JP2006282427A - Production method of hydrated silicic acid - Google Patents
Production method of hydrated silicic acid Download PDFInfo
- Publication number
- JP2006282427A JP2006282427A JP2005102322A JP2005102322A JP2006282427A JP 2006282427 A JP2006282427 A JP 2006282427A JP 2005102322 A JP2005102322 A JP 2005102322A JP 2005102322 A JP2005102322 A JP 2005102322A JP 2006282427 A JP2006282427 A JP 2006282427A
- Authority
- JP
- Japan
- Prior art keywords
- silicic acid
- hydrated silicic
- acid
- reaction solution
- mineral acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Silicon Compounds (AREA)
- Paper (AREA)
Abstract
Description
本発明は、水和ケイ酸の製造方法に関する。 The present invention relates to a method for producing hydrated silicic acid.
近年、紙は嵩高化および軽量化される傾向にあるが、印刷用紙を軽量化すると紙に印刷した場合の不透明度(以下、印刷後不透明度と称する)が低下し、その結果、印字が紙の反対面から透き通って見えるという問題が生じる。印刷後不透明度も含め、紙の不透明度を向上させるために紙に様々な填料を添加することが一般に行われている。不透明度を向上させるという目的のために無機系及び有機系の各種填料の研究開発が行われているが、現在においても、なお安価で十分に不透明度の向上効果のあるものは開発されるに至っていない。又、最近ではますます紙の軽量化が促進される傾向が強いので、既存の填料より更に不透明度を向上させる能力を持った填料の出現が強く望まれている。 In recent years, paper tends to be bulky and light. However, when printing paper is lightened, the opacity when printed on paper (hereinafter referred to as post-printing opacity) decreases, and as a result, printing is performed on paper. The problem arises that it can be seen through from the opposite side. In order to improve the opacity of paper, including opacity after printing, it is common practice to add various fillers to the paper. Research and development of various inorganic and organic fillers has been conducted for the purpose of improving opacity, but even now, those that are still inexpensive and have sufficient opacity improvement effects will be developed. Not reached. Recently, there is a strong tendency to promote the weight reduction of paper, and therefore, the appearance of a filler having an ability to improve opacity further than existing fillers is strongly desired.
現在使用されている不透明度向上用の填料の中で、水和ケイ酸は、他の種類の填料より価格も安く、又パルプに添加して抄紙した場合、インクの浸透を抑制することによる印刷後不透明度を付与する効果があり、期待されている。しかし、白紙不透明度に対する効果を含めてまだ十分満足すべき水準に到達していない。 Among currently used opacity enhancing fillers, hydrated silicic acid is less expensive than other types of fillers, and printing by suppressing ink penetration when paper is added to pulp. It has the effect of imparting post-opacity and is expected. However, it has not yet reached a satisfactory level including the effect on blank paper opacity.
水和ケイ酸の特性うち、吸油量はインクの浸透を抑制する能力の指標となるものであり、印刷後不透明度の向上に大きく寄与している。
水和ケイ酸の細孔体積は、これが大きい方が吸油量は増大するが、大きすぎると粒子がもろくなる。
また、水和ケイ酸の粒度分布が広くて粗粒を多く含有していると、紙からの填料の脱落が多くなり填料歩留まりが悪くなってしまうるので、粒度分布の均一性が高いことが望ましい。
しかし、水和ケイ酸の製造において、良好な細孔体積、良好な吸油量、および良好な粒度分布のすべてを同時に実現することは容易ではない。
例えば下記特許文献1では、高細孔体積と微細粒径を兼備した水和ケイ酸を製造することを目的として、サンドグラインダーやホモミキサーなどの湿式粉砕機を使用して水和ケイ酸を製造する方法が提案されているが、この方法は製造コストが高いうえ、得られた水和ケイ酸は、吸油量に対する全細孔体積が大きいので、もろく崩れ易いという問題がある。
一方、超音波に関する技術としては、下記特許文献2に、水性顔料分散体に超音波を照射することにより、スラリー中の顔料の分散性を向上させる方法が開示されている。この方法における超音波は顔料の粒子構造に影響を与えるものではない。
The larger the pore volume of the hydrated silicic acid, the larger the oil absorption. However, if the pore volume is too large, the particles become brittle.
In addition, if the hydrated silicic acid has a wide particle size distribution and contains a large amount of coarse particles, the filler will fall off from the paper and the yield of the filler will deteriorate, so the uniformity of the particle size distribution may be high. desirable.
However, in the production of hydrated silicic acid, it is not easy to achieve all of good pore volume, good oil absorption, and good particle size distribution at the same time.
For example, in Patent Document 1 below, hydrated silicic acid is produced using a wet grinder such as a sand grinder or a homomixer for the purpose of producing hydrated silicic acid having both a high pore volume and a fine particle size. However, this method has a problem that the production cost is high, and the obtained hydrated silicic acid has a large total pore volume with respect to the amount of oil absorption, so that it is easily broken.
On the other hand, as a technique relating to ultrasonic waves, Patent Document 2 below discloses a method for improving the dispersibility of a pigment in a slurry by irradiating an aqueous pigment dispersion with ultrasonic waves. The ultrasonic wave in this method does not affect the particle structure of the pigment.
本発明は前記事情に鑑みてなされたもので、良好な細孔体積、良好な吸油量、および良好な粒度分布を兼ね備えた水和ケイ酸を製造できる方法を提供することを課題とする。 This invention is made | formed in view of the said situation, and makes it a subject to provide the method which can manufacture the hydrated silicic acid which has favorable pore volume, favorable oil absorption, and favorable particle size distribution.
前記課題を解決するために、本発明は以下の構成を採用する。
すなわち、本発明は、ケイ酸アルカリ水溶液に鉱酸を添加して中和することにより反応液中で粒子を析出させる水和ケイ酸の製造方法において、前記粒子が析出している期間内に、前記反応液に対して超音波を照射することを特徴とする水和ケイ酸の製造方法である。
本発明では、前記鉱酸の添加量が前記ケイ酸アルカリ水溶液を中和するのに必要な鉱酸の全量のうちの60%に達する前に、前記超音波を照射することが望ましい。
本発明では、前記反応液の温度を70℃以下として前記鉱酸を添加する第1の工程と、前記第1の工程の後に、前記反応液の温度を70℃超として前記鉱酸を添加する第2の工程を有することが好ましい。
本発明では、前記超音波の照射時の出力が、前記反応液1リットル当たり10〜300ワットであることが好ましい。
In order to solve the above problems, the present invention adopts the following configuration.
That is, the present invention relates to a method for producing hydrated silicic acid in which particles are precipitated in a reaction solution by adding a mineral acid to an aqueous alkali silicate solution and neutralizing the solution, within a period in which the particles are precipitated, A method for producing hydrated silicic acid, wherein the reaction solution is irradiated with ultrasonic waves.
In the present invention, it is desirable to irradiate the ultrasonic wave before the addition amount of the mineral acid reaches 60% of the total amount of mineral acid necessary for neutralizing the alkali silicate aqueous solution.
In the present invention, a first step of adding the mineral acid with the temperature of the reaction solution set to 70 ° C. or less, and adding the mineral acid with a temperature of the reaction solution exceeding 70 ° C. after the first step. It is preferable to have a second step.
In this invention, it is preferable that the output at the time of the said ultrasonic wave irradiation is 10-300 watt per 1 liter of said reaction liquids.
本発明によれば、良好な細孔体積、良好な吸油量、および良好な粒度分布を兼ね備えた水和ケイ酸が得られる。 According to the present invention, a hydrated silicic acid having a good pore volume, a good oil absorption, and a good particle size distribution can be obtained.
本発明で用いられるケイ酸アルカリ水溶液は、特に限定されないが、ケイ酸ナトリウム水溶液又はケイ酸カリウム水溶液が好適である。ケイ酸アルカリ水溶液のモル濃度は、ケイ酸ナトリウムの場合、モル比(SiO2/Na2O)が2.0〜3.4の範囲から選ぶのが好適である。 The alkali silicate aqueous solution used in the present invention is not particularly limited, but a sodium silicate aqueous solution or a potassium silicate aqueous solution is preferable. In the case of sodium silicate, the molar concentration of the aqueous alkali silicate solution is preferably selected from the range where the molar ratio (SiO 2 / Na 2 O) is 2.0 to 3.4.
本発明で水和ケイ酸を析出させる時に用いられる鉱酸としては公知のものが何等制限なく使用でき、これらを単独、又は二種以上を併用してもよい。具体的には、鉱酸として塩酸、硫酸、硝酸等があげられるが、硫酸が入手容易で、比較的安価であるために好適に用いられる。鉱酸の濃度は、特に制限されないが一般には10〜30質量%の範囲から選べばよい。 As the mineral acid used when the hydrated silicic acid is precipitated in the present invention, known ones can be used without any limitation, and these may be used alone or in combination of two or more. Specific examples of the mineral acid include hydrochloric acid, sulfuric acid, nitric acid and the like, and sulfuric acid is easily used and is preferably used because it is relatively inexpensive. The concentration of the mineral acid is not particularly limited, but generally may be selected from the range of 10 to 30% by mass.
本発明の方法では、ケイ酸アルカリ水溶液へ鉱酸を添加して中和反応を生じさせる。これにより反応液中で水和ケイ酸の粒子が生成し、析出される。
本発明では、該粒子が析出している期間内に、反応液に対して超音波を照射する。ここでの「粒子が析出している期間」の起点は粒子が析出しはじめる時点であり、終点は、ケイ酸アルカリ水溶液を中和するのに必要な鉱酸の全量を添加し終えた時点とする。
In the method of the present invention, a mineral acid is added to an aqueous alkali silicate solution to cause a neutralization reaction. Thereby, hydrated silicic acid particles are generated and precipitated in the reaction solution.
In the present invention, the reaction solution is irradiated with ultrasonic waves during the period in which the particles are deposited. The starting point of “the period during which the particles are precipitated” here is the time when the particles start to precipitate, and the end point is the time when the addition of all the mineral acid necessary to neutralize the alkali silicate aqueous solution is completed. To do.
鉱酸の添加は、反応液を均一な状態を保ちながら行うことが好ましい。具体的には、ケイ酸アルカリ水溶液(反応液)を攪拌しながら鉱酸を添加して粒子を析出させることが好ましい。鉱酸の添加は、ケイ酸アルカリ水溶液を中和するの必要な量(当量)の全部を1回で添加してもよいし、2回以上の複数回に分けて添加してもよい。
鉱酸を1回で添加する場合、鉱酸の全量を一挙に、または連続的に添加する。ケイ酸アルカリ水溶液(反応液)の温度は60℃以上とするのが好ましく、75℃以上がより好ましい。該温度の上限は、当該ケイ酸アルカリ水溶液(反応液)の沸点以下とする。反応液の温度を上記範囲とすることにより反応液がゲル状態になるのを防止することができる。
It is preferable to add the mineral acid while maintaining the reaction solution in a uniform state. Specifically, it is preferable to add a mineral acid while stirring an aqueous alkali silicate solution (reaction solution) to precipitate particles. For the addition of the mineral acid, all of the amount (equivalent) required to neutralize the alkali silicate aqueous solution may be added at once, or may be added in two or more times.
If the mineral acid is added at once, the entire amount of mineral acid is added all at once or continuously. The temperature of the alkali silicate aqueous solution (reaction solution) is preferably 60 ° C. or higher, and more preferably 75 ° C. or higher. The upper limit of this temperature shall be below the boiling point of the said alkali silicate aqueous solution (reaction liquid). By setting the temperature of the reaction solution in the above range, the reaction solution can be prevented from becoming a gel state.
鉱酸を2回以上の複数回に分けて添加する場合、一回目の鉱酸を添加する第1の工程における反応液の温度は70℃以下とすることが好ましい。20〜70℃の範囲がより好ましく、30〜60℃がさらに好ましい。第1の工程における反応液の温度を上記範囲とすることにより粒度分布が均一な水和ケイ酸を得ることができる。
第1の工程における鉱酸の添加量は、ケイ酸アルカリ水溶液を中和させるのに必要な鉱酸の全量(当量)のうちの10〜50%が好ましく、20〜45%がより好ましい。第1の工程における鉱酸の添加量を上記範囲とすることにより、細孔体積、粒度分布に優れた水和ケイ酸を得ることができる。
第1の工程では、該所定の添加量の鉱酸を、攪拌下の反応液に一挙に、または連続的に添加する。
When adding the mineral acid in two or more times, the temperature of the reaction solution in the first step of adding the first mineral acid is preferably 70 ° C. or less. The range of 20-70 degreeC is more preferable, and 30-60 degreeC is further more preferable. By setting the temperature of the reaction solution in the first step within the above range, hydrated silicic acid having a uniform particle size distribution can be obtained.
The amount of mineral acid added in the first step is preferably 10 to 50%, more preferably 20 to 45%, of the total amount (equivalent) of mineral acid required to neutralize the alkali silicate aqueous solution. By setting the addition amount of the mineral acid in the first step within the above range, hydrated silicic acid having excellent pore volume and particle size distribution can be obtained.
In the first step, the predetermined addition amount of mineral acid is added to the reaction solution under stirring all at once or continuously.
第1の工程の後、反応液を10〜50分程度の短時間で熟成温度まで昇温し、均一な状態を保ちながら熟成させることが好ましい。熟成温度は70℃超、反応液の沸点以下の範囲で、後続の第2工程における反応液の温度と同じ温度に設定することが好ましい。熟成時間は5〜40分間程度が好ましく、より好ましくは10〜30分間程度である。
この熟成工程は必須ではないが、熟成を行うことにより細孔体積、粒度分布に優れた水和ケイ酸を得ることができる。
It is preferable that after the first step, the reaction solution is heated to the aging temperature in a short time of about 10 to 50 minutes and ripened while maintaining a uniform state. The aging temperature is preferably set to the same temperature as the temperature of the reaction liquid in the subsequent second step within the range of more than 70 ° C. and below the boiling point of the reaction liquid. The aging time is preferably about 5 to 40 minutes, more preferably about 10 to 30 minutes.
Although this aging step is not essential, hydrated silicic acid having excellent pore volume and particle size distribution can be obtained by aging.
第1の工程の後、好ましくは第1の工程および熟成工程の後、反応液を引き続き攪拌しながら、二回目の鉱酸添加を行う(第2の工程)。
第2の工程では、ケイ酸アルカリ水溶液を中和させるのに必要な鉱酸の全量(当量)の残りを、攪拌下の反応液に一挙に、または連続的に添加することが好ましい。
第2の工程における反応液の温度は70℃超とすることが好ましい。85℃以上がより好ましく、90℃以上がさらに好ましい。該反応液の温度の上限は沸点以下である。第2の工程における反応液の温度を上記範囲とすることにより粒度分布が均一な水和ケイ酸を得ることができる
第2の工程の後、必要に応じて更に熟成を行ってもよい。
After the first step, preferably after the first step and the aging step, a second mineral acid addition is performed while the reaction solution is continuously stirred (second step).
In the second step, it is preferable to add the remainder of the total amount (equivalent) of mineral acid necessary for neutralizing the alkali silicate aqueous solution to the stirred reaction solution all at once or continuously.
The temperature of the reaction solution in the second step is preferably more than 70 ° C. 85 degreeC or more is more preferable, and 90 degreeC or more is further more preferable. The upper limit of the temperature of the reaction solution is not more than the boiling point. By setting the temperature of the reaction solution in the second step within the above range, a hydrated silicic acid having a uniform particle size distribution can be obtained. After the second step, further aging may be performed as necessary.
このように第1の工程および第2の工程を設けて、鉱酸の添加を複数段で行う方法は、細孔体積、粒度分布に優れた水和ケイ酸を得るうえで好ましい。 Thus, the method of providing the first step and the second step and adding the mineral acid in a plurality of stages is preferable for obtaining a hydrated silicic acid excellent in pore volume and particle size distribution.
本発明では、反応液中で粒子が析出している期間内に、反応液に対して超音波が照射される。反応液中では、まず一次粒子が形成され、個々の一次粒子が凝集して凝集体を生成するが、少なくとも反応液中で水和ケイ酸の一次粒子が成長しつつある期間内に超音波が照射されることが好ましい。
超音波照射の開始時期は、ケイ酸アルカリ水溶液に鉱酸を添加する前に開始してもよく、鉱酸を添加する途中で開始してもよい。具体的には鉱酸の添加量が、ケイ酸アルカリ水溶液を中和するのに必要な鉱酸の全量(当量)のうちの60%に達する前に開始することが好ましい。より好ましくは50%に達する前であり、さらに好ましくは40%に達する前である。鉱酸の添加量が前記当量の60%に達する前に超音波照射を開始すると細孔体積、粒度分布に優れた水和ケイ酸を得ることができる。
超音波照射の終了時期は、中和反応が終了した後でも特に問題はないが、エネルギーの無駄を無くすために、必要以上に長く照射することは避けるべきである。
超音波照射は途中で中断しながら断続的に行っても構わないし、途中で超音波の条件を変えることもできる。
In the present invention, ultrasonic waves are applied to the reaction solution within a period in which particles are precipitated in the reaction solution. In the reaction solution, primary particles are first formed, and the individual primary particles aggregate to form aggregates. However, at least within the period during which the primary particles of hydrated silicic acid are growing in the reaction solution, ultrasonic waves are generated. Irradiation is preferred.
The start time of ultrasonic irradiation may be started before the mineral acid is added to the alkali silicate aqueous solution, or may be started in the middle of adding the mineral acid. Specifically, it is preferable to start before the amount of mineral acid added reaches 60% of the total amount (equivalent) of mineral acid required to neutralize the alkali silicate aqueous solution. More preferably before reaching 50%, and still more preferably before reaching 40%. When ultrasonic irradiation is started before the addition amount of the mineral acid reaches 60% of the equivalent, a hydrated silicic acid excellent in pore volume and particle size distribution can be obtained.
Although there is no particular problem with the timing of ending the ultrasonic irradiation even after the neutralization reaction is completed, the irradiation should be avoided for a longer time than necessary in order to eliminate energy waste.
The ultrasonic irradiation may be intermittently performed while being interrupted, or the ultrasonic conditions may be changed during the process.
特に鉱酸を1回で添加する場合、超音波の照射は鉱酸を添加し始める前から行うことが好ましいが、水和ケイ酸の粒子が析出し終わる前であれば、鉱酸の添加中に超音波照射を始めてもよい。
また鉱酸を2回に分けて添加する場合は、2回目の鉱酸添加(第2の工程)の前に超音波の照射を完了させておくことが、エネルギーの有効利用の点で好ましい。
In particular, when adding a mineral acid at a time, it is preferable to irradiate with ultrasonic waves before starting the addition of the mineral acid, but if the hydrated silicic acid particles are completely precipitated, the mineral acid is being added. Ultrasonic irradiation may be started.
Moreover, when adding a mineral acid in 2 steps, it is preferable from the point of the effective utilization of energy to complete irradiation of an ultrasonic wave before the 2nd mineral acid addition (2nd process).
超音波照射の条件は、特に制限されないが、出力は反応液1Lあたり10〜300W(ワット)が好ましく、10〜200Wがより好ましく、20〜100Wがさらに好ましい。超音波照射の出力を前記範囲の下限値以上にすることは、本発明の効果を得るうえで好ましい。また、出力を前記範囲の上限値以下にすることは、エネルギー的に効率が良く、凝集体の破壊等の副作用を抑えるうえでも好ましい。
超音波の周波数は、本発明の効果を得るうえで15〜600kHzが好ましく、15〜200kHzがより好ましく、20〜100kHzがさらに好ましい。
The conditions for ultrasonic irradiation are not particularly limited, but the output is preferably 10 to 300 W (watts) per liter of the reaction solution, more preferably 10 to 200 W, and even more preferably 20 to 100 W. In order to obtain the effects of the present invention, it is preferable to set the output of the ultrasonic irradiation to be equal to or higher than the lower limit of the above range. Further, setting the output to be equal to or lower than the upper limit of the above range is preferable in terms of energy efficiency and suppression of side effects such as destruction of aggregates.
The ultrasonic frequency is preferably 15 to 600 kHz, more preferably 15 to 200 kHz, and still more preferably 20 to 100 kHz in order to obtain the effects of the present invention.
本発明において、反応液に対して超音波を照射する装置としては、特に限定されないが、例えば投げ込み式超音波洗浄機を用いることができる。または、反応容器本体の外部に循環ラインを設けて連続的に反応液の一部を取り出して処理することも可能である。また、強度的問題が無ければ、反応容器本体から超音波を発振させたり、本体周囲に発振器を取り付けることもできる。 In the present invention, the apparatus for irradiating the reaction liquid with ultrasonic waves is not particularly limited, and for example, a throwing-type ultrasonic cleaning machine can be used. Alternatively, it is also possible to provide a circulation line outside the reaction vessel main body and continuously take out a part of the reaction solution for processing. If there is no problem in strength, ultrasonic waves can be oscillated from the reaction vessel main body, or an oscillator can be attached around the main body.
本発明の方法によれば、ケイ酸アルカリ水溶液の中和反応による水和ケイ酸の析出工程において、反応液中で水和ケイ酸粒子が析出している期間内に超音波を照射することにより、細孔構造に優れ、良好な細孔体積を有するとともに、吸油量が良好であり、かつ水和ケイ酸粒子(一次粒子および凝集体)の粒度分布が均一化された水和ケイ酸が得られる。
これは、超音波の照射によるキャビテーションの作用により水和ケイ酸の析出反応の均一性が向上するためと考えられる。
本発明の方法は粒子の析出状態に影響を与えうる段階で超音波を照射する点で、例えば、前記特許文献2に開示されているような、水性顔料分散体に超音波を照射してスラリー中における顔料の分散性を向上させる方法とは技術的に異なる。
According to the method of the present invention, in the precipitation step of hydrated silicic acid by the neutralization reaction of the aqueous alkali silicate solution, by irradiating ultrasonic waves within the period in which the hydrated silicate particles are precipitated in the reaction solution, , Hydrated silica with excellent pore structure, good pore volume, good oil absorption, and uniform particle size distribution of hydrated silicate particles (primary particles and aggregates) is obtained. It is done.
This is considered to be because the uniformity of the precipitation reaction of hydrated silicic acid is improved by the action of cavitation caused by ultrasonic irradiation.
The method of the present invention irradiates ultrasonic waves at a stage where the precipitation state of particles can be affected. For example, as disclosed in Patent Document 2, the aqueous pigment dispersion is irradiated with ultrasonic waves to form a slurry. It is technically different from the method of improving the dispersibility of the pigment in the inside.
本発明においては、超音波を水和ケイ酸粒子の析出状態に影響を与える条件で照射することが重要である。かかる超音波照射による水和ケイ酸粒子の析出状態への影響は、例えば(1)粒子の析出速度、(2)超音波の照射時期、(3)超音波の照射出力によって制御可能である。(1)粒子の析出速度は反応液の温度で制御可能である。
特に、析出の初期段階に好ましい影響を与えると、本発明の効果を得やすく、そのためには、下記(1)〜(3)の1以上を満たすことが好ましい。
(1)70℃以下の反応液に鉱酸を添加する第1の工程と、その後に70℃超の反応液に鉱酸を添加する第2の工程を設け、2段階の析出反応を行う。
(2)鉱酸の添加量が当量の60%に達する前に、超音波を照射する。
(3)超音波の照射時の出力を反応液1L当たり10〜300Wワットとする。
In the present invention, it is important to irradiate ultrasonic waves under conditions that affect the precipitation state of the hydrated silicate particles. The influence of the ultrasonic irradiation on the precipitation state of the hydrated silicate particles can be controlled by, for example, (1) the precipitation rate of the particles, (2) the ultrasonic wave irradiation timing, and (3) the ultrasonic wave irradiation output. (1) The deposition rate of particles can be controlled by the temperature of the reaction solution.
In particular, if the initial stage of precipitation is favorably affected, the effects of the present invention can be easily obtained. For this purpose, it is preferable to satisfy at least one of the following (1) to (3).
(1) A first step of adding a mineral acid to a reaction solution at 70 ° C. or lower and a second step of adding a mineral acid to a reaction solution at a temperature higher than 70 ° C. are provided, and a two-stage precipitation reaction is performed.
(2) Ultrasound is irradiated before the amount of mineral acid added reaches 60% of the equivalent.
(3) The output at the time of ultrasonic irradiation is set to 10 to 300 watts per liter of the reaction solution.
本発明によれば、下記特性を有する水和ケイ酸粒子を得ることができる。
レーザー式測定法による50%(体積基準)平均粒子径が10〜30μm、好ましくは15〜25μm。
粒子径100μm以上の粒子が、粒子全体に占める体積割合(本明細書では粗大粒子率という)が10体積%以下、好ましくは7体積%以下。
水銀圧入式測定法による細孔体積が2.5〜5ml/g、好ましくは3〜5ml/g、より好ましくは3〜4ml/g。
JIS K5101による吸油量が200〜500ml/100g、好ましくは250〜450ml/100g。
According to the present invention, hydrated silicate particles having the following characteristics can be obtained.
50% (volume basis) average particle diameter by laser measurement method is 10 to 30 μm, preferably 15 to 25 μm.
The volume ratio of particles having a particle diameter of 100 μm or more to the entire particle (referred to as coarse particle ratio in this specification) is 10% by volume or less, preferably 7% by volume or less.
The pore volume by mercury porosimetry is 2.5-5 ml / g, preferably 3-5 ml / g, more preferably 3-4 ml / g.
Oil absorption according to JIS K5101 is 200 to 500 ml / 100 g, preferably 250 to 450 ml / 100 g.
本発明の方法で得られる水和ケイ酸は、シリカ系填料として好適に用いることができる。
本発明により得られる水和ケイ酸粒子からなるシリカ系填料は、紙の原料パルプ繊維中に分散させた填料として酸性抄紙、中性抄紙或いはアルカリ抄紙のいずれにおいても使用することができ、又、表面コート剤用の顔料として使用することもできる。
例えば本発明の方法で製造された水和ケイ酸粒子(シリカ系填料)を、パルプ原料と混合し、公知の湿式抄紙機により製紙することにより、シリカ系填料内添紙が得られる。
前記湿式抄紙機としては、丸網式抄紙機、短網式抄紙機、長網式抄紙機、ツインワイヤー式抄紙機等の商業規模の抄紙機が目的に応じて適宜用いられる。
The hydrated silicic acid obtained by the method of the present invention can be suitably used as a silica-based filler.
The silica-based filler comprising the hydrated silicate particles obtained by the present invention can be used in any of acidic papermaking, neutral papermaking and alkaline papermaking as a filler dispersed in the raw paper pulp fiber of paper, It can also be used as a pigment for surface coating agents.
For example, hydrated silicic acid particles (silica filler) produced by the method of the present invention are mixed with a pulp raw material, and paper is made with a known wet paper machine to obtain a silica-based filler-added paper.
As the wet paper machine, a commercial paper machine such as a round net paper machine, a short net paper machine, a long net paper machine, or a twin wire paper machine is appropriately used depending on the purpose.
本発明の方法によれば、水和ケイ酸をスラリー状で得ることができるので、スラリー状のままパルプ原料と混合することができる。またスラリー状であれば、搬送や貯蔵を既存の設備を利用して容易に行うことができる。または、得られたスラリー状の水和ケイ酸を乾燥して粉体状で保管し、これをパルプ原料と混合させるときに水に再分散させて用いることもできる。
本発明で得られる水和ケイ酸を、シリカ系填料として紙に添加する際には、必要に応じて予め湿式粉砕及び/又は湿式分級して用いてもよい。湿式粉砕は、公知の連続式ホモミキサー、コロイドミル、ディスクリファイナー、サンドグラインダー、ボールミル、ロッドミル等を用いて行うことができる。
According to the method of the present invention, hydrated silicic acid can be obtained in the form of a slurry, so that it can be mixed with the pulp raw material in the form of a slurry. Moreover, if it is a slurry form, conveyance and storage can be easily performed using the existing equipment. Alternatively, the obtained slurry-like hydrated silicic acid can be dried and stored in a powder form, and can be used by being redispersed in water when mixed with the pulp raw material.
When the hydrated silicic acid obtained in the present invention is added to paper as a silica-based filler, it may be used after wet pulverization and / or wet classification as necessary. The wet pulverization can be performed using a known continuous homomixer, colloid mill, disc refiner, sand grinder, ball mill, rod mill or the like.
本発明にかかる水和ケイ酸粒子(シリカ系填料)を内填した紙(シリカ系填料内添紙)に用いられるパルプ原料としては、通常用いられている公知の製紙用パルプを使用することができる。具体的には、サルファイトパルプ、クラフトパルプ、ソーダパルプ等のケミカルパルプ、セミケミカルパルプ、メカニカルパルプ等の木材パルプ、或いは楮、三椏、麻等の非木材パルプでも良い。これらのパルプは、未晒パルプでも晒パルプでも良く、又、未叩解でも叩解していてもよい。更に、これら単独でも、二種以上の混合で用いてもとい。
該シリカ系填料内添紙には、通常抄紙で用いられる添加剤、例えばサイズ剤、消泡剤、スライムコントロール剤、染料、着色顔料、蛍光染料、乾燥紙力増強剤、湿潤紙力増強剤、濾水性向上剤、及び歩留り向上剤等を必要に応じて使用することができる。
また、該シリカ系填料内添紙の表面には、でんぷん、ポリビニルアルコール、ポリアクリルアミド、各種表面サイズ剤等を塗布することも可能である。
As a pulp raw material used for the paper (silica-based filler-added paper) in which the hydrated silicate particles (silica-based filler) according to the present invention are embedded, it is possible to use a commonly used known papermaking pulp. it can. Specifically, chemical pulp such as sulfite pulp, kraft pulp and soda pulp, wood pulp such as semi-chemical pulp and mechanical pulp, or non-wood pulp such as cocoon, sardine and hemp may be used. These pulps may be unbleached pulp or bleached pulp, and may be unbeaten or beaten. Furthermore, these may be used alone or in combination of two or more.
In the silica-based filler internal paper, additives usually used in papermaking, such as sizing agent, antifoaming agent, slime control agent, dye, coloring pigment, fluorescent dye, dry paper strength enhancer, wet paper strength enhancer, A drainage improver, a yield improver, etc. can be used as needed.
Further, starch, polyvinyl alcohol, polyacrylamide, various surface sizing agents, and the like can be applied to the surface of the silica-based filler-added paper.
本発明にかかる水和ケイ酸粒子(シリカ系填料)を用いて得られる紙は、不透明度が高く、特に印刷後不透明度に優れている。かかる紙特性が得られるのは、水和ケイ酸粒子内部の空隙量が多くて吸油量が多く、粒度分布の均一性が良好で填料歩留まりが高いことで、紙に印刷されたインキの浸透を抑制する能力が高くなるためと考えられる。
すなわち、本発明の方法で得られる水和ケイ酸粒子は、上述したような特性を有しており、吸油量が大きいので、これを紙に填料として適用したときに印刷後不透明度を十分に向上させることができる。しかも、該吸油量に対して細孔体積が大きすぎないので粒子の崩壊が生じ難く安定している。また粗大粒子率が低いということは、粒度分布が均一化された結果と考えられるが、粗大粒子率が低いので、紙に填料として適用したときに脱落が生じ難く、填料の添加による効果を十分に発揮することができる。
The paper obtained using the hydrated silicate particles (silica filler) according to the present invention has high opacity, and particularly excellent opacity after printing. Such paper characteristics are obtained because the amount of voids inside the hydrated silicate particles is large, the amount of oil absorption is large, the uniformity of the particle size distribution is good, and the filler yield is high, thereby penetrating the ink printed on the paper. This is thought to be because the ability to suppress increases.
That is, the hydrated silicic acid particles obtained by the method of the present invention have the characteristics as described above and have a large oil absorption, so that the opacity after printing is sufficient when applied to a paper as a filler. Can be improved. Moreover, since the pore volume is not too large with respect to the oil absorption, the particles are unlikely to collapse and are stable. Also, the low coarse particle ratio is considered to be the result of the uniform particle size distribution, but the coarse particle ratio is low, so that when applied as a filler to paper, it does not easily fall off, and the effect of adding filler is sufficient. Can be demonstrated.
以下に実施例を挙げて本発明をより具体的に説明するが、本発明は勿論これらに限定されるものではない。尚、以下の実験例において、%は、特に断りのない限り質量%である。 The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples. In the following experimental examples,% is mass% unless otherwise specified.
<実験例1>
市販のJIS3号ケイ酸ソーダ水溶液(トクヤマ社製、固形分濃度30%)240gを純水にて1000gに希釈し、シリカ(二酸化ケイ素)濃度を72g/kgとして2リットルのステンレスビーカーに入れた。ウォーターバスにて温度を50℃に維持し、攪拌しながらケイ酸ソーダ水溶液中に超音波発振器(製品名;SPM40−01、Weber Ultrasonics GmbH社製)を入れ、40kHz、100W(反応液1L当たり)で超音波を照射した。
<Experimental example 1>
240 g of a commercially available JIS No. 3 sodium silicate aqueous solution (manufactured by Tokuyama Corp., solid content concentration 30%) was diluted to 1000 g with pure water, and the silica (silicon dioxide) concentration was 72 g / kg and placed in a 2 liter stainless steel beaker. While maintaining the temperature at 50 ° C. in a water bath, an ultrasonic oscillator (product name: SPM40-01, manufactured by Weber Ultrasonics GmbH) was placed in an aqueous sodium silicate solution while stirring, and 40 kHz, 100 W (per 1 L of reaction solution). The ultrasonic wave was irradiated with.
次いで、超音波照射および攪拌を続けたまま、ケイ酸ソーダを中和するのに必要な全酸所要量(当量)の30%に相当する硫酸(濃度20%)54gを12分間かけて連続的に添加した(第1の工程)。
硫酸の添加が終わったあと、超音波照射を止め、攪拌しながら25分間で反応液の温度を90℃まで昇温した。この温度でそのまま攪拌を続け、10分間熟成を行った(熟成工程)。
次いで、残りの硫酸126gを28分間かけて連続的に添加し(第2の工程)、硫酸の添加が終わった後、更に20分間熟成を行った(熟成工程)。
Subsequently, 54 g of sulfuric acid (concentration 20%) corresponding to 30% of the total acid requirement (equivalent) required to neutralize sodium silicate was continuously applied for 12 minutes while continuing ultrasonic irradiation and stirring. (First step).
After the addition of sulfuric acid was finished, the ultrasonic irradiation was stopped, and the temperature of the reaction solution was raised to 90 ° C. over 25 minutes while stirring. Stirring was continued at this temperature, and aging was performed for 10 minutes (aging process).
Next, the remaining 126 g of sulfuric acid was continuously added over 28 minutes (second step), and after completion of the addition of sulfuric acid, aging was further performed for 20 minutes (aging step).
こうして得られた反応液(反応生成物を含むスラリー)を200メッシュの篩を通過させ残渣を除去した。篩を通過したスラリー中の水和ケイ酸粒子の平均粒子径および粗大粒子率を、レーザー回折式粒度分布測定装置(製品名;SALD−2000、島津製作所社製)で測定した。レーザー式測定法による50%平均粒子径は、18μm、粗大粒子率は3体積%であった。
篩を通過したスラリーをブフナーロートにて濾過しケーキ状の水和ケイ酸を得た。その一部を105℃にて一晩乾燥したものについて、JIS K5101による吸油量、および水銀圧入式測定法による細孔体積を測定した。
各測定の結果を下記表1に示す。なお表1において、照射期間は、「照射開始時の酸の当量に対する添加割合(%)〜照射終了時の酸の当量に対する添加割合(%)」で示している。
The reaction solution (slurry containing the reaction product) thus obtained was passed through a 200-mesh sieve to remove the residue. The average particle diameter and coarse particle ratio of the hydrated silicate particles in the slurry that passed through the sieve were measured with a laser diffraction particle size distribution analyzer (product name: SALD-2000, manufactured by Shimadzu Corporation). The 50% average particle diameter by laser measurement was 18 μm, and the coarse particle ratio was 3% by volume.
The slurry that passed through the sieve was filtered with a Buchner funnel to obtain cake-like hydrated silicic acid. About what dried a part overnight at 105 degreeC, the oil absorption by JISK5101 and the pore volume by the mercury intrusion type measuring method were measured.
The results of each measurement are shown in Table 1 below. In Table 1, the irradiation period is indicated by “addition ratio (%) relative to acid equivalent at the start of irradiation to addition ratio (%) relative to acid equivalent at the end of irradiation”.
<実験例2>
実験例1において、超音波の照射を、第1の工程で行わず、第2の工程でのみ行った。すなわち、中和用硫酸の30%を添加した後に超音波照射を開始し、残りの硫酸の添加が終了するまで継続したこと以外は実験例1と同様の処理を行い水和ケイ酸を得た。
実験例1と同様の測定を行った。その結果を表1に示す。
<Experimental example 2>
In Experimental Example 1, ultrasonic irradiation was not performed in the first step, but only in the second step. That is, ultrasonic treatment was started after adding 30% of the neutralizing sulfuric acid, and the hydrated silicic acid was obtained by performing the same treatment as in Experimental Example 1, except that the addition of the remaining sulfuric acid was continued. .
Measurements similar to those in Experimental Example 1 were performed. The results are shown in Table 1.
<実験例3>
実験例1において、第1の工程における反応液の温度を50℃から70℃に変更した以外は、実験例1と同様の処理を行い、水和ケイ酸を得た。
実験例1と同様の測定を行った。その結果を表1に示す。
<Experimental example 3>
In Experimental Example 1, except that the temperature of the reaction solution in the first step was changed from 50 ° C. to 70 ° C., the same treatment as in Experimental Example 1 was performed to obtain hydrated silicic acid.
Measurements similar to those in Experimental Example 1 were performed. The results are shown in Table 1.
<実験例4>
実験例1において、反応液に対して照射する超音波の出力を100Wから10W(反応液1L当たり)に変更した以外は、実験例1と同様の処理を行い、水和ケイ酸を得た。
実験例1と同様の測定を行った。その結果を表1に示す。
<Experimental example 4>
In Experimental Example 1, the same treatment as in Experimental Example 1 was performed except that the output of the ultrasonic wave applied to the reaction liquid was changed from 100 W to 10 W (per 1 L of the reaction liquid) to obtain hydrated silicic acid.
Measurements similar to those in Experimental Example 1 were performed. The results are shown in Table 1.
<実験例5>
実験例1において、超音波の照射を、第1の工程で行わず、第2の工程の途中から行った。すなわち、中和用硫酸の70%を添加した後に超音波照射を開始し、残りの硫酸の添加が終了するまで継続したこと以外は実験例1と同様の処理を行い水和ケイ酸を得た。
実験例1と同様の測定を行った。その結果を表1に示す。
<Experimental example 5>
In Experimental Example 1, ultrasonic irradiation was performed in the middle of the second step without being performed in the first step. That is, ultrasonic treatment was started after 70% of the neutralizing sulfuric acid was added, and the hydrated silicic acid was obtained by performing the same treatment as in Experimental Example 1 except that the addition of the remaining sulfuric acid was continued. .
Measurements similar to those in Experimental Example 1 were performed. The results are shown in Table 1.
<実験例6>
実験例1において、超音波照射を行わなかったこと以外は実験例1と同様に水和ケイ酸を得た。
実験例1と同様の測定を行った。その結果を表1に示す。
<Experimental example 6>
In Experimental Example 1, hydrated silicic acid was obtained in the same manner as in Experimental Example 1 except that ultrasonic irradiation was not performed.
Measurements similar to those in Experimental Example 1 were performed. The results are shown in Table 1.
表1の結果に示されるように、超音波を照射した実験例1〜5では、細孔体積、吸油量、および粒度分布の全てをバランス良く満たす水和ケイ酸が得られた。特に、実験例1〜4では、細孔体積、吸油量が良好なまま、粗大粒子率が大幅に低下した。これに対して、比較例1では細孔体積、吸油量を良好な範囲にすると平均粒子径が大きくなり、粗大粒子率も増大してしまった。
As shown in the results of Table 1, in Experimental Examples 1 to 5 irradiated with ultrasonic waves, hydrated silicic acid satisfying all of the pore volume, oil absorption, and particle size distribution in a well-balanced manner was obtained. In particular, in Experimental Examples 1 to 4, the coarse particle ratio significantly decreased while the pore volume and the oil absorption amount were good. On the other hand, in Comparative Example 1, when the pore volume and the oil absorption amount were in the favorable ranges, the average particle diameter was increased and the coarse particle ratio was also increased.
Claims (4)
前記粒子が析出している期間内に、前記反応液に対して超音波を照射することを特徴とする水和ケイ酸の製造方法。 In the method for producing hydrated silicic acid, particles are precipitated in the reaction solution by adding a mineral acid to the aqueous alkali silicate solution and neutralizing it.
A method for producing hydrated silicic acid, wherein the reaction liquid is irradiated with ultrasonic waves within a period in which the particles are deposited.
The method for producing hydrated silicic acid according to any one of claims 1 to 3, wherein an output upon irradiation with the ultrasonic waves is 10 to 300 watts per liter of the reaction solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005102322A JP4654733B2 (en) | 2005-03-31 | 2005-03-31 | Method for producing hydrated silicic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005102322A JP4654733B2 (en) | 2005-03-31 | 2005-03-31 | Method for producing hydrated silicic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006282427A true JP2006282427A (en) | 2006-10-19 |
JP4654733B2 JP4654733B2 (en) | 2011-03-23 |
Family
ID=37404728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005102322A Expired - Fee Related JP4654733B2 (en) | 2005-03-31 | 2005-03-31 | Method for producing hydrated silicic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4654733B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITPA20110012A1 (en) * | 2011-08-30 | 2013-03-01 | Salvo Santina Di | INNOVATIVE SONOCHIMIC PROCESS THAT EMPLOYS THE ULTRASONIC CAVITATION FOR THE SYNTHESIS OF NANOPARTICELLE MONODISPERSE AMORPHES OF SILICON DIOXIDE AND METHOD FOR PREPARING A LOTION OF HYDRO-SOLUBLE LITHIUM COMPOUND FOR HIGH PERFORMANCE, TO BE APPLIED IN SIT |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55113611A (en) * | 1979-02-23 | 1980-09-02 | Tokuyama Soda Co Ltd | Manufacture of silicic acid hydrate |
JPS55116613A (en) * | 1979-02-28 | 1980-09-08 | Tokuyama Soda Co Ltd | Silicic acid hydrate and manufacture thereof |
JPS6065713A (en) * | 1983-09-22 | 1985-04-15 | Oji Paper Co Ltd | Preparation of filler of silicic acid hydrate for paper making |
JPS60226413A (en) * | 1984-04-23 | 1985-11-11 | Agency Of Ind Science & Technol | Production of molecular sieve type zeolite |
JPS62119124A (en) * | 1985-11-18 | 1987-05-30 | Seiko Epson Corp | Production of glass |
JPS62153113A (en) * | 1979-06-07 | 1987-07-08 | Tokuyama Soda Co Ltd | Production of basic hydrated silicic acid |
JPH0497908A (en) * | 1990-08-10 | 1992-03-30 | Lion Corp | Production of zeolite |
JPH05301707A (en) * | 1992-04-28 | 1993-11-16 | Tokuyama Soda Co Ltd | Water-containing silicic acid and its production |
JP2908253B2 (en) * | 1994-09-26 | 1999-06-21 | 日本化学工業株式会社 | Hydrated silica and its production method |
JP2004285172A (en) * | 2003-03-20 | 2004-10-14 | Dainippon Ink & Chem Inc | Production method for aqueous pigment dispersion and production method for aqueous pigment recording liquid |
JP2006069883A (en) * | 2004-08-05 | 2006-03-16 | Tokuyama Corp | Wet silica and its production method |
-
2005
- 2005-03-31 JP JP2005102322A patent/JP4654733B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55113611A (en) * | 1979-02-23 | 1980-09-02 | Tokuyama Soda Co Ltd | Manufacture of silicic acid hydrate |
JPS55116613A (en) * | 1979-02-28 | 1980-09-08 | Tokuyama Soda Co Ltd | Silicic acid hydrate and manufacture thereof |
JPS62153113A (en) * | 1979-06-07 | 1987-07-08 | Tokuyama Soda Co Ltd | Production of basic hydrated silicic acid |
JPS6065713A (en) * | 1983-09-22 | 1985-04-15 | Oji Paper Co Ltd | Preparation of filler of silicic acid hydrate for paper making |
JPS60226413A (en) * | 1984-04-23 | 1985-11-11 | Agency Of Ind Science & Technol | Production of molecular sieve type zeolite |
JPS62119124A (en) * | 1985-11-18 | 1987-05-30 | Seiko Epson Corp | Production of glass |
JPH0497908A (en) * | 1990-08-10 | 1992-03-30 | Lion Corp | Production of zeolite |
JPH05301707A (en) * | 1992-04-28 | 1993-11-16 | Tokuyama Soda Co Ltd | Water-containing silicic acid and its production |
JP2908253B2 (en) * | 1994-09-26 | 1999-06-21 | 日本化学工業株式会社 | Hydrated silica and its production method |
JP2004285172A (en) * | 2003-03-20 | 2004-10-14 | Dainippon Ink & Chem Inc | Production method for aqueous pigment dispersion and production method for aqueous pigment recording liquid |
JP2006069883A (en) * | 2004-08-05 | 2006-03-16 | Tokuyama Corp | Wet silica and its production method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITPA20110012A1 (en) * | 2011-08-30 | 2013-03-01 | Salvo Santina Di | INNOVATIVE SONOCHIMIC PROCESS THAT EMPLOYS THE ULTRASONIC CAVITATION FOR THE SYNTHESIS OF NANOPARTICELLE MONODISPERSE AMORPHES OF SILICON DIOXIDE AND METHOD FOR PREPARING A LOTION OF HYDRO-SOLUBLE LITHIUM COMPOUND FOR HIGH PERFORMANCE, TO BE APPLIED IN SIT |
Also Published As
Publication number | Publication date |
---|---|
JP4654733B2 (en) | 2011-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI224080B (en) | A process for preparing a stable colloidal silica having a surface area of greater than 700 m2/g and a S-value of from 20-50, a method for making a cellulosic sheet and a method for increasing drainage of a papermaking furnish on a papermaking machine | |
JP6742867B2 (en) | Method for producing inorganic carbonate | |
JP3898007B2 (en) | Method for producing bulky paper with internal filler added with filler, which is an aggregate of inorganic particles and silica composite particles | |
JP2011074528A (en) | Paper made by adding cellulose nanofiber, and method for producing the same | |
JP2010513742A (en) | Method for the production of cellulosic products | |
JP6411266B2 (en) | Method for producing calcium carbonate | |
CN1934032A (en) | Silica-based sols and their production and use | |
JP2008156204A (en) | Lightweight calcium carbonate, process for producing the same and printing paper using the same | |
JP2017008472A (en) | Production method of cellulose nanofiber and production apparatus of cellulose nanofiber | |
KR100537963B1 (en) | Paper Making Process | |
JP4654733B2 (en) | Method for producing hydrated silicic acid | |
JP4875940B2 (en) | Starch-based paper strength enhancer and paper making method using the same | |
JP6233157B2 (en) | Water-resistant cellulose fiber and production method thereof, cellulose sheet and production method thereof | |
JP2000007320A (en) | Silica particle, its production and paper containing internally added silica particle | |
RU2300597C2 (en) | Cellulose product and a method for preparation thereof | |
JP6280593B2 (en) | Method for producing cellulose nanofiber | |
JP2006307229A (en) | Method for preparing composite particles | |
JP2006524174A (en) | Aqueous composition and its use in the manufacture of paper and paperboard | |
JPH0457795B2 (en) | ||
JP7356308B2 (en) | Composite fiber and its manufacturing method | |
CN101454506A (en) | Use of starch with synthetic metal silicates for improving papermaking process | |
WO2007040735A2 (en) | Use of synthetic metal silicates for decreasing the deposition of contaminants during a papermaking process | |
JP6711432B2 (en) | Cellulose sheet | |
JPH09156919A (en) | Complex particle of titania and silica and its production | |
JP2013129562A (en) | Method for manufacturing composite particle and composite particle obtained by the manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20070911 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091217 |
|
A131 | Notification of reasons for refusal |
Effective date: 20100907 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101029 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101124 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20101207 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |