構造体〕
〔構築建物(図9)〕
図9(A)は、本発明を実施した建築物23の全体斜視図であって、図9(B)は、図9(A)のB−B横断面図である。
該建築物は、スパン長L1が8mで、建物の長さ(壁方向長さ)は、プレストレスト建築用構造体1の躯体部の長さL2(7690mm)に、長さL3が1600mmの鉄骨造建物29を付設した5階建の建物である。
プレストレスト建築用構造体1のRC造部は、事務所OFとして用いるもので、図6(A)に示す如く、壁W方向には、プレストレスト建築用構造体1を3ブロック並列結合し、スパン方向には、2ブロックのプレストレスト建築用構造体1を対向して、床スラブ前端SF(図1)を衝合結合したものである。
[Example: Integrated structure of outer wall and floor slab]
[Building building (Fig. 9)]
FIG. 9 (A) is an overall perspective view of the building 23 in which the present invention is implemented, and FIG. 9 (B) is a BB cross-sectional view of FIG. 9 (A).
The building has a span length L1 of 8 m, the length of the building (the length in the wall direction) is the length L2 (7690 mm) of the frame part of the prestressed building structure 1, and the length L3 is 1600 mm. It is a five-story building with a building 29 attached.
The RC structure of the prestressed building structure 1 is used as an office OF. As shown in FIG. 6 (A), three blocks of prestressed building structures 1 are connected in parallel in the wall W direction, and the span direction. 2 is a structure in which two blocks of prestressed building structure 1 are opposed to each other, and floor slab front end SF (FIG. 1) is abutted and joined.

また、建物は、一端は、アルミカーテンウォールCWで閉止し、他端には鉄骨造建物29を付与する。
他端の鉄骨造建物29は、1階床スラブSに、慣用のアンカーボルトを介してH型鋼の柱を立設し、柱間にはH型鋼の梁を配置し、各階はデッキプレートを用いてコンクリート打設により床を形成し、鉄骨造建物29内には、階段SK、エレベータースペースEV、トイレWC、パイプシャフトPS等を配置し、外壁には、本出願人の開発した特許第2999980号、特許第3577061号等の断熱複合パネルを鉄骨梁に張着して、鉄骨造建物29を外断熱プレストレスト建築用構造体1と一体化し、高断熱、高気密、省エネ性に優れた建築物23とする。
Further, one end of the building is closed with an aluminum curtain wall CW, and a steel structure building 29 is provided on the other end.
The steel-frame building 29 at the other end has H-shaped steel columns erected on the first-floor slab S via conventional anchor bolts, H-shaped steel beams are arranged between the columns, and deck plates are used on each floor. A floor is formed by placing concrete, and a staircase SK, an elevator space EV, a toilet WC, a pipe shaft PS, etc. are arranged in the steel building 29, and the patent No. 2999980 developed by the present applicant is provided on the outer wall. , Japanese Patent No. 3577061 and the like are attached to a steel beam, and the steel building 29 is integrated with the outer heat-insulating prestressed building structure 1 so that the building 23 has high heat insulation, high airtightness, and excellent energy saving. And

また、図10に示す如く、1階床スラブ表面Sfは地面GLと同一レベルとし、床スラブ表面Sfから高さL4(100mm)にフローリング30Aを張設して二重床とし、1階床30A面から60cm(L15)の位置には腰水切15を配置し、プレストレスト建築用構造体1の外壁面は、断熱パネル2の外面を外壁タイル13で仕上げ、鉄骨造建物29の前後壁面には目隠しルーバーORを配設し、屋上は、均しモルタル19Cで均斉化し、断熱材19Aを張設してアスファルト防水19し、屋上には笠木17を配置して、腰水切15から笠木17まで、外壁の断熱パネル2内での、空気流arの貫流を可能とする。   Also, as shown in FIG. 10, the first floor slab surface Sf is at the same level as the ground GL, and a flooring 30A is stretched from the floor slab surface Sf to a height L4 (100 mm) to form a double floor, and the first floor 30A. A waist drainer 15 is arranged at a position 60 cm (L15) from the surface, the outer wall surface of the prestressed building structure 1 is finished with the outer wall tile 13 on the outer surface of the heat insulating panel 2, and the front and rear wall surfaces of the steel building 29 are blindfolded. A louver OR is provided, the roof is homogenized with a leveling mortar 19C, a heat insulating material 19A is stretched to waterproof the asphalt 19, and a headboard 17 is placed on the roof, from the drainage 15 to the headboard 17, the outer wall The air flow ar is allowed to flow through the heat insulation panel 2.

〔断熱パネル(図3)〕
図3(A)は、断熱パネル2の一部切欠斜視図であり、図3(B)は断熱パネル2の上面図であり、図3(C)は断熱パネル2の縦断面図である。
断熱パネル2は、プレキャストコンクリート体1Aの壁Wに一体的に張着使用するものであり、図3から明らかな如く、断熱パネル2は、厚さT1が25mmの押出成形セメント板2Aと、厚さT2が75mmの発泡プラスチック系断熱層2B(JISA9501)が積着一体化したものである。
[Insulation panel (Fig. 3)]
FIG. 3A is a partially cutaway perspective view of the heat insulation panel 2, FIG. 3B is a top view of the heat insulation panel 2, and FIG. 3C is a longitudinal sectional view of the heat insulation panel 2.
The heat insulation panel 2 is used to be integrally attached to the wall W of the precast concrete body 1A. As is apparent from FIG. 3, the heat insulation panel 2 is formed of an extruded cement board 2A having a thickness T1 of 25 mm, A foamed plastic heat insulating layer 2B (JISA9501) having a thickness T2 of 75 mm is stacked and integrated.

そして、標準断熱パネル2にあっては、セメント板2Aは、幅2Awが490mm、高さ2Ahが3000mm、断熱層2Bは、幅2Bwが500mm、高さ2Bhが3020mmであり、パネル2は、一側(左側辺)2Lでは、セメント板2Aが10mmの段差d1突出し、他側(右側辺)2Rでは、断熱層2Bが20mmの段差d2突出し、上端2Tでは、断熱層2Bが50mmの段差d4突出し、下端2Dでは、セメント板2Aが30mmの段差d3突出した形態である。   In the standard heat insulating panel 2, the cement board 2A has a width 2Aw of 490 mm, a height 2Ah of 3000 mm, the heat insulating layer 2B has a width 2Bw of 500 mm, and a height 2Bh of 3020 mm. On the side (left side) 2L, the cement plate 2A protrudes by a step d1 of 10 mm, on the other side (right side) 2R, the heat insulating layer 2B protrudes by a step d2 of 20 mm, and at the upper end 2T, the heat insulating layer 2B protrudes by a step d4 of 50 mm. In the lower end 2D, the cement plate 2A protrudes by a step d3 of 30 mm.

また、セメント板2Aの内面には、深さgdが13mmの条溝AG,AG´を多数並列縦設し、断熱層2Bのセメント板接合面にも、条溝AG,AG´に対応した深さが10mmの切欠溝BGを縦設し、深さ13mmの条溝に深さ10mmの切欠溝BGを付加した形態の通気条溝とし、且つ、両側の条溝AG´、及び中間の条溝AG´は、腰水切取付金具16(図11)止着用に、断面が中間面左右対称の台形(図11(B))としている。
尚、断熱パネル2は、コンクリート壁Wに固着するために、両端部上下に径9mmの皿ねじ挿入用孔H2を穿設し、中央部上方には、PC鋼材の緊張、定着のための、径200mmの切欠孔H1を切り取って開孔しておく。
In addition, a large number of grooves AG and AG ′ having a depth gd of 13 mm are provided in parallel on the inner surface of the cement plate 2A, and the depth corresponding to the grooves AG and AG ′ is also provided on the cement plate joining surface of the heat insulating layer 2B. A notch groove BG with a length of 10 mm is vertically formed, and a ventilation groove groove in which a notch groove BG with a depth of 10 mm is added to a groove groove with a depth of 13 mm, and a groove groove AG ′ on both sides and an intermediate groove groove AG ′ has a trapezoidal shape (FIG. 11B) whose cross section is symmetrical to the left and right sides for fastening the waist drainage fitting 16 (FIG. 11).
The heat insulation panel 2 has a countersunk screw insertion hole H2 having a diameter of 9 mm at both upper and lower ends in order to adhere to the concrete wall W. A notch hole H1 having a diameter of 200 mm is cut out and opened.

〔プレストレスト建築用構造体(図1、図2)〕
図1(A)は、プレストレスト建築用構造体1の全体斜視図であり、図1(B)は、図1(A)の矢印B視側面図であり、図2(A)は、図1(A)の(イ)−(イ)線断面図、即ち、左半がリブRの下部RSを、右半がリブRの上部RTを通る線(イ)−(イ)断面であり、図2(B)は、図1(A)の(ロ)−(ロ)線断面図、即ち左半がジョイスト梁前部GTを、右半がジョイスト梁後部GSを通る(ロ)−(ロ)線断面図である。
[Prestressed building structure (Figs. 1 and 2)]
1A is an overall perspective view of the prestressed building structure 1, FIG. 1B is a side view of FIG. 1A as viewed from arrow B, and FIG. 2A is FIG. (A) (A)-(A) line cross-sectional view, that is, the left half is the lower RS of the rib R, and the right half is the line (B)-(A) cross section passing through the upper part RT of the rib R. 2 (B) is a cross-sectional view taken along line (b)-(b) in FIG. 1 (A), that is, the left half passes the joist beam front part GT and the right half passes the joist beam rear part GS (b)-(b). It is line sectional drawing.

プレストレスト建築用構造体1は、プレキャストコンクリート体1Aが、図1(B)の如く、厚さTWが150mmの垂直のコンクリート壁Wと、厚さTSが100mmの水平のコンクリート床スラブSの弯曲接合部C1を介した断面L字状の一体化ブロックであって、壁Wの上端には、幅BWが300mm、高さBHが100mmの上面平坦な受台Bを備え、壁Wの内側面には補強用のリブRを、床スラブSの下面にはジョイスト梁Gを、且つ、リブRとジョイスト梁Gを、弯曲接合部C2を介した連続形態であり、また、プレキャストコンクリート体1Aの壁Wの外面には、断熱パネル2を一体的に備えたものである。   In the prestressed building structure 1, the precast concrete body 1A is a curved joint of a vertical concrete wall W having a thickness TW of 150 mm and a horizontal concrete floor slab S having a thickness TS of 100 mm as shown in FIG. It is an integrated block having an L-shaped cross section through a section C1, and is provided with a flat top receiving base B having a width BW of 300 mm and a height BH of 100 mm at the upper end of the wall W. Is a continuous form with a rib R for reinforcement, a joist beam G on the lower surface of the floor slab S, and a rib R and a joist beam G via a curved joint C2, and the wall of the precast concrete body 1A. The heat insulation panel 2 is integrally provided on the outer surface of W.

そして、単体としてのプレストレスト建築用構造体1は、高さL5は、3000mm、幅L7は4000mm、長さL8は2480mmであり、壁Wには、図2(A)に示す如く、5枚の断熱パネル2を断熱層2B相互を衝合当接して、セメント板2A間には10mmの目地幅d5を備えた形態で並列固定し、壁Wの一側縁WLでは、セメント板2Aが10mm(d1)突出し、他側縁WRでは断熱層2Bが20mm(d2)突出し、また、壁Wの上端では、図8(C)の如く、受台上面BTから、断熱層2Bが30mm(d3)突出し、セメント板2Aが20mm(d14)落ち込み、壁Wの下端では、図8(B)の如く、セメント板2Aと壁下端が面一で、断熱層2Bが30mm(d3)上方に入り込んだ形態である。   The prestressed building structure 1 as a single unit has a height L5 of 3000 mm, a width L7 of 4000 mm, and a length L8 of 2480 mm. The wall W has five sheets as shown in FIG. The heat insulating panel 2 is abutted against each other and the heat insulating layers 2B are abutted against each other and fixed in parallel with a joint width d5 of 10 mm between the cement plates 2A. At one side edge WL of the wall W, the cement plate 2A is 10 mm ( d1) protrudes, the heat insulating layer 2B protrudes 20 mm (d2) at the other side edge WR, and at the upper end of the wall W, as shown in FIG. 8C, the heat insulating layer 2B protrudes 30 mm (d3) from the cradle upper surface BT. The cement plate 2A is lowered by 20 mm (d14), and at the lower end of the wall W, as shown in FIG. 8B, the cement plate 2A and the wall lower end are flush with each other, and the heat insulating layer 2B is inserted 30 mm (d3) upward. is there.

また、図2(A),(B)に示す如く、プレキャストコンクリート体1Aの壁Wは、床スラブSのジョイスト梁G同様に、一側縁WLからL9(240mm)、他側縁WRからL9(240mm)、及び中間の等間隔L10(500mm)に配置したリブRを5本備え、壁W内には異形棒鋼の縦筋11A、及び横筋11Bを、リブR内には主筋11C及び帯金11Dを配筋し、各リブRの両側のL3(125mm)位置で、壁W内にPC鋼材挿通用のスパイラルシース3Aを配置している。
そして、リブRは、下部RSでは、突出長RLが125mm、先端幅RWが100mm、元端幅RW´が140mmであり、上部RTでは、突出長RL´が250mm、先端幅RWが100mm、元端幅RW´が140mmである。
Further, as shown in FIGS. 2A and 2B, the wall W of the precast concrete body 1A is similar to the joist beam G of the floor slab S, from one side edge WL to L9 (240 mm) and from the other side edge WR to L9. (240 mm) and five ribs R arranged at an equal interval L10 (500 mm) in the middle, and a vertical bar 11A and a horizontal bar 11B of deformed steel bars are provided in the wall W, and a main bar 11C and a band in the rib R 11D is arranged, and a spiral sheath 3A for inserting a PC steel material is arranged in the wall W at L3 (125 mm) positions on both sides of each rib R.
The rib R has a protrusion length RL of 125 mm, a tip end width RW of 100 mm, and an original end width RW ′ of 140 mm in the lower RS, and a protrusion length RL ′ of 250 mm and a tip end width RW of 100 mm in the upper RT. The end width RW ′ is 140 mm.

また、図2(B)に示す如く、プレストレスト建築用構造体1のプレキャストコンクリート体1Aは、床スラブSが、壁Wの各リブRから連続するジョイスト梁Gを備え、床スラブS内には、異形棒鋼の床スラブ筋12A,12Bを、ジョイスト梁G内には、主筋12C、肋筋12D、腹筋12E、及び、床スラブ緊張用PC鋼材を挿通するためのスパイラルシース3Bを配筋したものであり、ジョイスト梁Gの形状は、前部GTでは、突出長GHが125mm、先端幅GWが100mm、元端幅GW´が140mm、後部GSでは、突出長GH´が250mm、先端幅GWが100mm、元端幅GW´が140mmである。   2B, the precast concrete body 1A of the prestressed building structure 1 includes a joist beam G in which the floor slab S is continuous from each rib R of the wall W. The floor slab bars 12A and 12B of deformed steel bars are arranged in the joist beam G with the main bar 12C, the heel bar 12D, the abdominal bar 12E, and the spiral sheath 3B for inserting the PC steel material for floor slab tension. The shape of the joist beam G is such that the projection length GH is 125 mm, the tip width GW is 100 mm, the original width GW ′ is 140 mm, and the projection length GH ′ is 250 mm and the tip width GW is rear GS. The original end width GW ′ is 100 mm.

〔プレストレスト建築用構造体の形成(図4、図5)〕
図4(A)は、型枠8の概略側面図であって、図4(B)は、図4(A)のB−B線断面図であり、図4(C)は、図4(B)の部分拡大図である。
また、図5(A)は、壁Wへの断熱パネル取付状態説明図であり、図5(B)は、受具10の分解斜視図であり、図5(C)は、受具の処理状態説明図である。
図4(A)に示す如く、壁W側と床スラブS側との一体化型枠8を、断面三角形の押え金具8Iで支承して、山形の傾斜形態に配置し、上面が開放したプレキャストコンクリート体用型枠とする。
[Formation of prestressed building structures (Figs. 4 and 5)]
4A is a schematic side view of the mold 8, FIG. 4B is a cross-sectional view taken along line BB of FIG. 4A, and FIG. 4C is FIG. It is the elements on larger scale of B).
FIG. 5A is an explanatory diagram of a state in which the heat insulating panel is attached to the wall W, FIG. 5B is an exploded perspective view of the receiver 10, and FIG. 5C is a process of the receiver. It is a state explanatory view.
As shown in FIG. 4 (A), the precast with the wall W side and the floor slab S side being supported by a holding metal fitting 8I having a triangular cross section and arranged in an angled shape with an open top surface. It will be a concrete body formwork.

そして、壁WとリブRの断面形態を備えた鋼板製コンクリート受けベッド8A´、及び床スラブSとジョイスト梁Gの断面形態を備えた鋼板製コンクリート受けベッド8A”を、弯曲接合部C1対応の弯曲鋼板C1´、及び弯曲接合部C2対応の弯曲鋼板C2´で接続し、ベッド8A´、及び8A”を補強鋼材8Bで支承し、両側及び両側下端にはコンクリート止8H,8´Hを押え金具8Iで支承し、腹起し8D及びキャンバー8G,8G´を介してパイプサポート27A´で保持し、接合部C1用の弯曲鋼板C1´は、櫛型8C、根太8Eを介し、接合部C2用の弯曲鋼板C2´は、櫛型8C´、根太8Eを介して、かんざし(サポート)8F、及びパイプサポート27A´で保持する。   And, the steel plate concrete receiving bed 8A ′ having the cross-sectional shape of the wall W and the rib R, and the steel plate concrete receiving bed 8A ″ having the cross-sectional shape of the floor slab S and the joist beam G are adapted to the curved joint C1. Connected by the bent steel plate C1 ′ and the bent steel plate C2 ′ corresponding to the bent joint C2, the beds 8A ′ and 8A ″ are supported by the reinforcing steel material 8B, and the concrete stoppers 8H and 8′H are pressed on both sides and lower ends of both sides. It is supported by the metal fitting 8I and is held by the pipe support 27A ′ via the flank 8D and the cambers 8G and 8G ′, and the bent steel plate C1 ′ for the joint C1 is joined via the comb 8C and joist 8E to the joint C2. The curved steel plate C2 ′ for use is held by a hairpin (support) 8F and a pipe support 27A ′ via a comb 8C ′ and a joist 8E.

また、ベッド8A´,8A”内には、図2(A),(B)の如く、強度計算に基づいて予め組立てた配筋を配置し、スパイラルシース3A,3B,3Cの端部のPC鋼材の緊張応力を受けるトランペットシース5,5´周囲には、図7の如く、補強筋6B,6B´,6B”を適宜配置すると共に、各スパイラルシース3A,3B,3C内へグラウト3Fを注入するためのホース5Dを接続しておく。   Further, in the beds 8A ′ and 8A ″, as shown in FIGS. 2A and 2B, bar arrangements pre-assembled based on the strength calculation are arranged, and the PCs at the ends of the spiral sheaths 3A, 3B and 3C are arranged. As shown in FIG. 7, reinforcing bars 6B, 6B ', 6B "are appropriately arranged around the trumpet sheaths 5, 5' that receive the tensile stress of the steel material, and the grout 3F is injected into the spiral sheaths 3A, 3B, 3C. The hose 5D for connecting is connected.

また、壁W側の断熱パネル2の皿ボルト9D´止着位置では、図5(B)に示す如く、内周がねじ孔である軸部10C、上端辺10A、及び下端辺10Bを備えたプラスチック製受具10を、図5(A)の如く、ベッド8A´内側に配置し、ベッド8A´外部からのボルト9Aでの、ベッド8A´のねじ挿入孔H9への螺入によって、受具10をベッド8A´内側に保持し、打設コンクリート表面を規定するプラスチック製KPコン9Bをねじ9Cで受具10に固定し、KPコン9Bには、図4(B)の如く、ねじ9Dを突出して、プレキャストコンクリート体1Aの型枠8を構成する。   Moreover, in the countersunk | bolt bolt 9D 'fastening position of the heat insulation panel 2 by the side of the wall W, as shown in FIG.5 (B), it provided with the axial part 10C whose upper periphery is a screw hole, upper end side 10A, and lower end side 10B. As shown in FIG. 5 (A), the plastic holder 10 is arranged inside the bed 8A ′, and the bolt 9A from the outside of the bed 8A ′ is screwed into the screw insertion hole H9 of the bed 8A ′. 10 is held inside the bed 8A ', and a plastic KP container 9B that defines the surface of the concrete to be placed is fixed to the support 10 with screws 9C. The screws 9D are attached to the KP container 9B as shown in FIG. Projecting to form the mold 8 of the precast concrete body 1A.

次いで、型枠8内、即ち、ベッド8A´,8A”上に、圧縮強度500kg/cm、スランプ8cm、水セメント比38%、空気量3%の高強度コンクリートを、振動機、タッピング機を用いて、下方から順次打設し、壁W部では、KPコン9Bの表面9B´を厚さ目印とし、床スラブS部では、慣用のモドルポイント接着型(商品名、丸井産業(株)製)を配設してコンクリート厚目印とし、粘性の高いコンクリートを締め固めと同時に平坦に均して、こて仕上げする。 Next, high strength concrete with a compressive strength of 500 kg / cm 2 , a slump of 8 cm, a water cement ratio of 38%, and an air volume of 3% is placed in the mold 8, that is, on the beds 8A ′ and 8A ″. In the wall W part, the surface 9B 'of the KP con 9B is used as a thickness mark, and in the floor slab S part, a conventional middle point adhesive type (trade name, manufactured by Marui Sangyo Co., Ltd.) is used. ) Is used as a concrete mark for concrete, and high viscosity concrete is compacted and leveled at the same time as a trowel.

次いで、打設コンクリートが、凝結から硬化に至るまでのフレッシュコンクリートの状態で、図4(C)の如く、KPコン9Bから立設しているねじ9Dを断熱パネル2の皿ねじ挿入用孔H2に貫通する形態で、断熱パネル2を、フレッシュコンクリート及びKPコン9Bに載置し、断熱パネル表面(セメント板2A)を木片で叩きながら全面当接密着し、セメント板2Aより突出したねじ9Dに座金9E及びナット9Fを用いて、KPコン9Bに断熱パネル2を取付ける。
従って、断熱パネル2の断熱層2Bと、プレキャストコンクリート体1Aのコンクリート壁Wとの界面には、空気が介在しない状態での、全面接着と出来る。
Next, the cast concrete is in the state of fresh concrete from setting to hardening, and the screw 9D standing from the KP con 9B is inserted into the countersunk screw insertion hole H2 of the heat insulation panel 2 as shown in FIG. The heat insulation panel 2 is placed on the fresh concrete and the KP con 9B in a form penetrating into the surface, and the entire surface of the heat insulation panel (cement board 2A) is brought into close contact with the wood piece while being hit with a piece of wood, and the screw 9D protrudes from the cement board 2A. Using the washer 9E and nut 9F, the heat insulation panel 2 is attached to the KP con 9B.
Therefore, it is possible to bond the entire surface in a state where no air is present at the interface between the heat insulating layer 2B of the heat insulating panel 2 and the concrete wall W of the precast concrete body 1A.

次いで、シート9Gで覆って、蒸気管9Hからの蒸気を供給して、コンクリートの蒸気養生後、型枠8を解体してナット9F、座金9Eを外し、ねじ9DをKPコン9Bから抜脱し、図5(A)の如く、断熱パネル2のセメント板2Aの皿ねじ挿入用孔H2から皿ねじ9D´を螺入してKPコン9Bに螺着し、ボルト9Aを抜脱した受具10の孔は嵌合具10´を螺着閉塞する。
この場合、KPコン9B内では、コンクリート壁W内のKPコン9Bを保持しているねじ9Cの上端と、螺入する皿ねじ9D´の下端との間には、間隔S9が存在する形態に、皿ねじ9D´を螺着し、プレキャストコンクリート体1を型枠から製品として取出す。
Next, cover with a sheet 9G, supply steam from the steam pipe 9H, and after curing the concrete with steam, disassemble the mold 8 and remove the nut 9F and washer 9E, and remove the screw 9D from the KP con 9B. As shown in FIG. 5 (A), the countersunk screw 10 is inserted into the countersunk screw insertion hole H2 of the cement plate 2A of the heat insulating panel 2 and screwed into the KP con 9B, and the bolt 10A is removed. The holes screw and close the fitting 10 '.
In this case, in the KP controller 9B, a gap S9 exists between the upper end of the screw 9C holding the KP component 9B in the concrete wall W and the lower end of the countersunk screw 9D ′ to be screwed. Then, a countersunk screw 9D 'is screwed and the precast concrete body 1 is taken out from the mold as a product.

〔コンクリート体1Aの欠込み(図1、図6)
プレキャストコンクリート体1Aの型成形時に、図1(B)に示す如く、プレストレスト建築用構造体1の相互結合部のスラブS両側縁には、高さ100mm、幅100mm、深さ25mmの欠込みH3を形成する。
欠込みH3は、床スラブSにジョイスト梁Gと直交方向にプレストレスを導入してPC鋼材7Bを配置するための、スパイラルシース3C及び3Bの、プレストレスト建築用構造体1の相互結合部での接合を容易とするためである。
また、図6(A)、図7(C)に示す如く、プレストレスト建築用構造体1相互を並列結合した際の最外端に位置する床スラブSの側縁、即ち、PC鋼材7Bの緊張、及び定着端となる側縁には、中間接合部での欠込みH3よりも大きな、幅、高さが100mmで奥行(深さ)が109mmの欠込みH3´を配置する。
[Indentation of concrete body 1A (Figs. 1 and 6)
At the time of molding the precast concrete body 1A, as shown in FIG. 1 (B), notches H3 having a height of 100 mm, a width of 100 mm, and a depth of 25 mm are formed on both side edges of the slab S of the interconnecting portion of the prestressed building structure 1. Form.
The notch H3 is provided at the mutual connection part of the prestressed building structure 1 of the spiral sheaths 3C and 3B for introducing the prestress in the direction perpendicular to the joist beam G to the floor slab S and arranging the PC steel material 7B. This is to facilitate joining.
Further, as shown in FIGS. 6 (A) and 7 (C), the side edge of the floor slab S located at the outermost end when the prestressed building structures 1 are connected in parallel, that is, the tension of the PC steel material 7B. In addition, a notch H3 ′ having a width and height of 100 mm and a depth (depth) of 109 mm, which is larger than the notch H3 at the intermediate joint portion, is disposed on the side edge serving as the fixing end.

また、床スラブS上面には、図6(A)に示す如く、外断熱プレストレスト建築用構造体1の吊上げ用のアンカー埋設露出孔として欠込みH25を配置する。
また、建方時のプレストレスト建築用構造体1の転倒防止用として、壁W、床スラブSに欠込みH26を適宜配置すれば良い。
これら小さな欠込みH3,H3´,H25,H26等は、プレキャストコンクリート体1Aの型組み時に、適宜小片型枠を配置すれば形成容易である。
また、壁W上部には、図7(A)の如く、床スラブS内のPC鋼材7Bの緊張、定着用の欠込み(ポケット)H1´を、受台B上面には、壁W内のPC鋼材7Aの緊張、定着用の欠込み(ポケット)H1”を、慣用のポケットフォーマーで形成する。
Further, on the upper surface of the floor slab S, as shown in FIG. 6A, a notch H25 is disposed as an anchor embedment exposure hole for lifting the outer heat insulating prestressed construction structure 1.
Moreover, what is necessary is just to arrange | position the notch H26 to the wall W and the floor slab S suitably for the fall prevention of the prestressed building structure 1 at the time of construction.
These small notches H3, H3 ′, H25, H26 and the like can be easily formed by appropriately arranging small piece molds when assembling the precast concrete body 1A.
Further, as shown in FIG. 7A, the upper portion of the wall W has a tension (notch) H1 ′ for fixing and fixing the PC steel material 7B in the floor slab S, and the upper surface of the cradle B has The tension and the notch (pocket) H1 ″ for fixing the PC steel material 7A are formed by a conventional pocket former.

〔プレストレスト建築用構造体相互の構築(図6、図7)〕
外断熱プレストレスト建築用構造体1を用いた建物の構築は、図7(B)に示す如く、掘削地盤面に打設した捨コンクリートC0に、基礎梁FGの位置を墨出しし、基礎梁FG及び耐圧板FSをコンクリート打設する。
基礎梁FG外面に用いる断熱パネル2は、標準断熱パネル2の下部を平坦に切落したものであって、図7(B)に示す如く、下端2D´は平坦で、上端2Tは、押出成形セメント板2Aより断熱層2Bが50mm(d4)突出したもので、基礎梁FG上端辺FTより、断熱層2Bが30mm(d3)突出し、セメント板2A上端が20mm(d14)落下した状態に配置する。
尚、基礎梁FGは、上端辺FTが地面GLより100mm(L4)上方、且つ、床スラブ表面SfよりBH(100mm)上方位置であり、下端が地面GLより1200mm(LF)下方の高さである。
[Construction between prestressed building structures (Figs. 6 and 7)]
As shown in Fig. 7 (B), the building construction using the outer heat-insulated prestressed building structure 1 shows the position of the foundation beam FG on the discarded concrete C0 placed on the excavated ground surface. And the pressure plate FS is placed in the concrete.
The heat insulation panel 2 used for the outer surface of the foundation beam FG is obtained by cutting the lower part of the standard heat insulation panel 2 flatly. As shown in FIG. 7B, the lower end 2D ′ is flat and the upper end 2T is extruded. The heat insulating layer 2B protrudes 50 mm (d4) from the cement plate 2A, and the heat insulating layer 2B protrudes 30 mm (d3) from the upper end side FT of the foundation beam FG, and the upper end of the cement plate 2A falls 20 mm (d14). .
The foundation beam FG is such that the upper end side FT is 100 mm (L4) above the ground GL, BH (100 mm) above the floor slab surface Sf, and the lower end is 1200 mm (LF) below the ground GL. is there.

また、現場で形成した基礎梁FGには、図7(B)に示す如く、予め両端にねじを備えた、径17mmで650mm長のPC鋼棒7Aを、基礎梁上端辺FTから上方に50mm突出し、下端が、肉厚19mm、一辺90mmの正方形アンカープレート4Gにナット4Eで、引抜き不能に埋設しておく。
そして、基礎梁FGから上方に突出したPC鋼棒7A上端には、カップラー4Aを介して両端にねじを備えた径17mm、長さ3000mm長(L5)のPC鋼棒7A下端を螺着接続し、コンクリート体1Aの壁W内に配置したスパイラルシース3Aへの挿入用PC鋼棒7A群として立設する。
Further, as shown in FIG. 7 (B), the foundation beam FG formed in the field is provided with a PC steel rod 7A having a diameter of 17 mm and a length of 650 mm, which is previously provided with screws at both ends, 50 mm upward from the upper end side FT of the foundation beam. It is embedded in a square anchor plate 4G having a wall thickness of 19 mm and a side of 90 mm so that it cannot be pulled out with a nut 4E.
Then, the lower end of the PC steel rod 7A having a diameter of 17 mm and a length of 3000 mm (L5) provided with screws at both ends is screwed and connected to the upper end of the PC steel rod 7A protruding upward from the foundation beam FG. The PC steel rod 7A for insertion into the spiral sheath 3A disposed in the wall W of the concrete body 1A is erected.

次いで、基礎梁上端辺FTにエポキシ樹脂系汎用接着剤Adを塗布し、クレーンを用いて外断熱プレストレスト建築用構造体1を吊上げ、構造体1の壁W内のスパイラルシース3Aに立設PC鋼棒7Aが貫入挿通する形態で、プレストレスト建築用構造体1を垂下して、構造体1の壁W下端面を基礎梁上端辺FTに載置し、壁W及び床スラブSに適宜に配置した欠込みH26にパイプサポートを適用して、構造体1を垂直形態に保持する。   Next, an epoxy resin general-purpose adhesive Ad is applied to the upper end side FT of the foundation beam, the outer heat insulating prestressed building structure 1 is lifted using a crane, and the PC steel is erected on the spiral sheath 3A in the wall W of the structure 1 With the rod 7A penetrating and penetrating, the prestressed construction structure 1 is suspended, the lower end surface of the wall W of the structure 1 is placed on the upper end side FT of the foundation beam, and appropriately disposed on the wall W and the floor slab S. A pipe support is applied to the notch H26 to hold the structure 1 in a vertical configuration.

同様に、対向する外断熱プレストレスト建築用構造体1は、既立設の外断熱プレストレスト建築用構造体1の床スラブ前端辺SFにエポキシ樹脂系接着剤を塗布し、対向する両側の外断熱プレストレスト建築用構造体1が床スラブ前端辺SF同士で接着剤面接合するように、且つ、対向するジョイスト梁G内のスパイラルシース3B端相互を整合接続させて立設配置する。
以上の建付けを順次繰返して、図6(A)に示す如く、建築物躯体を構築する。
Similarly, the opposing outer heat-insulating prestressed building structure 1 is formed by applying an epoxy resin adhesive to the floor slab front end SF of the existing outer heat-insulating prestressed building structure 1 so as to face both sides of the outer heat-insulating prestressed building. The building structure 1 is erected so that the floor slab front end sides SF are bonded to each other with the adhesive surface joined, and the ends of the spiral sheaths 3B in the opposing joist beam G are aligned and connected.
The above construction is sequentially repeated to construct a building frame as shown in FIG.

建築物へのプレストレス導入は、基本的には、慣用の、橋梁等のコンクリート構築物へのプレストレス導入技術であり、慣用の油圧ジャッキ、油圧ポンプ及び油圧カッターを用いて実施する。
即ち、壁W内を、図7(B)に示す基礎梁FGから、図7(A)に示す最上階の受台Bの欠込みH1”まで、カップラーシース4で接続する。
そして、スパイラルシース3A内をカップラー4Aで接続して貫通したPC鋼棒7Aは、最上階の受台Bの欠込みH1”内で、PC鋼棒7Aの上端に所定の引張応力を付与し、アンカープレート4G、座金4F、及びナット4Eで締着する。
The introduction of prestress into a building is basically a conventional technique for introducing prestress into a concrete structure such as a bridge, and is performed using a conventional hydraulic jack, a hydraulic pump, and a hydraulic cutter.
That is, the inside of the wall W is connected by the coupler sheath 4 from the foundation beam FG shown in FIG. 7 (B) to the notch H1 ″ of the uppermost cradle B shown in FIG. 7 (A).
The PC steel rod 7A that penetrates the spiral sheath 3A by connecting it with the coupler 4A applies a predetermined tensile stress to the upper end of the PC steel rod 7A within the notch H1 ″ of the uppermost cradle B, Fasten with the anchor plate 4G, the washer 4F, and the nut 4E.

また、床スラブSに剛性を付与するための、両側の壁W間に渡るスパン方向のPC鋼材としては、7本撚りで径12.7mm、耐力1580N/mmのPC鋼より線7Bの3本をスパイラルシース3B内に挿通して、図7(A)の如く、両側の壁W内の欠込みH1´内で緊張して、両端で、支圧板6を介してアンカーヘッド6Cで定着する。
また、床スラブS内でジョイスト梁Gに直交方向に配置するPC鋼材としては、PC鋼より線7Bを1本採用し、床スラブS内に配置したスパイラルシース3C内を挿通して構築躯体の前端から後端まで貫通して必要緊張力を付与し、両端を、図7(C)に示す如く、床スラブ側端縁の欠込みH3´内で、支圧板6´及びアンカーヘッド6C´で定着する。
Further, as a PC steel material in the span direction extending between the walls W on both sides for imparting rigidity to the floor slab S, 3 strands of the 7B twisted PC steel wire 7B having a diameter of 12.7 mm and a proof stress of 1580 N / mm 2 are used. As shown in FIG. 7A, the book is inserted into the spiral sheath 3B, is tensioned in the notches H1 ′ in the walls W on both sides, and is fixed by the anchor head 6C via the bearing plate 6 at both ends. .
Further, as the PC steel material arranged in the direction perpendicular to the joist beam G in the floor slab S, one PC wire 7B is adopted and inserted into the spiral sheath 3C arranged in the floor slab S. Necessary tension is applied through the front end to the rear end, and both ends are supported by the bearing plate 6 ′ and the anchor head 6C ′ within the notch H3 ′ of the floor slab side edge as shown in FIG. 7C. To settle.

各スパイラルシース3A,3B,3C内にPC鋼材7A,7Bを定着した後、慣用の手段で、ホース5Dからグラウト注入管5Aを介して、グラウト3Fを各スパイラルシース内に注入充填する。
そして、壁W及び床スラブSの欠込み、壁W相互の当接面の目地28A間隔、床スラブS相互の当接面の目地14´間隔等には、無収縮モルタル、シーリング等で閉止し、壁Wの欠込みH1´外面の断熱パネル2の切欠孔H1に対しては、切欠孔H1形成時に切り取った円盤形態の断熱パネル片2´を、2mm厚で幅50mmの隙間追従シート(商品名:ソフトロン、積水化学工業(株)製)2Cを断熱層2B外周に張着し、断熱層2B平面にエポキシ系接着剤(商品名:MP200、セメダイン(株)製)を塗布し、且つ、セメント板2Aの条溝AG,AG´を整合して無収縮モルタル6Eに当接することにより嵌着閉止し、断熱パネル2の切欠孔H1を断熱パネル片2´で元通りに修復する。
After fixing the PC steel materials 7A, 7B in the spiral sheaths 3A, 3B, 3C, the grout 3F is injected and filled into the spiral sheaths from the hose 5D through the grout injection pipe 5A by conventional means.
Then, the recesses of the wall W and the floor slab S, the joints 28A between the contact surfaces of the walls W and the joints 14 'between the contact surfaces of the floor slabs S are closed with non-shrink mortar, sealing, or the like. For the cutout hole H1 of the heat insulation panel 2 on the outer surface of the notch H1 ′ of the wall W, the disc-shaped heat insulation panel piece 2 ′ cut out at the time of forming the cutout hole H1 is 2 mm thick and a width following sheet of 50 mm (product) Name: Softlon, manufactured by Sekisui Chemical Co., Ltd.) 2C is adhered to the outer periphery of the heat insulating layer 2B, and an epoxy adhesive (trade name: MP200, manufactured by Cemedine Co., Ltd.) is applied to the surface of the heat insulating layer 2B. Then, the grooves AG and AG ′ of the cement board 2A are aligned and brought into contact with the non-shrink mortar 6E to be fitted and closed, and the cutout hole H1 of the heat insulation panel 2 is restored to the original state by the heat insulation panel piece 2 ′.

〔腰水切及び笠木の配置(図10、図11)〕
腰水切15は、一般厚1.5mmのアルミ製押出成形品であって、図11(D)に示す如く、断面形状は、後端に高さh15´が10mmの立上り辺15Aを備えた、勾配高さ5mmで幅W15が36mmの斜辺15Uと、斜辺15U前端からの高さh15が25mmの立下り辺15Fと、立下り辺15Fの下部5mmを水切り辺15Sとして残し、立下り辺15Fから後方に水平に延出した幅W15(36mm)の座板15Bとを備え、座板15B下面には水切り辺15Sから16mm(W15´)の位置から、下方に15mm(d15)長のアンカー板15Pを突出し、且つ、座板15Bの前端部には50mm間隔で空気孔h15を穿孔した形状であり、標準長さ4000mmのものである。
[Waist draining and headboard arrangement (FIGS. 10 and 11)]
The waist drainer 15 is an extruded product made of aluminum having a general thickness of 1.5 mm, and as shown in FIG. 11D, the cross-sectional shape is provided with a rising edge 15A having a height h15 ′ of 10 mm at the rear end. A slope 15U having a slope height of 5 mm and a width W15 of 36 mm, a falling edge 15F having a height h15 of 25 mm from the front end of the hypotenuse 15U, and a lower part 5 mm of the falling edge 15F are left as a draining edge 15S. A seat plate 15B having a width W15 (36 mm) extending horizontally rearward, and an anchor plate 15P having a length of 15 mm (d15) downward from a position of 16 mm (W15 ′) from the draining side 15S on the lower surface of the seat plate 15B. The air hole h15 is perforated at a 50 mm interval at the front end of the seat plate 15B and has a standard length of 4000 mm.

また、腰水切15を断熱パネル2のセメント板2Aに取付けるための取付金具は、図11(C)に示す如く、板材の固定部16A、板材の可動部16B、ボルト16C及びナット16Dから成り、固定部16Aは、高さH16が35mm、長さL16が40mmで、押圧用の固定片16A”を両側に備え、屈曲部16A´で段差d16突出した中央の突出板部16Fの中央には径3mmのねじ孔h16を備えた板材であり、可動部16Bは、両側に60°傾斜で3mm突出のアンカー片16B´を備え、中央に径4mmのねじ孔h16´を備え、高さH16´が35mmで、長さL16´が32mmの板材である。
また、ボルト16Cは、径3mm、10mm長であり、ナット16Dはボルト16Cに螺合する。
In addition, as shown in FIG. 11C, the mounting bracket for attaching the waist drainer 15 to the cement plate 2A of the heat insulating panel 2 includes a plate member fixing portion 16A, a plate member movable portion 16B, bolts 16C, and nuts 16D. The fixing portion 16A has a height H16 of 35 mm and a length L16 of 40 mm, and is provided with pressing fixing pieces 16A ″ on both sides, and has a diameter at the center of the central protruding plate portion 16F protruding from the step d16 by the bent portion 16A ′. The movable part 16B is provided with an anchor piece 16B ′ that is inclined at 60 ° on both sides and protrudes 3 mm, a screw hole h16 ′ having a diameter of 4 mm at the center, and a height H16 ′. The plate is 35 mm and the length L16 ′ is 32 mm.
The bolt 16C has a diameter of 3 mm and a length of 10 mm, and the nut 16D is screwed into the bolt 16C.

腰水切15の外壁面への取付けは、積雪による影響を考慮して、図10に示す如く、1階床、1FLより上方に、600mm(L15)を上端として、図11(A)の如く、幅(L6)40mmで断熱パネル2の押出成形セメント板2Aをカットして幅L6の断熱層2B露出部を形成し、幅L6で切除開口したセメント板2Aの開口部から取付金具16をセメント板2Aの条溝AG´内に挿入して、取付金具16下端がセメント板下端2Dから10mm位、下方突出した形態で、取付金具16をセメント板条溝AG´内に固定する。   In consideration of the effect of snow accumulation, the waist drainer 15 is attached to the outer wall surface as shown in FIG. 10, with the upper floor of the first floor, 1FL, 600 mm (L15) as the upper end, as shown in FIG. The extruded cement plate 2A of the heat insulating panel 2 with a width (L6) of 40 mm is cut to form an exposed portion of the heat insulating layer 2B with a width L6, and the mounting bracket 16 is attached to the cement plate from the opening of the cement plate 2A cut and opened with the width L6. The mounting bracket 16 is inserted into the 2A groove AG ′ and the mounting bracket 16 is fixed in the cement plate groove AG ′ with the lower end of the mounting bracket 16 protruding downward by about 10 mm from the cement plate lower end 2D.

即ち、取付金具16を図11(B)の如く、固定部16Aと可動部16Bとをボルト16C、ナット16Dでセットして条溝AG´内に挿入し、固定部16Aを条溝AG´の背面AFにボルト16Cでねじ孔h16を介して当接し、且つ、ナット16Dを治具で回動して可動部16Bを固定部16Aから離れる方向に移動し、可動部16Bの両側の傾斜形態のアンカー片16B´を条溝AG´の傾斜側面ASに圧着固定すれば良い。   That is, as shown in FIG. 11B, the mounting bracket 16 is set with the fixed portion 16A and the movable portion 16B with bolts 16C and nuts 16D and inserted into the groove AG ', and the fixing portion 16A is inserted into the groove AG'. The back face AF is brought into contact with the bolt 16C through the screw hole h16, and the nut 16D is rotated by a jig to move the movable part 16B away from the fixed part 16A. The anchor piece 16B ′ may be crimped and fixed to the inclined side surface AS of the groove AG ′.

そして、図11(A)の如く、セメント板2Aの幅L6の切除部に腰水切15を挿入し、座板15Bをセメント板上端2Tに載置し、立上り辺15Aを、固定済取付金具16の固定部16Aに当接してドリルねじ15Cにより固定する。
そして、建物外壁材として、断熱パネルのセメント板2A外面には外壁タイル13を張着し、斜辺15Uとタイル13間には、バッカー14Bを介してシーリング14Aを充填し、座板15B下面では、アンカー板15Pでタイル13上端を覆う。
尚、立上り辺15Aと、固定部16との止着は、立上り辺15Aに固定部16Aの対応位置の目印を付しておき、慣用のドリルねじで止着すれば良い。
Then, as shown in FIG. 11A, the waist drainer 15 is inserted into the cut portion of the cement plate 2A having the width L6, the seat plate 15B is placed on the cement plate upper end 2T, and the rising edge 15A is fixed to the fixed mounting bracket 16 The fixed portion 16A is abutted and fixed by a drill screw 15C.
And as a building outer wall material, the outer wall tile 13 is stuck on the cement board 2A outer surface of the heat insulation panel, and between the oblique side 15U and the tile 13 is filled with the sealing 14A via the backer 14B, and on the lower surface of the seat plate 15B, The upper end of the tile 13 is covered with the anchor plate 15P.
The rising edge 15A and the fixing part 16 can be fixed by attaching a mark of the corresponding position of the fixing part 16A to the rising edge 15A and fixing with a conventional drill screw.

笠木17は、図9(A)、図10の如く、断熱パネル2の最上部に配置して、屋上床部と外壁タイル13との見切り、屋上床のアスファルト防水19の端部張仕舞い、及び断熱パネル2の押出成形セメント板2Aの条溝AG,AG´内空気arを屋外に流出させる役目を果すものである。
従って、笠木17としては、プレストレスト建築用構造体1内に存在する条溝AG,AG´の空気貫流を保証するものであれば良く、典型的には、特開2004−60335号として提案された笠木を採用する。
As shown in FIGS. 9 (A) and 10, the headboard 17 is arranged at the uppermost part of the heat insulating panel 2 so as to give a parting between the rooftop floor portion and the outer wall tile 13, assembling the end of the asphalt waterproofing 19 on the rooftop floor, and It plays the role of causing the air ar in the grooves AG, AG ′ of the extruded cement plate 2A of the heat insulating panel 2 to flow out to the outdoors.
Therefore, as the coping 17, it is only necessary to guarantee the air flow of the grooves AG and AG ′ existing in the prestressed construction structure 1, and typically proposed as Japanese Patent Application Laid-Open No. 2004-60335. Adopt Kasagi.

〔外壁仕上げ(図8、図9、図10)〕
図9に示すように、X1通及びX4通の開放空間には、X1通には、複数階に亘るアルミ製のカーテンウォールCWを張設し、X4通には、各階毎にアルミ製窓AWを配置する。
また、外壁の断熱パネル2の押出成形セメント板2Aは、図8(A),(B)の如く、縦目地28B、及び横目地14、更に、緊張部の後貼断熱パネル片2´の周囲、及び押出成形セメント板2Aと、カーテンウォールCW、アルミ製窓AWとの取合部の隙間、また、腰水切15と押出成形セメント板下端2Dとの目地隙間14等は、必要に応じてバッカーを用いシーリングで充填閉止する。
[Outer wall finishing (FIGS. 8, 9, 10)]
As shown in FIG. 9, in the X1 and X4 open spaces, an aluminum curtain wall CW extending over a plurality of floors is stretched in the X1 passage, and an aluminum window AW is provided for each floor in the X4 passage. Place.
Further, as shown in FIGS. 8A and 8B, the extruded cement board 2A of the heat insulating panel 2 on the outer wall is composed of the vertical joint 28B and the horizontal joint 14, and the periphery of the post-applied heat insulating panel piece 2 '. , And the gap between the joints between the extruded cement board 2A and the curtain wall CW and the aluminum window AW, and the joint gap 14 between the lower drainage 15 and the lower end 2D of the extruded cement board, etc. Close with filling using sealing.

また、床には、図10に示す如く、基礎梁FGの上端辺FTと床スラブ表面Sf間にも、受台Bの上端辺BTと床スラブ表面Sf間にも高さBHが100mmの段差が形成出来るため、床スラブ表面Sfには、適宜、床コンセント、電気配線などの設備配管を敷設し、慣用の鋼製床下地30を介してフローリングを張設して二重床とする。
また、壁、天井は、コンクリート打放し仕上げでも、塗装仕上げ、クロス貼り等の適宜の仕上げが採用出来る。
Further, as shown in FIG. 10, the floor has a step having a height BH of 100 mm between the upper end FT of the foundation beam FG and the floor slab surface Sf and between the upper end BT of the cradle B and the floor slab surface Sf. Therefore, on the floor slab surface Sf, equipment piping such as a floor outlet and electric wiring is appropriately laid, and flooring is stretched through a conventional steel floor substrate 30 to form a double floor.
In addition, the walls and ceiling can be appropriately finished, such as painted finish or cloth pasting, even if the concrete is finished with concrete.

以上の如く、実施例の床スラブSを一体化した構造体を用いれば、PCコンクリート構造外断熱建築物が、コンクリートとして、圧縮強度500kg/cm、スランプ8cmの高強度コンクリートを用いたこと、PC鋼材7A,7Bが鉄製のスパイラルシース3A,3B,3Cの中でグラウト3Fに包まれているため、スパイラルシース3A,3B,3Cの被り厚さもコンクリート中性化距離となって、コンクリート躯体の中性化が抑制出来ることで、鉄筋コンクリート建築物としての寿命は、従来のRC造建築物より、はるかに長寿命となる。
しかも、本発明のプレストレスト建築用構造体1にプレストレスを導入して曲げ応力強度を向上したコンクリート躯体は、熱橋の抑制した外断熱工法と組合せたことにより、耐久性は更に向上する。
As described above, if the structure integrated with the floor slab S of the example is used, the PC concrete structure heat insulating building uses high strength concrete having a compressive strength of 500 kg / cm 2 and a slump of 8 cm as concrete. Since the PC steel materials 7A and 7B are wrapped in the grout 3F in the iron spiral sheaths 3A, 3B, and 3C, the covering thickness of the spiral sheaths 3A, 3B, and 3C also becomes the neutralization distance of the concrete, Since neutralization can be suppressed, the life of a reinforced concrete building is much longer than that of a conventional RC building.
Moreover, the durability of the concrete frame, which is improved in bending stress strength by introducing prestress into the prestressed building structure 1 of the present invention, is further improved by combining it with the outer heat insulation method that suppresses the thermal bridge.

また、例え、慣用の壁WとリブRで、コンクリート使用量低減の下に高強度な構造体を構成しても、内断熱工法では断熱材を保護するための仕上工事が複雑、且つ煩雑となるが、本発明の構造体1は、製造時には、外面の面一な形態での断熱パネル2の張着が容易であり、しかも、工場での製作で、フレッシュコンクリートの状態での断熱パネル張着であるため、断熱パネル2の張着が、不陸の無い高い寸法精度の下に実施出来、信頼性の高い建築用ブロック構造物(PCプレストレストコンクリート体)が得られ、高品質のPCコンクリート建築物が得られる。   Also, for example, even if a high-strength structure is constructed with a reduction in the amount of concrete used with conventional walls W and ribs R, the finishing work for protecting the heat insulating material is complicated and complicated by the inner heat insulating method. However, when the structure 1 of the present invention is manufactured, it is easy to attach the heat insulation panel 2 in a form that is flush with the outer surface, and the heat insulation panel tension in the state of fresh concrete is manufactured in a factory. Therefore, the insulation panel 2 can be stretched with high dimensional accuracy without unevenness, and a highly reliable building block structure (PC prestressed concrete body) can be obtained. A building is obtained.

また、従来の現場製作の外断熱工法にあっては、現場での断熱パネルの建込み精度の確保に時間を要したが、本発明の外断熱プレストレスト建築用構造体1は、工場製作なので、天候に左右されずに製作出来、現場での工期の短縮化が図れる。
そして、現場では、基礎部工事を除けば、クレーンによる吊込みと、PC鋼材の緊張、定着だけであるため、現場打ちコンクリートの1/2の時間で建て方が出来、しかも、騒音の無い、静かできれいな現場作業となり、周辺住民への迷惑や、第3者災害の少ない状態での建築施工により、新規、且つ高品質のプレストレストPCセメント建築物の提供が可能となる。
In addition, in the conventional outside heat insulation construction method of field production, it took time to ensure the accuracy of building the heat insulation panel on site, but the outer heat insulation prestressed building structure 1 of the present invention is manufactured by the factory, It can be manufactured regardless of the weather, and the construction period on site can be shortened.
And at the site, except for the foundation work, it is only suspended by crane and tension and fixation of PC steel, so it can be built in half the time of on-site concrete, and there is no noise. It is possible to provide a new and high-quality prestressed PC cement building due to construction work in a quiet and clean field work with less inconvenience to surrounding residents and less third-party disasters.

そして、本発明の構造体1で得られる建築物は、プレストレストPC構造と、外断熱工法との組合せであるため、広い空間が得られ、自由な間取り、自由な改装が出来、コンクリートひび割れの無い高耐久で剛性が高く、上階の騒音も抑制出来る建物となる。
また、結露も無く、場所によっての湿度変化の影響も受けない、健康的で、省エネルギー性に富む、快適な居住空間の提供出来る建物となる。
And since the building obtained with the structure 1 of the present invention is a combination of a prestressed PC structure and an external heat insulation method, a wide space can be obtained, free layout and free remodeling can be performed, and there is no concrete crack. The building is highly durable and rigid, and can suppress noise on the upper floors.
In addition, it is a building that can provide a comfortable living space that is free from condensation and is not affected by changes in humidity depending on the location, and that is healthy and energy-saving.

〔変形例:外壁構造体(図12、図13)〕
変形例の構造体1´は、図12に示す如く、外壁部のみのプレキャストコンクリート体1´Aに断熱パネル2を張着したものであって、コンクリート建築物躯体の形成に際しては、別体の、プレキャストコンクリートの床スラブ構造体1”をプレストレス導入により、壁Wのみのプレストレスト建築用構造体1´と一体化するものである。
そして、コンクリート壁Wと断熱パネル2との関係構造は、実施例の外壁と床スラブ一体物と同一構造であり、図3に示す断熱パネル2を使用する。
[Modification: Outer wall structure (FIGS. 12 and 13)]
As shown in FIG. 12, the modified structure 1 ′ is a structure in which a heat insulating panel 2 is stretched on a precast concrete body 1′A having only an outer wall portion. The floor slab structure 1 ″ of precast concrete is integrated with the prestressed construction structure 1 ′ having only the wall W by introducing prestress.
And the related structure of the concrete wall W and the heat insulation panel 2 is the same structure as the outer wall and floor slab integrated object of an Example, and uses the heat insulation panel 2 shown in FIG.

〔型枠の形成(図13)〕
図13(A)は、形成型枠80の斜視図であり、図13(B)は、図13(A)のB−B線断面図、図13(B)は図13(A)のC−C線断面図である。
変形例(図13)のプレストレスト建築用構造体1´は、プレキャストコンクリート体1´Aがコンクリート壁Wの形態であり、平板形態であるため、型枠組み及び断熱パネル2の張着作業は、実施例(図1)の構造体1の場合より、遥かに容易である。
[Form formation (FIG. 13)]
13A is a perspective view of the forming mold 80, FIG. 13B is a cross-sectional view taken along line BB of FIG. 13A, and FIG. 13B is C of FIG. 13A. FIG.
The prestressed building structure 1 ′ of the modified example (FIG. 13) has a precast concrete body 1′A in the form of a concrete wall W and is in the form of a flat plate. It is much easier than in the case of the structure 1 in the example (FIG. 1).

型枠80は、6mm厚の鋼板で水平に配置したベッド81の四周を堰坂82Aで囲い、堰坂の上下外周に山形鋼の上枠82B及び下枠82Cを配し、上下枠を仕切板82Dで型組みしたものであり、幅W80は、図2(A)の如く、断熱パネル2を5枚並列衝合したコンクリート壁の幅L8に断熱パネル2の押出成形セメント板2Aの突出段差d1と断熱層2Bの突出段差d2を付加した寸法(標準:2510mm)である。
また、長さH80も、押出成形セメント板2Aの高さ2Ahに段差d4を付加した寸法(標準:3030mm)である。
The formwork 80 is formed by surrounding a bed 81 horizontally arranged with a 6 mm thick steel plate with a weir slope 82A, and arranging an upper frame 82B and a lower frame 82C on the upper and lower outer circumferences of the weir slope. As shown in FIG. 2 (A), the width W80 is a width difference L8 of a concrete wall in which five heat insulation panels 2 are abutted side by side, and the protruding step d1 of the extruded cement board 2A of the heat insulation panel 2 is as shown in FIG. And the dimension (standard: 2510 mm) to which the protruding step d2 of the heat insulating layer 2B is added.
The length H80 is also a dimension (standard: 3030 mm) obtained by adding a step d4 to the height 2Ah of the extruded cement board 2A.

そして、型枠のコンクリート壁W部では、幅方向両側には、図13(C)の如く、左側1´Lに、段差d1形成用の厚さ10mmの型板(鋼板)P3と、右側1´Rに、段差d2形成用の厚さ20mmの型板(鋼板)P2を、長さ方向上端1´Tには、段差d3形成用の厚さ30mmの型板(鋼板)P1を配置する。
また、断熱パネル2のコンクリート壁Wへの皿ねじ9D´固定位置では、図4、図5に示す実施例での取付同様に、ベッド81にねじ9Aを介して受具10を取付け、受具10からねじ9Cを介してプラスチック製KPコン9Bを取付け、KPコン9Bから、図9(A)の如く、ねじ9Dを突出させておく。
また、型枠80のコンクリート壁W用キャビティ内には、強度計算に基づいて予め組立てた配筋、及び上下方向緊張用のPC鋼棒7Aを挿通するためのスパイラルシース3A、幅方向緊張用のPC鋼より線7Bを挿通するためのスパイラルシース3Bを配置し、各スパイラルシース3A,3Bにはグラウト注入用ホース5D(図7)を接続しておく。
And in the concrete wall W part of the formwork, on both sides in the width direction, as shown in FIG. 13 (C), on the left side 1′L, on the left side 1′L, a template (steel plate) P3 having a thickness of 10 mm for forming the step d1, and the right side 1 A template (steel plate) P2 having a thickness of 20 mm for forming the step d2 is disposed on 'R, and a template (steel plate) P1 having a thickness of 30 mm for forming the step d3 is disposed on the upper end 1'T in the length direction.
In addition, at the position where the countersunk screw 9D ′ is fixed to the concrete wall W of the heat insulating panel 2, the receiving member 10 is attached to the bed 81 via the screw 9A in the same manner as in the embodiment shown in FIGS. A plastic KP container 9B is attached from 10 through a screw 9C, and a screw 9D is projected from the KP container 9B as shown in FIG. 9A.
Further, in the concrete wall W cavity of the formwork 80, a reinforcing bar pre-assembled based on strength calculation, a spiral sheath 3A for inserting a PC steel rod 7A for vertical tension, and for tension in the width direction. A spiral sheath 3B for inserting the PC steel strand 7B is disposed, and a grout injection hose 5D (FIG. 7) is connected to each of the spiral sheaths 3A, 3B.

〔プレストレスト建築用構造体の形成(図5、図13)〕
型枠80内のベッド81上に、圧縮強度500kg/cm、スランプ8cmの高強度コンクリートを打設し、KPコン9Bの表面9B´を厚さ目印とし、該流動性に乏しいコンクリートをバイブレータ、及びこて仕上げし、打設コンクリートがフレッシュコンクリートの状態で、KPコン9Bから突出しているねじ9Dに断熱パネル2の皿ねじ挿入用孔H2を嵌合して、断熱層2B面をフレッシュコンクリート表面に載置し、断熱パネル2の表面のセメント板2Aを叩きながら、セメント板2Aより突出したねじ9Dに座金9E及びナット9Fを用いて、KPコン9Bに断熱パネル2を取付ける。
[Formation of prestressed building structure (Figs. 5 and 13)]
A high strength concrete with a compressive strength of 500 kg / cm 2 and a slump of 8 cm is placed on the bed 81 in the formwork 80, and the surface 9B ′ of the KP con 9B is used as a thickness mark. And with the trowel finished and the cast concrete being fresh concrete, the countersunk screw insertion hole H2 of the heat insulation panel 2 is fitted to the screw 9D protruding from the KP con 9B, and the surface of the heat insulation layer 2B is the surface of the fresh concrete. The heat insulation panel 2 is attached to the KP con 9B using a washer 9E and a nut 9F on the screw 9D protruding from the cement board 2A while hitting the cement board 2A on the surface of the heat insulation panel 2.

そして、実施例同様に、シート9G(図4)で覆って蒸気管9Hからの蒸気を供給してコンクリート養生をした後、ナット9F、座金9Eを外し、ねじ9DをKPコン9Bからねじ抜脱し、図5(A)の如く、断熱パネル2の皿ねじ挿入用孔H2に皿ねじ9D´を螺入してKPコン9Bに螺着する。
この場合、KPコン9B内では、図5(A)の如く、コンクリート壁W内のKPコン9Bを保持しているねじ9Cの上端と皿ねじ9D´の下端との間には、間隔S9が存在する形態に螺着する。
そして、型枠を解体して製品構造体を取出し、図5(C)の如く、ボルト9Aの抜脱孔は、嵌合具10´で閉塞する。
Then, as in the embodiment, after covering the sheet 9G (FIG. 4) and supplying steam from the steam pipe 9H to cure the concrete, the nut 9F and the washer 9E are removed, and the screw 9D is unscrewed from the KP con 9B. As shown in FIG. 5A, a countersunk screw 9D ′ is screwed into the countersunk screw insertion hole H2 of the heat insulation panel 2 and screwed to the KP control 9B.
In this case, in the KP con 9B, as shown in FIG. 5A, a gap S9 is provided between the upper end of the screw 9C holding the KP con 9B in the concrete wall W and the lower end of the countersunk screw 9D ′. Screw into existing form.
Then, the mold is disassembled and the product structure is taken out. As shown in FIG. 5C, the extraction hole of the bolt 9A is closed with the fitting 10 '.

〔建物躯体の構築(図12)〕
図12(A)は、外壁用のプレストレスト建築用構造体1´と、別途形成した床スラブ構造体1”とで構築した建物躯体の斜視図であり、図12(B)は、図12(A)の要部縦断面図である。
外壁Wの構築は、構造体1´相互を上下左右に連結一体化すれば良く、実施例の構造体1での図7(A),(B)の構築同様、基礎梁FGから最上階の壁W構造体1´の上端までを、図12(B)の如く、構造体1´内に埋設したスパイラルシース3A内にPC鋼棒7Aを接続挿通して緊張し、下端のアンカープレート4G(図4)と上端のアンカープレート4G(図4)で締着するものである。
[Building building structure (Figure 12)]
FIG. 12A is a perspective view of a building frame constructed with a prestressed construction structure 1 ′ for an outer wall and a separately formed floor slab structure 1 ″, and FIG. It is a principal part longitudinal cross-sectional view of A).
The outer wall W can be constructed by connecting and integrating the structures 1 ′ vertically and horizontally, as in the structures 1A and 7B in the structure 1 of the embodiment. As shown in FIG. 12B, the PC steel rod 7A is connected and inserted into the spiral sheath 3A embedded in the structure 1 ′ until the upper end of the wall W structure 1 ′ is tensioned, and the anchor plate 4G ( 4) and the upper anchor plate 4G (FIG. 4).

本変形例の場合は、別体のプレキャストコンクリート製の床スラブ版1”を、プレストレスト建築用構造体1´で形成した両側の壁W間に導入連結することとなるが、図12(B)に示す如く、コンクリート床スラブ版1”と壁構造体1´上部の当接面では、床スラブ版1”内のスパイラルシース3Bと壁構造体1´内に予め配置したスパイラルシース3Bの接続は、スパイラルシース3Bの径より大径のゴム輪GRを介在して実施し、構造体1´と床スラブ構造体1”との隙間目地14”には無収縮モルタルを充填する。
そして、床スラブS内のスパン方向のプレストレス導入は、実施例同様に図12(B)の如く、断熱パネル2の切欠孔H1及びコンクリート壁W内の欠込みH1´を介して、PC鋼より線7Bの緊張、定着で実施し、切欠孔H1は、切欠孔H1形成時に切取った断熱パネル片2´で補修する。
In the case of this modification, a separate precast concrete floor slab plate 1 ″ is introduced and connected between the walls W on both sides formed by the prestressed construction structure 1 ′. As shown in FIG. 4, the contact surface between the concrete floor slab plate 1 "and the wall structure 1 'is connected to the spiral sheath 3B in the floor slab plate 1" and the spiral sheath 3B arranged in advance in the wall structure 1'. This is carried out with a rubber ring GR having a diameter larger than the diameter of the spiral sheath 3B, and a non-shrinking mortar is filled in the gap joint 14 ″ between the structure 1 ′ and the floor slab structure 1 ″.
Then, the prestress in the span direction in the floor slab S is introduced into the PC steel through the notch hole H1 of the heat insulating panel 2 and the notch H1 ′ in the concrete wall W as shown in FIG. This is performed by tension and fixing of the stranded wire 7B, and the cutout hole H1 is repaired by the heat insulating panel piece 2 'cut out when the cutout hole H1 is formed.

また、各床スラブ構造体1”相互の床スパン直交方向(壁方向)のプレストレスト導入は、実施例同様に、実施すれば良い。
変形例(図12、図13)のプレストレスト建築用構造体1´は、実施例の構造体1と比べて、別体の床スラブ構造体1”を用意し、且つ壁W部のみの構造体1´と床スラブ構造体1”との組立て施工の必要があるが、プレキャストコンクリートの型枠組み、及び成形面では、実施例より、はるかに簡便、且つ均斉に実施出来る。
そして、得られるプレストレスト建築物は、実施例で得られる建築物同様の高性能、且つ、高耐久建築物となり、建築物の施工面でも、実施例のそれと同様に、従来の外断熱鉄筋コンクリート建物より、軽量化が図れ、工場生産によって天候に関係なく躯体ユニットが製造出来るため、工期の短縮化が達成出来る。
Further, the prestressed introduction in the direction perpendicular to the floor span (wall direction) between the floor slab structures 1 ″ may be carried out in the same manner as in the embodiment.
The prestressed building structure 1 ′ of the modified example (FIGS. 12 and 13) has a separate floor slab structure 1 ″ as compared with the structure 1 of the embodiment, and a structure having only the wall W portion. Although it is necessary to assemble 1 ′ and the floor slab structure 1 ″, the precast concrete mold frame and the molding surface can be carried out much more easily and uniformly than the embodiment.
And the prestressed building obtained becomes a high-performance and high-durability building similar to the building obtained in the example, and the construction aspect of the building is also similar to that of the example, compared to the conventional external heat-insulated reinforced concrete building. Because the weight can be reduced and the chassis unit can be manufactured regardless of the weather by factory production, the construction period can be shortened.

本発明のプレストレスト建築用構造体1の説明図であって、(A)は全体斜視図、(B)は図2(A)のB方向側面図である。It is explanatory drawing of the structure 1 for prestressed building of this invention, Comprising: (A) is a whole perspective view, (B) is a B direction side view of FIG. 2 (A). 本発明の配筋状態説明図であって、(A)は、図2(A)の(イ)−(イ)線断面図、(B)は、図2(A)の(ロ)−(ロ)線断面図である。It is a bar arrangement state explanatory view of the present invention, (A) is a sectional view taken along line (a)-(a) in FIG. 2 (A), and (B) is (b)-() in FIG. (B) It is a sectional view taken along line. 本発明に採用する断熱パネルの説明図であって、(A)は、一部切欠全体斜視図、(B)は横断面図、(C)は縦断面図である。It is explanatory drawing of the heat insulation panel employ | adopted as this invention, Comprising: (A) is a partially notched whole perspective view, (B) is a cross-sectional view, (C) is a longitudinal cross-sectional view. 本発明の型枠説明図であって、(A)は全体正面図、(B)は、図6(A)のB−B線断面図、(C)は、図6(B)の要部拡大説明図である。It is form explanatory drawing of this invention, Comprising: (A) is a whole front view, (B) is BB sectional drawing of FIG. 6 (A), (C) is the principal part of FIG. 6 (B). FIG. 本発明の断熱パネル張着説明図であって、(A)は、縦断面拡大図、(B)は使用金具の分解斜視図、(C)は型枠解体後の嵌合具固着状態説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is heat insulation panel tension explanatory drawing of this invention, Comprising: (A) is a longitudinal cross-sectional enlarged view, (B) is an exploded perspective view of a use metal fitting, (C) is a fitting fixture fixed state explanatory drawing after a formwork disassembly. It is. 本発明の外断熱プレストレスト建築用構造体1での構築形態説明図であって、(A)は全体斜視図、(B)は要部の断面説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the construction form explanatory drawing in the structure 1 for external heat insulation prestressed building of this invention, Comprising: (A) is a whole perspective view, (B) is sectional explanatory drawing of the principal part. 本発明の部分説明図であって、(A)は壁上部の縦断面図、(B)は壁下部の縦断面図、(C)は床スラブ端面の縦断面図である。It is partial explanatory drawing of this invention, Comprising: (A) is a longitudinal cross-sectional view of a wall upper part, (B) is a longitudinal cross-sectional view of a wall lower part, (C) is a longitudinal cross-sectional view of a floor slab end surface.

本発明プレストレスト建築用構造体1の配置状態説明図であって、(A)は、壁の横断面図、(B)は壁下端の縦断面図、(C)は壁上端の縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is arrangement | positioning explanatory drawing of this invention prestressed building structure 1, Comprising: (A) is a cross-sectional view of a wall, (B) is a longitudinal cross-sectional view of a wall lower end, (C) is a longitudinal cross-sectional view of a wall upper end. is there. 本発明構造体で構築した建物の説明図であって、(A)は全体斜視図、(B)は図8(A)のB−B線断面図である。It is explanatory drawing of the building constructed | assembled by this invention structure, Comprising: (A) is a whole perspective view, (B) is the BB sectional drawing of FIG. 8 (A). 本発明構造体で構築した建物の説明図であって、図8(A)の(9)−(9)線縦断面図である。It is explanatory drawing of the building constructed | assembled by this invention structure, Comprising: It is the (9)-(9) line longitudinal cross-sectional view of FIG. 8 (A). 本発明に適用する腰水切説明図であって、(A)は腰水切配置構造の縦断面図、(B)は取付金具を断熱パネルに止着した状態を示す横断面図、(C)は取付金具の分解斜視図、(D)は腰水切の斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of a waist drainage applied to the present invention, (A) is a longitudinal sectional view of a waist drainage arrangement structure, (B) is a transverse sectional view showing a state in which a mounting bracket is fixed to a heat insulating panel, and (C) is An exploded perspective view of the mounting bracket, (D) is a perspective view of a waist drainer. 本発明の変形例図であって、(A)は一部切欠斜視図、(B)は、図12(A)の要部縦断面図である。It is a modification figure of this invention, Comprising: (A) is a partially cutaway perspective view, (B) is a principal part longitudinal cross-sectional view of FIG. 12 (A). 本発明の変形例の型枠組み説明図であって、(A)は全体斜視図、(B)は、図13(A)のB−B線断面図、(C)は、図13(A)のC−C線断面図である。FIG. 13 is an explanatory diagram of a mold frame according to a modified example of the present invention, in which (A) is an overall perspective view, (B) is a cross-sectional view taken along line BB in FIG. 13 (A), and (C) is FIG. It is a CC sectional view taken on the line. 従来例1の説明図であって、(A)はPC板の斜視図、(B)はPC板の平面図、(C)はPC板を張設した状態の横断面図である。It is explanatory drawing of the prior art example, (A) is a perspective view of PC board, (B) is a top view of PC board, (C) is a cross-sectional view of the state which stretched PC board. 従来例2の説明図であって、(A)は断熱PCコンクリート板の一部切欠斜視図、(B)はPC板の断面図、(C)は製造工程説明図であって、(イ)は外板を形成した状態図、(ロ)は断熱層充填状態図、(ハ)は断熱屋上にコンクリート打設した図である。It is explanatory drawing of the prior art example 2, Comprising: (A) is a partially cutaway perspective view of heat insulation PC concrete board, (B) is sectional drawing of PC board, (C) is manufacturing process explanatory drawing, (A) Is a state diagram in which an outer plate is formed, (b) is a state diagram of filling a heat insulating layer, and (c) is a diagram in which concrete is placed on a heat insulating roof.

符号の説明Explanation of symbols

1,1´ プレストレスト建築用構造体(プレストレスト構造体、構造体)
1” 床スラブ構造体(床スラブ版)
1A,1´A プレキャストコンクリート体(コンクリート体)
2 断熱パネル
2´ 断熱パネル片
2A 押出成形セメント板(セメント板)
2B 断熱層
2C 隙間追従シート
2D,2D´ 下端辺(下端)
2T 上端辺(上端)
2L 左側辺
2R 右側辺
3A,3B,3C スパイラルシース(シース管、穴部)
3F グラウト
4 カップラーシース
4A カップラー
4E ナット
4F 座金
4G アンカープレート
5,5´ トランペットシース
5A グラウト注入管
5D ホース
6,6´ 支圧板
6B,6B´,6B” 補強筋
6C,6C´ アンカーヘッド
6D´ 孔底部
6E 無収縮モルタル(モルタル)
7A PC鋼棒(PC鋼材)
7B PC鋼より線(PC鋼材)
1,1 'Prestressed building structure (prestressed structure, structure)
1 "floor slab structure (floor slab version)
1A, 1'A Precast concrete body (concrete body)
2 Thermal insulation panel 2 'Thermal insulation panel piece 2A Extruded cement board (cement board)
2B Heat insulation layer 2C Gap following sheet 2D, 2D 'Lower end side (lower end)
2T Upper edge (upper edge)
2L Left side 2R Right side 3A, 3B, 3C Spiral sheath (sheath tube, hole)
3F Grout 4 Coupler sheath 4A Coupler 4E Nut 4F Washer 4G Anchor plate 5, 5 'Trumpet sheath 5A Grout injection pipe 5D Hose 6, 6' Bearing plate 6B, 6B ', 6B "Reinforcing bar 6C, 6C' Anchor head 6D 'Hole Bottom 6E Non-shrink mortar (mortar)
7A PC steel bar (PC steel)
7B PC steel strand (PC steel)

8,8´,8”,80 型枠
8A,8A´,8A”,81 ベッド
8B 補強鋼材
8C,8C´ 櫛型
8D 腹起し
8E,8E´ 根太
8F かんざし
8G,8G´ キャンバー
8H,8´H コンクリート止
8I 押え金具
8J 止枠
9A ボルト
9B KPコン
9B´ KPコン表面
9C ねじ
9C´ ストッパー
9D ねじ
9D´ 皿ねじ
9G シート
9H 蒸気管
10 受具
10´ 嵌合具
10A 上端辺
10B,10B´ 下端辺
10C,10C´ 軸部
10D 仕切り
8, 8 ', 8 ", 80 Formwork 8A, 8A', 8A", 81 Bed 8B Reinforced steel 8C, 8C 'Comb 8D Raised 8E, 8E' joist 8F Hairpin 8G, 8G 'Camber 8H, 8' H Concrete stop 8I Press fitting 8J Stop frame 9A Bolt 9B KP control 9B 'KP control surface 9C Screw 9C' Stopper 9D Screw 9D 'Countersunk screw 9G Sheet 9H Steam pipe 10 Receiving tool 10' Fitting tool 10A Upper edge 10B, 10B ' Lower end side 10C, 10C 'shaft portion 10D partition

11A 縦筋(壁縦筋)
11B 横筋(壁横筋)
11C 主筋(リブ主筋)
11D 帯筋(リブ帯筋)
12A,12B 床スラブ筋
12C 主筋(ジョイスト梁主筋)
12D 肋筋
12E 腹筋
13 外壁タイル(タイル)
14 横目地(目地)
14´ 床スラブ目地
14A シーリング
14B バッカー
15 腰水切
15A 立上り辺
15B 座板
15C ねじ
15F 立下り辺
15P アンカー板
15S 水切り辺
15U 斜辺
16 取付金具
16A 固定部
16A´ 屈曲部
16A” 固定片
16B 可動部
16B´ アンカー片
16C ボルト(ねじボルト)
16D ナット
16F 突出板部
11A Longitudinal muscle (wall longitudinal muscle)
11B Transverse muscle (transverse wall)
11C main bar (rib main bar)
11D band (rib band)
12A, 12B Floor slab muscle 12C Main bar (Joist beam main bar)
12D Abdominal muscle 12E Abdominal muscle 13 Exterior wall tile (tile)
14 Horizontal joint (joint)
14 'Floor slab joint 14A Sealing 14B Backer 15 Waist draining 15A Rising edge 15B Seat plate 15C Screw 15F Falling edge 15P Anchor plate 15S Draining edge 15U Slanting edge 16 Mounting bracket 16A Fixing part 16A' Bending part 16A "Fixing piece 16B Moving part 16B ′ Anchor piece 16C Bolt (screw bolt)
16D Nut 16F Protruding plate

17 笠木
19 アスファルト防水(防水層)
19A 断熱材
19B 透明断熱材
19C 均しモルタル
23 建築物
28A,28B 縦目地(目地)
29 鉄骨造建物
30 鋼製床下地
30A フローリング
82A 堰坂
82B 上枠
82C 下枠
82D 仕切板
17 Kasagi 19 Asphalt waterproofing (waterproof layer)
19A Heat insulation material 19B Transparent heat insulation material 19C Leveling mortar 23 Building 28A, 28B Vertical joint (joint)
29 Steel Building 30 Steel Floor Base 30A Flooring 82A Weir Slope 82B Upper Frame 82C Lower Frame 82D Partition Plate

Ad 接着剤
AF 背面(条溝背面)
AG 条溝
AG´ 台形条溝(条溝)
ar 空気
AS 傾斜側面
AW アルミ製窓
B 受台
BG 切欠溝
C0 捨コンクリート
C1,C2 接合部(弯曲接合部)
C1´,C2´ 弯曲鋼板
CW カーテンウォール
d1,d2,d3,d4 段差
EV エレベータースペース
FG 基礎梁
FS 耐圧板
G ジョイスト梁
GB ジョイスト梁元端
GF ジョイスト梁先端
GL 地面
GR ゴム輪
GS ジョイスト梁後部
GT ジョイスト梁前部
GW,GW´ ジョイスト梁幅
H1 切欠孔
H1´,H1”,H3,H3´,H25,H26 欠込み
H2 皿ねじ挿入用孔
H15 空気孔
H18 長孔
OF 事務所
OG 開口
OR ルーバー(目隠しルーバー)
PS パイプシャフト
P1,P2,P3 型板(鋼板)
R リブ
RL,RL´,GH,GH´ 突出長
RB リブ元端
RF リブ先端
RS リブ下部
RT リブ上部
RW,RW´ リブ幅
S 床スラブ(コンクリート床スラブ)
S9 間隔
SF 床スラブ前端辺
Sf 床スラブ表面
SS 床スラブ後部
ST 床スラブ前部
SK 階段
W 壁(コンクリート壁)
WC 便所(トイレ)
Ad Adhesive AF Back side (Rear groove back side)
AG groove AG 'trapezoidal groove (strip)
ar Air AS Inclined side surface AW Aluminum window B Receptor BG Notch groove C0 Waste concrete C1, C2 Joint (curved joint)
C1 ′, C2 ′ Curved steel plate CW Curtain wall d1, d2, d3, d4 Step EV Elevator space FG Foundation beam FS Pressure plate G Joist beam GB Joist beam former end GF Joist beam tip GL Ground GR Rubber wheel GS Joyst beam rear part GT In front of the joist beam Part GW, GW 'Joyst beam width H1 Notch hole H1', H1 ", H3, H3 ', H25, H26 Notch H2 Countersunk screw insertion hole H15 Air hole H18 Long hole OF Office OG Opening OR louver (blindfold louver)
PS Pipe shaft P1, P2, P3 Template (steel plate)
R Rib RL, RL ', GH, GH' Protrusion length RB Rib base end RF Rib tip RS Rib lower RT Rib upper RW, RW 'Rib width S Floor slab (concrete floor slab)
S9 Spacing SF Floor slab front edge Sf Floor slab surface SS Floor slab rear ST Floor slab front SK Stair W Wall (concrete wall)
WC toilet (toilet)

Claims (9)

プレキャストコンクリート体(1A,1´A)の、コンクリート壁(W)の外面には、条溝(AG,AG´)を内面に並列縦設した押出成形セメント板(2A)と断熱層(2B)の層着一体化した断熱パネル(2)を備え、コンクリート壁(W)内部には、プレストレスを導入するPC鋼材(7A,7B)を挿通する穴部(3A,3B)を備えている、プレストレスト建築用構造体。   Extruded cement board (2A) and heat insulation layer (2B) with pre-cast concrete bodies (1A, 1'A) on the outer surface of the concrete wall (W), with longitudinal grooves (AG, AG ') arranged in parallel on the inner surface In the concrete wall (W), holes (3A, 3B) for inserting pre-stressed PC steel materials (7A, 7B) are provided. Prestressed building structure. プレキャストコンクリート体(1A)が、上部からコンクリート床スラブ(S)を延出している請求項1のプレストレスト建築用構造体。   The prestressed building structure according to claim 1, wherein the precast concrete body (1A) extends a concrete floor slab (S) from above. 押出成形セメント板(2A)の条溝(AG,AG´)群のうち、少なくとも、両端、及び中央部の条溝(AG´)は、断面形状が左右対称で、最内部の平坦背面(AF)と、両側の等角度で内方に拡開形態で傾斜した傾斜側面(AS)とを備えて、前部が開口(OG)した台形である、請求項1又は2のプレストレスト建築用構造体。   Of the groove (AG, AG ') group of the extruded cement plate (2A), at least both ends and the groove (AG') at the center are symmetrical in cross section, and the innermost flat back surface (AF) And an inclined side surface (AS) inclined inwardly in an expanded form at equal angles on both sides, and a trapezoidal structure having a front opening (OG), . 断熱パネル(2)は、断熱層(2B)をコンクリート壁(W)の外面(Wf)と層着一体化し、皿ねじ(9D´)を押出成形セメント板(2A)の外面から貫入してコンクリート壁(W)の外面に埋設したプラスチック製KPコン(9B)内に螺着し、且つ、皿ねじ(9D´)の先端が、KPコン(9B)を螺着保持したねじ(9C)端と間隔(S9)を保っている、請求項1乃至3のいずれか1項のプレストレスト建築用構造体。   The heat insulation panel (2) is formed by integrating the heat insulation layer (2B) with the outer surface (Wf) of the concrete wall (W) and inserting a flat head screw (9D ') from the outer surface of the extruded cement board (2A). Screwed into a plastic KP container (9B) embedded in the outer surface of the wall (W), and the tip of the countersunk screw (9D ') is connected to the end of the screw (9C) to which the KP container (9B) is screwed and held The prestressed building structure according to any one of claims 1 to 3, wherein the interval (S9) is maintained. 断熱パネル(2)は、プレキャストコンクリート体(1A,1´A)がフレッシュコンクリートの状態のコンクリート壁(W)に、断熱層(2B)を層着一体化した、請求項1乃至4のいずれか1項のプレストレスト建築用構造体。   The heat insulation panel (2) is a concrete wall (W) in which the precast concrete body (1A, 1'A) is in a fresh concrete state, and the heat insulation layer (2B) is layered and integrated. Item 1. Prestressed architectural structure. 断熱パネル(2)は、断熱層(2B)が、押出成形セメント板(2A)の各条溝(AG,AG´)の対向面に、断面矩形の通気増進用の切欠溝(BG)を備えている、請求項1乃至5のいずれか1項のプレストレスト建築用構造体。   In the heat insulation panel (2), the heat insulation layer (2B) has a cutout groove (BG) having a rectangular cross section on the opposing surface of each groove (AG, AG ') of the extruded cement board (2A). The prestressed building structure according to any one of claims 1 to 5. プレストレスト建築用構造体(1,1´)は、コンクリート壁(W)の一側縁(WL)では、壁(W)と断熱層(2B)とが面一で、セメント板(2A)が断熱層(2B)から突出段差(d1)を備え、他側縁(WR)では、断熱層(2B)が、壁(W)から、突出段差(d1)より大きな突出段差(d2)を備え、且つ、セメント板(2A)と壁(W)とが面一である、請求項1乃至6のいずれか1項のプレストレスト建築用構造体。   In the prestressed building structure (1, 1 ′), the side wall (W) of the concrete wall (W) is flush with the wall (W) and the heat insulating layer (2B), and the cement board (2A) is thermally insulated. A protruding step (d1) from the layer (2B), and at the other side edge (WR), the heat insulating layer (2B) has a protruding step (d2) larger than the protruding step (d1) from the wall (W), and The prestressed building structure according to any one of claims 1 to 6, wherein the cement board (2A) and the wall (W) are flush with each other. プレストレスト建築用構造体(1)は、壁(W)の内面にはリブ(R)群を、床スラブ(S)下面にはジョイスト梁(G)群を備え、各リブ(R)とジョイスト梁(G)とは、弯曲接合部(C2)を介して連続した、請求項2乃至7のいずれか1項のプレストレスト建築用構造体。   The prestressed building structure (1) includes a rib (R) group on the inner surface of the wall (W) and a joist beam (G) group on the lower surface of the floor slab (S), and each rib (R) and the joist beam. (G) is the prestressed building structure according to any one of claims 2 to 7, which is continuous through the bent joint (C2). プレストレスト建築用構造体(1)は、壁(W)の上端に、床スラブ表面(Sf)より突出した上面平坦な受台(B)を備えた、請求項2乃至8のいずれか1項のプレストレスト建築用構造体。   The prestressed building structure (1) comprises an upper flat receiving base (B) protruding from the floor slab surface (Sf) at the upper end of the wall (W). Prestressed building structure.
JP2005102406A 2005-03-31 2005-03-31 Exterior insulation prestressed building structure Expired - Fee Related JP4063831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102406A JP4063831B2 (en) 2005-03-31 2005-03-31 Exterior insulation prestressed building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102406A JP4063831B2 (en) 2005-03-31 2005-03-31 Exterior insulation prestressed building structure

Publications (2)

Publication Number Publication Date
JP2006283327A true JP2006283327A (en) 2006-10-19
JP4063831B2 JP4063831B2 (en) 2008-03-19

Family

ID=37405526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102406A Expired - Fee Related JP4063831B2 (en) 2005-03-31 2005-03-31 Exterior insulation prestressed building structure

Country Status (1)

Country Link
JP (1) JP4063831B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720284A (en) * 2012-06-26 2012-10-10 张钟元 Double-board laminated type concrete shear wall and production process thereof
CN102979219A (en) * 2012-12-19 2013-03-20 沈阳建筑大学 Connecting structure for inner wall and outer wall of sandwich heat insulating outer wallboard

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720284A (en) * 2012-06-26 2012-10-10 张钟元 Double-board laminated type concrete shear wall and production process thereof
CN102979219A (en) * 2012-12-19 2013-03-20 沈阳建筑大学 Connecting structure for inner wall and outer wall of sandwich heat insulating outer wallboard

Also Published As

Publication number Publication date
JP4063831B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
US10961708B2 (en) Prefabricated insulated building panel with cured cementitious layer bonded to insulation
US9038339B2 (en) Prefabricated wall panels
US8863445B2 (en) Reinforced concrete dense column structure systems
US8127509B2 (en) Composite building and panel systems
US20090113820A1 (en) Prefabricated wall panel system
US6779314B1 (en) Structure formed of foaming cement and lightweight steel, and a structure system and method of forming the structure system
CN206570920U (en) One kind utilizes ALC plates design production assembled architecture
CN101446109A (en) Composite component with alkaline-resisting glass fiber net plasterer
JP4004056B2 (en) Construction method of pre-insulated prestressed building using precast concrete body
US20080295430A1 (en) Thin shell cementitious coated shear wall structural panel assembly and method of manufacture
JP4063831B2 (en) Exterior insulation prestressed building structure
JP4063829B2 (en) Exterior insulation building with prestressed precast concrete body
JP4488371B2 (en) Method for manufacturing pre-insulated precast concrete wall
US20120047835A1 (en) Wall racks, tracks, and roller for making prefabricated wall panels
KR101387602B1 (en) Multi-storied Korean-style House by Combined Structural System
CN104652662B (en) Prefabricated panel system
CN111305590A (en) Assembly type low-energy-consumption transformation structure and rapid transformation method for existing building balcony
CN105089166A (en) Self-supporting assembled light-weight heat insulation wall body
JP3627927B2 (en) Reinforced concrete exterior insulation building
CN219327204U (en) Steel frame assembled light steel wire net rack mortar-perlite-polyphenyl enclosure wall
CN218933507U (en) Assembled light steel wire mesh frame mortar-perlite-polyphenyl shear wall with window holes
CN219386745U (en) Short limb assembled light steel combined steel wire net frame mortar-perlite-polyphenyl enclosure wall
CN202787741U (en) Roof eaves board
JP2013011157A (en) Building and construction method thereof
Schroeder et al. Earthen Structures–Planning, Building and Construction Supervision

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4063831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees