JP2006281217A - Connecting tube and its manufacturing method - Google Patents

Connecting tube and its manufacturing method Download PDF

Info

Publication number
JP2006281217A
JP2006281217A JP2005100426A JP2005100426A JP2006281217A JP 2006281217 A JP2006281217 A JP 2006281217A JP 2005100426 A JP2005100426 A JP 2005100426A JP 2005100426 A JP2005100426 A JP 2005100426A JP 2006281217 A JP2006281217 A JP 2006281217A
Authority
JP
Japan
Prior art keywords
steel pipe
outer diameter
butt
inner diameter
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005100426A
Other languages
Japanese (ja)
Other versions
JP4833574B2 (en
Inventor
Hiromasa Hirata
弘征 平田
Masahiko Hamada
昌彦 濱田
Kenichi Shinoki
健一 篠木
Toshiki Shimomoto
豪紀 下本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005100426A priority Critical patent/JP4833574B2/en
Publication of JP2006281217A publication Critical patent/JP2006281217A/en
Application granted granted Critical
Publication of JP4833574B2 publication Critical patent/JP4833574B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connecting tube excellent in buckling resistance and also to provide its manufacturing method. <P>SOLUTION: This connecting tube is equipped with steel tubes 10, 20 and a butt-welded zone 30. The steel tube 20 is installed coaxially with the steel tube 10 and provided with the same nominal outside diameter DA (mm) as the steel tube 10. The butt-welded zone 30 is between the tubes 10, 20 and formed by butt-welding of these tubes 10, 20. The outside diameter DO1 (mm) and the inner diameter DI1 (mm) of the end 11 of the steel tube 10 and those DO2 (mm) and DI2 (mm) of the end 21 of the steel tube 20 satisfy following expressions (1), (2). The yield stress Y1 (MPa) of the steel tube 10 and that Y2 (MPa) of the steel tube 20 satisfy expression (3) below. Expressions (1), (2) and (3) are: ¾DO1-DO2¾≤1.5×¾DI1-DI2¾ (1); ¾DI1-DI2¾≤0.01×DA+2 (2); and ¾Y1-Y2¾≤120 (3), respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、連結管及びその製造方法に関し、さらに詳しくは、複数の鋼管が突合せ溶接された連結管及びその製造方法に関する。   The present invention relates to a connecting pipe and a manufacturing method thereof, and more particularly to a connecting pipe in which a plurality of steel pipes are butt welded and a manufacturing method thereof.

石油や天然ガス等を輸送する海底パイプラインは、鋼管を敷設地の洋上に船で運搬し、船上で鋼管の管端同士を突合せ溶接した後、海底に敷設される。このような敷設方法は、S−レイ、J−レイと呼ばれる。S−レイやJ−レイといった敷設方法では、鋼管の現地溶接性が重要となる。現地溶接性の改善については、特開2001−198678号公報(特許文献1)等、複数報告されている。   Submarine pipelines for transporting oil, natural gas, etc. are laid on the seabed after steel pipes are transported by ship to the ocean where they are laid, and the ends of the steel pipes are butt welded on board. Such a laying method is called S-ray or J-ray. In laying methods such as S-ray and J-ray, the local weldability of the steel pipe is important. There are a plurality of reports on improvement of on-site weldability, such as JP-A-2001-198678 (Patent Document 1).

ところで、S−レイ、J−レイ以外の他の海底パイプラインの敷設方法として、リールバージがある。リールバージでは、予め陸上で鋼管の管端同士を突合せ溶接により接合して連結管とする。さらに、連結管を大型のドラムに巻き取り(リーリング)、そのドラムを敷設地の洋上に搬送する。敷設場所の洋上でドラムに巻かれた連結管を巻き戻しながら海底に敷設する。   By the way, there is a reel barge as a method of laying a submarine pipeline other than S-ray and J-ray. In the reel barge, the pipe ends of the steel pipes are joined in advance by butt welding on land. Further, the connecting pipe is wound (reeled) on a large drum, and the drum is transported to the ocean on the laying site. Lay the pipes wound around the drums offshore at the laying site while laying them on the seabed.

このように、リールバージでは、鋼管を溶接して連結管とするだけでなく、連結管を曲げてドラムに巻き取る。ドラム巻き取り時に連結管に曲げ応力が生じるため、連結管の一部が座屈する場合がある。そのため、リールバージにより海底パイプラインとして敷設される連結管では特に、耐座屈性の向上が求められる。
特開2001−198678号公報
As described above, in the reel barge, not only a steel pipe is welded to form a connecting pipe, but the connecting pipe is bent and wound around a drum. Since bending stress is generated in the connecting pipe when the drum is wound, a part of the connecting pipe may be buckled. For this reason, the improvement of buckling resistance is particularly required for a connecting pipe laid as a submarine pipeline by a reel barge.
JP 2001-198678 A

本発明の目的は、耐座屈性に優れた連結管及びその製造方法を提供することである。   The objective of this invention is providing the connecting pipe excellent in buckling resistance, and its manufacturing method.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明者らは、リーリング時の連結管の座屈現象を調査するために、連結管を用いた曲げ試験と、有限要素法によるシミュレーションとを実施した。その結果、座屈は、連結管のうち、突合せ溶接部の止端部で発生するのではなく、止端部から軸方向に所定距離離れた鋼管母材部分で発生することが判明した。   In order to investigate the buckling phenomenon of the connecting pipe at the time of reeling, the present inventors performed a bending test using the connecting pipe and a simulation by a finite element method. As a result, it has been found that buckling does not occur at the toe portion of the butt welded portion of the connecting pipe, but occurs at a steel pipe base material portion that is separated from the toe portion by a predetermined distance in the axial direction.

そこで、鋼管母材部分での座屈現象についてさらに調査した結果、以下の知見を得た。   Therefore, as a result of further investigation on the buckling phenomenon in the steel pipe base material part, the following knowledge was obtained.

(a)座屈は、突合せ溶接される鋼管端部の形状が異なることにより生じる目違いに起因して発生する。   (A) Buckling occurs due to a difference between the shapes of the ends of the steel pipes to be butt welded.

図1に示すように、鋼管10及び20を突合せ溶接したとき、鋼管10の端部11と鋼管20の端部21との形状の相違に起因して、外面の目違いUOと、内面の目違いUIとが生じる。具体的には、端部11の外径DO1(mm)と、端部21の外径DO2(mm)との外径差ΔDO=|DO1−DO2|により外面目違いUOが生じる。また、端部11の内径DI1(mm)と、端部21の内径DI2(mm)との内径差ΔDI=|DI1−DI2|により内面目違いUIが生じる。   As shown in FIG. 1, when the steel pipes 10 and 20 are butt welded, due to the difference in shape between the end portion 11 of the steel pipe 10 and the end portion 21 of the steel pipe 20, the misalignment UO on the outer surface and the inner surface A difference UI occurs. Specifically, the outer surface misalignment UO is caused by the outer diameter difference ΔDO = | DO1-DO2 | between the outer diameter DO1 (mm) of the end portion 11 and the outer diameter DO2 (mm) of the end portion 21. Further, the inner surface misalignment UI is caused by the inner diameter difference ΔDI = | DI1-DI2 | between the inner diameter DI1 (mm) of the end portion 11 and the inner diameter DI2 (mm) of the end portion 21.

そこで、座屈が発生した連結管の外径差ΔDOと内径差ΔDIとを調査した。その結果、外面目違いUOにより生じる局部応力が、内面目違いUIにより生じる局部応力よりも過剰に大きくなった場合に座屈が発生することが判明した。具体的には、外径差ΔDOが内径差ΔDIの1.5倍以上となった場合に、外面目違いUOによる局部応力が内面目違いUIによる局部応力よりも過剰に大きくなり、座屈が発生した。   Therefore, the outer diameter difference ΔDO and the inner diameter difference ΔDI of the connecting pipe where buckling occurred was investigated. As a result, it has been found that buckling occurs when the local stress generated by the outer surface misalignment UO becomes excessively larger than the local stress generated by the inner surface misalignment UI. Specifically, when the outer diameter difference ΔDO is 1.5 times or more of the inner diameter difference ΔDI, the local stress due to the outer surface misalignment UO becomes excessively larger than the local stress due to the inner surface misalignment UI, and the buckling is reduced. Occurred.

以上の調査結果に基づいて、本発明者らは、以下の式(1)を満足すれば、耐座屈性を向上できることを見出した。
|DO1−DO2|≦1.5×|DI1−DI2| (1)
Based on the above investigation results, the present inventors have found that buckling resistance can be improved if the following expression (1) is satisfied.
| DO1-DO2 | ≦ 1.5 × | DI1-DI2 | (1)

(b)外径差ΔDO及び内径差ΔDIが式(1)を満足しても、内面目違いUIが過剰に大きければ、内面目違いUIのみに起因した局部応力により座屈が発生する。本発明者らは、内面目違いUIのみに起因した座屈は、鋼管10及び20の公称外径DA(mm)に対して内面目違いUIが過剰に大きくなった場合に発生すると考えた。   (B) Even if the outer diameter difference ΔDO and the inner diameter difference ΔDI satisfy the formula (1), if the inner surface misalignment UI is excessively large, buckling occurs due to local stress caused only by the inner surface misalignment UI. The present inventors considered that buckling due to only the inner surface misalignment UI occurs when the inner surface misalignment UI becomes excessively larger than the nominal outer diameter DA (mm) of the steel pipes 10 and 20.

そこで、公称外径DA及び内径差ΔDIと、座屈との関係を調査した結果、本発明者らは、式(2)を満足すれば、内面目違いUIのみに起因した座屈の発生を防止できることを見出した。
|DI1−DI2|≦0.01×DA+2 (2)
Therefore, as a result of investigating the relationship between the nominal outer diameter DA and the inner diameter difference ΔDI and the buckling, the present inventors, if satisfying the formula (2), the occurrence of buckling caused only by the inner surface misalignment UI. I found out that it can be prevented.
| DI1-DI2 | ≦ 0.01 × DA + 2 (2)

(c)式(1)及び(2)を満たせば、目違いに起因した座屈は生じない。しかし、座屈は、上述した目違いに起因するものだけでなく、互いに突合せ溶接された鋼管の強度に起因して発生する場合もある。具体的には、鋼管10の降伏応力Y1(MPa)と、鋼管20の降伏応力Y2(MPa)との差が大きすぎれば、目違いが無くても座屈が発生する。したがって、突合せ溶接される鋼管10及び20の降伏応力差を小さくすることが必要である。   (C) If the expressions (1) and (2) are satisfied, buckling due to misunderstanding will not occur. However, buckling may occur not only due to the above-mentioned misunderstanding but also due to the strength of steel pipes butt welded to each other. Specifically, if the difference between the yield stress Y1 (MPa) of the steel pipe 10 and the yield stress Y2 (MPa) of the steel pipe 20 is too large, buckling occurs even if there is no mistake. Therefore, it is necessary to reduce the yield stress difference between the steel pipes 10 and 20 to be butt welded.

降伏応力差と座屈との関係を調査した結果、本発明者らは、式(3)を満足すれば、降伏応力差に起因した座屈の発生を防止できることを見出した。
|Y1−Y2|≦120 (3)
As a result of investigating the relationship between the yield stress difference and buckling, the present inventors have found that the occurrence of buckling due to the yield stress difference can be prevented if Expression (3) is satisfied.
| Y1-Y2 | ≦ 120 (3)

以上の知見に基づいて、本発明者らは以下の発明を完成した。   Based on the above findings, the present inventors have completed the following invention.

本発明による連結管は、第1の鋼管と、第2の鋼管と、突合せ溶接部とを備える。第2の鋼管は、第1の鋼管と同軸上に設けられ、第1の鋼管と同じ公称外径DA(mm)を有する。突合せ溶接部は、第1及び第2の鋼管の間にあって、第1の鋼管と第2の鋼管とを突合せ溶接することにより形成される。第1の鋼管のうち突合せ溶接部に隣接した第1の端部の外径DO1(mm)と、第1の端部の内径DI1(mm)と、第2の鋼管のうち突合せ溶接部に隣接した第2の端部の外径DO2(mm)と、第2の端部の内径DI2(mm)とは、式(1)及び式(2)を満足する。第1の鋼管の降伏応力Y1(MPa)と第2の鋼管の降伏応力Y2(MPa)とは式(3)を満足する。
|DO1−DO2|≦1.5×|DI1−DI2| (1)
|DI1−DI2|≦0.01×DA+2 (2)
|Y1−Y2|≦120 (3)
The connecting pipe according to the present invention includes a first steel pipe, a second steel pipe, and a butt weld. The second steel pipe is provided coaxially with the first steel pipe, and has the same nominal outer diameter DA (mm) as the first steel pipe. The butt weld is between the first and second steel pipes and is formed by butt welding the first steel pipe and the second steel pipe. Of the first steel pipe, the outer diameter DO1 (mm) of the first end adjacent to the butt weld, the inner diameter DI1 (mm) of the first end, and the butt weld of the second steel pipe The outer diameter DO2 (mm) of the second end portion and the inner diameter DI2 (mm) of the second end portion satisfy the expressions (1) and (2). The yield stress Y1 (MPa) of the first steel pipe and the yield stress Y2 (MPa) of the second steel pipe satisfy Expression (3).
| DO1-DO2 | ≦ 1.5 × | DI1-DI2 | (1)
| DI1-DI2 | ≦ 0.01 × DA + 2 (2)
| Y1-Y2 | ≦ 120 (3)

本発明による連結管の製造方法は、降伏応力がY1(MPa)である第1の鋼管を準備する工程と、降伏応力がY2(MPa)であり、第1の鋼管と同じ公称外径DA(mm)を有し、式(1)〜(3)を満足する第2の鋼管を準備する工程と、第1の鋼管の端部と第2の鋼管の端部とを突合せ溶接する工程とを備える。
|DO1−DO2|≦1.5×|DI1−DI2| (1)
|DI1−DI2|≦0.01×DA+2 (2)
|Y1−Y2|≦120 (3)
The connecting pipe manufacturing method according to the present invention includes a step of preparing a first steel pipe having a yield stress of Y1 (MPa), a yield stress of Y2 (MPa), and the same nominal outer diameter DA ( mm) and satisfying the formulas (1) to (3), and a step of butt welding the end of the first steel tube and the end of the second steel tube Prepare.
| DO1-DO2 | ≦ 1.5 × | DI1-DI2 | (1)
| DI1-DI2 | ≦ 0.01 × DA + 2 (2)
| Y1-Y2 | ≦ 120 (3)

ここで、DO1(mm)は第1の鋼管のうち突合せ溶接される側の第1の端部の外径であり、DI1(mm)は第1の端部の内径であり、DO2(mm)は第2の鋼管のうち突合せ溶接される側の第2の端部の外径であり、DI2(mm)は第2の端部の内径である。   Here, DO1 (mm) is the outer diameter of the first end of the first steel pipe to be butt welded, DI1 (mm) is the inner diameter of the first end, DO2 (mm) Is the outer diameter of the second end of the second steel pipe to be butt welded, and DI2 (mm) is the inner diameter of the second end.

ここでいう第1の端部の外径DO1及び内径DI1は、たとえば以下の方法で求めることができる。管端から軸方向に200〜400mmまでの範囲内の異なる10箇所で外径及び内径を測定し、測定した外径の平均(mm)を外径DO1とし、測定した内径の平均(mm)を内径DI1とする。第2の端部の外径DO2及び内径DI2も同様の方法で求めることができる。   Here, the outer diameter DO1 and the inner diameter DI1 of the first end can be obtained, for example, by the following method. The outer diameter and the inner diameter were measured at 10 different locations in the range from 200 to 400 mm in the axial direction from the pipe end, and the average (mm) of the measured outer diameters was defined as the outer diameter DO1. The inner diameter is DI1. The outer diameter DO2 and the inner diameter DI2 of the second end can be obtained by the same method.

以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

本実施の形態による連結管は、図2に示すように、同じ公称外径DA(mm)を有する鋼管10及び20を突合せ溶接することにより製造される。   As shown in FIG. 2, the connecting pipe according to the present embodiment is manufactured by butt welding steel pipes 10 and 20 having the same nominal outer diameter DA (mm).

まず、以下の各要件(A)〜(C)を満足する鋼管10及び鋼管20を準備する。   First, a steel pipe 10 and a steel pipe 20 that satisfy the following requirements (A) to (C) are prepared.

(A)端部11の外径DO1(mm)と、端部11の内径DI1(mm)と、端部21の外径DO2(mm)と、端部21の内径DI2(mm)とが、以下の式(1)を満足する。
|DO1−DO2|≦1.5×|DI1−DI2| (1)
(A) The outer diameter DO1 (mm) of the end portion 11, the inner diameter DI1 (mm) of the end portion 11, the outer diameter DO2 (mm) of the end portion 21, and the inner diameter DI2 (mm) of the end portion 21 are The following expression (1) is satisfied.
| DO1-DO2 | ≦ 1.5 × | DI1-DI2 | (1)

要するに、座屈の発生を防止するために、鋼管10の端部11と鋼管20の端部21との外径差ΔDO=|DO1−DO2|を内径差ΔDI=|DI1−DI2|の1.5倍以下とする。これにより、外面目違いにより生じる局部応力が、内面目違いにより生じる局部応力よりも過剰に大きくなるのを防止でき、耐座屈性を向上できる。   In short, in order to prevent the occurrence of buckling, the outer diameter difference ΔDO = | DO1-DO2 | between the end portion 11 of the steel pipe 10 and the end portion 21 of the steel pipe 20 is set to 1. of the inner diameter difference ΔDI = | DI1-DI2 | 5 times or less. Thereby, it is possible to prevent the local stress caused by the misalignment on the outer surface from becoming excessively larger than the local stress caused by the misalignment on the inner surface, thereby improving the buckling resistance.

なお、端部11の外径DO1及び内径DI1は、たとえば以下の様に求めることができる。管端から軸方向に200〜400mmまでの範囲R1内において、異なる10箇所で外径及び内径を測定する。測定した外径の平均を外径DO1とし、測定した内径の平均を内径DI1とする。端部21の外径DO2及び内径DI2も同様に求めることができる。具体的には、管端から軸方向に200〜400mmまでの範囲R2内において、異なる10箇所で外径及び内径を測定する。測定した外径の平均を外径DO2とし、測定した内径の平均を内径DI2とする。   The outer diameter DO1 and the inner diameter DI1 of the end portion 11 can be obtained, for example, as follows. The outer diameter and inner diameter are measured at 10 different locations within a range R1 from the pipe end to 200 to 400 mm in the axial direction. The average of the measured outer diameters is defined as the outer diameter DO1, and the average of the measured inner diameters is defined as the inner diameter DI1. The outer diameter DO2 and the inner diameter DI2 of the end portion 21 can be obtained similarly. Specifically, the outer diameter and inner diameter are measured at 10 different locations within a range R2 from the pipe end to 200 to 400 mm in the axial direction. The average of the measured outer diameters is defined as the outer diameter DO2, and the average of the measured inner diameters is defined as the inner diameter DI2.

(B)内径差ΔDI=|DI1−DI2|が式(2)を満足する。
|DI1−DI2|≦0.01×DA+2 (2)
(B) The inner diameter difference ΔDI = | DI1-DI2 | satisfies the expression (2).
| DI1-DI2 | ≦ 0.01 × DA + 2 (2)

外径差ΔDO及び内径差ΔDIが式(1)を満足しても、内径差ΔDIが大きければ、内面目違いのみに起因した局部応力により座屈が発生する。内径差ΔDIが式(2)を満たせば、内面目違いのみに起因した座屈の発生を防止でき、耐座屈性を向上できる。   Even if the outer diameter difference ΔDO and the inner diameter difference ΔDI satisfy the equation (1), if the inner diameter difference ΔDI is large, buckling occurs due to local stress caused only by the difference in the inner surface. If the inner diameter difference ΔDI satisfies the formula (2), it is possible to prevent the occurrence of buckling due to only the difference in the inner surface and improve the buckling resistance.

(C)鋼管10の降伏応力Y1(MPa)と鋼管20の降伏応力Y2(MPa)とが式(3)を満足する。
|Y1−Y2|≦120 (3)
(C) The yield stress Y1 (MPa) of the steel pipe 10 and the yield stress Y2 (MPa) of the steel pipe 20 satisfy Expression (3).
| Y1-Y2 | ≦ 120 (3)

式(1)及び式(2)を満足すれば、目違いによる局部応力は発生しない。しかし、鋼管10及び20の降伏応力差が大きければ、低強度側の鋼管に応力集中が生じ、座屈が発生する。したがって、式(3)に示すように、鋼管10と鋼管20との降伏応力差を120MPa以下にする。好ましい降伏応力差は100MPa以下である。   If the expressions (1) and (2) are satisfied, local stress due to misunderstanding will not occur. However, if the yield stress difference between the steel pipes 10 and 20 is large, stress concentration occurs in the steel pipe on the low strength side, and buckling occurs. Therefore, as shown in Formula (3), the yield stress difference between the steel pipe 10 and the steel pipe 20 is set to 120 MPa or less. A preferred yield stress difference is 100 MPa or less.

以上の(A)〜(C)の要件を満たす鋼管10及び20を準備した後、鋼管10の端部11と鋼管20の端部21とを突合せ溶接する。まず、突合せ溶接を行う前に、端部11と端部21とを開先加工する。加工後、鋼管20を鋼管10と同軸上に配置し、溶接材料を用いてTIG溶接により鋼管10と鋼管20とを突合せ溶接する。   After preparing the steel pipes 10 and 20 satisfying the above requirements (A) to (C), the end 11 of the steel pipe 10 and the end 21 of the steel pipe 20 are butt welded. First, before performing butt welding, the edge part 11 and the edge part 21 are grooved. After processing, the steel pipe 20 is arranged coaxially with the steel pipe 10, and the steel pipe 10 and the steel pipe 20 are butt welded by TIG welding using a welding material.

以上の工程により図1に示した連結管が製造される。なお、鋼管10と鋼管20との突合せ溶接は、TIG溶接以外の他の溶接方法を採用してもよい。他の溶接方法としては、たとえば、MIG溶接や、MAG溶接、被覆アーク溶接、レーザ溶接等がある。溶接材料は鋼管10及び20と同程度の強度を有することが好ましい。   The connecting pipe shown in FIG. 1 is manufactured by the above process. The butt welding between the steel pipe 10 and the steel pipe 20 may employ a welding method other than TIG welding. Examples of other welding methods include MIG welding, MAG welding, covering arc welding, and laser welding. The welding material preferably has the same strength as the steel pipes 10 and 20.

製造された連結管は、図1に示すように、鋼管10と鋼管20との間に突合せ溶接部30が形成される。図1では2つの鋼管部10及び20と、その間の突合せ溶接部30とを示したが、連結管が、2以上の鋼管と、隣接する鋼管の間にある複数の突合せ溶接部とで構成されてもよい。   As shown in FIG. 1, the manufactured connecting pipe has a butt weld 30 formed between the steel pipe 10 and the steel pipe 20. Although FIG. 1 shows two steel pipe portions 10 and 20 and a butt weld portion 30 therebetween, the connecting pipe is composed of two or more steel pipes and a plurality of butt weld portions between adjacent steel pipes. May be.

公称外径DAが60.3mm、公称肉厚が5.3mm、長さが900mmであり、表1に示す降伏応力Y1(MPa)を有する鋼管1と、鋼管1と同じ公称外径、公称肉厚及び長さを有し、降伏応力Y2(MPa)を有する鋼管2とをそれぞれ複数本準備した。

Figure 2006281217
A steel pipe 1 having a nominal outer diameter DA of 60.3 mm, a nominal wall thickness of 5.3 mm, a length of 900 mm, and having the yield stress Y1 (MPa) shown in Table 1, and the same nominal outer diameter and nominal thickness as the steel pipe 1 A plurality of steel pipes 2 each having a thickness and a length and having a yield stress Y2 (MPa) were prepared.
Figure 2006281217

鋼管1及び2を突合せ、AWS A5.28 ER90S−Gに該当する溶接ワイヤを用いてTIG溶接により突合せ溶接を行い、複数の連結管を作製した。このとき、鋼管1及び2の端部に角度30°の開先を加工した後、TIG溶接を実施した。   The steel pipes 1 and 2 were butt-joined and butt-welded by TIG welding using a welding wire corresponding to AWS A5.28 ER90S-G to produce a plurality of connecting pipes. At this time, after processing a groove with an angle of 30 ° at the ends of the steel pipes 1 and 2, TIG welding was performed.

溶接後、表2に示す各試験番号の連結管の外面及び内面を研削し、外径差ΔDO(mm)及び内径差ΔDI(mm)を人工的に作製した。

Figure 2006281217
After welding, the outer surface and the inner surface of the connection pipe of each test number shown in Table 2 were ground, and an outer diameter difference ΔDO (mm) and an inner diameter difference ΔDI (mm) were artificially produced.
Figure 2006281217

具体的には、図3に示すように、突合せ溶接部3の中央から鋼管1側へ300mmの範囲R1において、鋼管1の外周面を切削し、外径差ΔDOを作製した。また、突合せ溶接部3の中央から鋼管2側へ300mmの範囲R2において、鋼管2の内周面を切削し、内径差ΔDIを作製した。切削には旋盤を使用した。   Specifically, as shown in FIG. 3, the outer peripheral surface of the steel pipe 1 was cut in a range R1 of 300 mm from the center of the butt weld portion 3 to the steel pipe 1 side to produce an outer diameter difference ΔDO. Further, in the range R2 of 300 mm from the center of the butt weld 3 to the steel pipe 2 side, the inner peripheral surface of the steel pipe 2 was cut to produce an inner diameter difference ΔDI. A lathe was used for cutting.

外径差ΔDO及び内径差ΔDIは以下のように求めた。範囲R1内の任意の10箇所で外径及び内径を測定し、測定した外径の平均を鋼管1の外径DO1(mm)とし、測定した内径の平均を鋼管1の内径DI1(mm)とした。また、範囲R2内の任意の10箇所で外径及び内径を測定し、測定した外径の平均を鋼管2の外径DO2(mm)とし、測定した内径の平均を鋼管2の内径DI2(mm)とした。測定にはノギスを用いた。求めた外径DO1及びDO2、内径DI1及びDI2とから外径差ΔDO=|DO1−DO2|、内径差ΔDI=|DI1−DI2|を求めた。   The outer diameter difference ΔDO and the inner diameter difference ΔDI were determined as follows. The outer diameter and the inner diameter are measured at any 10 locations within the range R1, the average of the measured outer diameter is defined as the outer diameter DO1 (mm) of the steel pipe 1, and the average of the measured inner diameter is the inner diameter DI1 (mm) of the steel pipe 1. did. Also, the outer diameter and inner diameter were measured at any 10 locations within the range R2, the average of the measured outer diameters was the outer diameter DO2 (mm) of the steel pipe 2, and the average of the measured inner diameters was the inner diameter DI2 (mm ). A caliper was used for the measurement. An outer diameter difference ΔDO = | DO1-DO2 | and an inner diameter difference ΔDI = | DI1-DI2 | were determined from the determined outer diameters DO1 and DO2 and inner diameters DI1 and DI2.

さらに、各試験番号の連結管に対して、以下の式(4)及び(5)に基づいてF1及びF2を求めた。
F1=1.5×ΔDI (4)
F2=0.01×DA+2 (5)
Furthermore, F1 and F2 were calculated | required based on the following formula | equation (4) and (5) with respect to the connection pipe of each test number.
F1 = 1.5 × ΔDI (4)
F2 = 0.01 × DA + 2 (5)

要するに、F1は式(1)の右辺であり、F2は式(2)の右辺である。求めたF1及びF2を表2に示す。   In short, F1 is the right side of equation (1), and F2 is the right side of equation (2). The obtained F1 and F2 are shown in Table 2.

以上の工程により作製した各試験番号の連結管に対し、図4に示すような曲げ試験機を用いて曲げ試験を実施した。   A bending test was carried out on the connecting pipe of each test number produced by the above process using a bending tester as shown in FIG.

図4を参照して、曲げ試験機は、チャック101と、図示しない油圧シリンダにより水平に駆動するローラ102と、曲げ治具103とを備える。曲げ治具103の表面104の縦断面は、半径1830mmの凸型の円弧とした。   Referring to FIG. 4, the bending tester includes a chuck 101, a roller 102 that is driven horizontally by a hydraulic cylinder (not shown), and a bending jig 103. The longitudinal section of the surface 104 of the bending jig 103 was a convex arc having a radius of 1830 mm.

曲げ試験は以下の方法で実施した。まず、各試験番号の連結管100をチャック101により縦に固定した。続いて、連結管100の上端から下端に向かって300mmの箇所P1をローラ102により水平方向に押した。連結管100がローラ102により曲げられ、表面104の上辺P2に連結管100が接触した時点でローラ102を停止し、曲げ試験を終了した。   The bending test was performed by the following method. First, the connecting tube 100 of each test number was fixed vertically by the chuck 101. Subsequently, the portion P1 of 300 mm was pushed in the horizontal direction by the roller 102 from the upper end to the lower end of the connecting pipe 100. When the connecting tube 100 was bent by the roller 102 and the connecting tube 100 contacted the upper side P2 of the surface 104, the roller 102 was stopped and the bending test was completed.

曲げ試験後、連結管100に座屈が発生したか否かを調査した。具体的には、接触式の形状測定器で連結管の形状プロファイルを測定した。測定結果の一例を図5に示す。図5(a)は曲げ試験終了後の連結管100の一部の外観図であり、図5(a)中の領域200の連結管100の形状プロファイルが図5(b)中の曲線L1(波線)である。図5(b)に示すように、曲線L1に変曲点が発生した場合、座屈が発生したと判断した。   After the bending test, it was investigated whether or not buckling occurred in the connecting pipe 100. Specifically, the shape profile of the connecting tube was measured with a contact-type shape measuring instrument. An example of the measurement result is shown in FIG. FIG. 5A is an external view of a part of the connecting pipe 100 after the bending test is completed, and the shape profile of the connecting pipe 100 in the region 200 in FIG. 5A is a curve L1 (FIG. 5B). Wavy line). As shown in FIG. 5B, when an inflection point occurred on the curve L1, it was determined that buckling occurred.

表2に座屈の有無の調査結果を示す。耐座屈性欄の「○」は座屈が発生しなかったことを示し、「×」は座屈が発生したことを示す。   Table 2 shows the results of investigation for the presence or absence of buckling. “O” in the buckling resistance column indicates that buckling did not occur, and “x” indicates that buckling occurred.

表2を参照して、式(1)〜式(3)を満足した試験番号1〜5、及び8の連結管には座屈が発生しなかった。一方、試験番号6及び7の連結管は、式(2)及び(3)を満足したものの、式(1)を満足しなかったため、座屈が発生した。   With reference to Table 2, buckling did not occur in the connecting pipes of Test Nos. 1 to 5 and 8 that satisfied Expressions (1) to (3). On the other hand, the connecting pipes of test numbers 6 and 7 satisfied the expressions (2) and (3), but did not satisfy the expression (1), and therefore buckled.

曲げ試験後の連結管の形状プロファイルを有限要素法によるシミュレーションにより求め、座屈の有無を調査した。シミュレーションには、汎用の有限要素法解析用ソフトMARC Ver.2003を使用した。シミュレーションの条件となる連結管の形状は実施例1と同じとした。具体的には、鋼管1及び鋼管2の各々の公称外径を60.3mm、公称肉厚を5.3mm、長さを900mmに設定した。   The shape profile of the connecting pipe after the bending test was obtained by simulation using the finite element method, and the presence or absence of buckling was investigated. For the simulation, general-purpose finite element method analysis software MARC Ver. 2003 was used. The shape of the connecting pipe, which is a condition for the simulation, was the same as in Example 1. Specifically, the nominal outer diameter of each of the steel pipe 1 and the steel pipe 2 was set to 60.3 mm, the nominal thickness was set to 5.3 mm, and the length was set to 900 mm.

初めに、有限要素法によるシミュレーションが実際の曲げ試験結果と一致するか否かを確認した。具体的には、シミュレーションの条件として、鋼管1及び2の降伏応力を表1に示すY1、Y2と同じ値に設定し、かつ、表1中の試験番号6と同じΔDO、ΔDIに設定してシミュレーションを実施した。シミュレーション結果を図5に示す。図5中の曲線L2(実線)がシミュレーションにより求めた形状プロファイルであり、曲線L1が実施例1の試験番号6で得られた形状プロファイルである。図5(b)より、シミュレーションにより求めた形状プロファイル(曲線L2)は、実施例1で求めた形状プロファイル(曲線L1)とほぼ同じであり、シミュレーションに再現性があることを確認した。   First, it was confirmed whether the simulation by the finite element method was consistent with the actual bending test result. Specifically, as the simulation conditions, the yield stresses of the steel pipes 1 and 2 are set to the same values as Y1 and Y2 shown in Table 1, and set to the same ΔDO and ΔDI as the test number 6 in Table 1. A simulation was performed. The simulation result is shown in FIG. A curve L2 (solid line) in FIG. 5 is a shape profile obtained by simulation, and a curve L1 is a shape profile obtained by test number 6 of Example 1. From FIG. 5B, the shape profile (curve L2) obtained by the simulation is almost the same as the shape profile (curve L1) obtained in Example 1, and it was confirmed that the simulation has reproducibility.

続いて、表3に示すシミュレーション番号の連結管ごとに、公称外径DA、公称肉厚、鋼管1の降伏応力Y1及び鋼管2の降伏応力Y2、ΔDO、ΔDIを設定し、式(4)及び(5)に基づいてF1及びF2を求めた。さらに、表3に示した各シミュレーション番号の連結管に対してシミュレーションを実施し、シミュレーションにより得られた形状プロファイルに座屈が発生したか否かを調査した。

Figure 2006281217
Subsequently, the nominal outer diameter DA, the nominal wall thickness, the yield stress Y1 of the steel pipe 1 and the yield stress Y2, ΔDO, ΔDI of the steel pipe 2 are set for each connection pipe having the simulation number shown in Table 3, and the equation (4) and F1 and F2 were determined based on (5). Furthermore, a simulation was performed on the connecting pipes with the respective simulation numbers shown in Table 3, and it was investigated whether or not buckling occurred in the shape profile obtained by the simulation.
Figure 2006281217

シミュレーション結果を表3に示す。耐座屈性欄の「○」は座屈が発生しなかったことを示し、「×」は座屈が発生したことを示す。   The simulation results are shown in Table 3. “O” in the buckling resistance column indicates that buckling did not occur, and “x” indicates that buckling occurred.

表3を参照して、シミュレーション番号3〜9、12〜16及び19は、いずれも式(1)〜(3)式を満足したため、座屈が発生しなかった。   With reference to Table 3, since simulation numbers 3-9, 12-16, and 19 all satisfied Formula (1)-(3) Formula, buckling did not generate | occur | produce.

一方、シミュレーション番号1及び2は、式(1)及び(2)を満足するものの、鋼管1と鋼管2との降伏応力差が120MPaを超えたため、座屈が発生した。また、シミュレーション番号10、11、17及び18は、式(2)及び式(3)を満足するものの、ΔDO及びΔDIが式(1)を満足しなかったため、座屈が発生した。シミュレーション番号20〜23は、式(1)及び式(3)を満足するものの、ΔDIが式(2)を満足しなかったため、座屈が発生した。   On the other hand, although simulation numbers 1 and 2 satisfied the expressions (1) and (2), buckling occurred because the yield stress difference between the steel pipe 1 and the steel pipe 2 exceeded 120 MPa. In addition, although simulation numbers 10, 11, 17, and 18 satisfied Expressions (2) and (3), buckling occurred because ΔDO and ΔDI did not satisfy Expression (1). Although simulation numbers 20 to 23 satisfied Expressions (1) and (3), buckling occurred because ΔDI did not satisfy Expression (2).

以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。   While the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

本発明による連結管は、パイプラインとして利用可能であり、特に、リールバージによる敷設されるパイプラインとして有用である。   The connecting pipe according to the present invention can be used as a pipeline, and is particularly useful as a pipeline laid by a reel barge.

本発明の実施の形態による連結管の縦断面図である。It is a longitudinal cross-sectional view of the connecting pipe by embodiment of this invention. 図1に示した連結管の製造方法中の一工程を示す図である。It is a figure which shows 1 process in the manufacturing method of the connecting pipe shown in FIG. 実施例での曲げ試験の試験片の縦断面図である。It is a longitudinal cross-sectional view of the test piece of the bending test in an Example. 曲げ試験機の概略図である。It is the schematic of a bending test machine. 曲げ試験後の連結管の形状を示す図である。It is a figure which shows the shape of the connection pipe after a bending test.

符号の説明Explanation of symbols

10、20 鋼管
11,21 端部
30 突合せ溶接部
10, 20 Steel pipe 11, 21 End 30 Butt weld

Claims (2)

第1の鋼管と、
前記第1の鋼管と同軸上に設けられ、前記第1の鋼管と同じ公称外径DA(mm)を有する第2の鋼管と、
前記第1及び第2の鋼管の間にあって、前記第1の鋼管と前記第2の鋼管とを突合せ溶接することにより形成される突合せ溶接部とを備え、
前記第1の鋼管のうち前記突合せ溶接部に隣接した第1の端部の外径DO1(mm)と、前記第1の端部の内径DI1(mm)と、前記第2の鋼管のうち前記突合せ溶接部に隣接した第2の端部の外径DO2(mm)と、前記第2の端部の内径DI2(mm)とが、式(1)及び式(2)を満足し、
前記第1の鋼管の降伏応力Y1(MPa)と前記第2の鋼管の降伏応力Y2(MPa)とが式(3)を満足することを特徴とする連結管。
|DO1−DO2|≦1.5×|DI1−DI2| (1)
|DI1−DI2|≦0.01×DA+2 (2)
|Y1−Y2|≦120 (3)
A first steel pipe;
A second steel pipe provided coaxially with the first steel pipe and having the same nominal outer diameter DA (mm) as the first steel pipe;
A butt weld formed between the first and second steel pipes and formed by butt welding the first steel pipe and the second steel pipe;
Out of the first steel pipe, the outer diameter DO1 (mm) of the first end adjacent to the butt weld, the inner diameter DI1 (mm) of the first end, and the second steel pipe of the first steel pipe The outer diameter DO2 (mm) of the second end adjacent to the butt weld and the inner diameter DI2 (mm) of the second end satisfy Expression (1) and Expression (2),
The connecting pipe characterized in that the yield stress Y1 (MPa) of the first steel pipe and the yield stress Y2 (MPa) of the second steel pipe satisfy the formula (3).
| DO1-DO2 | ≦ 1.5 × | DI1-DI2 | (1)
| DI1-DI2 | ≦ 0.01 × DA + 2 (2)
| Y1-Y2 | ≦ 120 (3)
降伏応力がY1(MPa)である第1の鋼管を準備する工程と、
降伏応力がY2(MPa)であり、前記第1の鋼管と同じ公称外径DA(mm)を有し、式(1)〜(3)を満足する第2の鋼管を準備する工程と、
前記第1の鋼管の端部と前記第2の鋼管の端部とを突合せ溶接する工程とを備えることを特徴とする連結管の製造方法。
|DO1−DO2|≦1.5×|DI1−DI2| (1)
|DI1−DI2|≦0.01×DA+2 (2)
|Y1−Y2|≦120 (3)
ここで、DO1(mm)は前記第1の鋼管のうち突合せ溶接される側の第1の端部の外径であり、DI1(mm)は前記第1の端部の内径であり、DO2(mm)は前記第2の鋼管のうち突合せ溶接される側の第2の端部の外径であり、DI2(mm)は前記第2の端部の内径である。
Preparing a first steel pipe having a yield stress of Y1 (MPa);
Preparing a second steel pipe having a yield stress of Y2 (MPa), having the same nominal outer diameter DA (mm) as the first steel pipe, and satisfying the formulas (1) to (3);
A method of manufacturing a connecting pipe, comprising the step of butt welding the end of the first steel pipe and the end of the second steel pipe.
| DO1-DO2 | ≦ 1.5 × | DI1-DI2 | (1)
| DI1-DI2 | ≦ 0.01 × DA + 2 (2)
| Y1-Y2 | ≦ 120 (3)
Here, DO1 (mm) is the outer diameter of the first end of the first steel pipe to be butt welded, DI1 (mm) is the inner diameter of the first end, and DO2 ( mm) is the outer diameter of the second end of the second steel pipe to be butt welded, and DI2 (mm) is the inner diameter of the second end.
JP2005100426A 2005-03-31 2005-03-31 Connecting pipe and manufacturing method thereof Expired - Fee Related JP4833574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100426A JP4833574B2 (en) 2005-03-31 2005-03-31 Connecting pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100426A JP4833574B2 (en) 2005-03-31 2005-03-31 Connecting pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006281217A true JP2006281217A (en) 2006-10-19
JP4833574B2 JP4833574B2 (en) 2011-12-07

Family

ID=37403664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100426A Expired - Fee Related JP4833574B2 (en) 2005-03-31 2005-03-31 Connecting pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4833574B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512498A (en) * 2006-12-11 2010-04-22 スタトイル・アー・エス・アー Method of laying a pipeline with a corrosion resistant coating on the inside
US20100126968A1 (en) * 2008-11-25 2010-05-27 Justin Vaughn Page Welding apparatus and methods for welding
KR20110139689A (en) * 2009-02-19 2011-12-29 에보니크 데구사 게엠베하 Use of a conduit pipe for producing a duct laid in water
CN102343496A (en) * 2010-08-05 2012-02-08 上海锅炉厂有限公司 Weld line assembly positioning device and assembly position welding process method thereof
JP5229436B1 (en) * 2012-03-07 2013-07-03 新日鐵住金株式会社 Mistake calculation system
WO2013111902A1 (en) 2012-01-27 2013-08-01 新日鐵住金株式会社 Pipeline and manufacturing method thereof
WO2013132561A1 (en) 2012-03-07 2013-09-12 新日鐵住金株式会社 Misalignment calculation system
JP2013185880A (en) * 2012-03-06 2013-09-19 Tokyo Gas Co Ltd Buckling resistance evaluation method and buckling resistance evaluation apparatus of steel pipeline
JP6662505B1 (en) * 2018-09-28 2020-03-11 Jfeスチール株式会社 Long steel pipe for reel method and method of manufacturing the same
JP7323857B1 (en) * 2022-02-07 2023-08-09 日本製鉄株式会社 Steel pipe, steel pipe group, pipeline, and steel pipe manufacturing method
WO2023149364A1 (en) * 2022-02-07 2023-08-10 日本製鉄株式会社 Steel pipe, steel pipe group, pipeline, and method for manufacturing steel pipe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281057A (en) * 1993-03-29 1994-10-07 Chiyoda Corp Pipe circumferential joint welding method and pipe fit-up device
JPH06344140A (en) * 1993-06-07 1994-12-20 Chiyoda Corp Automatic piping welding equipment
JPH0819870A (en) * 1994-07-04 1996-01-23 Tokyo Gas Co Ltd Plasma key hole welding method
JPH0929309A (en) * 1995-07-24 1997-02-04 Sumitomo Metal Ind Ltd Manufacture of seamless tube
JP2001198678A (en) * 2000-01-17 2001-07-24 Sumitomo Metal Ind Ltd Steel pipe having excellent on-site welding excutability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281057A (en) * 1993-03-29 1994-10-07 Chiyoda Corp Pipe circumferential joint welding method and pipe fit-up device
JPH06344140A (en) * 1993-06-07 1994-12-20 Chiyoda Corp Automatic piping welding equipment
JPH0819870A (en) * 1994-07-04 1996-01-23 Tokyo Gas Co Ltd Plasma key hole welding method
JPH0929309A (en) * 1995-07-24 1997-02-04 Sumitomo Metal Ind Ltd Manufacture of seamless tube
JP2001198678A (en) * 2000-01-17 2001-07-24 Sumitomo Metal Ind Ltd Steel pipe having excellent on-site welding excutability

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512498A (en) * 2006-12-11 2010-04-22 スタトイル・アー・エス・アー Method of laying a pipeline with a corrosion resistant coating on the inside
US20100126968A1 (en) * 2008-11-25 2010-05-27 Justin Vaughn Page Welding apparatus and methods for welding
USD814538S1 (en) 2008-11-25 2018-04-03 Justin Vaughn Page Welding apparatus
US9434030B2 (en) * 2008-11-25 2016-09-06 Justin Vaughn Page Welding apparatus and methods for welding
KR20110139689A (en) * 2009-02-19 2011-12-29 에보니크 데구사 게엠베하 Use of a conduit pipe for producing a duct laid in water
JP2012518142A (en) * 2009-02-19 2012-08-09 ザルツギッター マンネスマン ライン パイプ ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of line pipes to produce pipelines that are laid underwater
US10072786B2 (en) 2009-02-19 2018-09-11 Evonik Degussa Gmbh Use of a conduit pipe for producing a duct laid in water
KR101717068B1 (en) * 2009-02-19 2017-03-16 에보니크 데구사 게엠베하 Use of a conduit pipe for producing a duct laid in water
CN102343496A (en) * 2010-08-05 2012-02-08 上海锅炉厂有限公司 Weld line assembly positioning device and assembly position welding process method thereof
EP2808415A4 (en) * 2012-01-27 2016-01-13 Nippon Steel & Sumitomo Metal Corp Pipeline and manufacturing method thereof
US9737962B2 (en) 2012-01-27 2017-08-22 Nippon Steel & Sumitomo Metal Corporation Pipeline and manufacturing method thereof
AU2013212844B2 (en) * 2012-01-27 2015-07-16 Nippon Steel Corporation Pipeline and manufacturing method thereof
US10449636B2 (en) 2012-01-27 2019-10-22 Nippon Steel Corporation Pipeline and manufacturing method thereof
JP5618017B2 (en) * 2012-01-27 2014-11-05 新日鐵住金株式会社 Pipeline and manufacturing method thereof
WO2013111902A1 (en) 2012-01-27 2013-08-01 新日鐵住金株式会社 Pipeline and manufacturing method thereof
JP2013185880A (en) * 2012-03-06 2013-09-19 Tokyo Gas Co Ltd Buckling resistance evaluation method and buckling resistance evaluation apparatus of steel pipeline
US10041790B2 (en) 2012-03-07 2018-08-07 Nippon Steel & Sumitomo Metal Corporation Misalignment calculation system
WO2013132561A1 (en) 2012-03-07 2013-09-12 新日鐵住金株式会社 Misalignment calculation system
AU2012372427B2 (en) * 2012-03-07 2016-02-25 Nippon Steel Corporation Misalignment calculation system
JP5229436B1 (en) * 2012-03-07 2013-07-03 新日鐵住金株式会社 Mistake calculation system
CN104125873A (en) * 2012-03-07 2014-10-29 新日铁住金株式会社 Misalignment calculation system
JP6662505B1 (en) * 2018-09-28 2020-03-11 Jfeスチール株式会社 Long steel pipe for reel method and method of manufacturing the same
WO2020067064A1 (en) * 2018-09-28 2020-04-02 Jfeスチール株式会社 Long steel pipe for reel method and manufacturing method for same
EP3858506A4 (en) * 2018-09-28 2021-12-01 JFE Steel Corporation Long steel pipe for reel method and manufacturing method for same
US11731210B2 (en) 2018-09-28 2023-08-22 Jfe Steel Corforation Long steel pipe for reel-lay installation and method for producing the same
JP7323857B1 (en) * 2022-02-07 2023-08-09 日本製鉄株式会社 Steel pipe, steel pipe group, pipeline, and steel pipe manufacturing method
WO2023149364A1 (en) * 2022-02-07 2023-08-10 日本製鉄株式会社 Steel pipe, steel pipe group, pipeline, and method for manufacturing steel pipe

Also Published As

Publication number Publication date
JP4833574B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4833574B2 (en) Connecting pipe and manufacturing method thereof
US20130136540A1 (en) Welding method of a first to a second tubular, the tubulars comprising a corrosion resistant alloy on an internal face thereof
JP5442456B2 (en) Corrosion-resistant alloy welds in carbon steel structures and pipelines adapted to large axial plastic strain
US9205475B2 (en) UOE steel pipe and structure
US20220090711A1 (en) System and method for manufacturing pipes
Tkaczyk et al. Fatigue and fracture performance of reeled mechanically lined pipes
CN110895641B (en) Method for criticality evaluation of submarine metallurgical composite pipe engineering containing circumferential surface crack V-shaped groove weld joint
JP5408031B2 (en) Circumferential welded joint of high-strength steel pipe with excellent low cycle fatigue resistance and its manufacturing method
JP3721914B2 (en) Steel pipe with excellent weldability
Beeson Pipeline welding goes mechanized
JP2006292088A (en) Steel pipe having superior pipe end buckling deformation-proof property
Gonçalves e Silva et al. Double-Sided welding as an alternative for joining internally clad pipes
JP5884418B2 (en) Usage limit prediction method for joint structures
Darcis et al. Fatigue Performance of SMLS SCR Girth Welds: Comparison of Prefabrication-Type WPS
US20210071783A1 (en) Method of preparing a pipe-section
JP2012030237A (en) Welded joint structure of structural member and welding method used for the same
RU2611609C2 (en) Circumferential welding joint of main pipe, method for fabrication of circumferential welding joint of main pipe and main pipe
CN111859722B (en) Critical assessment method for composite pipe engineering containing circumferential buried crack V-shaped groove weld joint
Dorling et al. Pipeline Welding from the Perspective of Safety and Integrity
JP6259666B2 (en) Manufacturing method of stainless clad steel
JP5833904B2 (en) Fast reactor trumpet tube and its joining method
Wagner et al. Design Advantages on Umbilical Systems Brought by a New High Performance SDSS Tube
McCoy SSC Resistance of QT-900 Coiled Tubing
JPH03207575A (en) Circumferential welding method for double pipes
Riffel et al. An Efficient Alternative for Joining Internally Clad Pipes Using Innovative Welding Techniques and Equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100621

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

R150 Certificate of patent or registration of utility model

Ref document number: 4833574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees