JP2006283085A - Method for producing spring material - Google Patents

Method for producing spring material Download PDF

Info

Publication number
JP2006283085A
JP2006283085A JP2005102997A JP2005102997A JP2006283085A JP 2006283085 A JP2006283085 A JP 2006283085A JP 2005102997 A JP2005102997 A JP 2005102997A JP 2005102997 A JP2005102997 A JP 2005102997A JP 2006283085 A JP2006283085 A JP 2006283085A
Authority
JP
Japan
Prior art keywords
less
treatment
fatigue strength
spring material
age hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005102997A
Other languages
Japanese (ja)
Inventor
Etsuo Fujita
悦夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005102997A priority Critical patent/JP2006283085A/en
Publication of JP2006283085A publication Critical patent/JP2006283085A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a spring material excellent in both of working precision and high fatigue strength. <P>SOLUTION: The material for spring composed, by mass%, of ≤0.01% C, 8.0-11.0% Ni, ≤14.0% Co, 2.0-9.0% Mo, ≤2.0% (excluding 0) Ti, ≤1.7% Al, ≤30 ppm O, ≤30 ppm N and the balance inevitably Fe, is solid-solution-treated and after making the hardness to <350 HV, the material is worked into a spring-shape and thereafter, the method for producing the spring material, is performed, by which an aging-hardening treatment is applied at 400-500°C. The method for producing the spring material is desirably performed for improving the fatigue strength, by which after applying the above aging-hardening treatment, a barrel-grinding or a shot-peening is applied, or further, after applying the aging-hardening treatment, a nitriding-treatment is applied, or at the same time as the above aging-hardening treatment, the nitriding treatment are applied. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は高疲労強度特性を有するバネ材の製造方法に関する。   The present invention relates to a method for producing a spring material having high fatigue strength characteristics.

自動車用部品やエレクトロニクス関係部品は、小型・高速作動を求められている。これにともない部品に用いられるバネは、高精度かつ高疲労強度が求められている。
従来より、高疲労強度なバネ材として、特開平10−140294号(特許文献1参照)、特開2003−73783号(特許文献2参照)、特開昭60−36649号(特許文献3参照)に開示されている鋼がある。
特開平10−140294号公報 特開2003−73783号公報 特開昭60−36649号公報
Automotive parts and electronics-related parts are required to be small and operate at high speed. As a result, springs used for parts are required to have high accuracy and high fatigue strength.
Conventionally, as spring materials having high fatigue strength, JP-A-10-140294 (see Patent Document 1), JP-A-2003-73783 (see Patent Document 2), JP-A-60-36649 (see Patent Document 3). There are steels disclosed in
Japanese Patent Laid-Open No. 10-140294 JP 2003-73783 A JP 60-36649 A

上述した特許文献1に開示されている鋼は、加工状態で、不安定なオーステナイト相が残存するため、残存したオーステナイト相の加工性とマルテンサイト組織の加工性が異なり、加工精度が不十分である。
また、特許文献2に開示されている鋼は、特許文献1で示される鋼中に残存した不安定なオーステナイト相による加工精度の悪化を解消するために、加工状態で完全にマルテンサイト組織とし、残存オーステナイトをなくしている。しかし、加工される状態での硬さが350HV以上と非常に高く、加工性そのものが悪い。
また、特許文献3に開示されている鋼は、加工性に優れるが、時効硬化処理後の硬さが低く、強度、疲労強度とも不十分である。
本発明の目的は、優れた加工精度と高疲労強度を両立させたバネ材の製造方法を提供することである。
Since the steel disclosed in Patent Document 1 described above remains in an unstable austenite phase in the processed state, the workability of the remaining austenite phase and the workability of the martensite structure are different, and the processing accuracy is insufficient. is there.
Further, the steel disclosed in Patent Document 2 has a completely martensitic structure in the processed state in order to eliminate the deterioration of processing accuracy due to the unstable austenite phase remaining in the steel shown in Patent Document 1. Residual austenite is lost. However, the hardness in the processed state is as high as 350 HV or more, and the workability itself is poor.
Moreover, although the steel currently disclosed by patent document 3 is excellent in workability, the hardness after an age hardening process is low, and intensity | strength and fatigue strength are inadequate.
The objective of this invention is providing the manufacturing method of the spring material which made the outstanding processing precision and high fatigue strength compatible.

本発明者は、加工精度に優れ、かつ疲労強度が高いバネ材について化学組成、製造方法の両方について鋭意検討した結果、バネ材の合金成分を限定し、且つ特別な製造方法を適用することで優れた加工精度と高疲労強度を両立できることを見出し、本発明に到達した。
すなわち本発明は、質量%で、C:0.01%以下、Ni:8.0〜19.0%、Co:14.0%以下、Mo:2.0〜9.0%、Ti:2.0%以下(0は含まず)、Al:1.7%以下、O:30ppm以下、N:30ppm以下、残部は実質的にFeからなるバネ材を750〜950℃で固溶化処理して350HV未満の硬さとした後バネ形状に加工し、その後、400℃〜550℃で時効硬化処理を施すバネ材の製造方法である。
好ましくは、疲労強度向上のために、上記の時効硬化処理の後に、バレル研磨若しくはショットピーニングを施す、或いは更に上記の時効硬化処理の後に窒化処理を施すか、または上記の時効硬化処理と同時に窒化処理バネ材の製造方法である。
As a result of intensive studies on both the chemical composition and the manufacturing method of the spring material having excellent processing accuracy and high fatigue strength, the inventor limited the alloy components of the spring material and applied a special manufacturing method. The inventors have found that both excellent processing accuracy and high fatigue strength can be achieved, and have reached the present invention.
That is, the present invention is, by mass%, C: 0.01% or less, Ni: 8.0 to 19.0%, Co: 14.0% or less, Mo: 2.0 to 9.0%, Ti: 2 0.0% or less (excluding 0), Al: 1.7% or less, O: 30 ppm or less, N: 30 ppm or less, and the remainder is a solid solution treated at 750 to 950 ° C. at substantially 750 ° C. This is a method for manufacturing a spring material, which is processed into a spring shape after having a hardness of less than 350 HV, and then subjected to age hardening treatment at 400 ° C. to 550 ° C.
Preferably, in order to improve fatigue strength, barrel polishing or shot peening is performed after the age hardening treatment, or nitriding treatment is further performed after the age hardening treatment, or nitriding is performed simultaneously with the age hardening treatment. It is a manufacturing method of a processing spring material.

本発明のバネ材の製造方法を適用すれば、自動車用部品やエレクトロニクス関係部品等に用いられる、小型、高速作動を求められるバネ材が得られる。   By applying the spring material manufacturing method of the present invention, it is possible to obtain a spring material that is used for automobile parts, electronics-related parts, and the like and that is required to be small and operate at high speed.

本発明は、加工精度に優れ、かつ高疲労強度なバネ材とすることができる化学組成、及び製造方法の両方に特徴がある。
本発明では、以下に示す組成の合金に固溶化処理し、固溶化処理後に加工を行い、その後時効硬化処理する。この製造方法では、良好な加工性を確保するために固溶化処理後の硬さを350HV未満とし、所望のバネ形状に加工する。硬さが350HV未満であるため、優れた加工精度も容易に得ることができる。そして、加工したバネ形状の寸法変化をほとんど起さない低温の時効硬化処理によって硬化させて高疲労強度を達成するものである。
これに必要な合金の限定理由を詳しく説明する。なお、化学組成は質量%として示している。
The present invention is characterized by both a chemical composition that can be used as a spring material having excellent processing accuracy and high fatigue strength, and a manufacturing method.
In the present invention, an alloy having the following composition is subjected to a solution treatment, processed after the solution treatment, and then age-hardened. In this manufacturing method, in order to ensure good workability, the hardness after the solution treatment is set to less than 350 HV and processed into a desired spring shape. Since the hardness is less than 350 HV, excellent processing accuracy can be easily obtained. And it hardens | cures by the low temperature age hardening process which hardly causes the dimensional change of the processed spring shape, and achieves high fatigue strength.
The reason for limiting the alloy necessary for this will be described in detail. The chemical composition is shown as mass%.

C:0.01%以下
Cは固溶化処理後の硬さを上昇させるため、良好な加工性を得るためには、Cの上限を0.01%以下とする必要がある。好ましくは0.007%以下であり、下限については、今現在の技術的な限界としては10ppmとするのがせいぜいである。
Ni:8.0〜19.0%
Niは母相に置換型固溶し、固溶化処理後にマルテンサイト組織を形成させる重要な元素である。しかし、19%を越えるとオーステナイトが安定化し、固溶化処理後に1%以上の残留オーステナイトが生成するため、加工精度が低下する。一方、8.0%未満では靱性が劣化することから、Niは8.0〜19.0%とした。
C: 0.01% or less Since C increases the hardness after the solution treatment, in order to obtain good workability, the upper limit of C needs to be 0.01% or less. The lower limit is preferably 0.007% or less, and the lower limit is at most 10 ppm as the present technical limit.
Ni: 8.0 to 19.0%
Ni is an important element that forms a substitutional solid solution in the matrix and forms a martensite structure after the solution treatment. However, if it exceeds 19%, austenite is stabilized, and 1% or more of retained austenite is generated after the solution treatment, so that the processing accuracy is lowered. On the other hand, if less than 8.0%, the toughness deteriorates, so Ni was made 8.0 to 19.0%.

Co:14.0%以下
Coは、固溶化処理後のマルテンサイト変態の安定性に大きく影響することなく、固溶化処理時のMoの固溶度を増加させ、時効硬化処理時のMoの固溶度を低下させることによってMoが微細な金属間化合物を形成して析出するのを促進し、析出強化に間接的に寄与する。しかし、14.0%を越えて添加してもその効果がほとんど得られないことから、14.0%以下とした。
また、主要強化元素であるNi,Mo,Tiによって析出強化が達成されている場合は、特に添加の必要がないことから、Coの含有量は、14.0%以下とした。
Co: 14.0% or less Co increases the solid solubility of Mo during the solution treatment without greatly affecting the stability of the martensitic transformation after the solution treatment, and increases the solid solution of Mo during the age hardening treatment. By reducing the solubility, Mo promotes the formation and precipitation of fine intermetallic compounds, and indirectly contributes to precipitation strengthening. However, even if added over 14.0%, the effect is hardly obtained, so the content was made 14.0% or less.
In addition, when precipitation strengthening is achieved by the main strengthening elements Ni, Mo, and Ti, there is no need for addition, so the Co content is set to 14.0% or less.

Mo:2.0〜9.0%
Moは時効硬化処理により、微細な金属間化合物(FeMo若しくはNiMo)を形成し、マトリックスに析出することによって強化に寄与する元素であるが、その含有量が2.0%未満の場合その効果が少なく、また9.0%を越えて含有すると延性、靱性を劣化させるFeMoが粗大化しやすくなることから、Moの含有量を2.0〜9.0%とした。
なお、Moを5%を越えて添加する場合には、Coを5%以上含有し、上述のCoの効果と併用するのが好ましい。
Ti:2.0%以下(0は含まず)
Tiは時効硬化処理により微細な金属間化合物を形成し、析出することによって強化に寄与する必要不可欠な元素であり必須添加とするが、その含有量が2.0%を越えて含有させると延性、靱性が劣化するため、Tiの含有量を2.0%以下(0を含まず)とした。窒化層を形成させ500MPa以上の表面圧縮残留応力を得るために好ましい範囲は0.4〜1.0%の範囲である。
Mo: 2.0-9.0%
Mo is an element that contributes to strengthening by forming a fine intermetallic compound (Fe 2 Mo or Ni 3 Mo) by age hardening, and precipitating it in the matrix, but its content is less than 2.0%. In that case, the effect is small, and if the content exceeds 9.0%, Fe 2 Mo which deteriorates ductility and toughness is likely to be coarsened. Therefore, the Mo content is set to 2.0 to 9.0%.
In addition, when adding Mo exceeding 5%, it is preferable to contain 5% or more of Co, and to use together with the above-mentioned effect of Co.
Ti: 2.0% or less (excluding 0)
Ti is an indispensable element that contributes to strengthening by forming a fine intermetallic compound by age hardening treatment, and is added as an essential element, but if its content exceeds 2.0%, it is ductile. Since the toughness deteriorates, the Ti content is set to 2.0% or less (excluding 0). In order to form a nitrided layer and obtain a surface compressive residual stress of 500 MPa or more, a preferable range is 0.4 to 1.0%.

Al:1.7%以下
Alは脱酸作用を持っているため、脱酸元素として添加することができる。しかし、過度の添加は疲労破壊の起点となる酸化物系介在物を形成することから、その上限を1.7%とする。
O:30ppm以下
Oは酸化物系介在物を形成するため、30ppm以下に制限する。Oが30ppmを超えて含有すると高サイクル領域での疲労強度が著しく低下するため、その含有量を30ppm以下にした。好ましくは20ppm以下である。なお、下限については、今現在の技術的な限界としては1ppmとするのがせいぜいである。
N:30ppm以下
Nは窒化物や炭窒化物系介在物を形成するため、30ppm以下に制限する。Nが30ppmを超えて含有すると高サイクル領域での疲労強度が著しく低下するため、その含有量を30ppmにした。好ましくは20ppm以下である。なお、下限については、今現在の技術的な限界としては2ppmとするのがせいぜいである。
Al: 1.7% or less Since Al has a deoxidizing action, it can be added as a deoxidizing element. However, excessive addition forms oxide inclusions that become the starting point of fatigue failure, so the upper limit is made 1.7%.
O: 30 ppm or less O is limited to 30 ppm or less because it forms oxide inclusions. If the O content exceeds 30 ppm, the fatigue strength in the high cycle region is significantly reduced, so the content was made 30 ppm or less. Preferably it is 20 ppm or less. The lower limit is at most 1 ppm as the current technical limit.
N: 30 ppm or less N is limited to 30 ppm or less in order to form nitrides and carbonitride inclusions. When N exceeds 30 ppm, the fatigue strength in the high cycle region is remarkably reduced, so the content was set to 30 ppm. Preferably it is 20 ppm or less. The lower limit is at most 2 ppm as the current technical limit.

本発明ではこれら規定する元素以外は実質的にFeとしているが、当然のことながら不可避的に含有される不純物は含まれる。中でも、不可避的に含有する不純物元素のSi、Mnは脆化をもたらす粗大な金属間化合物の析出を促進して延性、靭性を低下させたり、非金属介在物を形成して疲労強度を低下させるので、Si、Mn共に0.1%以下に、望ましくは0.05%以下とすれば良く、また、P、Sも粒界脆化させたり、非金属介在物を形成して疲労強度を低下させるので、0.01%以下とすると良い。
また、他の脱酸作用を持つ元素、例えば、Mg,CaをAlの一部と置換して添加することもできる。
なお、不可避的に含有される不純物の他、本発明の主旨を損なわなければ、積極的に追加元素を添加することもできる。例えばBは、結晶粒を微細化するのに有効な元素でるため、靱性が劣化させない程度の0.01%以下の範囲で含有させても良い。
In the present invention, elements other than these specified elements are substantially Fe, but naturally impurities contained unavoidably are included. Among these, inevitably contained impurity elements such as Si and Mn promote the precipitation of coarse intermetallic compounds that cause embrittlement, thereby reducing ductility and toughness, and forming nonmetallic inclusions to reduce fatigue strength. Therefore, both Si and Mn should be 0.1% or less, preferably 0.05% or less, and P and S also become brittle at grain boundaries or form non-metallic inclusions to reduce fatigue strength. Therefore, 0.01% or less is preferable.
Further, other elements having a deoxidizing action, such as Mg and Ca, can be added in place of a part of Al.
In addition to impurities inevitably contained, additional elements can be positively added as long as the gist of the present invention is not impaired. For example, B is an element effective for refining crystal grains, and therefore may be contained in a range of 0.01% or less to the extent that toughness does not deteriorate.

以上のような組成を有するバネ材は、固溶化処理を施すことで350HV未満の硬さに調整することが可能であるが、優れた加工性、加工精度および疲労強度を付与するには、750〜950℃で固溶化処理を施す必要がある。
固溶化処理が750℃より低い場合は粗大なFeMoが生成し、バネ加工後に実施する時効硬化処理において十分な高硬度が得られないだけでなく、靭性が低くなるため、十分な疲労強度が得られない。また、950℃を超える高温とすると、母相の結晶粒が粗大化し、時効硬化処理において十分な高硬度が得られず疲労強度が低下するだけでなく、延性が低くなるため加工性も低下する。よって、固溶化処理温度は750〜950℃の範囲である。処理時間は3分〜1時間程度であれば良い。
また、本発明において時効硬化処理後の硬さを350HV未満としたのは、この範囲が優れた加工性、加工精度を得ることができる、経験に基づく現実的な領域であると判断したためである。好ましくは200〜340HVの範囲であれば良い。
なお、この固溶化処理において、固溶化処理後の金属組織中の残留オーステナイト量をエックス線回折装置で測定した時、1%未満とするとより確実に優れた加工精度を付与でき更に好ましい。
The spring material having the above composition can be adjusted to a hardness of less than 350 HV by applying a solution treatment, but in order to impart excellent workability, processing accuracy and fatigue strength, 750 It is necessary to perform a solution treatment at ˜950 ° C.
When the solution treatment is lower than 750 ° C., coarse Fe 2 Mo is generated, and not only a sufficiently high hardness cannot be obtained in the age hardening treatment performed after the spring processing, but also the toughness is reduced, so that sufficient fatigue strength is obtained. Cannot be obtained. Further, when the temperature is higher than 950 ° C., the crystal grains of the parent phase are coarsened, and not only a sufficiently high hardness cannot be obtained in the age hardening treatment, but the fatigue strength is lowered, and the workability is also lowered because the ductility is lowered. . Therefore, the solution treatment temperature is in the range of 750 to 950 ° C. The treatment time may be about 3 minutes to 1 hour.
In the present invention, the reason why the hardness after the age hardening treatment is set to less than 350 HV is that this range is determined to be a realistic region based on experience in which excellent workability and processing accuracy can be obtained. . Preferably, it may be in the range of 200 to 340HV.
In this solution treatment, when the amount of retained austenite in the metal structure after the solution treatment is measured with an X-ray diffractometer, it is more preferable if it is less than 1% because excellent processing accuracy can be provided more reliably.

そして、本発明においては固溶化処理後にバネ形状に加工する。前述のとおり固溶化処理後の硬さが350HV未満に調整されているため、高精度な形状を得ることができる。
ここでの加工は、バネ材の用途に応じて、打ち抜き加工、絞り加工、曲げ加工、切削加工等を適時選択できる。特に絞り加工、曲げ加工で高精度が得ることができるため、絞り加工が必要なダイヤフライムや、曲げ加工の必要な湾曲した形状の板バネ材用途が適している。
そして、400℃〜550℃で時効硬化処理を施すことで、加工後の高精度な形状を維持したまま560HV以上の高硬度となり、高疲労強度特性をバネ材に付与することができる。
なお、時効硬化処理を400℃〜550℃としたのは、400℃より低い場合は金属間化合物の析出が十分に起こらず高い強度が得られないためであり、550℃を越えると金属間化合物が粗大化し高い強度が得られないだけでなく、逆変態オーステナイトが生成することで寸法変化が大きくなり、高精度な形状を維持できなくなるためである。好ましい時効硬化処理温度は450〜500℃の範囲であり、処理時間は30分〜5時間程度であれば良い。
And in this invention, it processes into a spring shape after a solution treatment. As described above, since the hardness after the solution treatment is adjusted to less than 350 HV, a highly accurate shape can be obtained.
For the processing here, stamping, drawing, bending, cutting, or the like can be selected in a timely manner according to the application of the spring material. In particular, since high precision can be obtained by drawing and bending, diaphragms that require drawing and curved leaf spring materials that require bending are suitable.
And by performing an age hardening process at 400 degreeC-550 degreeC, it becomes high hardness of 560HV or more, maintaining the highly accurate shape after a process, and can give a high fatigue strength characteristic to a spring material.
The reason why the age hardening treatment is set to 400 ° C. to 550 ° C. is that when the temperature is lower than 400 ° C., the precipitation of the intermetallic compound does not occur sufficiently and a high strength cannot be obtained. This is because not only is coarsening and high strength cannot be obtained, but also the reverse transformation austenite is generated, resulting in a large dimensional change and a failure to maintain a highly accurate shape. A preferable age hardening treatment temperature is in the range of 450 to 500 ° C., and the treatment time may be about 30 minutes to 5 hours.

次に好ましい工程について説明する。
本発明では、上記の時効硬化処理後に表面起点の疲労破壊を抑制することができるバレル研磨もしくはショットピーニングを施すとよい。
バレル研磨もしくはショットピーニングにより、バネ材料の表面の圧縮残留応力を100MPa以上にすれば表面起点の疲労破壊をより確実に軽減でき、より高疲労強度にすることができる。この場合のバレル研磨もしくはショットピーニングの条件については、できるだけ小さな粒子を用いた方が表面の圧縮残留応力を均一に100MPa以上にすることができ、効果的である。
Next, a preferable process will be described.
In the present invention, it is preferable to perform barrel polishing or shot peening that can suppress fatigue fracture at the surface starting point after the age hardening treatment.
If the compressive residual stress on the surface of the spring material is set to 100 MPa or more by barrel polishing or shot peening, the fatigue fracture at the surface origin can be more reliably reduced, and higher fatigue strength can be achieved. Regarding the barrel polishing or shot peening conditions in this case, it is more effective to use as small particles as possible because the surface compressive residual stress can be uniformly increased to 100 MPa or more.

また本発明では、時効硬化処理の後に、疲労破壊を軽減する方法として、上記のバレル研磨若しくはショットピーニングを施す方法の他、時効硬化処理の後に窒化処理を施す方法か、時効硬化処理と同時に窒化処理施す方法を適用しても良い。
なお、バレル研磨若しくはショットピーニングを施す方法と窒化処理を施す方法とを組合わせても良いが、その場合は窒化処理を後工程とすると良い。
本発明でバネ材料の表面に窒化層を形成すれば、表面起点の疲労破壊が軽減するだけでなく、バネの使用時に表面に負荷される引張応力を緩和でき、より一層高疲労強度にすることができる。
この時、窒化処理によってバネ材の表面圧縮残留応力を500MPa以上にするとより一層高疲労強度にすることができ、更に好ましい。
In the present invention, as a method for reducing fatigue fracture after age hardening, in addition to the above-described barrel polishing or shot peening, a method of performing nitriding after age hardening, or nitriding simultaneously with age hardening A processing method may be applied.
In addition, although the method of performing barrel polishing or shot peening and the method of performing nitriding treatment may be combined, in that case, the nitriding treatment is preferably a post-process.
By forming a nitride layer on the surface of the spring material according to the present invention, not only the fatigue failure at the surface starting point can be reduced, but also the tensile stress applied to the surface during use of the spring can be relieved and the fatigue strength can be further increased. Can do.
At this time, if the surface compressive residual stress of the spring material is set to 500 MPa or more by nitriding, it is possible to further increase the fatigue strength, and it is more preferable.

そのための処理条件としては、窒化処理温度が550℃を越える温度で行うと母相中に逆変態オーステナイトが生成することで寸法変化が大きくなり、高精度な形状を維持できなくなり、また、窒化層表面に化合物層が形成されると化合物層が起点となり、逆に疲労強度が低下する可能性があるので、化合物層が実質的に存在しない条件が良い(ここで、実質的に存在しないとは、窒化層断面を1000倍で光学顕微鏡観察したとき、化合物層が観察されないことをいう)。
そのため、好適な窒化処理温度は550℃以下であり、400℃以上500℃以下の温度で15分以上5時間以下の範囲の時間処理であれば更に好ましく、上記の時効硬化処理と同時に窒化処理を施しても差し支えない。
As processing conditions for this, if the nitriding temperature is higher than 550 ° C., reverse transformation austenite is generated in the parent phase, resulting in a large dimensional change, making it impossible to maintain a highly accurate shape. When a compound layer is formed on the surface, the compound layer becomes a starting point, and conversely, fatigue strength may be reduced. Therefore, a condition in which the compound layer is not substantially present is good (here, substantially absent) The compound layer is not observed when the cross section of the nitride layer is observed with an optical microscope at a magnification of 1000).
Therefore, a suitable nitriding temperature is 550 ° C. or less, and it is more preferable if it is a time treatment in the range of 15 minutes to 5 hours at a temperature of 400 ° C. or more and 500 ° C. or less. It can be applied.

以下の実施例で本発明を更に詳しく説明する。
真空誘導溶解炉にて10kgのインゴットを作製し、1280℃×20時間の均質化熱処理の後、1100℃にて、熱間鍛伸・熱間圧延を行い、厚さ4mmのNo.A、Bとして示す2種類のバネ材素材を得た。バネ材素材の化学組成を表1に示す。なお、No.Bは、特許文献3に開示されている従来鋼である。
The following examples further illustrate the present invention.
A 10 kg ingot was prepared in a vacuum induction melting furnace, and after homogenization heat treatment at 1280 ° C. × 20 hours, hot forging and hot rolling were performed at 1100 ° C. Two types of spring material shown as A and B were obtained. Table 1 shows the chemical composition of the spring material. In addition, No. B is a conventional steel disclosed in Patent Document 3.

Figure 2006283085
Figure 2006283085

表1に示したバネ材素材表面の酸化スケールを酸洗いと研削にて除去した後、冷間圧延と歪除去のための熱処理を繰返し、厚さ0.3mmのバネ材素材薄板を得た。ここで、歪除去のための熱処理は、1050℃×1分とした。
その後、No.Aのバネ材素材は冷間圧延により厚さ0.2mmまで圧延後、900℃×5分の固溶化処理を施し、時効硬化処理前素材とした。
また、No.Bのバネ材素材は、冷間圧延により厚さ0.25mmまで圧延後、1050℃×5分の固溶化処理を施し、更に厚さ0.2mmまで調質圧延を施し、時効硬化処理前素材とした。
ビッカース硬さ測定は時効硬化処理前の縦断面(圧延方向に沿った断面)において、鏡面研磨後に圧子荷重2.9Nにて測定した。また、表面に電解研磨を施しX線回折にて残留オーステナイト(γ)量を測定した結果を表2に示す。
After removing the oxide scale on the surface of the spring material shown in Table 1 by pickling and grinding, cold rolling and heat treatment for strain removal were repeated to obtain a spring material thin plate having a thickness of 0.3 mm. Here, the heat treatment for removing the strain was 1050 ° C. × 1 minute.
Then, no. The spring material A was rolled to a thickness of 0.2 mm by cold rolling and then subjected to a solution treatment at 900 ° C. for 5 minutes to obtain a material before age hardening.
No. The spring material of B is rolled to a thickness of 0.25 mm by cold rolling, then subjected to a solid solution treatment at 1050 ° C. for 5 minutes, further subjected to a temper rolling to a thickness of 0.2 mm, and a material before age hardening treatment It was.
The Vickers hardness was measured at a longitudinal cross section (cross section along the rolling direction) before the age hardening treatment after mirror polishing with an indenter load of 2.9 N. Table 2 shows the results of electropolishing the surface and measuring the amount of retained austenite (γ) by X-ray diffraction.

Figure 2006283085
Figure 2006283085

時効硬化処理前は、バネ加工を行う状態である。時効硬化処理前素材のNo.A、No.Bの硬さは何れも350HV未満であり加工性が良く、残留オーステナイト(γ)量も1%未満であり、硬さのバラつきも非常に少ない結果となった。
前記の時効硬化処理前素材を用いて、バネ加工を模擬した三点曲げ試験を実施した。試験は7.5mmの長さを支持し、その中心を押し込む方法とした。その結果、本発明No.A、従来鋼No.Bについて、それぞれ、10個の試験片について実施したが、長さ10mmまで押し込んでも、試験片に割れ等の異常も発生せず、良好な加工性を示した。
次に、押し込み荷重を除去した試験後の試験片の曲がり角度を測定した。その結果、曲がり角度の試験片毎の相違は、ほとんどみられず、良好な加工精度であることが確認できた。本発明No.A、従来鋼No.Bの時効硬化処理前素材ともに優れた加工性と、加工精度とを併せ持つことを確認した。
Before age hardening, the spring is processed. No. of the material before age hardening treatment. A, No. The hardness of B was less than 350 HV, good workability, the amount of retained austenite (γ) was less than 1%, and the hardness variation was very small.
Using the material before age hardening treatment, a three-point bending test simulating spring processing was performed. In the test, a length of 7.5 mm was supported and the center was pushed in. As a result, the present invention no. A, conventional steel No. About B, it implemented about 10 test pieces, but even if it pushed in to length 10mm, abnormality, such as a crack, did not generate | occur | produce in a test piece, but favorable workability was shown.
Next, the bending angle of the test piece after the test in which the indentation load was removed was measured. As a result, there was almost no difference in the bending angle between the test pieces, and it was confirmed that the processing accuracy was good. This invention No. A, conventional steel No. It was confirmed that both the materials before age hardening treatment of B had excellent workability and processing accuracy.

上記の三点曲げ試験を実施した試験片を用いてNo.A、No.Bについて、480℃×2時間の時効硬化処理を施した。また、No.Aについては、560℃×1時間の時効硬化処理を施した。そして、時効硬化処理後について、縦断面(圧延方向に沿った断面)において、鏡面研磨後に圧子荷重2.9Nにてビッカース硬さ測定を行った結果を表3に、試料A1、A2、B1として示す。   Using the test piece subjected to the above three-point bending test, No. A, No. About B, the age hardening process of 480 degreeC x 2 hours was performed. No. About A, the age hardening process of 560 degreeC x 1 hour was performed. And after age-hardening treatment, in the longitudinal section (cross section along the rolling direction), the results of measuring the Vickers hardness with an indenter load of 2.9 N after mirror polishing are shown in Table 3 as samples A1, A2, and B1. Show.

Figure 2006283085
Figure 2006283085

時効硬化処理後の硬さは、試料A1が560HV以上であるのに対して、試料A2、B1は560HV未満であることから、試料A1は高強度であり、高い疲労強度が期待できるが、試料A2、B1は高疲労強度が期待できないと考えられる。   The hardness after age hardening treatment is 560 HV or higher for sample A1, whereas samples A2 and B1 are less than 560 HV, so sample A1 has high strength and high fatigue strength can be expected. It is considered that A2 and B1 cannot be expected to have high fatigue strength.

480℃×2時間の時効硬化処理後の試料(試料A1、B1)から、片振り曲げ疲労試験片を切り出し、バレル研磨を施した。更に、試料A1に関しては、バレル研磨後に窒化処理を施した試験片も用意した。窒化を施した試料A1の試験片の窒化層断面を1000倍で光学顕微鏡観察したが、表面に化合物層は確認されなかった。また、窒化深さは30μm、表面硬さは850HVであった。試料B1は良好な窒化層が得られる窒化条件が見出せなかった。
片振り曲げ疲労試験は、10回まで試験して、破断しない応力振幅を疲労限とした。試験実施前に表面圧縮残留応力を測定した結果と疲労限を表4に示す。
From the samples after aging at 480 ° C. for 2 hours (samples A1 and B1), one-way bending fatigue test pieces were cut out and barrel-polished. Further, for sample A1, a test piece that was subjected to nitriding after barrel polishing was also prepared. The cross section of the nitride layer of the specimen of sample A1 subjected to nitriding was observed with an optical microscope at 1000 times, but no compound layer was confirmed on the surface. The nitriding depth was 30 μm and the surface hardness was 850 HV. Sample B1 could not find the nitriding conditions for obtaining a good nitrided layer.
Pulsating bending fatigue test is tested up to 10 7 times, the stress amplitude does not break and the fatigue limit. Table 4 shows the results of measuring the surface compressive residual stress before the test and the fatigue limit.

Figure 2006283085
Figure 2006283085

試料A1は、バレル研磨後の疲労強度が高く、窒化処理を施すことで更に高疲労強度が得られている。一方、試料B1はバレル研磨後の疲労強度が低い値であった。
以上のように、加工性、加工精度、高疲労強度の全てを満足するのは、本発明鋼である試料A1のみである。そして、試料A1は窒化処理により更に疲労強度を高くすることができる。疲労試験は、10回までで評価したが、10回を越える高サイクル疲労領域では、非金属介在物を起点とした疲労破壊が起こることが知られているため、非金属介在物を微細化もしくは適正サイズ化することで、本発明鋼は高サイクル領域での高疲労強度も実現可能である。
Sample A1 has high fatigue strength after barrel polishing, and higher fatigue strength is obtained by nitriding. On the other hand, Sample B1 had a low fatigue strength after barrel polishing.
As described above, only the sample A1, which is the steel of the present invention, satisfies all of workability, processing accuracy, and high fatigue strength. Sample A1 can be further increased in fatigue strength by nitriding. Fatigue tests have been evaluated up to 107 times, in the high cycle fatigue region exceeding 10 7 times, since it is known that fatigue fracture starting from the non-metallic inclusions occur, fine nonmetallic inclusions The steel of the present invention can also achieve high fatigue strength in a high cycle region by making it to an appropriate size.

本発明によると加工性、加工精度に優れ、かつ高疲労強度であるバネ用材料を提供することが可能であるため、高精度でかつ高疲労強度を有するバネを製造することができる。
そして、本発明を用いると、非常に小型のバネや、高精度なバネを製造することができることから、各種バネを使用する部品、例えば、フラッパーバルブ、ショックアブソーバー弁、プレスプレート、板バネ、ダイヤフラム、メタルマスク等を小型化する場合、もしくは高速かつ精度よく作動させる場合、信頼性を高めたい場合には非常に有効である。
According to the present invention, since it is possible to provide a spring material that is excellent in workability and processing accuracy and has high fatigue strength, a spring having high accuracy and high fatigue strength can be manufactured.
Since the present invention can be used to manufacture very small springs and highly accurate springs, components using various springs such as flapper valves, shock absorber valves, press plates, leaf springs, diaphragms, etc. This is very effective for reducing the size of a metal mask or the like, or for operating at high speed and accuracy, and for improving reliability.

Claims (3)

質量%で、C:0.01%以下、Ni:8.0〜19.0%、Co:14.0%以下、Mo:2.0〜9.0%、Ti:2.0%以下(0は含まず)、Al:1.7%以下、O:30ppm以下、N:30ppm以下、残部は実質的にFeからなるバネ材を750〜950℃で固溶化処理して350HV未満の硬さとした後バネ形状に加工し、その後、400℃〜550℃で時効硬化処理を施すことを特徴とするバネ材の製造方法。 In mass%, C: 0.01% or less, Ni: 8.0 to 19.0%, Co: 14.0% or less, Mo: 2.0 to 9.0%, Ti: 2.0% or less ( 0: not included), Al: 1.7% or less, O: 30 ppm or less, N: 30 ppm or less, with the balance being a solid solution treated at 750 to 950 ° C. and a hardness of less than 350 HV Then, it is processed into a spring shape, and then subjected to age hardening at 400 ° C. to 550 ° C. 請求項1に記載の時効硬化処理の後に、バレル研磨若しくはショットピーニングを施すことを特徴とするバネ材の製造方法。 A method for producing a spring material, comprising performing barrel polishing or shot peening after the age hardening treatment according to claim 1. 請求項1に記載の時効硬化処理の後に、若しくは時効硬化処理と同時に、窒化処理を施すことを特徴とするバネ材の製造方法。 A method for producing a spring material, comprising performing nitriding after the age hardening treatment according to claim 1 or simultaneously with the age hardening treatment.
JP2005102997A 2005-03-31 2005-03-31 Method for producing spring material Pending JP2006283085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102997A JP2006283085A (en) 2005-03-31 2005-03-31 Method for producing spring material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102997A JP2006283085A (en) 2005-03-31 2005-03-31 Method for producing spring material

Publications (1)

Publication Number Publication Date
JP2006283085A true JP2006283085A (en) 2006-10-19

Family

ID=37405297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102997A Pending JP2006283085A (en) 2005-03-31 2005-03-31 Method for producing spring material

Country Status (1)

Country Link
JP (1) JP2006283085A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159219A1 (en) * 2017-03-02 2018-09-07 株式会社神戸製鋼所 Maraging steel and method for manufacturing same
CN112975102A (en) * 2021-03-04 2021-06-18 宁波江丰电子材料股份有限公司 Diffusion welding method for cobalt target and copper back plate
JP7415144B2 (en) 2019-12-04 2024-01-17 日本製鉄株式会社 austenitic stainless steel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942572B1 (en) * 1966-03-08 1974-11-15
JPS5964744A (en) * 1982-09-29 1984-04-12 Hitachi Metals Ltd Maraging steel excellent in delayed fracture characteristic
JPS59170244A (en) * 1983-03-16 1984-09-26 Mitsubishi Heavy Ind Ltd Strong and tough co-free maraging steel
JPS60103157A (en) * 1983-11-11 1985-06-07 Hitachi Metals Ltd Superhigh strength steel having superior delayed fracture characteristic
JPS6280322A (en) * 1985-10-04 1987-04-13 Hitachi Metals Ltd Endless steel belt and manufacture thereof
JPS62156250A (en) * 1985-12-27 1987-07-11 Sumitomo Metal Ind Ltd High strength and high toughness maraging steel and its production
JPH02285053A (en) * 1989-04-26 1990-11-22 Hitachi Metals Ltd Maraging steel and its production
WO2000049186A1 (en) * 1999-02-19 2000-08-24 Suncall Corporation Spring of excellent fatigue resisting characteristics and surface treatment method for manufacturing the same
JP2002275585A (en) * 2001-03-19 2002-09-25 Hitachi Metals Ltd Maraging steel strip and production method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942572B1 (en) * 1966-03-08 1974-11-15
JPS5964744A (en) * 1982-09-29 1984-04-12 Hitachi Metals Ltd Maraging steel excellent in delayed fracture characteristic
JPS59170244A (en) * 1983-03-16 1984-09-26 Mitsubishi Heavy Ind Ltd Strong and tough co-free maraging steel
JPS60103157A (en) * 1983-11-11 1985-06-07 Hitachi Metals Ltd Superhigh strength steel having superior delayed fracture characteristic
JPS6280322A (en) * 1985-10-04 1987-04-13 Hitachi Metals Ltd Endless steel belt and manufacture thereof
JPS62156250A (en) * 1985-12-27 1987-07-11 Sumitomo Metal Ind Ltd High strength and high toughness maraging steel and its production
JPH02285053A (en) * 1989-04-26 1990-11-22 Hitachi Metals Ltd Maraging steel and its production
WO2000049186A1 (en) * 1999-02-19 2000-08-24 Suncall Corporation Spring of excellent fatigue resisting characteristics and surface treatment method for manufacturing the same
JP2002275585A (en) * 2001-03-19 2002-09-25 Hitachi Metals Ltd Maraging steel strip and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159219A1 (en) * 2017-03-02 2018-09-07 株式会社神戸製鋼所 Maraging steel and method for manufacturing same
JP7415144B2 (en) 2019-12-04 2024-01-17 日本製鉄株式会社 austenitic stainless steel
CN112975102A (en) * 2021-03-04 2021-06-18 宁波江丰电子材料股份有限公司 Diffusion welding method for cobalt target and copper back plate
CN112975102B (en) * 2021-03-04 2023-06-23 宁波江丰电子材料股份有限公司 Diffusion welding method for cobalt target and copper backboard

Similar Documents

Publication Publication Date Title
RU2733612C2 (en) Steel, product made from such steel, and method of its production
JP5328785B2 (en) Hardened martensitic steel with low or no cobalt content, method for producing parts from the steel, and parts thus obtained
CN113272451B (en) Steel material
KR20170054410A (en) Austenitic stainless steel sheet and metal gasket
JP6241136B2 (en) Case-hardened steel
JP2010516898A (en) Lead-free free-cutting steel and its use
JP5347600B2 (en) Austenitic stainless steel and method for producing austenitic stainless steel sheet
JP5397308B2 (en) Hot-worked steel for case hardening
JP2014218683A (en) Soft-nitrided crankshaft and method of manufacturing the same
JP5499974B2 (en) Non-tempered nitrided crankshaft
JP6304025B2 (en) Carbon tool steel strip
JP2006283085A (en) Method for producing spring material
KR101717390B1 (en) Untempered soft-nitrided component
JP5708844B2 (en) Non-tempered nitrided crankshaft
JP2005314810A (en) Steel for induction hardening
JP2002194506A (en) Stainless steel sheet and production method for the same
JPH1017928A (en) Production of gear steel stock for induction hardening, excellent in machinability and fatigue strength
JP2008013807A (en) Method for manufacturing nitrided component
JP4315049B2 (en) Thin steel strip with excellent strength, fatigue strength, corrosion resistance and wear resistance, and manufacturing method thereof
JP2005120479A (en) High strength spring and production method therefor
JP3242336B2 (en) Cold forging steel excellent in cold forgeability and fatigue strength and method for producing cold forged member
JP7167482B2 (en) Non-heat treated steel for nitriding and crankshaft
JP7163770B2 (en) Rolling bearing component and manufacturing method thereof
JP2010090457A (en) Non-heat-treated steel to be nitrocarburized
JP6658317B2 (en) Carburized parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100716