JP2006281299A - Method for separating molding sand - Google Patents

Method for separating molding sand Download PDF

Info

Publication number
JP2006281299A
JP2006281299A JP2005107679A JP2005107679A JP2006281299A JP 2006281299 A JP2006281299 A JP 2006281299A JP 2005107679 A JP2005107679 A JP 2005107679A JP 2005107679 A JP2005107679 A JP 2005107679A JP 2006281299 A JP2006281299 A JP 2006281299A
Authority
JP
Japan
Prior art keywords
sand
artificial
mixed
magnetic separation
artificial sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005107679A
Other languages
Japanese (ja)
Other versions
JP4494278B2 (en
Inventor
Misao Okino
美佐雄 沖野
Hideki Narita
英記 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2005107679A priority Critical patent/JP4494278B2/en
Publication of JP2006281299A publication Critical patent/JP2006281299A/en
Application granted granted Critical
Publication of JP4494278B2 publication Critical patent/JP4494278B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and surely separate mixed sand of Ni ore slag-made spherical artificial sand and natural silica sand into both these sands. <P>SOLUTION: The mixed sand of the Ni ore slag-made spherical artificial sand and the natural silica sand is heated at ≥400°C, desirably ≥600°C and further desirably at 1000°C and thereafter, the artificial sand and the natural silica sand are classified with a magnetic separation. Regenerated sand is heated at ≥400°C and then, the blackened natural silica sand can be changed into the white color with the casting, and the artificial sand is held to the black color even by heating and therefore, both these sands can be distinguished with the visual observation. The progressing degree of the classification can be confirmed with the naked eye and can surely be separated by performing the magnetic separation to both these sands. In this way, the effect of which the containing ratio of the artificial sand can surely be managed can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、鋳造用砂としてNi鉱滓製球状人工砂と天然珪砂の混合砂を使用する際に、混合砂から前記人工砂と天然珪砂とを分別することができる鋳物砂の分離方法に関するものである。   The present invention relates to a casting sand separation method capable of separating the artificial sand and the natural silica sand from the mixed sand when using the mixed sand of the spherical artificial sand made of Ni ore and natural silica sand as the casting sand. is there.

鋳物メーカの大半は、鋳物砂として天然珪砂(以下珪砂)を使用し、粘結剤にフラン樹脂を使用して両者を混合して製作した鋳型を用いて製品を製造しているが、Ni鉱滓製球状人工砂(以下人工砂)を珪砂に30〜50%混合させることで、同じ鋳型強度を得るための樹脂量を低減でき、また、ベーニングを防止できることから人工砂を混合した混合砂も利用されている(例えば特許文献1)。
しかし、人工砂は珪砂と比較して耐破砕性が高く、粒径も若干大きくて1粒の重量が大きいため集塵されにくいという特性がある。このため、初期に設定した人工砂の含有量と同じ比率で珪砂と人工砂を補給しても、珪砂中に人工砂が混入しているため、全体として混合砂中の人工砂の割合が増加してしまう。そのため、人工砂の含有率を測定し、鋳物砂全体の管理をする必要がある。しかし、上記特許文献1では、再生砂の管理方法については特に言及されていない。
Most casting manufacturers use natural silica sand (hereinafter referred to as silica sand) as foundry sand, and produce products using molds made by mixing both materials using furan resin as a binder. By mixing 30-50% of spherical artificial sand (hereinafter referred to as artificial sand) with silica sand, the amount of resin to obtain the same mold strength can be reduced, and because it can prevent vaneing, mixed sand mixed with artificial sand is also used. (For example, Patent Document 1).
However, artificial sand has higher crushing resistance than silica sand, and has characteristics that it is difficult to collect dust because its particle size is slightly larger and the weight of one grain is larger. For this reason, even if silica sand and artificial sand are replenished at the same ratio as the artificial sand content set at the initial stage, artificial sand is mixed in the silica sand, so the proportion of artificial sand in the mixed sand as a whole increases. Resulting in. Therefore, it is necessary to measure the content of artificial sand and manage the entire foundry sand. However, Patent Document 1 does not particularly refer to a method for managing reclaimed sand.

鋳物砂の分離方法として、従来、特許文献2や特許文献3に示す方法が提案されている。これらの文献では、いずれも磁選によって磁性を有する砂と磁性を示さない砂とに分離している。また両者とも砂の表面に付着している粘結剤の除去による磁着性を改善するために、前処理として砂を加熱処理している。
また、再生砂の人工砂の含有量を分析する方法としては、珪砂には含有されずNi鉱滓製球状人工砂にのみ含有しているMgOを分析することによって人工砂の含有量を算出することも可能である。
特許第3253579号明細書 特許第1501377号明細書 特開昭54−45624号公報
Conventionally, methods shown in Patent Document 2 and Patent Document 3 have been proposed as methods for separating foundry sand. In these documents, both are separated into sand having magnetism and sand not showing magnetism by magnetic separation. In both cases, the sand is heat-treated as a pretreatment in order to improve the magnetic adhesion by removing the binder adhering to the surface of the sand.
Moreover, as a method for analyzing the artificial sand content of the reclaimed sand, calculating the artificial sand content by analyzing MgO not contained in the silica sand but only in the Ni artificial iron spherical artificial sand Is also possible.
Japanese Patent No. 3253579 Japanese Patent No. 1501377 JP 54-45624 A

しかし、MgOを分析する方法は、化学分析に頼らざるを得ないため、1回のサンプル重量が10g程度と少なく、サンプルの取り方によってバラツキが出る可能性がある。またMgOを分析するには特殊な分析機器が必要であり、鋳物メーカが独自に分析することは困難であり、また分析機関に依頼する場合は時間もコストも掛かるという問題がある。   However, since the method of analyzing MgO must rely on chemical analysis, the sample weight at one time is as small as about 10 g, and there is a possibility that variations will occur depending on how the samples are taken. Moreover, special analysis equipment is required to analyze MgO, and it is difficult for a casting manufacturer to analyze the MgO independently, and there is a problem that it takes time and cost to request an analysis organization.

また、前記磁選による方法では、Ni鉱滓製球状人工砂には鉄分が若干含まれていることから混合砂から人工砂を分離することは可能である。しかし、正確に分離されているかどうかを判断することが難しく、あまりに慎重に作業を行えば、手間がかかって工業性に欠けるという問題がある。   Further, in the method using magnetic separation, the artificial sand can be separated from the mixed sand because the iron ore made of nickel ore contains some iron. However, it is difficult to determine whether or not the separation is accurate, and there is a problem that if the work is carried out too carefully, it takes time and is not industrial.

本発明は、上記事情を背景としてなされたものであり、混合砂を加熱することで樹脂によって黒く変色した珪砂を本来の白色に戻し、その後、磁選することによりNi鉱滓製球状人工砂と珪砂を正確に分離し、含有量を分析することを可能にする分離方法を提案するものである。   The present invention has been made in the background of the above circumstances, and by heating the mixed sand, the silica sand that has turned black by the resin is returned to its original white color, and then magnetically segregated into the spherical iron sand and quartz sand made of Ni ore. It proposes a separation method that makes it possible to accurately separate and analyze the content.

すなわち、本発明の鋳物砂の分離方法のうち、請求項1記載の発明は、Ni鉱滓製球状人工砂と天然珪砂の混合砂を400℃以上に加熱し、その後、磁選によって前記人工砂と天然珪砂とを分別することを特徴とする。   That is, among the separation methods of foundry sand according to the present invention, the invention according to claim 1 is a method in which a mixed sand of spherical artificial sand made of Ni ore and natural silica sand is heated to 400 ° C. or higher, and then the artificial sand and natural sand are separated by magnetic separation. It is characterized by separating from silica sand.

請求項2記載の鋳物砂の分離方法の発明は、請求項1記載の発明において、前記加熱の温度を1000℃として、イグロスの測定を同時に行うことを特徴とする。   According to a second aspect of the present invention, there is provided a method for separating a foundry sand according to the first aspect of the present invention, wherein the heating temperature is set to 1000 ° C., and the gloss is measured simultaneously.

請求項3記載の鋳物砂の分離方法の発明は、請求項1または2に記載の発明において、前記混合砂中のクロマイト量を測定して、磁選により分別された前記人工砂の分別量を補正することを特徴とする。   The invention of the separation method of foundry sand according to claim 3 is the invention according to claim 1 or 2, wherein the amount of chromite in the mixed sand is measured, and the fraction of artificial sand separated by magnetic separation is corrected. It is characterized by doing.

本発明によれば、再生砂を400℃以上に加熱することにより、鋳造によって黒色化した珪砂を白色化することができる。一方、人工砂は、上記加熱によっても黒色を呈したままであり、目視により両者を判別することができる。この混合砂を磁選することにより、選別の進行程度が肉眼で確認でき、正確に分離できた状態を容易に知ることができる。
加熱条件として、400℃未満では人工砂と珪砂が十分に色分けされない。よって、加熱温度は400℃以上に、好ましくは600℃以上、さらに好ましくは通常イグロス測定時に設定される1000℃での加熱が望ましく、1000℃で加熱することによりイグロスも同時に測定することができる。
According to the present invention, by heating the reclaimed sand to 400 ° C. or higher, the silica sand blackened by casting can be whitened. On the other hand, the artificial sand remains black even by the above heating, and both can be discriminated visually. By magnetically selecting the mixed sand, the progress of the selection can be confirmed with the naked eye, and the state of being accurately separated can be easily known.
As heating conditions, artificial sand and quartz sand are not sufficiently color-coded if the temperature is less than 400 ° C. Therefore, the heating temperature is 400 ° C. or higher, preferably 600 ° C. or higher, more preferably 1000 ° C., which is usually set at the time of measuring the gross, and it is possible to simultaneously measure the gloss by heating at 1000 ° C.

加熱時間は砂全体が加熱温度になるように設定すればよいが、好ましくはイグロス測定で推奨されている1時間以上の加熱が望ましい。   The heating time may be set so that the entire sand reaches the heating temperature, but preferably heating for 1 hour or more recommended in the gloss measurement is desirable.

加熱装置を持たない場合は、代替方法としてバーナーによる加熱、あるいは型バラシ時に製品に近い部位から十分加熱された砂を採取して使用してもよい。しかし、バーナーでの加熱では均一な加熱ができなかったり、製品に近い部位からの採取では、その量は少ないため加熱されていない砂が混入する可能性があり、好ましい方法とはいえない。ただし、本発明としては加熱方法が特定のものに限定されないことはいうまでもない。   In the case of not having a heating device, as an alternative method, it is possible to use sand that has been sufficiently heated from a part close to the product when heated by a burner or when the mold is broken. However, heating with a burner does not allow uniform heating, or when sampling from a part close to the product, there is a possibility that unheated sand may be mixed because the amount is small, which is not a preferable method. However, it goes without saying that the heating method is not limited to a specific one in the present invention.

上記の加熱により、ある程度あるいは確実にイグロスを落とすことで、樹脂の色である黒色に変色した珪砂を本来の白色に戻し、黒色の人工砂と視覚にて分別できるようになる。
続いて、磁選に使用される磁石であるが、特に規定はないが、一般家庭用に用いられるものでは吸着力が弱いため、吸着力の比較的高いものを使用することを推奨する。強力すぎる磁石は作業性が悪く、扱いが難しいため、使用しない方が望ましい。
By removing the gloss to some extent or surely by the above heating, the silica sand that has changed to black, which is the color of the resin, is returned to its original white color and can be visually separated from the artificial black sand.
Next, although there are no particular rules regarding magnets used for magnetic separation, it is recommended to use magnets with a relatively high attraction force because those used for general household use have a weak attraction force. It is desirable not to use a magnet that is too strong because it has poor workability and is difficult to handle.

また、混合砂にクロマイトを含有している場合、該クロマイトは磁性を示すため、磁選によって人工砂側に分離されてしまう。このため、混合砂中のクロマイト量を化学分析などの方法によって分析して、磁選された人工砂量を補正するのが望ましい。なお、クロマイト量の測定は、分別前、分別後のいずれにおいても行うことが可能である。   In addition, when chromite is contained in the mixed sand, the chromite exhibits magnetism and is separated to the artificial sand side by magnetic separation. Therefore, it is desirable to analyze the amount of chromite in the mixed sand by a method such as chemical analysis to correct the magnetically selected artificial sand amount. Note that the amount of chromite can be measured both before and after separation.

以上、説明したように、本発明の鋳物砂の分離方法によれば、Ni鉱滓製球状人工砂と珪砂の混合砂を400℃以上に加熱し、その後、磁選によって前記人工砂と珪砂とを分別するので、目視を利用しつつ、両者を容易かつ正確に、また短時間で分離でき、人工砂の含有率を正確に管理することができる。
なお、加熱温度を1000℃とすることにより、分離のための加熱処理と同時に所望によりイグロスを測定することができ、作業効率が大幅に改善する。
As described above, according to the casting sand separation method of the present invention, the mixed sand of Ni ore spherical artificial sand and silica sand is heated to 400 ° C. or higher, and then the artificial sand and silica sand are separated by magnetic separation. Therefore, both of them can be easily and accurately separated in a short time using visual observation, and the content of artificial sand can be accurately managed.
By setting the heating temperature to 1000 ° C., it is possible to measure the gloss as desired simultaneously with the heat treatment for separation, and the working efficiency is greatly improved.

以下に、本発明の一実施形態を図1に基づいて説明する。
Ni鉱滓製球状人工砂と珪砂とを所定の混合比で含有し、フラン樹脂などを用いて使用された混合鋳物砂を再生処理をして再利用する混合砂1として用意する。なお、混合砂における人工砂と珪砂との混合比率は特に限定されるものではない。
該混合砂1は、Ni鉱滓製球状人工砂1aと珪砂1bとを含んでおり、フラン樹脂と混練したことによりいずれも黒色を呈している。
Below, one Embodiment of this invention is described based on FIG.
Prepared as a mixed sand 1 containing Ni ore spherical artificial sand and silica sand in a predetermined mixing ratio and reusing and reusing the mixed casting sand used with furan resin or the like. In addition, the mixing ratio of the artificial sand and the silica sand in the mixed sand is not particularly limited.
The mixed sand 1 contains Ni ore-made spherical artificial sand 1a and silica sand 1b, and both are black by kneading with furan resin.

この混合砂1を坩堝2などに収容し、加熱炉3などの加熱手段によって400℃以上、好適には600℃以上で加熱処理をする。加熱時間は好適には1時間以上である。なお、前述したように、混合砂を加熱するための手段は特に限定されるものではなく、既知のものを用いることができる。   The mixed sand 1 is accommodated in a crucible 2 or the like, and is heated at 400 ° C. or higher, preferably 600 ° C. or higher by a heating means such as a heating furnace 3. The heating time is preferably 1 hour or longer. In addition, as above-mentioned, the means for heating mixed sand is not specifically limited, A well-known thing can be used.

上記による加熱処理を行った混合砂1では、イグロスが除かれて、珪砂1bの色が黒色から白色を呈するようになり、一方、人工砂1aは黒色のままとなる。
上記加熱処理を行った混合砂1に対し、磁石5を用いて磁選を行う。なお、磁石5は、混合砂が直接触れると磁選時に付着した砂が取れづらい。合成樹脂フィルム4などでカバーしておくことが望ましい。
上記磁選においては、人工砂1aのみが磁石5に吸着されて分離される。磁選においては、白色の珪砂1bのみが残るため、人工砂1aの残存量を一見して把握することができ、正確な分別処理がなされた時点を容易に把握することができる。このようにして、混合砂を、人工砂と珪砂とに正確に分別することができる。
In the mixed sand 1 subjected to the heat treatment as described above, the gloss is removed, and the color of the silica sand 1b changes from black to white, while the artificial sand 1a remains black.
The mixed sand 1 subjected to the heat treatment is subjected to magnetic separation using a magnet 5. In addition, when the mixed sand touches the magnet 5 directly, it is difficult to remove the sand adhered during magnetic separation. It is desirable to cover with a synthetic resin film 4 or the like.
In the magnetic separation, only the artificial sand 1a is attracted to the magnet 5 and separated. In magnetic separation, since only the white silica sand 1b remains, it is possible to grasp the remaining amount of the artificial sand 1a at a glance, and it is possible to easily grasp the time when the accurate separation process is performed. In this way, the mixed sand can be accurately separated into artificial sand and silica sand.

なお、混合砂にクロマイトを含有している場合には、例えば、磁選した砂には、人工砂の他にクロマイトが含有されている。この砂を、化学分析などの方法によって分析し、クロマイト量を知ることで、残りの人工砂量を算出する。   When the mixed sand contains chromite, for example, magnetically selected sand contains chromite in addition to artificial sand. This sand is analyzed by a method such as chemical analysis, and the amount of artificial sand is calculated by knowing the amount of chromite.

以下に、本発明の一実施例を説明する。
生産ラインで使用されている人工砂と珪砂が混合した鋳物砂において、再生工程を終了した鋳物砂を約100g採取し、イグロスを測定する要領で坩堝に入れて加熱炉内にて1000℃×1時間加熱し、冷却後、磁石を用いて人工砂を選別した。このとき磁石と砂が直接接触しないようにビニールなど磁石を覆った。人工砂と珪砂は色分けされており、黒色の人工砂がなくなるまで磁選を行う。磁選前の総重量と、磁選終了後の珪砂の重量を測定し、下記の式にて人工砂の重量%における含有量を測定した。
人工砂含有量(%)=(総重量−珪砂重量*)/総重量×100
*)磁選の際に人工砂をロスする場合があるため
ただし、ポケットサンドとしてクロマイトを使用している、あるいは以前使用していた場合は、クロマイトが鋳物砂に含有している場合がある。クロマイトにもMgOが含有しており、また磁石に吸着されるため、事前にCrを測定するなどして補正が必要である。表1に珪砂、クロマイト、人工砂の代表的な成分組成を示す。
An embodiment of the present invention will be described below.
About 100 g of cast sand that has finished the regeneration process is collected from the cast sand mixed with artificial sand and silica sand used in the production line, put in a crucible in a manner to measure the gloss, and 1000 ° C. × 1 in the heating furnace. After heating for a time and cooling, artificial sand was selected using a magnet. At this time, a magnet such as vinyl was covered so that the magnet and sand would not be in direct contact. Artificial sand and quartz sand are color-coded, and magnetic selection is performed until there is no black artificial sand. The total weight before magnetic separation and the weight of silica sand after magnetic separation were measured, and the content of artificial sand in% by weight was measured by the following formula.
Artificial sand content (%) = (total weight−silica sand weight *) / total weight × 100
*) Since artificial sand may be lost during magnetic separation, chromite may be contained in foundry sand if chromite is used as pocket sand or has been used before. Since chromite also contains MgO and is attracted to the magnet, correction is required by measuring Cr 2 O 3 in advance. Table 1 shows typical component compositions of silica sand, chromite, and artificial sand.

次に、再生珪砂2kg、人工砂1kgをミキサーにて混合して模擬混合砂を製作し、そこから100gを秤量して坩堝に入れ1000℃×1時間の加熱処理を加えたものと、加熱処理をしないものの両方について磁選処理を行い、人工砂の含有量を測定した。結果を表2に示す。加熱処理しない方は30%を切る値であったのに対し、加熱処理した方は33%弱と混合比に近い値を示し、加熱処理することで精度が向上することを確認した。   Next, 2 kg of regenerated silica sand and 1 kg of artificial sand are mixed with a mixer to produce simulated mixed sand, 100 g of which is weighed into a crucible and subjected to heat treatment at 1000 ° C. for 1 hour, and heat treatment Both of those that did not perform magnetic separation were subjected to measurement of the artificial sand content. The results are shown in Table 2. The value without heat treatment was less than 30%, whereas the value with heat treatment was a little less than 33%, which was close to the mixing ratio, and it was confirmed that the heat treatment improves accuracy.

Figure 2006281299
Figure 2006281299

Figure 2006281299
Figure 2006281299

本発明の一実施形態の分離工程を示す工程図である。It is process drawing which shows the isolation | separation process of one Embodiment of this invention.

符号の説明Explanation of symbols

1 混合砂
1a 人工砂
1b 珪砂
2 坩堝
3 加熱炉
5 磁石
DESCRIPTION OF SYMBOLS 1 Mixed sand 1a Artificial sand 1b Silica sand 2 Crucible 3 Heating furnace 5 Magnet

Claims (3)

Ni鉱滓製球状人工砂と天然珪砂の混合砂を400℃以上に加熱し、その後、磁選によって前記人工砂と天然珪砂とを分別することを特徴とする鋳物砂の分離方法。   A method for separating foundry sand, characterized in that mixed artificial sand made of nickel ore and natural silica sand is heated to 400 ° C or higher, and then the artificial sand and natural silica sand are separated by magnetic separation. 前記加熱の温度を1000℃として、イグロスの測定を同時に行うことを特徴とする請求項1記載の鋳物砂の分離方法。   2. The method for separating foundry sand according to claim 1, wherein the temperature of the heating is set to 1000 [deg.] C., and the gloss is measured simultaneously. 前記混合砂中のクロマイト量を測定して、磁選により分別された前記人工砂の分別量を補正することを特徴とする請求項1または2に記載の鋳物砂の分離方法。   3. The method for separating foundry sand according to claim 1, wherein the amount of chromite in the mixed sand is measured to correct the fraction of the artificial sand separated by magnetic separation.
JP2005107679A 2005-04-04 2005-04-04 Casting sand separation method Expired - Fee Related JP4494278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005107679A JP4494278B2 (en) 2005-04-04 2005-04-04 Casting sand separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005107679A JP4494278B2 (en) 2005-04-04 2005-04-04 Casting sand separation method

Publications (2)

Publication Number Publication Date
JP2006281299A true JP2006281299A (en) 2006-10-19
JP4494278B2 JP4494278B2 (en) 2010-06-30

Family

ID=37403734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005107679A Expired - Fee Related JP4494278B2 (en) 2005-04-04 2005-04-04 Casting sand separation method

Country Status (1)

Country Link
JP (1) JP4494278B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112008035A (en) * 2020-07-16 2020-12-01 四川省川建管道有限公司 Sand-slag automatic separation system for sand casting and slag-sand separation method
CN114570874A (en) * 2022-02-28 2022-06-03 无锡锡南铸造机械股份有限公司 Artificial sand manufacturing process, artificial sand recycling process and magnetic artificial sand

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101947638B (en) * 2010-11-04 2012-05-23 济南玫德铸造有限公司 Pneumatic magnetic separator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115727A (en) * 1976-03-25 1977-09-28 Kawaguchi Tetsukou Kk Molding sand reproduction process
JPS61269956A (en) * 1985-05-24 1986-11-29 Toyota Motor Corp Method for separating and recovering used molding sand
JPS61273238A (en) * 1985-05-27 1986-12-03 Toyota Motor Corp Method for separating and recovering
JPH05293588A (en) * 1991-07-05 1993-11-09 Osaka Oxygen Ind Ltd Enrichment of oxygen into fluidized roasting furnace for reconditioning molding sand
JP3253579B2 (en) * 1997-12-25 2002-02-04 山川産業株式会社 Sand for mold
JP2003251436A (en) * 2002-03-04 2003-09-09 Keiji Miyauchi Method for manufacturing mold and mold composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115727A (en) * 1976-03-25 1977-09-28 Kawaguchi Tetsukou Kk Molding sand reproduction process
JPS61269956A (en) * 1985-05-24 1986-11-29 Toyota Motor Corp Method for separating and recovering used molding sand
JPS61273238A (en) * 1985-05-27 1986-12-03 Toyota Motor Corp Method for separating and recovering
JPH05293588A (en) * 1991-07-05 1993-11-09 Osaka Oxygen Ind Ltd Enrichment of oxygen into fluidized roasting furnace for reconditioning molding sand
JP3253579B2 (en) * 1997-12-25 2002-02-04 山川産業株式会社 Sand for mold
JP2003251436A (en) * 2002-03-04 2003-09-09 Keiji Miyauchi Method for manufacturing mold and mold composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112008035A (en) * 2020-07-16 2020-12-01 四川省川建管道有限公司 Sand-slag automatic separation system for sand casting and slag-sand separation method
CN114570874A (en) * 2022-02-28 2022-06-03 无锡锡南铸造机械股份有限公司 Artificial sand manufacturing process, artificial sand recycling process and magnetic artificial sand
CN114570874B (en) * 2022-02-28 2024-01-05 无锡锡南铸造机械股份有限公司 Artificial sand manufacturing process, artificial sand recycling process and magnetic artificial sand

Also Published As

Publication number Publication date
JP4494278B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
Danko Innovative developments in sand reclamation technologies
CN103969272B (en) The method and system of cement composition are measured in x-ray fluorescence analysis
CN105547783A (en) Embedding method for metallographic specimen
JP4494278B2 (en) Casting sand separation method
Behera et al. Parametric appraisal of strength & hardness of resin compacted sand castings using hybrid Taguchi-WASPAS-Material Generation Algorithm
CN108254234A (en) A kind of preparation method of stainless steel smelting process control standard specimen
CN103674983A (en) Sensitive and reliable testing method for synchronously testing multiple components in chrome drainage sand
Izdebska-Szanda et al. Investigating of the knocking out properties of moulding sands with new inorganic binders used for castings of non-ferrous metal alloys in comparison with the previously used
CN103170615A (en) Production system of iron castings with rare earth element
Major-Gabryś Biodegradable materials as foundry moulding sands binders
Manjunath Patel et al. Performance analysis of cow dung as an eco-friendly additive material for sustainable moulding and casting
EP3311157A1 (en) Apparatus and method for analysis of molten metals
CN104677701A (en) Preparation method of standardized sample for X-ray fluorescence analysis
JP7224995B2 (en) Slag analysis method
KR102261801B1 (en) Method for measurring aluminum recovery rate of aluminum scrap
Ademoh et al. Determination of the suitability of river Figurara bed sand bonded with clay for foundry casting moulds
Dańko et al. Criteria of an advanced assessment of the reclamation process products
JP2510213B2 (en) Coated sand in mold
Stachowicz Influence of automatic core shooting parameters in hot-box technology on the strength of sodium silicate olivine moulding sands
RU2763886C1 (en) Method for preparing samples of metal-containing materials for chemical analysis
Molnár et al. Influence of dry tundish working lining and cold start of casting on steel cleanliness
Buľko et al. The Influence of Slag on Degradation of Tundish Working Lining
CN110760715B (en) Method for accurately detecting size of inner cavity of shell of high-temperature alloy precision casting
Żymankowska-Kumon Assessment criteria of bentonite binding properties
JP4881654B2 (en) Method for measuring element content of scrap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Ref document number: 4494278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees