JP2006282890A - Luminant, manufacturing method and manufacturing apparatus for the same, and light emitting element or apparatus - Google Patents
Luminant, manufacturing method and manufacturing apparatus for the same, and light emitting element or apparatus Download PDFInfo
- Publication number
- JP2006282890A JP2006282890A JP2005105643A JP2005105643A JP2006282890A JP 2006282890 A JP2006282890 A JP 2006282890A JP 2005105643 A JP2005105643 A JP 2005105643A JP 2005105643 A JP2005105643 A JP 2005105643A JP 2006282890 A JP2006282890 A JP 2006282890A
- Authority
- JP
- Japan
- Prior art keywords
- light
- europium
- target
- emitting element
- sputtering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electroluminescent Light Sources (AREA)
- Luminescent Compositions (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本発明は、例えば、光通信、発光表示装置、光集積回路、発光源等に好適な発光体、その製造方法及びその製造装置、並びに発光素子又は装置に関するものである。 The present invention relates to a light-emitting body suitable for, for example, optical communication, a light-emitting display device, an optical integrated circuit, and a light-emitting source, a manufacturing method and manufacturing device, and a light-emitting element or device.
従来、太陽光等の光を照射すると、暗所でも比較的長い時間にわたって残光を発する蓄光蛍光体又は発光体が知られており、例えばプラスチック等に混入することによって表示装置に使用するなどの用途がある。 Conventionally, phosphorescent phosphors or phosphors that emit afterglow over a relatively long time when irradiated with light such as sunlight are known. For example, they can be used in display devices by being mixed in plastic or the like. There are uses.
こうした発光体としてこれまで報告されているEuxSiyOz化合物を作製するには、例えば、HClガス(還元雰囲気)下で、1400℃という高温での処理が必要である(後述の非特許文献1を参照)。また、結晶化させるために、例えば1800℃といった一層高い温度が求められている(後述の非特許文献2を参照)。 In order to produce the EuxSiyOz compound reported so far as such a light emitter, for example, treatment at a high temperature of 1400 ° C. under HCl gas (reducing atmosphere) is required (see Non-Patent Document 1 described later). . Further, a higher temperature such as 1800 ° C. is required for crystallization (see Non-Patent Document 2 described later).
これに対し、低温での成膜が可能なスパッタを用いる方法では、例えば、Euメタル粉末とSi粉末とからなるターゲットや、EuSi2粉末をSi上に分散させたターゲットを用い、共スパッタする方法がある(後述の特許文献1を参照)。 On the other hand, in the method using sputtering capable of forming a film at a low temperature, for example, a method of co-sputtering using a target made of Eu metal powder and Si powder or a target in which EuSi 2 powder is dispersed on Si is used. (See Patent Document 1 described later).
しかしながら、上記の高温での成膜方法は、温度管理をはじめ、成膜のコントロールが困難である。また、上記のスパッタ法では、大気中にて取り扱いが難しいEu(ユウロピウム)メタル粉末を用いたターゲットが必要とされ、或いは、一般的ではないEuSi2粉末を用いた共スパッタが必要とされ、成膜の生産性が悪いという欠点がある。 However, the above-described film formation method at a high temperature is difficult to control the film formation including temperature control. In addition, the above sputtering method requires a target using Eu (europium) metal powder that is difficult to handle in the atmosphere, or requires co-sputtering using an uncommon EuSi 2 powder. There is a disadvantage that the productivity of the membrane is poor.
特に、高輝度発光材料であるEuメタル粉末は、酸化し易いので、大気中ではその作製が極めて困難であり、変質し易い。また、これを用いる場合に、ターゲット表面の酸化が生じ易くなるので、スパッタ条件の変動や成膜物質の組成変化を生じるおそれがある。また、EuSi2粉末は、市販されておらず、入手が非常に困難である。 In particular, Eu metal powder, which is a high-luminance luminescent material, is easy to oxidize. In addition, when this is used, oxidation of the target surface is likely to occur, which may cause fluctuations in sputtering conditions and changes in the composition of the film forming material. EuSi 2 powder is not commercially available and is very difficult to obtain.
従って、こうした特性の不安定な材料を使用する場合、成膜の再現性が困難となり、安定したターゲット材を得ることが難しく、それに伴って定量的な安定したスパッタが困難となり易い。 Therefore, when using a material having such unstable characteristics, it becomes difficult to reproducibly form a film, and it is difficult to obtain a stable target material, and accordingly, quantitative and stable sputtering is likely to be difficult.
本発明はこのような状況に鑑みてなされたものであり、その目的は、安定したターゲット材を用いた共スパッタによって、常に所望の組成に成膜される発光体、その製造方法及びその製造装置、並びに発光素子又は装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a light-emitting body that is always formed into a desired composition by co-sputtering using a stable target material, a manufacturing method thereof, and a manufacturing apparatus thereof. And providing a light-emitting element or device.
即ち、本発明は、
化学式:
EuxSiyOz
(但し、x=10〜40%
y=20〜72%
z=12〜60%)
で表わされるユウロピウムシリケート化合物の結晶からなる発光体に係わるものである。
That is, the present invention
Chemical formula:
EuxSiyOz
(However, x = 10-40%
y = 20-72%
z = 12-60%)
The present invention relates to a light emitter made of a crystal of a europium silicate compound represented by the formula:
本発明は又、シリコンとユウロピウム酸化物との複合体からなるターゲットを基体に対向して配置する工程と、前記シリコンと前記ユウロピウム酸化物とを共スパッタする工程とを経て、前記ユウロピウムシリケート化合物の結晶からなる発光体を前記基体上に成膜する、発光体の製造方法にも係わるものである。 The present invention also includes a step of disposing a target made of a composite of silicon and europium oxide so as to face a substrate, and a step of co-sputtering the silicon and the europium oxide, to thereby form the europium silicate compound. The present invention also relates to a method for manufacturing a light emitting body, in which a light emitting body made of crystals is formed on the substrate.
本発明は又、シリコンとユウロピウム酸化物との複合体からなるターゲットと、前記ターゲットに電界を作用させる電界発生手段と、前記ターゲットに磁界を作用させる磁界発生手段とを有する、発光体の製造装置を提供するものである。 The present invention also includes a light emitting device manufacturing apparatus comprising: a target made of a composite of silicon and europium oxide; an electric field generating unit that applies an electric field to the target; and a magnetic field generating unit that applies a magnetic field to the target. Is to provide.
本発明は更に、前記ユウロピウムシリケート化合物の結晶からなる発光体によって構成された発光素子又は装置も提供するものである。 The present invention further provides a light-emitting element or device constituted by a light-emitting body made of a crystal of the europium silicate compound.
本発明によれば、共スパッタのターゲットとして、入手容易で低温成膜が可能である、シリコンと安定なユウロピウム酸化物との複合体を用いるために、表面の酸化が生じない安定したターゲット材を用いて、スパッタ条件の変動や成膜物質の組成変化を防止し、定量的にかつ安定した組成のユウロピウムシリケート化合物の結晶からなる発光体を容易かつ再現性良く作製することが可能となる。 According to the present invention, since a composite of silicon and stable europium oxide, which is easily available and can be formed at a low temperature, is used as a co-sputtering target, a stable target material that does not cause surface oxidation is produced. By using it, it is possible to prevent a change in sputtering conditions and a composition change of a film forming material, and to easily and reproducibly produce a light-emitting body made of a crystal of a europium silicate compound having a quantitative and stable composition.
本発明においては、発光効率を高めるために、前記ユウロピウムの組成x=20〜30%であるのが望ましい。 In the present invention, in order to increase luminous efficiency, the europium composition x is preferably 20 to 30%.
また、スパッタ効率を向上させるために、前記ターゲットに電界及び磁界を同時に作用させて前記共スパッタを行い、この際、前記電界と前記磁界とが交差して磁力線が集中する領域(特にエロージョン領域)に前記ユウロピウム酸化物を配置するのが望ましい。 Further, in order to improve the sputtering efficiency, the co-sputtering is performed by simultaneously applying an electric field and a magnetic field to the target, and at this time, the electric field and the magnetic field intersect with each other, and the magnetic field lines are concentrated (especially an erosion region) It is desirable to dispose the europium oxide.
また、前記共スパッタで成膜された非晶質のユウロピウムシリケート化合物は、真空雰囲気にてアニール処理することによって結晶化するのが望ましい。 The amorphous europium silicate compound formed by co-sputtering is preferably crystallized by annealing in a vacuum atmosphere.
また、作製された発光体は、入射光又は電圧印加によって励起され、所定波長の光を放出する発光素子又は装置を構成することができる。 In addition, the manufactured light emitter can be configured as a light emitting element or device that is excited by incident light or voltage application and emits light of a predetermined wavelength.
この場合に、前記発光体が対向電極間に挟持されて表示画素を構成してなる発光素子又は装置を構成してもよい。 In this case, a light-emitting element or a device in which the light-emitting body is sandwiched between counter electrodes to form a display pixel may be configured.
次に、本発明の好ましい実施の形態を図面参照下に詳細に説明する。 Next, a preferred embodiment of the present invention will be described in detail with reference to the drawings.
図1には、直流電界と磁界とが直交する領域を用いたマグネトロン放電方式の高速低温スパッタ(DCマグネトロンスパッタ)方法とその装置を概略的に示す。 FIG. 1 schematically shows a magnetron discharge type high-speed and low-temperature sputtering (DC magnetron sputtering) method and apparatus using a region where a DC electric field and a magnetic field are orthogonal to each other.
円盤状のシリコン基板からなるシリコンターゲット2上には、電界Eと磁界Bとが直交して磁束が集中するエロージョン領域3にEu2O3焼結体1(ユウロピウム酸化物)が配置される。このシリコンターゲット2とEu2O3焼結体1との複合体ターゲットは、ほぼ円筒形の永久磁石5の上に配置され、この複合体ターゲットの永久磁石5とは反対側には、一定の距離を置いて成膜用の基板12が対向配置されている。 On a silicon target 2 made of a disk-shaped silicon substrate, Eu 2 O 3 sintered body 1 (europium oxide) is disposed in an erosion region 3 where an electric field E and a magnetic field B are orthogonal and magnetic flux concentrates. The composite target of the silicon target 2 and the Eu 2 O 3 sintered body 1 is disposed on a substantially cylindrical permanent magnet 5. On the opposite side of the composite target from the permanent magnet 5, there is a fixed target. A substrate 12 for film formation is disposed oppositely at a distance.
また、基板12とシリコンターゲット2とを電極として用い、これらの間に直流電圧Vを印加することによってターゲットに電界Eを作用させることができる。また、永久磁石5によって、その中央部から外周部へかけて連続する磁界Bを発生させ、ターゲットの表面上において、電界Eと磁界Bとが交差(特に直交)するエロージョン領域3をリング状に生じさせることができる。 Further, by using the substrate 12 and the silicon target 2 as electrodes and applying a DC voltage V therebetween, an electric field E can be applied to the target. Further, the permanent magnet 5 generates a continuous magnetic field B from the central part to the outer peripheral part, and the erosion region 3 where the electric field E and the magnetic field B intersect (especially orthogonal) on the surface of the target is formed in a ring shape. Can be generated.
磁力線が集中するこのエロージョン領域3にEu2O3焼結体1を配置すると、効率よくスパッタを行うことができる。 If the Eu 2 O 3 sintered body 1 is disposed in the erosion region 3 where the magnetic field lines are concentrated, sputtering can be performed efficiently.
図2には、シリコンターゲット2上のエロージョン領域3に複数のEu2O3焼結体1を環状に配置した状態を示す。ここで、例えば、シリコンターゲット2の直径は6インチ、1つのEu2O3焼結体1の大きさはφ10mm×5tである。また、Eu2O3焼結体1の数は49個であり、内側(φ70mm)に22個、外側(φ90mm)に27個と2重に並べる。なお、Eu2O3焼結体1はシリコンターゲット2上に載置するだけでよい。 FIG. 2 shows a state where a plurality of Eu 2 O 3 sintered bodies 1 are annularly arranged in the erosion region 3 on the silicon target 2. Here, for example, the diameter of the silicon target 2 is 6 inches, and the size of one Eu 2 O 3 sintered body 1 is φ10 mm × 5 t. In addition, the number of Eu 2 O 3 sintered bodies 1 is 49, and they are arranged in duplicate, with 22 on the inner side (φ70 mm) and 27 on the outer side (φ90 mm). Note that the Eu 2 O 3 sintered body 1 only needs to be placed on the silicon target 2.
次に、共スパッタ条件は、例えば、パワー400W〜500W(RF)(例えば400W(RF))、Ar流量20sccm、0.5Paの雰囲気にて行う。EuxSiyOz発光材料の成膜に用いる基板12は、Si、石英等、その後の真空アニール雰囲気に耐えられる材料であれば、何れでも可能である。 Next, the co-sputtering conditions are, for example, performed in an atmosphere having a power of 400 W to 500 W (RF) (for example, 400 W (RF)), an Ar flow rate of 20 sccm, and 0.5 Pa. The substrate 12 used for forming the EuxSiyOz luminescent material can be any material that can withstand a subsequent vacuum annealing atmosphere, such as Si or quartz.
共スパッタの結果、基板12上に成膜されたEuxSiyOzの組成は、例えばx:y:z=23:41:36となる。この状態では非晶質(アモルファス状)であり、発光は示さない。 As a result of co-sputtering, the composition of EuxSiyOz formed on the substrate 12 is, for example, x: y: z = 23: 41: 36. In this state, it is amorphous (amorphous) and does not emit light.
次に、この非晶質EuxSiyOzを、10-4Pa程度の真空雰囲気、又は0.133PaのAr、O2又はN2雰囲気にて、700〜1200℃(例えば1000℃)で30〜60分(例えば40分)アニール処理する。これにより、EuxSiyOzの結晶化が進み、例えば、黄色の603nmをピーク波長とする発光特性のユウロピウムシリケート化合物(発光体)を形成することができる。 Next, this amorphous EuxSiyOz is formed at 700 to 1200 ° C. (for example, 1000 ° C.) for 30 to 60 minutes in a vacuum atmosphere of about 10 −4 Pa or an Ar, O 2 or N 2 atmosphere of 0.133 Pa ( For example, annealing is performed for 40 minutes. As a result, crystallization of EuxSiyOz proceeds, and for example, a europium silicate compound (light emitter) having a light emission characteristic having a peak wavelength of yellow 603 nm can be formed.
図3には、基板12上に形成されたEuxSiyOz発光層11の発光特性:低温フォトルミネセンス法(LT−PL:Low Temperature-Photo Luminescence)の原理を示す。
FIG. 3 shows the principle of light emission characteristics of the EuxSiyOz light-
即ち、例えば、−196℃(77K)の液体N2中で325nmのHe−Cdレーザ光L1をEuxSiyOz発光層11に照射し、その際に発生する励起波長光L2を観察して、その発光スペクトルを求める。
That is, for example, the EuxSiyOz
図4は、波長(nm)と発光の相対強度との関係を示すが、例えば、603nm付近に強度ピークを持つユウロピウムシリケート化合物の黄色の発光スペクトルを示す。 FIG. 4 shows the relationship between the wavelength (nm) and the relative intensity of light emission. For example, a yellow emission spectrum of a europium silicate compound having an intensity peak near 603 nm is shown.
なお、この構造は、例えば、電圧の印加による自発光型のエレクトロルミネセンス素子(黄色用)や、カソードルミネセンス素子に適用することができる。また、シリコンターゲット2上におけるEu2O3焼結体1の配列個数を制御することにより、図5に示すように発光波長及び発光強度を変化させることが可能である。例えば、その個数を多くすれば、より短波長の色の発光特性を生じさせることができ、発光強度は一旦低下した後に向上させることができる。 Note that this structure can be applied to, for example, a self-luminous electroluminescent element (for yellow) by applying a voltage or a cathodoluminescent element. Further, by controlling the number of the Eu 2 O 3 sintered bodies 1 arranged on the silicon target 2, it is possible to change the emission wavelength and the emission intensity as shown in FIG. For example, if the number is increased, light emission characteristics of a shorter wavelength color can be generated, and the light emission intensity can be improved after once decreasing.
図6には、発光ピーク波長(nm)とEuの組成比(%)と発光強度(相対値)との相関性を示す。 FIG. 6 shows the correlation between the emission peak wavelength (nm), the Eu composition ratio (%), and the emission intensity (relative value).
例えば、x=10〜40%、y+z=90〜60%のEuxSiyOz発光層11は、破線で示すように、xの割合が増加するにつれて発光ピーク波長が変化する。
For example, in the EuxSiyOz
また、実線で示すように、xの割合が増加するにつれて発光強度が変化する。特に、x=20%未満になると発光が弱くなり、x=30%を超えると濃度消光により発光効率が低下してしまう。従って、発光効率を良好に保つためには、x=10〜40%、特に20〜30%とするのが好ましい。 Further, as indicated by the solid line, the emission intensity changes as the ratio of x increases. In particular, when x is less than 20%, the light emission is weakened, and when x is over 30%, the light emission efficiency is lowered due to concentration quenching. Therefore, in order to keep the luminous efficiency good, it is preferable that x = 10 to 40%, particularly 20 to 30%.
なお、従来知られているユウロピウムシリケートにおいては、Euの含有比が数〜0.数%であって少ないが、これは数%以上になると濃度消光を生じるためである。これに対して、本発明に基づくユウロピウムシリケートは結晶化しているために、10〜40%、特に20〜30%とEuを多くしても発光特性を良好に保持することができる。 In the conventionally known europium silicate, the Eu content ratio is several to 0.00. Although it is a few percent and is small, this is because concentration quenching occurs when it is several percent or more. On the other hand, since europium silicate based on the present invention is crystallized, even if Eu is increased to 10 to 40%, particularly 20 to 30%, the light emission characteristics can be maintained well.
次に、図7(A)及び(B)には、上述のEuxSiyOz発光層11を用いて、例えば、方形の基板12上に、ストライプ状の電極16とストライプ状のEuxSiyOz発光層11及び電極7とをマトリックス状に交差して配置し、各画素を構成した表示素子又は装置を示す。両電極16−7間に選択的に電圧を印加することによって、画素の発光層11が励起され、所定波長の光を放出する素子又は装置を構成することができる。
Next, in FIGS. 7A and 7B, the above-described EuxSiyOz light emitting
本実施の形態によれば、共スパッタのターゲットとして、入手容易で低温成膜が可能である、シリコン2と安定なユウロピウム酸化物1との複合体を用いるために、表面の酸化が生じない安定したターゲット材を用いて、スパッタ条件の変動や成膜物質の組成変化を防止し、定量的にかつ安定した組成のユウロピウムシリケート化合物の結晶からなる発光体11を容易かつ再現性良く作製することが可能となる。
According to the present embodiment, since a composite of silicon 2 and stable europium oxide 1 that can be easily obtained and can be formed at a low temperature is used as a co-sputtering target, surface oxidation does not occur. By using the target material, it is possible to prevent the fluctuation of the sputtering conditions and the composition change of the film forming material, and to easily and easily produce the
また、例えば、603nmを発光ピーク波長とする黄色発光のEuxSiyOz発光層11を、一般的な材料を用いた共スパッタによって容易に成膜することを可能とする。
Further, for example, it is possible to easily form a yellow-emitting EuxSiyOz
以上、本発明を実施の形態に基づいて説明したが、本発明はこれらの例に何ら限定されるものではなく、発明の主旨を逸脱しない範囲で適宜変更可能であることは言うまでもない。 As mentioned above, although this invention was demonstrated based on embodiment, it cannot be overemphasized that this invention is not limited to these examples at all, and can be suitably changed in the range which does not deviate from the main point of invention.
例えば、Eu2O3焼結体1の組成比、載置位置、配置数及び大きさ、共スパッタ条件、アニール条件等は、EuxSiyOz発光層11の目的とする膜性能に応じて様々に変化させてよい。
For example, the composition ratio, placement position, arrangement number and size, co-sputtering conditions, annealing conditions, etc. of the Eu 2 O 3 sintered body 1 can be variously changed according to the target film performance of the EuxSiyOz
1…Eu2O3焼結体、2…シリコンターゲット、3…エロージョン領域、
5…永久磁石、7、16…電極、11…EuxSiyOz発光層、12…基板、
E…電界、B…磁界
1 ... Eu 2 O 3 sintered body, 2 ... silicon target, 3 ... erosion region,
5 ... Permanent magnet, 7, 16 ... Electrode, 11 ... EuxSiyOz light emitting layer, 12 ... Substrate,
E ... Electric field, B ... Magnetic field
Claims (11)
EuxSiyOz
(但し、x=10〜40%
y=20〜72%
z=12〜60%)
で表わされるユウロピウムシリケート化合物の結晶からなる発光体。 Chemical formula:
EuxSiyOz
(However, x = 10-40%
y = 20-72%
z = 12-60%)
A luminescent material comprising a crystal of a europium silicate compound represented by:
化学式:
EuxSiyOz
(但し、x=10〜40%
y=20〜72%
z=12〜60%)
で表わされるユウロピウムシリケート化合物の結晶からなる発光体を前記基体上に成膜する、発光体の製造方法。 Through a step of disposing a target made of a composite of silicon and europium oxide so as to face the substrate, and a step of co-sputtering the silicon and the europium oxide,
Chemical formula:
EuxSiyOz
(However, x = 10-40%
y = 20-72%
z = 12-60%)
A method for producing a light emitter, wherein a light emitter comprising a crystal of a europium silicate compound represented by the formula is formed on the substrate.
EuxSiyOz
(但し、x=10〜40%
y=20〜72%
z=12〜60%)
で表わされるユウロピウムシリケート化合物の結晶からなる発光体によって構成された発光素子又は装置。 Chemical formula:
EuxSiyOz
(However, x = 10-40%
y = 20-72%
z = 12-60%)
A light-emitting element or a device constituted by a light emitter made of a crystal of a europium silicate compound represented by the formula:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005105643A JP2006282890A (en) | 2005-04-01 | 2005-04-01 | Luminant, manufacturing method and manufacturing apparatus for the same, and light emitting element or apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005105643A JP2006282890A (en) | 2005-04-01 | 2005-04-01 | Luminant, manufacturing method and manufacturing apparatus for the same, and light emitting element or apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006282890A true JP2006282890A (en) | 2006-10-19 |
Family
ID=37405134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005105643A Pending JP2006282890A (en) | 2005-04-01 | 2005-04-01 | Luminant, manufacturing method and manufacturing apparatus for the same, and light emitting element or apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006282890A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100209728A1 (en) * | 2007-07-12 | 2010-08-19 | Materia Nova | Magnetron co-sputtering device |
CN107868941A (en) * | 2016-09-27 | 2018-04-03 | 韩山师范学院 | The manufacture method of down-conversion luminescent material |
-
2005
- 2005-04-01 JP JP2005105643A patent/JP2006282890A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100209728A1 (en) * | 2007-07-12 | 2010-08-19 | Materia Nova | Magnetron co-sputtering device |
CN107868941A (en) * | 2016-09-27 | 2018-04-03 | 韩山师范学院 | The manufacture method of down-conversion luminescent material |
CN107868941B (en) * | 2016-09-27 | 2018-11-09 | 韩山师范学院 | The manufacturing method of down-conversion luminescent material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0258908B1 (en) | Ultrafine grain fluorescent body | |
JP6293987B2 (en) | Organic electroluminescence device | |
KR20070101313A (en) | Amorphous diamond materials and associated methods for the use and manufacture thereof | |
JP4566663B2 (en) | Luminescent material and manufacturing method thereof | |
JP2006004658A (en) | Light emitting device and its manufacturing method | |
JP2006282890A (en) | Luminant, manufacturing method and manufacturing apparatus for the same, and light emitting element or apparatus | |
TWI362895B (en) | Dc-driven electroluminescence device and light emission method | |
Gonzalez-Ortega et al. | White light emission from Y2SiO5: Ce, Tb films excited by electroluminescence | |
JP2010027480A (en) | Electroluminescent material, its manufacturing method, and electroluminescent element | |
JP2010219078A (en) | Inorganic electroluminescent element and light emitting device utilizing the element, and light emitting method | |
JP4994678B2 (en) | Green phosphor and method for producing the same | |
JP5062882B2 (en) | Inorganic electroluminescence device | |
EP3524035B1 (en) | Illumination light source and fabricating method thereof | |
JP5046637B2 (en) | Inorganic electroluminescent device | |
US6689630B2 (en) | Method of forming an amorphous aluminum nitride emitter including a rare earth or transition metal element | |
JP3477518B2 (en) | Manufacturing method of thin film light emitting device | |
JP2005268337A (en) | Nano silicon light emitting element and manufacturing method thereof | |
Chirauri et al. | An Insights into Non-RE Doped Materials for Opto-Electronic Display Applications | |
JPH07263146A (en) | Light emitting element | |
JP4928329B2 (en) | Thin film inorganic EL element | |
JP5406577B2 (en) | Phosphor thin film | |
JP2005076024A (en) | Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element | |
JP5197827B2 (en) | Green phosphor and method for producing the same | |
JP5100067B2 (en) | Fluorescent material, phosphor, display device, and phosphor manufacturing method | |
TWI309057B (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20070125 |