JP2006282856A - Rust-proofing material - Google Patents

Rust-proofing material Download PDF

Info

Publication number
JP2006282856A
JP2006282856A JP2005104736A JP2005104736A JP2006282856A JP 2006282856 A JP2006282856 A JP 2006282856A JP 2005104736 A JP2005104736 A JP 2005104736A JP 2005104736 A JP2005104736 A JP 2005104736A JP 2006282856 A JP2006282856 A JP 2006282856A
Authority
JP
Japan
Prior art keywords
zinc powder
mass
zinc
anticorrosive material
anticorrosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005104736A
Other languages
Japanese (ja)
Other versions
JP4734011B2 (en
Inventor
Kazunari Morimoto
和成 森本
Koichiro Taniguchi
幸一郎 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005104736A priority Critical patent/JP4734011B2/en
Publication of JP2006282856A publication Critical patent/JP2006282856A/en
Application granted granted Critical
Publication of JP4734011B2 publication Critical patent/JP4734011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zinc powder-containing rust-proofing material in which a rust-proofing property, etc., is further improved. <P>SOLUTION: The rust-proofing material comprises 45-80 mass% zinc powder, 5-25 mass% resin which is inactive to zinc, 0.03-1 mass% particles of oxide and 5-30 mass% organic solvent. The zinc powder comprises three kinds of zinc powders which are different in the shapes. Three kinds of zinc powders comprise spindle-shaped zinc powder, globular zinc powder and scaly powder. These zinc powders comprise 60-98 mass% spindle-like zinc powder, 0.5-25 mass% globular zinc powder and 1-15 mass% scaly zinc powder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、亜鉛よりも貴な金属の腐食を防止するための防食材に関する。   The present invention relates to an anticorrosion material for preventing corrosion of a metal nobler than zinc.

本出願人は先に、防食用亜鉛入り塗布充填剤を提案した(特許文献1参照)。この塗布充填剤は、粒径が70〜150μmの大きさの粒子が80%以上である亜鉛粉と、酸を含有していない粘着剤と、溶剤とからなり、溶剤を除き亜鉛粉80〜95質量%、粘着剤固形分5〜20質量%の比率で混合されてなるものである。かかる塗布充填剤を、大気腐食環境下にある屋外鉄鋼構造物に塗布することにより、該構造物の腐食を防止することができる。   The present applicant has previously proposed a coating filler containing zinc for anticorrosion (see Patent Document 1). This coating filler is composed of a zinc powder having a particle size of 70 to 150 μm and a particle size of 80% or more, a pressure-sensitive adhesive containing no acid, and a solvent. It is mixed at a ratio of 5% by mass and 5-20% by mass of the adhesive solid content. By applying such a coating filler to an outdoor steel structure in an atmospheric corrosive environment, corrosion of the structure can be prevented.

しかし、高温高湿でかつ塩分濃度が高く、降雨量の多い環境下など、腐食に関して過酷な環境下にある屋外鉄鋼構造においては、犠牲防食に起因する亜鉛の酸化が進行しやすい。また塗膜にブリスターが発生する可能性があり、それに起因して犠牲防食性が低下する傾向にある。   However, in an outdoor steel structure that is in a severe environment with respect to corrosion, such as in an environment with high temperature and high humidity, high salinity, and high rainfall, zinc oxidation due to sacrificial corrosion protection tends to proceed. In addition, blisters may be generated in the coating film, and the sacrificial anticorrosive property tends to decrease due to the blisters.

また、前記の防食用亜鉛入り塗布充填剤をハケ塗りする場合、1回塗りではハケの種類によっては塗りむらを生じることがあった。塗りムラとは亜鉛末がない部分が生じることである。塗りむらが生じると、それに起因して赤サビが早く発生することがあった。   In addition, when the coating filler containing zinc for anticorrosion is applied by brush, uneven coating may occur depending on the type of the brush in a single application. Uneven coating is the occurrence of a part without zinc dust. When coating unevenness occurs, red rust may occur quickly due to this.

特開平2−294370号公報JP-A-2-294370

従って本発明の目的は、前述した従来技術よりも各種性能が向上した亜鉛粉入り防食材を提供することにある。   Accordingly, an object of the present invention is to provide a zinc powder-containing anticorrosive material having various performances improved over the above-described prior art.

本発明は、亜鉛粉45〜80質量%と、亜鉛に対して不活性な樹脂5〜25質量%と、Si、Al及びMgからなる群より選択される少なくとも一種の元素を含む酸化物の粒子0.03〜1質量%と、有機溶剤5〜30質量%とを含有する防食材であって、
前記亜鉛粉は、形状の異なる少なくとも3種の亜鉛粉を含み、該3種の亜鉛粉は、紡錘状の亜鉛粉、球状の亜鉛粉、及び鱗片状の亜鉛粉を含み、
亜鉛粉の全量に対して、前記紡錘状の亜鉛粉が60〜98質量%、前記球状の亜鉛粉が0.5〜25質量%、前記鱗片状の亜鉛粉1〜15質量%含まれる防食材を提供することにより前記目的を達成したものである。
The present invention provides an oxide particle containing 45 to 80% by mass of zinc powder, 5 to 25% by mass of a resin inert to zinc, and at least one element selected from the group consisting of Si, Al and Mg. An anticorrosive material containing 0.03 to 1% by mass and 5 to 30% by mass of an organic solvent,
The zinc powder includes at least three kinds of zinc powders having different shapes, and the three kinds of zinc powders include spindle-shaped zinc powder, spherical zinc powder, and scaly zinc powder,
The anticorrosive material containing 60 to 98% by mass of the spindle-shaped zinc powder, 0.5 to 25% by mass of the spherical zinc powder, and 1 to 15% by mass of the flaky zinc powder with respect to the total amount of the zinc powder. The above object is achieved by providing the above.

本発明によれば、形状の異なる亜鉛粉を組み合わせて用いることで、犠牲防食性が向上する。また酸化物の粒子を配合することで、塗膜にブリスターが発生しづらくなり、これによっても犠牲防食性が向上する。更に、酸化物の粒子を配合することで、保存中に亜鉛粉が硬沈降しづらくなり、撹拌を行いやすくなり、施工の準備が行いやすくなる。   According to the present invention, sacrificial corrosion resistance is improved by using a combination of zinc powders having different shapes. In addition, blending oxide particles makes it difficult for blisters to be generated in the coating film, which also improves the sacrificial corrosion resistance. Furthermore, by blending oxide particles, it becomes difficult for the zinc powder to hard settle during storage, and it becomes easier to stir and prepare for construction.

以下本発明を、その好ましい実施形態に基づき説明する。本発明の防食材は、その構成成分として(a)亜鉛粉、(b)亜鉛に対して不活性な樹脂、(c)酸化物の粒子、(d)有機溶剤を含有する組成物からなる。以下、これらの成分についてそれぞれ説明する。   Hereinafter, the present invention will be described based on preferred embodiments thereof. The anticorrosive material of the present invention comprises a composition containing (a) zinc powder, (b) resin inert to zinc, (c) oxide particles, and (d) an organic solvent as its constituent components. Hereinafter, each of these components will be described.

亜鉛粉としては、形状の異なる少なくとの3種のものを用いる。この3種の亜鉛粉は、(イ)紡錘状の亜鉛粉、(ロ)球状の亜鉛粉、及び(ハ)鱗片状の亜鉛粉である。これら形状の異なる亜鉛粉を組み合わせて用いることで、本発明の防食材はその犠牲防食性が向上する。詳細には、亜鉛粉の形状が異なることで、塗膜中において亜鉛粉間の隙間が埋まり、亜鉛粉どうしの電気的接触が良好になり、塗膜全体の電子伝導性が高まる。その結果、亜鉛粉の消耗が均一に起こるようになり、犠牲防食性が向上する。更に塗膜全体としてみたときの亜鉛粉の表面積が高まり、それによっても亜鉛粉の消耗が起こりやすくなり、犠牲防食性が向上する。塗膜中において亜鉛粉間の隙間が埋まることで、本発明の防食材をはけ塗りしたときに、塗りむらが生じにくくなり、施工性が向上するという利点もある。更に、塗膜の粒状感が低下して、平滑性が向上するという利点もある。   As the zinc powder, at least three types having different shapes are used. These three types of zinc powder are (a) spindle-shaped zinc powder, (b) spherical zinc powder, and (c) scaly zinc powder. By using these zinc powders having different shapes in combination, the sacrificial anticorrosive property of the anticorrosive material of the present invention is improved. More specifically, the difference in the shape of the zinc powder fills the gaps between the zinc powders in the coating, improves the electrical contact between the zinc powders, and increases the electronic conductivity of the entire coating. As a result, consumption of zinc powder occurs uniformly, and sacrificial corrosion resistance is improved. Furthermore, the surface area of the zinc powder increases when viewed as a whole coating film, which also makes it easy for the zinc powder to wear out and improves sacrificial anticorrosive properties. By filling the gaps between the zinc powders in the coating film, when the anticorrosive material of the present invention is brushed, uneven coating is less likely to occur and the workability is improved. Furthermore, there is an advantage that the granular feeling of the coating film is lowered and the smoothness is improved.

(イ)の紡錘状の亜鉛粉における「紡錘状」とは長軸及びそれに直交する短軸を有する細長い形状のものを包含する概念であり、狭義の紡錘形のみならず針状などの細長い形状も含まれる。   The “spindle shape” in the spindle-shaped zinc powder of (a) is a concept including an elongated shape having a major axis and a minor axis perpendicular to the major axis, and includes not only a spindle shape in a narrow sense but also an elongated shape such as a needle shape. included.

紡錘状の亜鉛粉は、その平均粒径、即ち平均長軸長が30〜500μm、特に30〜400μm、とりわけ70〜300μmであることが、亜鉛粉が過度に消耗することを防止でき、また亜鉛粉どうしの隙間が過度に開きすぎることに起因する防食性能の低下を防止し得き、適正な防食性能を長期間にわたり継続的に維持し且つ発揮し得る点から好ましい。平均粒径は例えばレーザー回折散乱法によって測定される。以下の説明において平均粒径というときは、この方法によって測定された値をいう。   The spindle-shaped zinc powder has an average particle size, that is, an average major axis length of 30 to 500 μm, particularly 30 to 400 μm, especially 70 to 300 μm, and can prevent the zinc powder from being excessively consumed. It is preferable from the viewpoint that it is possible to prevent a decrease in the anticorrosion performance due to excessive opening of the gap between the powders, and to maintain and exhibit the appropriate anticorrosion performance over a long period of time. The average particle diameter is measured by, for example, a laser diffraction scattering method. In the following description, the average particle size refers to a value measured by this method.

紡錘状の亜鉛粉は、亜鉛粉全体に占める割合が3種の亜鉛粉のなかで最も高く、具体的には、亜鉛粉全量に対して60〜98質量%、好ましくは80〜98質量%配合される。配合量がこの範囲内であれば、適正な防食性能を長期間にわたり継続して維持し且つ発揮させることができ、また十分な電子伝導性を確保することができる。   The spindle-shaped zinc powder has the highest proportion of the total zinc powder among the three types of zinc powder. Specifically, it is 60 to 98 mass%, preferably 80 to 98 mass%, based on the total amount of zinc powder. Is done. When the blending amount is within this range, appropriate anticorrosion performance can be continuously maintained and exhibited over a long period of time, and sufficient electron conductivity can be ensured.

(ロ)の球状の亜鉛粉は、主として、前記の(イ)の紡錘状の亜鉛粉間の隙間に入り込み、本発明の防食材の展延性を向上させ、防食材をはけ塗りしたときに、塗りむらを生じにくくする作用を主として有する。また、(ロ)の球状の亜鉛粉は、後述する(ハ)の鱗片状の亜鉛粉との相乗作用によって、亜鉛粉の表面積を高め、犠牲防食性を向上させる作用も有する。   The spherical zinc powder of (b) mainly enters the gaps between the spindle-shaped zinc powders of (b), improves the spreadability of the anticorrosive material of the present invention, and is brushed with the anticorrosive material. Primarily has the effect of making uneven coating difficult. In addition, the spherical zinc powder (b) has an effect of increasing the surface area of the zinc powder and improving the sacrificial anticorrosive property by a synergistic action with the scaly zinc powder (c) described later.

球状の亜鉛粉は、紡錘状の亜鉛粉よりも小粒のものであることが好ましい。これによって、紡錘状の亜鉛粉間の隙間に、球状の亜鉛粉が入り込みやすくなるからである。この観点から球状の亜鉛粉は、その平均粒径が1〜20μm、特に3.5〜10μmであることが好ましい。   The spherical zinc powder is preferably smaller than the spindle-shaped zinc powder. This is because the spherical zinc powder easily enters the gaps between the spindle-shaped zinc powders. From this viewpoint, the spherical zinc powder preferably has an average particle size of 1 to 20 μm, particularly 3.5 to 10 μm.

球状の亜鉛粉は、紡錘状の亜鉛粉間の隙間を埋めるものであるから、その使用量は、紡錘状の亜鉛粉よりも少ないことが好ましい。この観点から、球状の亜鉛粉は、亜鉛粉全量に対して0.5〜25質量%配合し、好ましくは0.5〜10質量%配合する。   Since the spherical zinc powder fills the gaps between the spindle-shaped zinc powders, the amount used is preferably less than the spindle-shaped zinc powder. From this viewpoint, the spherical zinc powder is blended in an amount of 0.5 to 25% by mass, preferably 0.5 to 10% by mass, based on the total amount of the zinc powder.

(ハ)の鱗片状の亜鉛粉は、前記の(ロ)の球状の亜鉛粉との相乗作用によって、亜鉛粉の表面積を高め、犠牲防食性を向上させる作用を主として有する。また、前記の(イ)の紡錘状の亜鉛粉間の隙間に入り込み、亜鉛粉どうしの電気的接触を高める作用も有する。なお、鱗片状とは、平面方向を有し、且つ該平面方向に直交する方向に厚みを有する形状のものを包含する概念であり、狭義の鱗片状のみならず、板状なども含まれる。   The scale-like zinc powder (c) mainly has a function of increasing the surface area of the zinc powder and improving the sacrificial anticorrosive property by a synergistic action with the spherical zinc powder (b). Moreover, it has the effect | action which penetrates into the clearance gap between the spindle-shaped zinc powder of said (a), and raises the electrical contact of zinc powder. The scale shape is a concept including a shape having a plane direction and having a thickness in a direction orthogonal to the plane direction, and includes not only a narrow scale shape but also a plate shape.

鱗片状の亜鉛粉は、その平均粒径、即ち平面方向の長さが5〜30μm、特に8〜18μmであることが、亜鉛粉の表面積を高め、犠牲防食性を向上させる点から好ましい。鱗片状の亜鉛粉が、平面方向に長軸及び短軸を有する場合、平面方向の長さとは、長軸方向の長さをいう。一方、鱗片状の亜鉛粉が、平面方向に異方性の少ない形状、例えば円盤状ないしそれに近い形状を有する場合には、平面方向の長さとは、直径又は円相当直径をいう。   The scale-like zinc powder preferably has an average particle diameter, that is, a length in the plane direction of 5 to 30 μm, particularly 8 to 18 μm, from the viewpoint of increasing the surface area of the zinc powder and improving the sacrificial corrosion resistance. When the scaly zinc powder has a major axis and a minor axis in the planar direction, the length in the planar direction refers to the length in the major axis direction. On the other hand, when the scale-like zinc powder has a shape with little anisotropy in the plane direction, for example, a disk shape or a shape close to it, the length in the plane direction means a diameter or an equivalent circle diameter.

鱗片状の亜鉛粉は、前記の球状の亜鉛粉と共に、紡錘状の亜鉛粉間の隙間を埋めるものであるから、その使用量は、紡錘状の亜鉛粉よりも少ないことが好ましい。この観点から、球状の亜鉛粉は、亜鉛粉全量に対して1〜15質量%配合し、好ましくは3〜7質量%配合する。   Since the scaly zinc powder fills the gaps between the spindle-shaped zinc powders together with the spherical zinc powder, the amount used is preferably less than the spindle-shaped zinc powders. From this viewpoint, the spherical zinc powder is blended in an amount of 1 to 15 mass%, preferably 3 to 7 mass%, based on the total amount of zinc powder.

これら形状の異なる3種の亜鉛粉の合計量は、本発明の防食材に対して45〜80質量%とし、好ましくは55〜75質量%とする。この範囲内であれば、十分な犠牲防食性が発現する。   The total amount of these three types of zinc powders having different shapes is 45 to 80% by mass, preferably 55 to 75% by mass, based on the anticorrosive material of the present invention. If it is in this range, sufficient sacrificial anticorrosive property will be developed.

本発明の防食材に含まれる樹脂は、先に述べた通り亜鉛に対して不活性なものである。この樹脂は、本発明の防食材から形成される塗膜を塗布面に密着させると共に、亜鉛粉を分散させるためのマトリックスである。また、この樹脂は、この塗膜により防食される屋外鉄鋼構造物などの表面を保護する被覆材でもある。この目的のために、樹脂は、防食対象物の表面に対して密着性がよく、また防食対象物が熱膨張したときに追随性よく変形するものであることが好ましい。そのような樹脂としては、例えばゴム弾性を有する樹脂が挙げられる。   As described above, the resin contained in the anticorrosive material of the present invention is inert to zinc. This resin is a matrix for allowing the coating formed from the anticorrosive material of the present invention to adhere to the coated surface and dispersing zinc powder. Moreover, this resin is also a coating material that protects the surface of an outdoor steel structure or the like that is protected against corrosion by this coating film. For this purpose, it is preferable that the resin has good adhesion to the surface of the anticorrosion object and can be deformed with good followability when the anticorrosion object is thermally expanded. An example of such a resin is a resin having rubber elasticity.

ゴム弾性を有する樹脂としては、プロピレンゴム、ブタジエンゴム、ブチルゴムなどのように、脂肪族不飽和炭化水素から形成されたゴム弾性を有する樹脂;SEBS、SEPSのようにスチレンとα−オレフインとからなるスチレン系弾性樹脂;アクリル系弾性樹脂;天然ゴム;変性シリコーン系弾性樹脂などを挙げることができる。これらの弾性樹脂は単独であるいは組み合わせて使用することができる。特に本発明では、ブタジエンのように共役ジエンから形成された脂肪族不飽和炭化水素系弾性樹脂を使用することが好ましい。このような弾性樹脂は、後述する溶剤との親和性が良好だからである。   Examples of the resin having rubber elasticity include a resin having rubber elasticity formed from an aliphatic unsaturated hydrocarbon such as propylene rubber, butadiene rubber, and butyl rubber; and styrene and α-olefin as SEBS and SEPS. Examples thereof include styrene elastic resins; acrylic elastic resins; natural rubber; modified silicone elastic resins. These elastic resins can be used alone or in combination. In particular, in the present invention, it is preferable to use an aliphatic unsaturated hydrocarbon elastic resin formed from a conjugated diene such as butadiene. This is because such an elastic resin has good affinity with a solvent described later.

樹脂は、本発明の防食材中に固形分換算で5〜25質量%、特に10〜20質量%配合されることが、塗膜の密着性の向上や、防食対象物表面の十分な保護の観点から好ましい。   The resin is blended in the anticorrosive material of the present invention in an amount of 5 to 25% by mass, particularly 10 to 20% by mass in terms of solid content, thereby improving the adhesion of the coating film and sufficiently protecting the surface of the anticorrosive object. It is preferable from the viewpoint.

本発明の防食材に含まれる酸化物の粒子は、防食材から形成される塗膜にブリスターが発生することを防止する作用を主として有する。本発明者らの検討によれば、ブリスターは、亜鉛の酸化等に起因して塗膜の内部に発生した水素等のガスによって発生するものと考えられる。本発明においては、酸化物の粒子を防食材に配合することで、塗膜の表面に微細なクラックを多数形成させ、そのクラックを通じてガスが外部に放出されるようにして、ブリスターの発生を抑制している。また、形成されたクラックを通じて雨水が塗膜内に浸入することで、犠牲防食性が一層向上するという利点もある。   The oxide particles contained in the anticorrosive material of the present invention mainly have the function of preventing the occurrence of blisters in the coating film formed from the anticorrosive material. According to the study by the present inventors, the blister is considered to be generated by a gas such as hydrogen generated inside the coating film due to oxidation of zinc or the like. In the present invention, by adding oxide particles to the anticorrosive material, many fine cracks are formed on the surface of the coating film, and gas is released to the outside through the cracks, thereby suppressing the generation of blisters. is doing. Moreover, there exists an advantage that sacrificial anticorrosion property improves further because rainwater permeates in a coating film through the formed crack.

酸化物の粒子は、増粘作用を有していることも好ましい。これによって、本発明の防食材の保管中に亜鉛粉が硬沈降することを効果的に防止することができる。亜鉛粉の硬沈降が防止されると撹拌を行いやすくなる。その結果、例えば施工前の準備として行う攪拌が容易となり、施工時における防食材の均一性が一層確保されやすくなる。   It is also preferable that the oxide particles have a thickening action. Thereby, it is possible to effectively prevent the zinc powder from being hard-set during storage of the anticorrosive material of the present invention. If the zinc powder is prevented from being hard-set, stirring becomes easier. As a result, for example, stirring performed as preparation before construction is facilitated, and uniformity of the anticorrosive material during construction is further ensured.

以上のことを勘案して、本発明においては酸化物の粒子として、Si、Al及びMgからなる群より選択される少なくとも一種の元素を含むものを用いている。特に、シリカ(SiO)、アルミナ、タルクなどを用いることが好ましい。これらの粒子は、一種又は二種以上を組み合わせて用いることができる。 In view of the above, in the present invention, oxide particles containing at least one element selected from the group consisting of Si, Al, and Mg are used. In particular, it is preferable to use silica (SiO 2 ), alumina, talc, or the like. These particles can be used alone or in combination of two or more.

塗膜に微細なクラックを多数形成させ、また亜鉛粉の硬沈降を防止する観点から、酸化物の粒子は微粒であることが好ましい。具体的には、一次粒子径が5〜50nm、特に10〜30nmであることが好ましい。   From the viewpoint of forming a large number of fine cracks in the coating film and preventing hard sedimentation of the zinc powder, the oxide particles are preferably fine particles. Specifically, the primary particle diameter is preferably 5 to 50 nm, particularly 10 to 30 nm.

本発明の防食材における酸化物の粒子の配合量は、0.03〜1質量%、特に0.05〜0.5質量%であることが、ブリスターの発生及び亜鉛粉の硬沈降を防止する観点から好ましい。先に述べた通り、酸化物の粒子は、増粘作用を有しているから、その配合量が多くなるほど防食材の粘度が上昇する。本発明の防食材を例えばコーキング剤として用いる場合には、前記の範囲内において酸化物の粒子の配合量を高めに設定して、防食材の粘度を高めることが好ましい。具体的には、酸化物の粒子の配合量を0.2〜2質量%、特に0.3〜1質量%とすることが好ましい。一方、本発明の防食材をはけ塗りする場合には、前記の範囲内において酸化物の粒子の配合量を低めに設定し、防食材の粘度を低め、塗りむらが生じないようにすることが好ましい。   The compounding amount of the oxide particles in the anticorrosive material of the present invention is 0.03 to 1% by mass, and particularly 0.05 to 0.5% by mass, to prevent generation of blisters and hard precipitation of zinc powder. It is preferable from the viewpoint. As described above, since the oxide particles have a thickening effect, the viscosity of the anticorrosive increases as the blending amount increases. When the anticorrosive material of the present invention is used as, for example, a caulking agent, it is preferable to increase the viscosity of the anticorrosive material by setting the compounding amount of the oxide particles within the above range. Specifically, the compounding amount of the oxide particles is preferably 0.2 to 2% by mass, particularly 0.3 to 1% by mass. On the other hand, when brushing the anticorrosive material of the present invention, the blending amount of the oxide particles is set to be low within the above range, the viscosity of the anticorrosive material is lowered, and uneven coating does not occur. Is preferred.

本発明の防食材に配合される有機溶剤としては、当該技術分野において通常用いられているものと同様のものを用いることができる。例えば、トルエンやキシレンなどの芳香族系炭化水素を用いることができる。   As an organic solvent mix | blended with the anticorrosion material of this invention, the thing similar to what is normally used in the said technical field can be used. For example, aromatic hydrocarbons such as toluene and xylene can be used.

特に有機溶剤が沸点140〜240℃、特に140〜220℃の脂肪族炭化水素系溶剤を含むことが好ましい。このような範囲の沸点を有する溶剤を用いることで、塗布に好適な初期濃度を有する防食材を得ることができる。そのような溶剤としては、ナフサ系のもの、特に炭素数が8〜11の範囲内にある脂肪族炭化水素を用いることが好ましい。とりわけ、初留点が140℃以上であり、終点が240℃以下である石油留分を用いることが好ましい。このような溶剤は、先に述べた樹脂に対して良好な溶媒であると共に、このような溶剤と樹脂とを組み合わせて用いることで、防食材の経時的な粘度上昇を抑制させやすくなる。   In particular, the organic solvent preferably contains an aliphatic hydrocarbon solvent having a boiling point of 140 to 240 ° C, particularly 140 to 220 ° C. By using a solvent having a boiling point in such a range, an anticorrosive material having an initial concentration suitable for coating can be obtained. As such a solvent, it is preferable to use a naphtha type, particularly an aliphatic hydrocarbon having a carbon number in the range of 8 to 11. In particular, it is preferable to use a petroleum fraction having an initial boiling point of 140 ° C. or higher and an end point of 240 ° C. or lower. Such a solvent is a good solvent for the above-described resin, and by using a combination of such a solvent and a resin, it is easy to suppress an increase in the viscosity of the anticorrosive material over time.

先に述べた樹脂は、一般に溶剤に溶解又は分散された状態で入手される。従って、本発明の防食材には、樹脂に由来する溶剤と、沸点が140〜240℃の脂肪族炭化水素系溶剤とが含有されている場合がある。溶剤全体に対する沸点が140〜240℃の脂肪族炭化水素系溶剤の割合は、20〜45質量%であることが好ましい。この範囲とすることによって、本発明の防食材の粘度変化が、樹脂に含まれる溶剤によって影響されにくくなり、防食材の粘度制御が容易になるからである。   The above-mentioned resins are generally obtained in a state dissolved or dispersed in a solvent. Therefore, the anticorrosive material of the present invention may contain a solvent derived from a resin and an aliphatic hydrocarbon solvent having a boiling point of 140 to 240 ° C. The proportion of the aliphatic hydrocarbon solvent having a boiling point of 140 to 240 ° C. with respect to the whole solvent is preferably 20 to 45% by mass. By setting it as this range, the viscosity change of the anticorrosive material of the present invention is not easily affected by the solvent contained in the resin, and the viscosity control of the anticorrosive material becomes easy.

本発明の防食材における有機溶剤全体の配合量は、5〜30質量%、特に12〜30質量%、とりわけ15〜28質量%であることが、防食材の粘度を適切な範囲に調整し得る点から好ましい。   The blending amount of the whole organic solvent in the anticorrosive material of the present invention is 5 to 30% by mass, particularly 12 to 30% by mass, and particularly 15 to 28% by mass, so that the viscosity of the anticorrosive material can be adjusted to an appropriate range. It is preferable from the point.

粘度に関し、本発明の防食材は、25℃における初期粘度が5000〜12000mPa・s(cP)であることが好ましい。この範囲の粘度とすることで、本発明の防食材をはけ塗りする場合、一回の塗布によって厚い塗膜を形成することができる。また本発明の防食材は、25℃で8時間放置した後の粘度の変化が初期粘度に対して小さいことが好ましい。具体的には、25℃で8時間放置した後の粘度の上昇率が初期粘度に対して110〜150%、110〜145%であることが好ましい。防食材の粘度変化を小さくするためには、例えば溶剤として、先に述べた沸点140〜240℃の脂肪族炭化水素系溶剤を用いることが有利である。粘度変化が小さいことは、施工中に防食材の粘度調整を行う必要がなくなる点から好ましい。このことは、特に送電用鉄塔の施工といった高所作業を行う場合や、夏場など溶剤の揮発しやすい環境下に施工を行う場合に特に有利である。   Regarding the viscosity, the anticorrosive material of the present invention preferably has an initial viscosity at 25 ° C. of 5000 to 12000 mPa · s (cP). By setting the viscosity within this range, when the anticorrosive material of the present invention is brushed, a thick coating can be formed by a single application. The anticorrosive material of the present invention preferably has a small change in viscosity with respect to the initial viscosity after standing at 25 ° C. for 8 hours. Specifically, the rate of increase in viscosity after standing at 25 ° C. for 8 hours is preferably 110 to 150% and 110 to 145% with respect to the initial viscosity. In order to reduce the viscosity change of the anticorrosive material, it is advantageous to use, for example, the above-described aliphatic hydrocarbon solvent having a boiling point of 140 to 240 ° C. as a solvent. It is preferable that the viscosity change is small because it is not necessary to adjust the viscosity of the anticorrosive during construction. This is particularly advantageous when working at a high place such as construction of a power transmission tower, or when performing construction in an environment where the solvent easily evaporates such as in summer.

初期粘度は、各成分を配合して調製された防食材を密封状態で25℃に保存した状態で測定される。25℃で8時間放置した後の粘度は、防食材を容器に入れて蓋を開けたまま、25℃で8時間放置した後に測定された粘度である。粘度は、JIS K5400で規定される回転粘度計を用いて測定される。粘度の上昇率は、次式から算出される。
粘度上昇率(%)=25℃で8時間放置した後の粘度/初期粘度×100
The initial viscosity is measured in a state where an anticorrosive material prepared by blending each component is stored at 25 ° C. in a sealed state. The viscosity after standing at 25 ° C. for 8 hours is the viscosity measured after leaving the anticorrosive material in a container and leaving the lid open for 8 hours at 25 ° C. The viscosity is measured using a rotational viscometer defined by JIS K5400. The rate of increase in viscosity is calculated from the following equation.
Viscosity increase rate (%) = viscosity after standing for 8 hours at 25 ° C./initial viscosity × 100

以上、説明した通り、本発明の防食材は、亜鉛粉、樹脂、酸化物の粒子、及び溶剤を含有する。本発明の防食材には、更にその他の成分を配合することもできる。例えば、得られる防食被膜の耐候性を向上させるために、紫外線吸収剤などの樹脂安定剤を配合することができる。更に、本発明の防食材には、亜鉛粉の犠牲防食性を阻害しないことを条件として、亜鉛粉以外の充填材を配合することもできる。そのような充填材の例としては、炭酸カルシウムなどを挙げることができる。これらの充填材を配合することにより、本発明の防食材の流動性を調整することができる。   As described above, the anticorrosive material of the present invention contains zinc powder, resin, oxide particles, and a solvent. The anticorrosive material of the present invention can further contain other components. For example, in order to improve the weather resistance of the resulting anticorrosion coating, a resin stabilizer such as an ultraviolet absorber can be blended. Further, the anticorrosive material of the present invention can be mixed with a filler other than zinc powder on the condition that the sacrificial anticorrosive property of the zinc powder is not impaired. Examples of such fillers include calcium carbonate. By blending these fillers, the fluidity of the anticorrosive material of the present invention can be adjusted.

本発明の防食材はペースト状であり、缶に充填され、塗料として防食対象物にはけ塗りされる。或いは、先端に注出ノズルを有する円筒形のカートリッジに充填され、コーキング剤として使用される。防食対象物としては、例えば間欠的に又は常時水没するような環境下にある構造物、水が溜まりやすい天蓋部、腐食の進んだ構造物、鋼製ポールの地際、機器類架台の地際、フランジ、ボルト、ナット、パイプなどが挙げられる。   The anticorrosive material of the present invention is in the form of a paste, is filled in a can, and is brushed onto an anticorrosive object as a paint. Alternatively, a cylindrical cartridge having a dispensing nozzle at the tip is filled and used as a caulking agent. Corrosion protection objects include, for example, structures that are intermittently or constantly submerged in water, canopies where water can easily collect, corroded structures, steel poles, equipment platforms , Flanges, bolts, nuts, pipes and the like.

本発明の防食材により形成された防食塗膜は、それに多量に含有される亜鉛粉によって電気的な導通が確保され導電性を示す。特に、亜鉛粉として形状の異なる少なくとも3種のものを組み合わせ用いることによって導電性が高くなる。従って、例えば鉄などの防食対象面にこの防食塗膜を形成すると、防食対象物と防食塗膜とは電気的に導通することになる。その結果、防食塗膜に含有される亜鉛粉が犠牲電極となって防食対象物よりも先に酸化されるので、防食対象物である鉄の酸化腐食が効果的に防止される。   The anticorrosion coating film formed by the anticorrosive material of the present invention is electrically conductive and ensures conductivity by the zinc powder contained in a large amount. In particular, the conductivity is increased by using at least three types of zinc powder having different shapes. Therefore, when this anticorrosion coating film is formed on the anticorrosion object surface such as iron, the anticorrosion object and the anticorrosion coating film are electrically connected. As a result, since the zinc powder contained in the anticorrosion coating film becomes a sacrificial electrode and is oxidized before the anticorrosion object, the oxidative corrosion of iron as the anticorrosion object is effectively prevented.

以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されず種々の変更が可能である。例えば、亜鉛粉としては、先に述べた形状の異なる3種のものを用いるが、これに加えて別の形状の亜鉛粉を更に用いて、本発明の防食材の各種性能を高めるようにしてもよい。   As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment, A various change is possible. For example, as the zinc powder, three types having different shapes as described above are used, but in addition to this, another shape of zinc powder is further used to improve various performances of the anticorrosive material of the present invention. Also good.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲はかかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “mass%”.

〔実施例1〕
亜鉛粉と、溶剤を含むブチルゴム(コニシ(株)製、商品名:GK3800)と、SiO(日本アエロジル製、平均粒径12nm)と、沸点が154℃から195℃の範囲内にある脂肪族炭化水素系溶剤とを、回転羽を有する撹拌装置で混合してペースト状の防食材を調製した。各成分の配合量は表1に示す通りである。また、亜鉛粉の詳細は表2に示す通りである。
[Example 1]
Zinc powder, butyl rubber containing a solvent (manufactured by Konishi Co., Ltd., trade name: GK3800), SiO 2 (manufactured by Nippon Aerosil Co., Ltd., average particle size 12 nm), and aliphatic having a boiling point in the range of 154 ° C. to 195 ° C. A hydrocarbon solvent was mixed with a stirrer having rotating blades to prepare a paste-like anticorrosive material. The amount of each component is as shown in Table 1. Details of the zinc powder are as shown in Table 2.

沸点が154℃から195℃の範囲内にある前記の脂肪族炭化水素系溶剤は、炭素数8〜11の脂肪族炭化水素系溶剤の混合物であり、この脂肪族炭化水素系溶剤は、主として直鎖状脂肪族炭化水素からなる。前記の弾性樹脂には、ブチルゴムなど固形分が60%、トルエン、ナフサ、低沸点脂肪族炭化水素溶剤が合計で40%含有されている。   The above-mentioned aliphatic hydrocarbon solvent having a boiling point within the range of 154 ° C. to 195 ° C. is a mixture of aliphatic hydrocarbon solvents having 8 to 11 carbon atoms. Consists of chain aliphatic hydrocarbons. The elastic resin contains 60% solids such as butyl rubber and 40% of toluene, naphtha, and low-boiling point aliphatic hydrocarbon solvent in total.

このようにして調製された防食材は、25℃における初期粘度が5000mPa・s、25℃で8時間放置した後の粘度が6200mPa・sで、粘度の上昇率は124%であった。   The anticorrosive material thus prepared had an initial viscosity of 5000 mPa · s at 25 ° C., a viscosity of 6200 mPa · s after standing at 25 ° C. for 8 hours, and a viscosity increase rate of 124%.

〔比較例1〕
実施例1において用いた亜鉛粉に代えて、篩い分けによって70〜150μmに粒度調整した亜鉛粉を用いた。またSiO、及び沸点が154℃から195℃の範囲内にある脂肪族炭化水素系溶剤は用いなかった。これら以外は実施例1と同様にしてペースト状の防食材を調製した。各成分の配合量は表1に示す通りである。
[Comparative Example 1]
Instead of the zinc powder used in Example 1, zinc powder whose particle size was adjusted to 70 to 150 μm by sieving was used. Further, SiO 2 and an aliphatic hydrocarbon solvent having a boiling point in the range of 154 ° C. to 195 ° C. were not used. A paste-like anticorrosive material was prepared in the same manner as Example 1 except for these. The amount of each component is as shown in Table 1.

〔性能評価〕
実施例及び比較例で得られた防食材について、塗膜の犠牲防食性、ブリスター防止性及び均一性、並びに防食材の貯蔵安定性を以下の方法によって評価した。結果を表1に示す。
[Performance evaluation]
About the anticorrosion material obtained by the Example and the comparative example, sacrificial anticorrosion property of a coating film, blister prevention property and uniformity, and the storage stability of the anticorrosion material were evaluated by the following methods. The results are shown in Table 1.

〔塗膜の犠牲防食性〕
ブラスト鋼板(1.0mm×70mm×150mm)の一部に防食材をハケ塗りし、2日以上大気養生した。この鋼板全体を水道水に浸漬して1週間静置した。鋼板を水道水から引き上げた後、防食材の塗布面が上を向くように鋼板を横置きし、犠牲防食面積を測定した。犠牲防食面積は、比較例1を1としたときの相対表示とした。
[Sacrificial anticorrosive properties of coating film]
A part of a blasted steel plate (1.0 mm × 70 mm × 150 mm) was brushed with an anticorrosive material, and was cured for 2 days or more. The whole steel plate was immersed in tap water and allowed to stand for 1 week. After pulling up the steel plate from the tap water, the steel plate was placed sideways so that the coated surface of the anticorrosive material was facing upward, and the sacrificial anticorrosion area was measured. The sacrificial anticorrosion area is a relative display when Comparative Example 1 is 1.

〔塗膜のブリスター防止性〕
ブラスト鋼板(1.0mm×70mm×150mm)に防食材をハケ塗りし、2日以上大気養生した。この鋼板に10%塩水を噴霧し、50℃で6時間放置した。その後80℃・80%RHの高温高湿下で6時間放置した。塩水の噴霧から高温高湿下での放置までの操作を1サイクルとし、このサイクルを500回繰り返した。その後、塗膜の外観を目視観察した。
[Prevention of blistering of coating film]
The blast steel plate (1.0 mm × 70 mm × 150 mm) was brushed with an anticorrosive material and cured for 2 days or more. The steel sheet was sprayed with 10% salt water and left at 50 ° C. for 6 hours. Thereafter, it was left for 6 hours under high temperature and high humidity of 80 ° C. and 80% RH. The operation from spraying of salt water to standing under high temperature and high humidity was defined as one cycle, and this cycle was repeated 500 times. Thereafter, the appearance of the coating film was visually observed.

〔塗膜の均一性〕
JIS K5400に定める塗布方法に準じて試験片を作製し、亜鉛末の分散性及び膜厚のばらつきから塗膜の均一性を評価した。分散性は目視で判断した。膜厚は電磁式膜厚計で測定した。また、前記の方法で作製した試験片に対して、JIS Z 2371で定める塩水噴霧試験を行い、発錆までの時間を比較した。
[Uniformity of coating film]
Test pieces were prepared according to the coating method defined in JIS K5400, and the uniformity of the coating film was evaluated from the dispersibility of the zinc powder and the variation in film thickness. Dispersibility was judged visually. The film thickness was measured with an electromagnetic film thickness meter. Moreover, the salt spray test defined by JISZ2371 was done with respect to the test piece produced by the said method, and the time to rusting was compared.

〔防食材の貯蔵安定性〕
両端がねじ式キャップで密閉できるステンレス製配管製の容器(φ30mm×200mm、内容積140ml)内に防食材を100ml入れ密閉した。40℃の恒温槽内に10日間静置した。その後、容器内の防食材の沈降状態を観察した。
[Storage stability of anticorrosive]
100 ml of an anticorrosive material was sealed in a vessel made of stainless steel pipe (φ30 mm × 200 mm, internal volume 140 ml) that can be sealed with screw caps at both ends. It left still for 10 days in a 40 degreeC thermostat. Thereafter, the sedimentation state of the anticorrosive material in the container was observed.

Figure 2006282856
Figure 2006282856

Figure 2006282856
Figure 2006282856

表1に示す結果から明らかなように、実施例の防食材は、比較例の防食材に比較して犠牲防食性が高く、またブリスターの発生が防止されていることが判る。また、実施例の防食材は、比較例の防食材に比較して塗膜に粒状感がなく、平滑であり、また長期間保存しても亜鉛粉の沈降が見られないことが判る。   As is clear from the results shown in Table 1, it can be seen that the anticorrosive material of the example has higher sacrificial anticorrosive properties than the comparative anticorrosive material, and the occurrence of blisters is prevented. Moreover, it turns out that the anticorrosive material of an Example does not have a granular feeling in a coating film compared with the anticorrosive material of a comparative example, is smooth, and the precipitation of zinc powder is not seen even if it preserve | saves for a long period of time.

Claims (6)

亜鉛粉45〜80質量%と、亜鉛に対して不活性な樹脂5〜25質量%と、Si、Al及びMgからなる群より選択される少なくとも一種の元素を含む酸化物の粒子0.03〜1質量%と、有機溶剤5〜30質量%とを含有する防食材であって、
前記亜鉛粉は、形状の異なる少なくとも3種の亜鉛粉を含み、該3種の亜鉛粉は、紡錘状の亜鉛粉、球状の亜鉛粉、及び鱗片状の亜鉛粉を含み、
亜鉛粉の全量に対して、前記紡錘状の亜鉛粉が60〜98質量%、前記球状の亜鉛粉が0.5〜25質量%、前記鱗片状の亜鉛粉1〜15質量%含まれる防食材。
Oxide particles 0.03 to 45% by mass of zinc powder, 5 to 25% by mass of resin inert to zinc, and at least one element selected from the group consisting of Si, Al and Mg An anticorrosive material containing 1% by mass and 5-30% by mass of an organic solvent,
The zinc powder includes at least three kinds of zinc powders having different shapes, and the three kinds of zinc powders include spindle-shaped zinc powder, spherical zinc powder, and scaly zinc powder,
The anticorrosive material containing 60 to 98% by mass of the spindle-shaped zinc powder, 0.5 to 25% by mass of the spherical zinc powder, and 1 to 15% by mass of the flaky zinc powder with respect to the total amount of the zinc powder. .
前記酸化物の粒子がシリカ、アルミナ又はタルクからなる請求項1記載の防食材。   The anticorrosive material according to claim 1, wherein the oxide particles are made of silica, alumina, or talc. 前記有機溶剤が、沸点140〜240℃の脂肪族炭化水素系溶剤を含む請求項1又は2記載の防食材。   The anticorrosive material according to claim 1 or 2, wherein the organic solvent contains an aliphatic hydrocarbon solvent having a boiling point of 140 to 240 ° C. 前記有機溶剤中の前記脂肪族炭化水素系溶剤の割合が20〜45質量%である請求項3記載の防食材。   The anticorrosive material according to claim 3, wherein a proportion of the aliphatic hydrocarbon solvent in the organic solvent is 20 to 45 mass%. 前記樹脂が、ゴム弾性を有するポリオレフィン系樹脂からなる請求項1ないし4の何れかに記載の防食材。   The anticorrosive material according to any one of claims 1 to 4, wherein the resin comprises a polyolefin resin having rubber elasticity. 25℃における初期粘度が5000〜12000mPa・sであり、且つ25℃で8時間放置した後の粘度の上昇率が初期粘度に対して110〜150%の範囲内にある請求項1ないし5の何れかに記載の防食材。   The initial viscosity at 25 ° C is 5,000 to 12000 mPa · s, and the rate of increase in viscosity after standing at 25 ° C for 8 hours is in the range of 110 to 150% of the initial viscosity. Anti-corrosion material according to crab.
JP2005104736A 2005-03-31 2005-03-31 Anticorrosive Active JP4734011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104736A JP4734011B2 (en) 2005-03-31 2005-03-31 Anticorrosive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104736A JP4734011B2 (en) 2005-03-31 2005-03-31 Anticorrosive

Publications (2)

Publication Number Publication Date
JP2006282856A true JP2006282856A (en) 2006-10-19
JP4734011B2 JP4734011B2 (en) 2011-07-27

Family

ID=37405102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104736A Active JP4734011B2 (en) 2005-03-31 2005-03-31 Anticorrosive

Country Status (1)

Country Link
JP (1) JP4734011B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036279A (en) * 2010-08-05 2012-02-23 Higa Miyoko Rustproof coating material, article, nut, and connector
CN103433482A (en) * 2013-07-31 2013-12-11 江苏麟龙新材料股份有限公司 La-Ce-containing flaky-shaped multi-component aluminum, zinc and silicon alloy powder and preparation method of alloy powder
CN103433480A (en) * 2013-07-31 2013-12-11 江苏麟龙新材料股份有限公司 La-Pr-Nd-containing flaky-shaped multi-component aluminum, zinc and silicon alloy powder and preparation method of alloy powder
JP2019527284A (en) * 2016-07-27 2019-09-26 攀▲鋼▼集▲団▼研究院有限公司 Aqueous high temperature heat resistant titanium steel anti-bonding coating and use thereof
JP7467453B2 (en) 2019-06-27 2024-04-15 中国塗料株式会社 PRIMARY ANTI-RUST COATING COMPOSITION, SUBSTRATE WITH PRIMARY ANTI-RUST COATING FILM AND METHOD FOR PRODUCING SAME

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612763A (en) * 1984-06-15 1986-01-08 Hayakawa Rubber Co Ltd Anticorrosive rubber coating material
JPS63103006A (en) * 1986-10-17 1988-05-07 Nippon Mining Co Ltd Production of zinc in wire form
JPH02294370A (en) * 1989-05-09 1990-12-05 Mitsui Mining & Smelting Co Ltd Zn-containing coating filler for corrosion-protection
JPH08176474A (en) * 1994-12-27 1996-07-09 Mitsui Mining & Smelting Co Ltd Anticorrosive material having sacrificial anticorrosive action
JP2002194284A (en) * 2000-12-26 2002-07-10 Kansai Paint Co Ltd Inorganic paint rich in zinc

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612763A (en) * 1984-06-15 1986-01-08 Hayakawa Rubber Co Ltd Anticorrosive rubber coating material
JPS63103006A (en) * 1986-10-17 1988-05-07 Nippon Mining Co Ltd Production of zinc in wire form
JPH02294370A (en) * 1989-05-09 1990-12-05 Mitsui Mining & Smelting Co Ltd Zn-containing coating filler for corrosion-protection
JPH08176474A (en) * 1994-12-27 1996-07-09 Mitsui Mining & Smelting Co Ltd Anticorrosive material having sacrificial anticorrosive action
JP2002194284A (en) * 2000-12-26 2002-07-10 Kansai Paint Co Ltd Inorganic paint rich in zinc

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036279A (en) * 2010-08-05 2012-02-23 Higa Miyoko Rustproof coating material, article, nut, and connector
CN103433482A (en) * 2013-07-31 2013-12-11 江苏麟龙新材料股份有限公司 La-Ce-containing flaky-shaped multi-component aluminum, zinc and silicon alloy powder and preparation method of alloy powder
CN103433480A (en) * 2013-07-31 2013-12-11 江苏麟龙新材料股份有限公司 La-Pr-Nd-containing flaky-shaped multi-component aluminum, zinc and silicon alloy powder and preparation method of alloy powder
CN103433480B (en) * 2013-07-31 2015-10-21 江苏麟龙新材料股份有限公司 Scale-like multi-component zinc aluminum silicon alloy powder containing La, Pr and Nd and preparation method thereof
CN103433482B (en) * 2013-07-31 2015-10-21 江苏麟龙新材料股份有限公司 Scale-like multi-component zinc aluminum silicon alloy powder containing La and Ce and preparation method thereof
JP2019527284A (en) * 2016-07-27 2019-09-26 攀▲鋼▼集▲団▼研究院有限公司 Aqueous high temperature heat resistant titanium steel anti-bonding coating and use thereof
JP7467453B2 (en) 2019-06-27 2024-04-15 中国塗料株式会社 PRIMARY ANTI-RUST COATING COMPOSITION, SUBSTRATE WITH PRIMARY ANTI-RUST COATING FILM AND METHOD FOR PRODUCING SAME

Also Published As

Publication number Publication date
JP4734011B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
CN101407690A (en) Bi-component epoxy zinc rich primer
WO2014014063A1 (en) Primary rust preventive coating composition and use thereof
JP4734011B2 (en) Anticorrosive
TW200540235A (en) Paint for highly corrosion-resistant zinc-alloy coated steels and steel structure having coated film of said paint
WO2008038828A1 (en) Highly corrosion-resistant rust-preventive coating material, steel material with high corrosion resistance, and steel structure
Qi et al. Enhanced anticorrosion performance of zinc rich epoxy coatings modified with stainless steel flakes
JP6242318B2 (en) Weak solvent type high corrosion resistance coating composition using Sn ions
CN107216697A (en) A kind of kirsite anticorrosive coating
CN106147539A (en) A kind of nanometer priming paint of resistance to marine anticorrosion
CN110330865A (en) Modified anti-corrosion primer of a kind of graphene and preparation method thereof
Qi et al. Assessment of anticorrosion performance of zinc-rich epoxy coatings added with zinc fibers for corrosion protection of steel
JP2008144059A (en) Water-based rust-prevention coating
JP3965152B2 (en) Paste-type anti-corrosion paint, anti-corrosion coating, and power tower
JP4514445B2 (en) Highly anticorrosive coating material containing zinc dust
JP2008150537A (en) Water-based rust preventive coating
WO2019146163A1 (en) Anticorrosion-treated metallic member and coating paint
JP4447023B2 (en) Transmission tower hardware
JP5340090B2 (en) Aqueous coating agent and coating film
CN106189763A (en) It is mixed with the hydrate colour coating composition of tabular zinc powder
JP7447991B2 (en) paint
Deyá et al. Zinc hypophosphite: a suitable additive for anticorrosive paints to promote pigments synergism
JP2013166806A (en) Coating material
JP4060631B2 (en) Zinc rich paint composition
WO2009066000A1 (en) Method for preventing corrosion and covering material preventing corrosion
JP5050270B2 (en) Sealing agent for metal spray coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110224

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4734011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250