JP2006281313A - Method for producing welded steel tube - Google Patents

Method for producing welded steel tube Download PDF

Info

Publication number
JP2006281313A
JP2006281313A JP2005290560A JP2005290560A JP2006281313A JP 2006281313 A JP2006281313 A JP 2006281313A JP 2005290560 A JP2005290560 A JP 2005290560A JP 2005290560 A JP2005290560 A JP 2005290560A JP 2006281313 A JP2006281313 A JP 2006281313A
Authority
JP
Japan
Prior art keywords
welding
steel
saw
steel tube
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005290560A
Other languages
Japanese (ja)
Inventor
Yutaka Kano
裕 鹿野
Hiroshi Samoto
博司 佐本
Daisuke Koseki
大祐 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Spiral Pipe Co Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Sumikin Spiral Pipe Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumikin Spiral Pipe Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005290560A priority Critical patent/JP2006281313A/en
Publication of JP2006281313A publication Critical patent/JP2006281313A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a welded steel tube easily applicable to the production of a spiral steel tube without performing large-scale equipment modification, and capable of remarkably improving the efficiency thereof. <P>SOLUTION: In the method for producing a welded steel tube, the butting parts in the width direction of hot rolled steel strips bent to a spiral shape are first subjected to submerged arc welding (SAW) at the inner face side in an inner face welding position P1 by an inner face welding machine, thereafter, the steel tube is conducted to a high frequency heating coil 30 located in the downstream side going one-half round along a welding line, so as to perform the preheating of the butting parts in the steel strips before outer face welding, thereafter, the outer face side is subjected to SAW at an outer face welding position P2 by an outer face welding machine. In this case, the surface temperature of the butting parts in the edge faces in the width direction of the steel sheets before the SAW is preferably controlled to ≥400°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高速でかつ健全な溶接部が得られる溶接鋼管の製造方法に係り、特に、スパイラル鋼管の製造に適した方法に関する。   The present invention relates to a method for manufacturing a welded steel pipe capable of obtaining a high-speed and sound weld, and particularly to a method suitable for manufacturing a spiral steel pipe.

溶接鋼管は、電縫鋼管、鍛接鋼管、サブマージアーク溶接鋼管に大別される。サブマージアーク溶接鋼管は、通常、大径鋼管であり、スパイラル鋼管はUOE鋼管と共にサブマージアーク溶接鋼管の代表とされている。   Welded steel pipes are roughly classified into ERW steel pipes, forged steel pipes, and submerged arc welded steel pipes. The submerged arc welded steel pipe is usually a large diameter steel pipe, and the spiral steel pipe is a representative of the submerged arc welded steel pipe together with the UOE steel pipe.

スパイラル鋼管の製造は、例えば図8に示すように、鋼帯(鋼板)2をスパイラル状に形成し、鋼帯(鋼板)の側縁突合せ部を内面溶接機4および外面溶接機6により内面側および外面側からそれぞれサブマージアーク溶接(以下、適宜、SAW溶接ともいう。)することにより行なわれる。なお、図中、8はアンコイラ、10はコイルエンドレベラ、12はクロスウェルダ、14はレベラ、16はトリマチョッパ、18はエッジシェーバ、20はメインピンチロール、22はエッジベンダ、24は成形機、26は超音波探傷機、28は走行切断機である。   For example, as shown in FIG. 8, the spiral steel pipe is manufactured by forming a steel strip (steel plate) 2 in a spiral shape, and connecting the side edge butt portion of the steel strip (steel plate) with an inner surface welding machine 4 and an outer surface welding machine 6. And by submerged arc welding (hereinafter also referred to as SAW welding as appropriate) from the outer surface side. In the figure, 8 is an uncoiler, 10 is a coil end leveler, 12 is a cross welder, 14 is a leveler, 16 is a trimmer chopper, 18 is an edge shaver, 20 is a main pinch roll, 22 is an edge bender, 24 is a molding machine, 26 is an ultrasonic flaw detector and 28 is a traveling cutting machine.

サブマージアーク溶接鋼管の製造速度は、他の溶接鋼管の製造速度よりも遅く、スパイラル鋼管の製造では、内外面側の各電極を多電極化し、内外1パスで溶接を行なうことにより、能率向上を図っている。   The production speed of submerged arc welded steel pipes is slower than that of other welded steel pipes. In the production of spiral steel pipes, multiple electrodes are used on the inner and outer surfaces, and welding is performed in one pass inside and outside to improve efficiency. I am trying.

しかしながら、板厚が厚くなると急激に溶接速度が低下し、鋼管杭に使われるような厚肉のスパイラル鋼管の製造では、ライン速度の低下を余儀なくされ、ライン能力をフルに使うことができないのが現状である。これは、板厚が厚くなると溶接入熱が増加し、プールが増してその凝固に時間がかかるようになるため、高速でラインを動かすと未凝固のままで溶接部が回転することによりプールが流動して溶接部形状の悪化を招くからである。   However, as the plate thickness increases, the welding speed decreases rapidly, and in the production of thick spiral steel pipes used for steel pipe piles, the line speed must be reduced and the line capacity cannot be fully used. Currently. This is because, as the plate thickness increases, the welding heat input increases, the pool increases, and it takes time to solidify the pool. It is because it flows and causes deterioration of a welded part shape.

この問題を解決するため、サブマージアーク溶接以外の溶接を併用したスパイラル鋼管の製造方法が考えられている。サブマージアーク溶接以外の溶接を併用すると、サブマージアーク溶接の負担が軽減され、板厚が厚くなってもサブマージアーク溶接における溶接入熱が小さく抑えられ、そのプールが増加しない。したがって、溶接速度を速くできる。   In order to solve this problem, a spiral steel pipe manufacturing method using welding other than submerged arc welding has been considered. When welding other than submerged arc welding is used in combination, the burden of submerged arc welding is reduced, and even if the plate thickness is increased, the welding heat input in submerged arc welding is kept small, and the pool does not increase. Therefore, the welding speed can be increased.

このような考えを実現するものとして、電気抵抗溶接を併用したスパイラル鋼管の製造方法が特許文献1に開示されている。
また、特許文献2には、鋼帯(鋼板)をスパイラル状に成形して、その突合せ部に内面側から第1のサブマージアーク溶接を行ない、その溶接部が150℃以上の温度を保有している状態で、外面側から炭酸ガスアーク溶接を行ない、その後さらに、第2のサブマージアーク溶接を行なう方法が開示されている。この方法によれば、炭酸ガスアーク溶接により第1および第2のサブマージアーク溶接の負担が軽減され、高速溶接が可能であるとされている。
As a means for realizing such an idea, Patent Document 1 discloses a method of manufacturing a spiral steel pipe using electric resistance welding together.
Further, in Patent Document 2, a steel strip (steel plate) is formed into a spiral shape, and the first submerged arc welding is performed on the butt portion from the inner surface side, and the welded portion has a temperature of 150 ° C. or higher. In this state, a carbon dioxide arc welding is performed from the outer surface side, and then a second submerged arc welding is further performed. According to this method, the burden of the first and second submerged arc welding is reduced by carbon dioxide arc welding, and high-speed welding is possible.

特開昭60−21180号公報JP 60-21180 A 特開平6−23553号公報Japanese Patent Laid-Open No. 6-23553

しかしながら、特許文献1に開示されているように電縫溶接を併用するスパイラル鋼管の製造方法では、スパイラル製管ラインで電縫溶接を行なうための設備に関して技術的な問題がある上、ライン速度と適正溶接速度とが合致しないことによる溶接品質上の問題もある。すなわち、現状のスパイラル製管ラインは様々な制約から最大ライン速度が5〜6m/minに抑えられているのに対し、電気抵抗溶接の適正溶接速度はこれより格段に速く、現状のスパイラル製管ラインで電気抵抗溶接を行なうためには、その速度をライン速度まで低下させなければならず、これによる溶接性の低下を余儀なくされるのである。したがって、現状では設備技術の問題に加えてこの溶接品質の問題も解決しなければならず、実施が非常に難しい。   However, as disclosed in Patent Document 1, in the method of manufacturing spiral steel pipes that use electric seam welding together, there are technical problems related to equipment for performing electric seam welding on spiral pipe production lines, and the line speed and There is also a problem in welding quality due to a mismatch with the appropriate welding speed. In other words, the current spiral pipe production line is limited to a maximum line speed of 5 to 6 m / min due to various restrictions, while the appropriate welding speed of electric resistance welding is much faster than this, and the current spiral pipe production is In order to perform electric resistance welding on a line, the speed must be reduced to the line speed, and this causes a reduction in weldability. Therefore, at present, in addition to the problem of equipment technology, this problem of welding quality must be solved, which is very difficult to implement.

一方、特許文献2の溶接方法についても、炭酸ガスアーク溶接の速度とサブマージアーク溶接の速度とを同調させるのが困難である上、従来の外面側および内面側サブマージアーク溶接設備に加えて、炭酸ガスアーク溶接設備が必要になるといった問題点がある。   On the other hand, in the welding method of Patent Document 2, it is difficult to synchronize the speed of carbon dioxide arc welding and the speed of submerged arc welding, and in addition to the conventional outer surface side and inner surface side submerged arc welding equipment, There is a problem that welding equipment is required.

本発明は、前記事情に鑑みて為されたもので、大掛かりな設備改造を行なうことなくスパイラル鋼管の製造に簡単に適用でき、その能率を大幅に向上させることができる溶接鋼管の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a method for manufacturing a welded steel pipe that can be easily applied to the manufacture of spiral steel pipes without significant modifications to the equipment and can greatly improve the efficiency thereof. The purpose is to do.

本発明者らは、スパイラル鋼管のサブマージアーク溶接の際に予め鋼帯(鋼板)の突合せ部を適切な温度条件になるように予熱しておくことで溶接ビード部の幅や溶込み深さ、ならびに溶金量が増加することを見出し、本発明を完成させた。すなわち、本発明者らは、スパイラル鋼管のサブマージアーク溶接の前に、様々な板厚の鋼帯(鋼板)の突合せ部を様々な温度条件で予熱した後、種々の溶接条件(溶接入熱、溶接速度)で溶接後のビード部の形状を観察し、以下の(1)〜(5)の知見を見出した。
なお、鋼帯(鋼板)2の突合せ部(幅方向両端部)については、予め図8に示されるエッジシェーバ18等により所定の開先形状に内面および外面ともに加工しておき、内面溶接機4により図1に示すように内面溶接位置P1で内面側のSAW溶接を実施した後、鋼管を溶接線に沿って約1周半した下流側に位置する高周波加熱コイル30に通電して外面溶接前の鋼帯(鋼板)突合せ部の予熱を行ない、しかる後、外面溶接機6により内面溶接位置P2で外面側のSAW溶接を実施した。
また、高周波加熱コイルに通電した電流の周波数は50kHzであり、最高出力は75kWであった。
さらに、内外面のSAW溶接についてはいずれも2電極を用い、先行電極には最大2000Aの直流を通電し、後行電極には最大1500Aの交流を通電した。
The inventors of the present invention pre-heated the butt portion of the steel strip (steel plate) at the time of submerged arc welding of the spiral steel pipe so as to have an appropriate temperature condition, so that the width and penetration depth of the weld bead portion, In addition, the present inventors have found that the amount of molten metal increases and completed the present invention. That is, the present inventors preheated the butt portion of steel strips (steel plates) of various thicknesses under various temperature conditions before submerged arc welding of the spiral steel pipe, and then various welding conditions (welding heat input, The shape of the bead part after welding was observed at (welding speed), and the following findings (1) to (5) were found.
In addition, about the butt | matching part (width direction both ends) of the steel strip (steel plate) 2, both the inner surface and the outer surface are processed into a predetermined groove shape in advance by the edge shaver 18 or the like shown in FIG. As shown in FIG. 1, after SAW welding on the inner surface side is performed at the inner surface welding position P1, the steel pipe is energized to the high-frequency heating coil 30 positioned about one and a half times along the welding line before the outer surface welding. The steel strip (steel plate) butt portion was preheated, and thereafter, the outer surface side SAW welding was performed by the outer surface welding machine 6 at the inner surface welding position P2.
Further, the frequency of the current applied to the high-frequency heating coil was 50 kHz, and the maximum output was 75 kW.
Furthermore, for SAW welding of the inner and outer surfaces, two electrodes were used, and the leading electrode was energized with a maximum of 2000 A, and the trailing electrode was energized with a maximum of 1500 A.

(1)高周波加熱コイル30により、外面SAW溶接前の鋼帯(鋼板)突合せ部の表面温度は400℃以上に昇熱された。高周波加熱無しの場合、同じく外面SAW溶接前の鋼帯(鋼板)突合せ部の表面温度は200℃〜250℃であった。 (1) The surface temperature of the butt portion of the steel strip (steel plate) before the outer surface SAW welding was raised to 400 ° C. or more by the high-frequency heating coil 30. In the case of no high-frequency heating, the surface temperature of the steel strip (steel plate) butt portion before the outer surface SAW welding was 200 ° C. to 250 ° C.

(2)溶接条件を一定にした場合の予熱による溶金量の増加率(△S/S0(%))は、図2に示すように各種板厚平均で11.4%であった。ここでいう溶金量Sとは、図3に示すように溶接材料の母材40への溶込み量を表し、溶金増加量△Sとは、同じく図3に示すように予熱前後の溶金量の変化量(S−S)を表す。 (2) The rate of increase in the amount of molten metal (ΔS / S 0 (%)) due to preheating when the welding conditions were made constant was 11.4% on average in various plate thicknesses as shown in FIG. The amount of molten metal S 0 here represents the amount of penetration of the welding material into the base material 40 as shown in FIG. 3, and the amount of increase in molten metal ΔS is the value before and after preheating as shown in FIG. This represents the amount of change in the amount of molten metal (S 1 -S 0 ).

(3)図3に模式的に示すように、SAW溶接時に母材40を予熱しておくことにより、予熱をしない場合に比べて、図3の(b)に示すように表面ビード42の高さ(盛上がり)Hや溶材の母材40への溶込み深さDは余り変化しない状態で幅方向Wに溶金量が増加し、結果的に、溶金増加量(増加率)が著しく向上する。また、図4は従来の溶接法でのビード幅変動(予熱なし)を示す図であり、図5は本発明の溶接法でのビード幅変動(予熱あり)を示す図であるが、これらの図に示すように、SAW溶接時に予熱を施すことにより、ビード幅変動についても予熱をしない場合に比べて抑制されることが分かった。ここで、図4および図5に示すビード幅変動は、ビード長10mmピッチで測定した値であり、横軸の数字はその個数である。幅変動のプラスマイナスは、測定した値の平均値を0とし、その値と比較したものである。 (3) As shown schematically in FIG. 3, by preheating the base material 40 during SAW welding, the surface bead 42 has a higher height as shown in FIG. The amount of molten metal increases in the width direction W in a state where the depth (risk) H and the penetration depth D of the molten material into the base material 40 do not change so much, and as a result, the amount of increase (increase rate) of the molten metal is remarkably improved. To do. 4 is a diagram showing bead width variation (without preheating) in the conventional welding method, and FIG. 5 is a diagram showing bead width variation (with preheating) in the welding method of the present invention. As shown in the figure, it was found that by performing preheating at the time of SAW welding, the bead width variation is also suppressed as compared with the case where preheating is not performed. Here, the bead width fluctuations shown in FIGS. 4 and 5 are values measured at a bead length of 10 mm, and the numbers on the horizontal axis are the numbers. The plus or minus of the width variation is obtained by comparing the measured value with an average value of 0.

(4)一方、SAW溶接時の入熱量を増加させた場合には、図3の(a)に示すように、表面ビード42の高さ(盛上がり)Hが高くなる方向に、またビード42の幅dについては狭くなる方向に変化するほか、溶材の母材40への溶込み深さDが深くなる方向に変化する。この結果、入熱量を増加させても、溶金量の増加は予熱を行なった場合に比べて顕著でない反面、ビード42の盛上がり部と母材40との境界部にオーバーラップと呼ばれる疵が発生しやすい他、ビード42の内部に高温割れ(縦割れ)が発生する危険性がある。 (4) On the other hand, when the amount of heat input during SAW welding is increased, as shown in FIG. 3A, the height (swell) H of the surface bead 42 increases, and the bead 42 In addition to the width d changing in a narrowing direction, the penetration depth D of the molten material into the base material 40 changes in the increasing direction. As a result, even if the amount of heat input is increased, the increase in the amount of molten metal is not as significant as when preheating is performed, but on the other hand, wrinkles called overlap occur at the boundary between the raised portion of the bead 42 and the base material 40. In addition to this, there is a risk that hot cracks (longitudinal cracks) may occur inside the beads 42.

(5)予熱をした状態で溶接速度を徐々に上げていった場合の溶金量の増加率(△S/S(%))の変化を調査した結果、図6(製管後の鋼管寸法:600Φ×16t)および図7(製管後の鋼管寸法:800Φ×10t)に示すように、溶金量の倍増率を予熱無しのレベルに維持することを前提とすれば、溶金速度を2.6m/分から3.0m/分へ、また、3.9m/分から4.2m/分にそれぞれ高めることができることが分かった。 (5) As a result of investigating the change in the increase rate of the amount of molten metal (ΔS / S 0 (%)) when the welding speed was gradually increased with preheating, FIG. 6 (steel pipe after pipe making) As shown in FIG. 7 (dimension: 600Φ × 16t) and FIG. 7 (steel pipe dimensions after pipe making: 800Φ × 10t), it is assumed that the doubling rate of the molten metal is maintained at a level without preheating. It has been found that can be increased from 2.6 m / min to 3.0 m / min and from 3.9 m / min to 4.2 m / min.

以上のような知見のもとに為された本発明は、以下の通りである。
すなわち、請求項1に記載の溶接鋼管の製造方法は、鋼帯(鋼板)を管状に成形し、この管状に成形した鋼帯(鋼板)の内面および外面の少なくとも一方の幅方向端面突合せ部を加熱した後、当該突合せ部のサブマージアーク溶接を行なうことを特徴とする。
The present invention made based on the above knowledge is as follows.
That is, in the method for manufacturing a welded steel pipe according to claim 1, a steel strip (steel plate) is formed into a tubular shape, and at least one width direction end face butt portion of the inner surface and the outer surface of the steel strip (steel plate) formed into the tubular shape is provided. After the heating, the submerged arc welding of the butt portion is performed.

この請求項1に記載の発明においては、管状に成形した鋼帯(鋼板)の内面および外面の少なくとも一方の幅方向端面突合せ部を加熱(予熱)した後、当該突合せ部のサブマージアーク溶接を行なうようにしているので、後述する実験データ(表1参照)からも分かるように、溶接ビード形状を改善でき、製品品質を向上させることができる他、溶接速度の増加を実現することができ、製管能率の向上を図ることができる。すなわち、大掛かりな設備改造を行なうことなく、スパイラル鋼管の製造に簡単に適用でき、その能率を大幅に向上させることができるものである。   In the first aspect of the invention, after heating (preheating) at least one width direction end face butt portion of the inner surface and outer surface of the steel strip (steel plate) formed into a tubular shape, submerged arc welding of the butt portion is performed. As can be seen from the experimental data (see Table 1) described later, the weld bead shape can be improved, the product quality can be improved, and the welding speed can be increased. The efficiency can be improved. That is, the present invention can be easily applied to the manufacture of spiral steel pipes without major modification of equipment, and the efficiency can be greatly improved.

また、請求項2に記載の溶接鋼管の製造方法は、請求項1に記載の発明において、サブマージアーク溶接前の鋼帯(鋼板)の幅方向端面突合せ部の表面温度が400℃以上になるように加熱することを特徴とする。   Moreover, the manufacturing method of the welded steel pipe of Claim 2 is set to the invention of Claim 1, so that the surface temperature of the width direction end surface butt | matching part of the steel strip (steel plate) before submerged arc welding may be 400 degreeC or more. It is characterized by heating.

この請求項2に記載の発明においては、鋼帯(鋼板)を必要以上に加熱しなくても、請求項1に記載した良好な作用効果を得ることができる。なお、ここでいう「鋼帯の幅方向端面突合せ部の表面温度」とは、開先加工を施さない鋼帯(鋼板)どうしの突合せの場合は、突合せ面上およびその近傍の表面温度のことであり、開先加工を施した鋼帯(鋼板)突合せの場合には、突合せ面上の表面温度及び開先面の表面温度のことである。   In the invention according to the second aspect, even if the steel strip (steel plate) is not heated more than necessary, the advantageous effects described in the first aspect can be obtained. The “surface temperature at the end face butt portion of the steel strip in the width direction” here means the surface temperature on and near the butt face in the case of butt joining between steel strips (steel plates) not subjected to groove processing. In the case of a steel strip (steel plate) butt subjected to groove processing, it means the surface temperature on the butt surface and the surface temperature of the groove surface.

また、請求項3に記載の溶接鋼管の製造方法は、請求項1または請求項2に記載の発明において、前記突合せ部の加熱を、高周波誘導加熱またはバーナー加熱によって行なうことを特徴とする。   According to a third aspect of the present invention, there is provided a method for manufacturing a welded steel pipe according to the first or second aspect of the invention, wherein the butt portion is heated by high frequency induction heating or burner heating.

この請求項3に記載の発明においては、既存の設備で且つ簡単な構成により突合せ部の加熱を行なうことができ、有益である。   In the invention according to the third aspect, the butt portion can be heated with existing equipment and with a simple configuration, which is beneficial.

本発明の溶接鋼管の製造方法によれば、溶接ビード形状を改善でき、製品品質の向上を図ることができる。また、溶接速度の増加を実現することができるため、製管能率の向上を図ることができる。   According to the method for manufacturing a welded steel pipe of the present invention, the weld bead shape can be improved and the product quality can be improved. Moreover, since an increase in welding speed can be realized, the pipe making efficiency can be improved.

次に、本発明の実施例について説明する。
図1は、本発明に係る溶接鋼管の製造方法の概略説明図である。前述したように、図1では、例えば図8に示されるような成形機24を用いてスパイラル状に曲げられた熱延鋼帯(鋼板)の幅方向突合せ部を、まず、内面溶接機4により内面溶接位置P1において内面側でSAW溶接を実施した後、鋼管を溶接線に沿って約1周半した下流側に位置する高周波加熱コイル30に通電して外面溶接前の鋼帯(鋼板)突合せ部の予熱を行ない、しかる後、外面溶接機6により外面溶接位置P2で外面側のSAW溶接を実施した。
Next, examples of the present invention will be described.
FIG. 1 is a schematic explanatory view of a method for producing a welded steel pipe according to the present invention. As described above, in FIG. 1, for example, a width direction butt portion of a hot-rolled steel strip (steel plate) bent in a spiral shape using a forming machine 24 as shown in FIG. After SAW welding is performed on the inner surface side at the inner surface welding position P1, the steel pipe (steel plate) butt before outer surface welding is energized through the high-frequency heating coil 30 positioned on the downstream side of the steel pipe along the weld line for about one and a half turns. Then, SAW welding on the outer surface side was performed at the outer surface welding position P <b> 2 by the outer surface welding machine 6.

高周波加熱コイル30によって鋼帯(鋼板)突合せ部の表面温度を400℃〜500℃の範囲で予熱した実験結果を表1に示す。なお、スパイラル鋼管の素材として用いた鋼帯(鋼板)は、市販の熱間圧延鋼板であり、鋼材規格はSS400である。また、高周波加熱コイルに通電した電流の周波数は50kHzであり、表中のSAW入熱とは2電極(先行電極および後行電極)によるトータルの入熱を表す。   Table 1 shows experimental results in which the surface temperature of the steel strip (steel plate) butt portion was preheated in the range of 400 ° C. to 500 ° C. by the high frequency heating coil 30. In addition, the steel strip (steel plate) used as the material of the spiral steel pipe is a commercially available hot rolled steel plate, and the steel material standard is SS400. The frequency of the current applied to the high frequency heating coil is 50 kHz, and the SAW heat input in the table represents the total heat input by two electrodes (leading electrode and trailing electrode).

Figure 2006281313
Figure 2006281313

表1から分かるように、本発明の溶接鋼管の製造方法によれば、様々な寸法の鋼管や高周波加熱条件、溶接条件について、高周波加熱(予熱)をしない比較例に比べ、表面性状に優れたビードを確保でき、また溶接速度の向上を図ることができる。   As can be seen from Table 1, according to the method for producing a welded steel pipe of the present invention, the surface properties of the steel pipe of various dimensions, high-frequency heating conditions, and welding conditions were excellent in comparison with the comparative example in which high-frequency heating (preheating) was not performed. A bead can be secured and the welding speed can be improved.

なお、前述の実施例は、外面側の直前(上流側)に高周波加熱コイル30を設置し、鋼帯(鋼板)突合せの加熱(溶接前の予熱)を行なう方法について例示しているが、内面溶接前に同様に高周波加熱コイル30による予熱を行なっても良い。ただし、内面溶接前の鋼帯(鋼板)の予熱を行なう場合、鋼帯(鋼板)突合せ部を常温から加熱することになるため、内部溶接の余熱を利用可能な外面溶接前の予熱に比べて大容量の高周波加熱設備が必要となる。また、高周波加熱による方法以外に、バーナーによる加熱を行なっても良い。さらに、高周波加熱を行う際の高周波加熱コイルに通電する高周波電流の周波数や電力量(電圧×電流)は、後述するようにSAW溶接前の鋼帯(鋼板)の突合せ部の表面温度が所定温度になりさえすればどのような設定であってもよい。   In addition, although the above-mentioned Example has illustrated about the method of installing the high frequency heating coil 30 just before an outer surface side (upstream side), and heating a steel strip (steel plate) butting (preheating before welding), Similarly, preheating by the high-frequency heating coil 30 may be performed before welding. However, when preheating the steel strip (steel plate) before inner surface welding, the steel band (steel plate) butt is heated from room temperature, so compared to preheating before outer surface welding that can use the residual heat of internal welding. Large-capacity high-frequency heating equipment is required. Moreover, you may perform the heating by a burner other than the method by high frequency heating. Furthermore, the frequency of the high-frequency current and the electric energy (voltage × current) applied to the high-frequency heating coil when performing high-frequency heating are such that the surface temperature of the butt portion of the steel strip (steel plate) before SAW welding is a predetermined temperature, as will be described later Any setting may be used as long as it becomes.

また、図1では、内外面SAW溶接前の鋼帯(鋼板)の幅方向両端突合せ部については開先加工がなされているが、開先形状がどのような形状であっても、本発明は実施可能であり、たとえ開先加工が無くても本発明の実施において何ら問題は生じない。SAW溶接について言えば、表1の実施例では2電極による方法を採ったが、2電極を超える多電極を採用しても良い。さらに、鋼帯(鋼板)の板厚や鋼種については、スパイラル鋼管に用いられる鋼帯(鋼板)であれば、本発明の実施にあたり特に限定が必要とされるものではない。   Moreover, in FIG. 1, although the groove processing is made about the width direction both ends butt | matching part of the steel strip (steel plate) before inner and outer surface SAW welding, no matter what the groove shape is, the present invention Even if there is no groove processing, there is no problem in the implementation of the present invention. Regarding SAW welding, the method of two electrodes is adopted in the examples of Table 1, but a multi-electrode exceeding two electrodes may be adopted. Furthermore, regarding the thickness and type of steel strip (steel plate), any steel strip (steel plate) used for spiral steel pipes is not particularly limited in the implementation of the present invention.

また、SAW溶接前の鋼帯(鋼板)突合せ部の表面温度は400℃以上に保つ必要があるが、必要以上に高温に加熱しても本発明の効果に差は無いため、望ましくは400℃〜550℃の範囲であれば良い。なお、ここでいう鋼帯(鋼板)突合せ部の表面温度とは、開先加工を施さない鋼帯(鋼板)どうしの突合せの場合は、突合せ面上およびその近傍の表面温度を指すが、開先加工を施した鋼帯(鋼板)突合せの場合には、突合せ面上の表面温度及び開先面の表面温度を指す。   Further, the surface temperature of the butt portion of the steel strip (steel plate) before SAW welding needs to be kept at 400 ° C. or higher, but even if heated to a higher temperature than necessary, there is no difference in the effect of the present invention. It may be in the range of ˜550 ° C. Note that the surface temperature of the steel strip (steel plate) butt here refers to the surface temperature on and near the butt surface in the case of butt welding between steel strips (steel plates) not subjected to groove processing. In the case of a steel strip (steel plate) butt subjected to pre-processing, the surface temperature on the butt surface and the surface temperature of the groove surface are indicated.

本発明は、スパイラル鋼管をはじめとする様々な鋼管の溶接に適用することができる。   The present invention can be applied to welding of various steel pipes including spiral steel pipes.

本発明の溶接鋼管の製造プロセスの概略図である。It is the schematic of the manufacturing process of the welded steel pipe of this invention. 本発明の溶接鋼管の製造方法における予熱の溶金量増加率に及ぼす影響を示す図である。It is a figure which shows the influence which it has on the molten metal amount increase rate of the preheating in the manufacturing method of the welded steel pipe of this invention. 予熱による溶金量増加のメカニズムの説明図である。It is explanatory drawing of the mechanism of the molten metal amount increase by preheating. 従来の溶接法でのビード幅変動(予熱なし)を示す図である。It is a figure which shows the bead width fluctuation | variation (without preheating) in the conventional welding method. 本発明の溶接法でのビード幅変動(予熱あり)を示す図である。It is a figure which shows the bead width fluctuation | variation (with preheating) in the welding method of this invention. 本発明の溶接鋼管の製造方法における溶接速度と溶金量増加率との関係を示す図(製管後の鋼管寸法:600Φ×16t)である。It is a figure which shows the relationship between the welding speed in the manufacturing method of the welded steel pipe of this invention, and the amount of molten metal increase (steel pipe dimension after pipe making: 600 (PHI) x16t). 本発明の溶接鋼管の製造方法における溶接速度と溶金量増加率との関係を示す図(製管後の鋼管寸法:800Φ×10t)である。It is a figure which shows the relationship between the welding speed in the manufacturing method of the welded steel pipe of this invention, and the amount of molten metal increase (steel pipe dimension after pipe making: 800 (PHI) x10t). スパイラル鋼管の製造工程の一例を示す斜視図である。It is a perspective view which shows an example of the manufacturing process of a spiral steel pipe.

符号の説明Explanation of symbols

2 鋼帯(鋼板;鋼管)
4 内面溶接機
6 外面溶接機
30 高周波加熱コイル
2 Steel strip (steel plate; steel pipe)
4 inner surface welding machine 6 outer surface welding machine 30 high frequency heating coil

Claims (3)

鋼帯を管状に成形し、この管状に成形した鋼帯の内面および外面の少なくとも一方の幅方向端面突合せ部を加熱した後、当該突合せ部のサブマージアーク溶接を行なうことを特徴とする溶接鋼管の製造方法。   A steel strip is formed into a tubular shape, and after heating at least one width direction end face butt portion of the inner surface and outer surface of the steel strip formed into the tubular shape, submerged arc welding of the butt portion is performed. Production method. サブマージアーク溶接前の鋼帯の幅方向端面突合せ部の表面温度が400℃以上になるように加熱することを特徴とする請求項1に記載の溶接鋼管の製造方法。   The method for manufacturing a welded steel pipe according to claim 1, wherein the steel strip is heated so that the surface temperature at the end face butt portion in the width direction of the steel strip before submerged arc welding is 400 ° C. or higher. 前記突合せ部の加熱を、高周波誘導加熱またはバーナー加熱によって行なうことを特徴とする請求項1または請求項2に記載の溶接鋼管の製造方法。   The method of manufacturing a welded steel pipe according to claim 1 or 2, wherein the butting portion is heated by high frequency induction heating or burner heating.
JP2005290560A 2005-03-11 2005-10-03 Method for producing welded steel tube Pending JP2006281313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290560A JP2006281313A (en) 2005-03-11 2005-10-03 Method for producing welded steel tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005069426 2005-03-11
JP2005290560A JP2006281313A (en) 2005-03-11 2005-10-03 Method for producing welded steel tube

Publications (1)

Publication Number Publication Date
JP2006281313A true JP2006281313A (en) 2006-10-19

Family

ID=37403748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290560A Pending JP2006281313A (en) 2005-03-11 2005-10-03 Method for producing welded steel tube

Country Status (1)

Country Link
JP (1) JP2006281313A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095850A (en) * 2007-10-16 2009-05-07 Ihi Metaltech Co Ltd Recoiling equipment of magnesium alloy sheet
KR101353789B1 (en) * 2011-12-28 2014-01-21 주식회사 포스코 Steel pipe and producing method of the same
CN104801834A (en) * 2014-08-14 2015-07-29 江苏绿叶锅炉有限公司 T91 water wall tube row welding technology
EP2151296A4 (en) * 2007-05-25 2015-10-28 Nippon Steel & Sumitomo Metal Corp Uoe steel pipe and method for production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2151296A4 (en) * 2007-05-25 2015-10-28 Nippon Steel & Sumitomo Metal Corp Uoe steel pipe and method for production thereof
JP2009095850A (en) * 2007-10-16 2009-05-07 Ihi Metaltech Co Ltd Recoiling equipment of magnesium alloy sheet
KR101353789B1 (en) * 2011-12-28 2014-01-21 주식회사 포스코 Steel pipe and producing method of the same
CN104801834A (en) * 2014-08-14 2015-07-29 江苏绿叶锅炉有限公司 T91 water wall tube row welding technology

Similar Documents

Publication Publication Date Title
JP5509657B2 (en) Welded steel pipe joined by high-density energy beam and manufacturing method thereof
JP2012166234A (en) Method for manufacturing welded steel pipe
JP2001170779A (en) Steel tube manufacturing method
JP2006281313A (en) Method for producing welded steel tube
JP5915371B2 (en) UOE steel pipe manufacturing method
JP3944525B1 (en) Butt welding method of steel pipe and manufacturing method of welded steel pipe
JP6552723B2 (en) ELECTRONIC SEWING METAL PIPE MANUFACTURING METHOD AND ELECTRONIC SEWING METAL PIPE
JP2004148337A (en) Method for forming joined part of welded steel pipe and apparatus for producing the welded steel pipe
JP5380877B2 (en) ERW steel pipe manufacturing method with excellent seam quality
JP3166643B2 (en) Laser welded pipe manufacturing apparatus and laser welded pipe manufacturing method
JP4177783B2 (en) Pipe making welding method of pure titanium
JP3209061B2 (en) Method for producing carbon steel pipe excellent in toughness by high energy density beam welding
JP2008110399A (en) Method of manufacturing electric resistance welded tube excellent in property of weld zone
JP2007030015A (en) Steel plate connection welding method
JP3596394B2 (en) Method for producing martensitic stainless laser welded steel pipe
JPH1058161A (en) Welded steel tube and its manufacture
JPS6336973A (en) Welding method for thick bending steel pipe
JPH0788545A (en) Manufacture of large diameter square steel tube to improve corner r part material
JP5884750B2 (en) ELECTRONIC SEWING TUBE JOINT MOLDING METHOD AND MANUFACTURING DEVICE THEREOF
JP5246056B2 (en) Method for producing ERW steel pipe with excellent weld properties
JP5176495B2 (en) ERW pipe manufacturing method with excellent weld properties
JP2005169455A (en) Manufacturing apparatus for electric resistance welded tube
JP2006122930A (en) Steel plate connection welding method
JPS6021180A (en) Welding method with high quality and high efficiency in production of spiral steel pipe
JPH04237513A (en) Manufacturing device for electro-resistance-welded tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A871 Explanation of circumstances concerning accelerated examination

Effective date: 20080321

Free format text: JAPANESE INTERMEDIATE CODE: A871

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080408

A131 Notification of reasons for refusal

Effective date: 20080414

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080818