JP2006281201A - Method for preparing metal nanoparticles and structural body of carbon nanofiber - Google Patents

Method for preparing metal nanoparticles and structural body of carbon nanofiber Download PDF

Info

Publication number
JP2006281201A
JP2006281201A JP2006063617A JP2006063617A JP2006281201A JP 2006281201 A JP2006281201 A JP 2006281201A JP 2006063617 A JP2006063617 A JP 2006063617A JP 2006063617 A JP2006063617 A JP 2006063617A JP 2006281201 A JP2006281201 A JP 2006281201A
Authority
JP
Japan
Prior art keywords
carbon
metal
supported
autoclave
carbon nanofibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006063617A
Other languages
Japanese (ja)
Other versions
JP5013722B2 (en
Inventor
Yukihiro Motoyama
幸弘 本山
Hideo Nagashima
英夫 永島
Mikihiro Takasaki
幹大 高崎
Seiko In
聖昊 尹
Isao Mochida
勲 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2006063617A priority Critical patent/JP5013722B2/en
Publication of JP2006281201A publication Critical patent/JP2006281201A/en
Application granted granted Critical
Publication of JP5013722B2 publication Critical patent/JP5013722B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing a structural body having a high activity and durability as a catalyst or the like comprising a carbon material as a support medium on which metal nanoparticles are deposited minutely and uniformly to the extent practicable. <P>SOLUTION: The method comprises a step of transforming a metal carbonyl complex into nanoparticles by heating and refluxing a suspension of a carbon nanofiber and an organic solvent wherein a carbonyl complex of an intended metal is dissolved and/or irradiating the suspension with ultrasonic waves. A platelet carbon nanofiber is particularly preferred for use in the present invention. Thereby a structural body with metal particles of a uniform particle size of nanometers minutely distributed and deposited on its carbon surface is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ナノテクノロジーの技術分野に属し、特に、金属担持触媒等として有用なナノ金属微粒子/炭素ナノ繊維構造体に関する。   The present invention belongs to the technical field of nanotechnology, and particularly relates to a nanometal fine particle / carbon nanofiber structure useful as a metal-supported catalyst or the like.

金属担持触媒は、種々の化成品の触媒的合成に広く用いられているだけでなく、環境触媒や水素貯蔵およびとりだし反応に利用が見込まれている。金属担持触媒の特性は、担持媒体(担体)や担持された金属微粒子の担持形態に大きく依存する。すなわち、触媒機能を有効に発現させるためには、金属粒子径を均一に、しかもできる限り小さくする必要があるが、そうすることで金属微粒子が移動しやすくなり、凝集して粒子径が大きくなり触媒活性が低下する。このような現象を防ぐために、細孔構造を有する表面積の大きな活性炭、二酸化ケイ素、または酸化アルミニウム等の担体に分散させる手法が採られている。   Metal-supported catalysts are not only widely used for catalytic synthesis of various chemical products, but are also expected to be used for environmental catalysts and hydrogen storage and extraction reactions. The characteristics of the metal-supported catalyst largely depend on the support form of the support medium (support) and the supported metal fine particles. In other words, in order to effectively exhibit the catalytic function, it is necessary to make the metal particle diameter uniform and as small as possible. However, by doing so, the metal fine particles can easily move and aggregate to increase the particle diameter. The catalytic activity is reduced. In order to prevent such a phenomenon, a technique of dispersing in a carrier such as activated carbon, silicon dioxide, or aluminum oxide having a pore structure and a large surface area has been adopted.

担持担体の中でも、安価であり、かつ多種多様な大きさの孔を有する多孔性炭素物質である活性炭が、炭素材料として多く用いられている(非特許文献1)。しかし活性炭は、表面の大部分が疎水性であり、反応性に富むエッジ炭素は表面に局在している(非特許文献2、3)。表面はフェノール性水酸基、カルボキシル基、無水カルボン酸、カルボニル基、γおよびδ−ラクトン等様々な酸素官能基を有しており、この部分に金属が優先的に担持されやすい(非特許文献4)。さらに活性炭は、その原料になる炭素物質の種類や製造法により、その微細構造が大きく異なり、表面構造が均質ではないことから、金属を担持した際の金属粒子の分散度や粒子系制御が必ずしも十分ではない。   Among the supported carriers, activated carbon, which is an inexpensive and porous carbon material having pores of various sizes, is often used as a carbon material (Non-patent Document 1). However, most of activated carbon is hydrophobic on the surface, and edge carbon rich in reactivity is localized on the surface (Non-Patent Documents 2 and 3). The surface has various oxygen functional groups such as phenolic hydroxyl groups, carboxyl groups, carboxylic anhydrides, carbonyl groups, γ and δ-lactones, and metals are likely to be preferentially supported on these portions (Non-patent Document 4). . Furthermore, activated carbon has a very different fine structure depending on the type of carbon material used as a raw material and the manufacturing method, and the surface structure is not homogeneous. Therefore, the degree of dispersion and particle system control of the metal particles when the metal is supported are not necessarily limited. Not enough.

近年、ナノ単位(nm = 10億分の1)の新しい炭素材料として、一方向に伸びる中心軸を有する炭素ヘキサゴナル網面からなる繊維状のナノ炭素(いわゆるカーボンナノファイバ:CNF、もしくはグラファイトナノファイバ:GNF)や炭素ナノチューブ(CNT)の製造法が開発され(非特許文献5−9、特許文献1−4)、金属担持担体の微細炭素材として注目されている。これら炭素ナノ繊維へ金属を担持した金属微粒子/炭素ナノ繊維構造体は、金属担持触媒(非特許文献10)、電気化学キャパシタ用電極(特許文献5)、燃料電池用電極(非特許文献11)、電界電子放出型ディスプレイ材料(特許文献6)等への応用が期待されている。   In recent years, as a new carbon material of nano unit (nm = 1 billionth), a fibrous nanocarbon (so-called carbon nanofiber: CNF or graphite nanofiber) composed of a carbon hexagonal network surface having a central axis extending in one direction. : GNF) and carbon nanotube (CNT) production methods have been developed (Non-patent Documents 5-9 and Patent Documents 1-4), and are attracting attention as fine carbon materials for metal-supported carriers. These metal fine particles / carbon nanofiber structures in which metal is supported on carbon nanofibers include metal-supported catalysts (Non-patent Document 10), electrodes for electrochemical capacitors (Patent Document 5), and electrodes for fuel cells (Non-patent Document 11). Application to field electron emission display materials (Patent Document 6) is expected.

炭素ナノ繊維を含めた炭素材料への金属微粒子の一般的な担持方法としては、担持媒体を触媒活性のある金属種の金属塩溶液に懸濁させ物理吸着(含浸)させた後、還元雰囲気下、高温で処理する方法が用いられている。しかしながら、この手法では、金属塩を還元する際に長時間にわたる高温処理が必要であり、それに伴う金属の凝集による分散度や粒子系制御が必ずしも十分ではない。   As a general method for supporting metal fine particles on carbon materials including carbon nanofibers, the support medium is suspended in a metal salt solution of a catalytically active metal species and physically adsorbed (impregnated), and then in a reducing atmosphere. A method of processing at a high temperature is used. However, this method requires a high temperature treatment for a long time when reducing the metal salt, and the degree of dispersion and particle system control due to the aggregation of the metal are not always sufficient.

それに対し、界面活性剤存在下、金属塩を溶液中で水素化ホウ素ナトリウムやカリウム塩で還元してコロイド粒子を形成した後、担持媒体に含浸する方法が報告されている(非特許文献12)。しかしこの含浸法では、金属塩の濃度や溶媒,界面活性剤の種類といった反応条件で、含浸の深さや分散が決まるため、条件設定が難しい。さらに得られる担持触媒に還元剤残渣が混入してしまい、純度の高い担持触媒の合成が難しい。   On the other hand, a method in which a metal salt is reduced with sodium borohydride or potassium salt in a solution in the presence of a surfactant to form colloidal particles and then impregnated into a support medium has been reported (Non-Patent Document 12). . However, in this impregnation method, it is difficult to set conditions because the depth and dispersion of the impregnation are determined by the reaction conditions such as the concentration of the metal salt, the solvent, and the type of surfactant. Furthermore, a reducing agent residue is mixed in the obtained supported catalyst, and it is difficult to synthesize a supported catalyst with high purity.

一方、還元剤残渣の混入を抑えるために、有機金属錯体を前駆体に用いる合成法も知られている。例えば金属カルボニル錯体の熱分解により生成した微粒子を活性炭に担持したコバルト担持炭素触媒(非特許文献13)がある。   On the other hand, in order to suppress the mixing of the reducing agent residue, a synthesis method using an organometallic complex as a precursor is also known. For example, there is a cobalt-supported carbon catalyst (Non-Patent Document 13) in which fine particles generated by thermal decomposition of a metal carbonyl complex are supported on activated carbon.

しかしながら、この方法では熱分解に180℃以上の加熱と界面活性化剤を必要とし、さらに担持コバルト微粒子の平均粒子径は12nmと大きく、その粒子径分布も広い(7〜18nm)。   However, in this method, heating at 180 ° C. or higher and a surfactant are required for thermal decomposition, and the average particle size of the supported cobalt fine particles is as large as 12 nm and the particle size distribution is wide (7 to 18 nm).

[0004]に記載したナノ炭素繊維のうち、ヘキサゴナル網面の端面(エッジ面)の多い炭素ナノ繊維を担持媒担体とした金属担持触媒の合成も知られている。例えば、魚骨状積層や平板積層炭素ナノ繊維に鉄塩(非特許文献16)、ルテニウム塩(非特許文献17)、ニッケル塩(非特許文献18)、白金塩(非特許文献4)を含浸させた後、高温で水素還元する方法が知られている。   Among the nanocarbon fibers described in [0004], the synthesis of a metal-supported catalyst using carbon nanofibers having many hexagonal network end faces (edge faces) as a support medium carrier is also known. For example, fish bone-like laminated or flat laminated carbon nanofibers are impregnated with iron salt (Non-patent document 16), ruthenium salt (Non-patent document 17), nickel salt (Non-patent document 18), platinum salt (Non-patent document 4). A method of hydrogen reduction at a high temperature after the treatment is known.

しかしながら、非特許文献16の方法では、鉄微粒子の平均粒子径は16.2nm、非特許文献18のニッケル微粒子の平均粒子径は6〜8nmとかなり大きい。一方、非特許文献4の方法では、白金微粒子の平均粒子径はで3nmだが、300度での水素雰囲気下の熱処理を必要とし、非特許文献17のルテニウム微粒子の平均粒子径は1.1〜2.2 nmと狭いものの、調整時に液性をpH=0.5の保たなければならず、より容易で簡便な合成方法が望まれている。   However, in the method of Non-Patent Document 16, the average particle size of iron fine particles is 16.2 nm, and the average particle size of Nickel fine particles of Non-Patent Document 18 is considerably large as 6 to 8 nm. On the other hand, in the method of Non-Patent Document 4, although the average particle diameter of platinum fine particles is 3 nm, heat treatment in a hydrogen atmosphere at 300 degrees is required, and the average particle diameter of ruthenium fine particles of Non-Patent Document 17 is 1.1 to 2.2 nm. Although it is narrow, the liquidity must be maintained at pH = 0.5 at the time of adjustment, and an easier and simpler synthesis method is desired.

その他、炭素ナノ繊維に触媒微粒子を担持させた電気化学キャパシタ用電極なども提案されている(特許文献5)が、この特許文献にはその具体的な担持法は特に言及されておらず、従来から知られた上述したような含浸/還元や溶液中での還元に準ずる手法によるものと推察される。
P. N.Rylander, Catalytic Hydrogenetion in Organic Synthesis, Academic Press: New York, 1979 H. P. Boehm,E. Diehl, W. Heck, Rev. Gen. Caoutschouc, 1964, 41, 461 萩原茂示、改訂 炭素材料入門、1984 M. Endo, Y. A. Kim, M. Ezaka, K.Osada, T. Yanagisawa, T. Hayashi, M. Terrones, M. S. Dresselhaus, Nano Lett.2003, 3, 723 H. Murayama, T. Maeda, Nature,1990, 345, 791 A. Chambers, N. M. Rodriguez, R.T. K. Baker, Langmuir, 1995, 11, 3862 M.-S. Kim, Dr. Thesis, Auburn University (1991) A. Tanaka, S.-H. Yoon, I. Mochida, Carbon, 2004, 42, 591 A. Tanaka, S.-H. Yoon, I. Mochida, Carbon, 2004, 42, 1291 P. Serp, M. Corrias, P. Kalck,Applied Catalysis A: General, 2003, 253, 337 K. Sasaki, K. Shinya, S. Tanaka,Y. Kawazoe, T. Kuroki, K. Takata, H. Kusaba, Y. Teraoka, Mater. Res. Soc. Symp. 2005, 835, K7.4.1 A. Roucoux,J. Schulz, H. Patin, Chem. Rev., 2002, 102, 3757 S. U. Son,K. H. Park, Y. K. Chung, Org. Lett. 2002, 4, 3983 J. M.Plancix, N. Goustel, B. Coq, V. Brotons, P. S. Kumbhar, R. Dutartre, P.Geneste, P. Bernier, P. M. Ajayan, J. Am. Chem. Soc., 1994, 116, 7935 H. C. Choi,M. Shim, S. Bangsaruntip, H. Dai, J. Am. Chem. Soc., 2002, 124, 9058 O. C.Carneiro, P. E. Anderson, N. M. Rodriguez, R. T. K. Baker, J. Phys. Chem. B,2004, 108, 13307 M. L.Toebes, F. F. Prinsloo, J. H. Bitter, A. J. van Dillen, K. P. de Jong, J.Catal., 2003, 214, 78 C. Park, R.T. K. Baker, J. Phys. Chem., 1998, 102, 5168 特開昭62−5000943号公報 USP、4,565,683号公報 特開2003−342839号公報 特開2003−342840号公報 特開2005−23468号公報 特開2001−048509号公報
In addition, an electrode for an electrochemical capacitor in which catalyst fine particles are supported on carbon nanofibers has also been proposed (Patent Document 5). However, the specific support method is not particularly mentioned in this patent document, and the related art It is surmised that this is due to a technique similar to the above-described impregnation / reduction or reduction in solution as described above.
PNRylander, Catalytic Hydrogenetion in Organic Synthesis, Academic Press: New York, 1979 HP Boehm, E. Diehl, W. Heck, Rev. Gen. Caoutschouc, 1964, 41, 461 Shigeaki Sugawara, Revised Introduction to Carbon Materials, 1984 M. Endo, YA Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, M. Terrones, MS Dresselhaus, Nano Lett. 2003, 3, 723 H. Murayama, T. Maeda, Nature, 1990, 345, 791 A. Chambers, NM Rodriguez, RTK Baker, Langmuir, 1995, 11, 3862 M.-S. Kim, Dr. Thesis, Auburn University (1991) A. Tanaka, S.-H. Yoon, I. Mochida, Carbon, 2004, 42, 591 A. Tanaka, S.-H. Yoon, I. Mochida, Carbon, 2004, 42, 1291 P. Serp, M. Corrias, P. Kalck, Applied Catalysis A: General, 2003, 253, 337 K. Sasaki, K. Shinya, S. Tanaka, Y. Kawazoe, T. Kuroki, K. Takata, H. Kusaba, Y. Teraoka, Mater. Res. Soc. Symp. 2005, 835, K7.4.1 A. Roucoux, J. Schulz, H. Patin, Chem. Rev., 2002, 102, 3757 SU Son, KH Park, YK Chung, Org. Lett. 2002, 4, 3983 JMPlancix, N. Goustel, B. Coq, V. Brotons, PS Kumbhar, R. Dutartre, P. Geneste, P. Bernier, PM Ajayan, J. Am. Chem. Soc., 1994, 116, 7935 HC Choi, M. Shim, S. Bangsaruntip, H. Dai, J. Am. Chem. Soc., 2002, 124, 9058 OCCarneiro, PE Anderson, NM Rodriguez, RTK Baker, J. Phys. Chem. B, 2004, 108, 13307 MLToebes, FF Prinsloo, JH Bitter, AJ van Dillen, KP de Jong, J. Catal., 2003, 214, 78 C. Park, RTK Baker, J. Phys. Chem., 1998, 102, 5168 JP-A-62-5000943 USP 4,565,683 JP 2003-342839 A JP 2003-342840 A Japanese Patent Laid-Open No. 2005-23468 JP 2001-048509 A

本発明の目的は、炭素材料を担持媒体とし可及的に微細且つ均一にナノメートルサイズの金属微粒子を担持して触媒等として有用な高い活性と耐久性を示す構造体を調製する新しい技術を提供することにある。   An object of the present invention is to develop a new technique for preparing a structure having high activity and durability useful as a catalyst by supporting nanometer-sized metal fine particles as finely and uniformly as possible using a carbon material as a support medium. It is to provide.

本発明者らは鋭意検討を行なった結果、反応性に富むヘキサゴナル網面の端面(エッジ面)の含有率が高い炭素材料である炭素ナノ繊維を担持担体として用い、金属カルボニル化合物を金属微粒子源とすることによって、如上の目的が達成されることを見出し、本発明を導き出した。   As a result of intensive studies, the inventors of the present invention have used carbon nanofibers, which are carbon materials having a high content of the end surface (edge surface) of the hexagonal network surface, which are rich in reactivity, as a support, and a metal carbonyl compound as a metal fine particle source. Thus, the inventors have found that the above object can be achieved, and have derived the present invention.

かくして、本発明は、ナノメートルサイズの金属微粒子が炭素ナノ繊維に担持されたナノ金属微粒子/炭素ナノ繊維構造体を製造する方法であって、目的の金属のカルボニル錯体を溶かした有機溶媒中に炭素ナノ繊維を懸濁させて、前記金属カルボニル錯体をナノ微粒子化する工程を含むことを特徴とする方法を提供するものである。   Thus, the present invention is a method for producing a nanometal fine particle / carbon nanofiber structure in which nanometer-sized metal fine particles are supported on carbon nanofibers, in an organic solvent in which a carbonyl complex of the target metal is dissolved. The present invention provides a method characterized by comprising a step of suspending carbon nanofibers to form nanoparticles of the metal carbonyl complex.

本発明に従えば、炭素ナノ繊維を懸濁させたカルボニル錯体溶液を加熱還流するなど、極めて簡便な操作で、粒子径の制御された金属微粒子が炭素表面に高度に分散したナノ金属微粒子担持炭素ナノ繊維から成る構造体が得られる。   According to the present invention, nano metal fine particle-supported carbon in which metal fine particles with a controlled particle diameter are highly dispersed on the carbon surface by a very simple operation such as heating and refluxing a carbonyl complex solution in which carbon nano fibers are suspended. A structure composed of nanofibers is obtained.

本発明において用いられる炭素ナノ繊維(カーボンファイバー)とは、よく知られているように、サブミクロンオーダーの繊維径をもつ炭素繊維であり、図1に示すように、炭素ヘキサゴナル網面の板状体の積層構造が繊維軸に垂直なもの、約20〜80度の傾斜角度をもつもの、あるいは平行なものの3種類に分類され、それぞれ、プレートレット(平板積層)、ヘリングボーン(魚骨状積層)、チューブラー(筒状)と名付けられている(例えば、「N. M. Rodriguez, J. Mater. Res. 1993, 8, 3233」、「高圧ガス、Vol.41, No.2, 10-18頁(2004)」参照)。本明細書および図面においては、プレートレット(平板積層)炭素ナノ繊維をCNF−P、ヘリングボーン(魚骨状積層)炭素ナノ繊維をCNF−H、チューブラー(筒状)炭素ナノ繊維をCNF−Tと略記していることがある(図1参照)。なお、この分類に従うと、単層炭素ナノチューブ(SWCNT)および多層ナノチューブ(MWCNT)は、チューブラー炭素ナノ繊維に含まれ、本発明に関連して用いるチューブラー炭素ナノ繊維という語はSWCNTおよびMWCNTを含むものとする:多層(MWCNT)も含みます。ナノ炭素繊維の構造や物性は、合成触媒、炭素源、合成条件(温度)の組み合わせで決定される。このような炭素ナノ繊維は、公知の方法で得ることができる(例えば、非特許文献5、6、特許文献1−4)。また、米国のCatalytic Materials LLC社から、CNF−Pについては「Platelet GNF」、CNF−Hについては「Herringbone」、CNF−Tについては「Multi-walled Nanotubes」の商品名で、いずれも純度99.0%の製品として販売されている。本発明においては、このような炭素ナノ繊維で、表面にアモルファス層がなく、エッジ面が表面に露出したものが好ましい(例えば、特許文献3、4、ならびにCNF−Hについては非特許文献8、CNF−PおよびCNF−Tについては非特許文献8、9)。   As is well known, the carbon nanofiber (carbon fiber) used in the present invention is a carbon fiber having a fiber diameter of submicron order, and as shown in FIG. Laminate structure of the body is classified into three types: those perpendicular to the fiber axis, those having an inclination angle of about 20-80 degrees, and those parallel to each other. Platelet (plate lamination), herringbone (fishbone lamination) ), Tubular (tubular) (for example, “NM Rodriguez, J. Mater. Res. 1993, 8, 3233”, “High Pressure Gas, Vol. 41, No. 2, pages 10-18 ( 2004) ”). In the present specification and drawings, platelet (flat laminate) carbon nanofibers are CNF-P, herringbone (fishbone laminate) carbon nanofibers are CNF-H, and tubular (tubular) carbon nanofibers are CNF-. Sometimes abbreviated as T (see FIG. 1). According to this classification, single-walled carbon nanotubes (SWCNT) and multi-walled nanotubes (MWCNT) are included in tubular carbon nanofibers, and the term tubular carbon nanofibers used in connection with the present invention is SWCNT and MWCNT. Include: Including multilayer (MWCNT). The structure and physical properties of the nanocarbon fiber are determined by a combination of a synthesis catalyst, a carbon source, and a synthesis condition (temperature). Such carbon nanofibers can be obtained by a known method (for example, Non-Patent Documents 5 and 6, and Patent Documents 1-4). In addition, from Catalytic Materials LLC in the United States, CNF-P is the product name “Platelet GNF”, CNF-H is “Herringbone”, and CNF-T is the product name “Multi-walled Nanotubes”. It is sold as a product. In the present invention, such carbon nanofibers having an amorphous layer on the surface and an edge surface exposed on the surface are preferable (for example, Patent Documents 3 and 4 and Non-Patent Document 8 for CNF-H, Regarding CNF-P and CNF-T, Non-Patent Documents 8 and 9).

本発明の方法は、本質的に、金属のカルボニル錯体を溶かした有機溶媒中に如上の炭素ナノ繊維を懸濁させてそのカルボニル錯体をナノ微粒子化するという簡便な操作のみから成る。ここで、カルボニル錯体のナノ微粒子化は、一般に、カルボニル錯体を溶解し炭素ナノ繊維を懸濁させた液を加熱還流することによって行なわれる。すなわち、有機溶媒として、金属カルボニル錯体を溶かし炭素ナノ繊維を懸濁させ得るものを用い、有機溶媒の沸点以下でカルボニル錯体の分解が起こる温度で加熱還流すればよい。例えば、金属カルボニル錯体がRu3(CO)12の場合は、トルエンを用いて当該錯体を溶解し炭素ナノ繊維を懸濁させた懸濁液を100℃前後の温度で加熱還流する。金属カルボニル錯体の種類によってはこれより低温の加熱還流も可能であり、また、上記の要件を満たす限り、他の有機溶媒(例えば、ベンゼン、ジクロロエタンなど)を使用することもできる。 The method of the present invention essentially consists of a simple operation of suspending the above carbon nanofibers in an organic solvent in which a metal carbonyl complex is dissolved to form the carbonyl complex into nanoparticles. Here, nanoparticulation of the carbonyl complex is generally performed by heating and refluxing a solution in which the carbonyl complex is dissolved and the carbon nanofibers are suspended. That is, an organic solvent capable of dissolving a metal carbonyl complex and suspending carbon nanofibers may be used and heated to reflux at a temperature at which decomposition of the carbonyl complex occurs below the boiling point of the organic solvent. For example, when the metal carbonyl complex is Ru 3 (CO) 12 , a suspension in which the complex is dissolved using toluene and the carbon nanofibers are suspended is heated to reflux at a temperature of about 100 ° C. Depending on the type of metal carbonyl complex, heating and refluxing at a lower temperature is possible, and other organic solvents (for example, benzene, dichloroethane, etc.) can be used as long as the above requirements are satisfied.

金属カルボニル錯体のナノ微粒子化は、当該金属カルボニル錯体の種類に応じて、如上の加熱還流の代わりに、あるいは加熱還流に加えて、金属カルボニルを溶解し炭素ナノ繊維を懸濁させた有機溶媒液に超音波を照射することによっても行なうことができる。例えば、金属カルボニル錯体としてFe(CO)5を用いる場合には、超音波照射だけでも鉄担持炭素ナノ繊維から成る構造体を得ることができる。 Depending on the type of the metal carbonyl complex, the metal carbonyl complex may be formed into an organic solvent solution in which the metal carbonyl is dissolved and the carbon nanofibers are suspended instead of or in addition to the above heating reflux. It can also be carried out by irradiating with ultrasonic waves. For example, when Fe (CO) 5 is used as the metal carbonyl complex, a structure composed of iron-supported carbon nanofibers can be obtained only by ultrasonic irradiation.

以上のような加熱還流および/または超音波照射工程の生成物は、その後、ろ過、洗浄および乾燥に供され、所望の構造体が得られる。このようにして得られた本発明の金属微粒子/炭素繊維構造体は、炭素繊維のナノ構造に特徴的な構造を呈している。すなわち、ナノメートルサイズの比較的均一な粒子径の金属微粒子が、平板積層(型)炭素ナノ繊維では炭素表面に、魚骨状積層(型)炭素ナノ繊維では表面ならびにヘキサゴナル網面の間、筒状炭素ナノ繊維では表面ならびに筒内に高度に分散した構造を呈している。したがって、本発明のナノメートルサイズの均一な金属微粒子が炭素表面に高分散で担持されたナノ金属微粒子/炭素ナノ繊維構造体の製造方法においては、炭素ナノ繊維として平板積層(型)炭素ナノ繊維を用いることが特に好ましい。   The product of the heating reflux and / or ultrasonic irradiation process as described above is then subjected to filtration, washing and drying to obtain a desired structure. The metal fine particle / carbon fiber structure of the present invention thus obtained exhibits a structure characteristic of the carbon fiber nanostructure. That is, nanometer-sized metal fine particles having a relatively uniform particle diameter are formed on the carbon surface in the flat layered (type) carbon nanofiber, and between the surface and the hexagonal network surface in the fishbone type (type) carbon nanofiber. The carbon nanofibers have a highly dispersed structure on the surface and in the cylinder. Therefore, in the method for producing a nanometal fine particle / carbon nanofiber structure in which nanometer-sized uniform metal fine particles are supported on a carbon surface in a highly dispersed state according to the present invention, a flat plate laminated (type) carbon nanofiber is used as the carbon nanofiber. It is particularly preferable to use

本発明が適用される金属の種類は特に限定されるものではなく、カルボニル錯体を形成し得る各種の金属について本発明を適用することができる。本発明において使用されるのに好ましい金属カルボニル錯体として、Ru3(CO)12、Co2(CO)8、Fe(CO)5、Os3(CO)12、Rh4(CO)12、Rh6(CO)16、Ir4(CO)12、Cr(CO)6、W(CO)6、またはMn2(CO)10などが挙げられ、このうち、周期表第8族および第9族に属する金属のカルボニル錯体が特に好ましい。これらの金属カルボニル錯体を用いることにより、それぞれの金属の機能に応じた用途のナノ金属微粒子/炭素ナノ繊維構造体を調製することができる。 The kind of metal to which the present invention is applied is not particularly limited, and the present invention can be applied to various metals that can form a carbonyl complex. Preferred metal carbonyl complexes for use in the present invention include Ru 3 (CO) 12 , Co 2 (CO) 8 , Fe (CO) 5 , Os 3 (CO) 12 , Rh 4 (CO) 12 , Rh 6. (CO) 16 , Ir 4 (CO) 12 , Cr (CO) 6 , W (CO) 6 , Mn 2 (CO) 10, etc., among these, belonging to Groups 8 and 9 of the periodic table Metal carbonyl complexes are particularly preferred. By using these metal carbonyl complexes, it is possible to prepare nanometal fine particles / carbon nanofiber structures for use according to the function of each metal.

例えば、本発明のナノ金属微粒子/炭素ナノ繊維構造体の好ましい適用例として、該構造体から成るナノ金属微粒子担持触媒が挙げられ、特に、平板積層(型)炭素ナノ繊維を用いて如上の金属カルボニル錯体を加熱還元によりナノ微粒子化することにより、触媒活性能の優れたナノ金属微粒子担持触媒が得られる。これは、ナノメートルサイズの均一な金属微粒子が高活性を保持した状態で炭素表面に分散されているためと理解される。   For example, a preferred application example of the nanometal fine particle / carbon nanofiber structure of the present invention is a nanometal fine particle-supported catalyst composed of the structure, and in particular, the above metal using a flat-plate (type) carbon nanofiber. By converting the carbonyl complex into nanoparticles by heat reduction, a catalyst supporting nanometal particles having excellent catalytic activity can be obtained. This is understood to be because nanometer-sized uniform metal fine particles are dispersed on the carbon surface while maintaining high activity.

なお、一般に、炭素ナノ繊維のような微粉末は飛散し易く取扱いにくいため、再利用が困難である。しかしながら、本発明に従うナノ金属微粒子担持触媒を用いて触媒反応を行なうに当っては、有機溶媒にポリエチレングリコールを添加することにより、反応後に触媒(ナノ金属微粒子/炭素ナノ繊維構造体)と生成物とを容易に分離することができるので再利用も可能である(後述の実施例21〜23参照)。   In general, fine powders such as carbon nanofibers are difficult to reuse because they are easily scattered and difficult to handle. However, in performing the catalytic reaction using the nanometal fine particle supported catalyst according to the present invention, the catalyst (nanometal fine particle / carbon nanofiber structure) and the product are added after the reaction by adding polyethylene glycol to the organic solvent. And can be reused (see Examples 21 to 23 described later).

以下に、本発明の特徴をさらに具体的に説明するため、実施例を示すが、本発明はこれらによって何ら限定されるものではない。
なお、本発明で用いた炭素ナノ繊維は、上述の文献(非特許文献7−9)に従って合成したものを用いた。具体的には、プレートレット型カーボンナノファイバーは鉄触媒で一酸化炭素から600°Cで合成した。鉄触媒は、硝酸鉄の水溶液に重炭酸アンモニウムを加えて形成した沈殿物を濾過・洗浄し、400°C、空気で焼成した後、500°C、水素で還元して調製した[非特許文献19−21]。へリングボーン型とチューブラー型カーボンナノファイバーは、各々、Ni−Cu(8/2wt)触媒/エチレン/580°CとFe−Ni(6/4wt)触媒/一酸化炭素/640°Cで合成した。Ni−Cu及びFe−Ni合金触媒は、それぞれの硝酸塩を前駆体として鉄金属触媒の調製と同一方法で製造した。カーボンナノファイバー合成装置はシリカチューブを設置した水平型電気炉を用いて、ガス流量はマスフロー制御器で精密に調整した[非特許文献19]。所定量の触媒を反応炉に設置し、He/H(4/1v/v)の雰囲気で合成温度に昇温して2時間処理し、反応ガスCO/HあるいはC/H混合ガスに切り替えてカーボンナノファイバーの合成を行った。
In order to describe the features of the present invention more specifically, examples will be shown below, but the present invention is not limited to these examples.
In addition, the carbon nanofiber used by this invention used what was synthesize | combined according to the above-mentioned literature (nonpatent literature 7-9). Specifically, platelet-type carbon nanofibers were synthesized from carbon monoxide at 600 ° C with an iron catalyst. The iron catalyst was prepared by filtering and washing the precipitate formed by adding ammonium bicarbonate to an aqueous solution of iron nitrate, calcining with air at 400 ° C, and reducing with hydrogen at 500 ° C. 19-21]. Herringbone and tubular carbon nanofibers were synthesized with Ni-Cu (8/2 wt) catalyst / ethylene / 580 ° C and Fe-Ni (6/4 wt) catalyst / carbon monoxide / 640 ° C, respectively. did. Ni-Cu and Fe-Ni alloy catalysts were produced by the same method as the preparation of the iron metal catalyst using the respective nitrates as precursors. The carbon nanofiber synthesizer used a horizontal electric furnace with a silica tube, and the gas flow rate was precisely adjusted with a mass flow controller [Non-Patent Document 19]. A predetermined amount of catalyst is placed in the reaction furnace, heated to the synthesis temperature in an atmosphere of He / H 2 (4/1 v / v), treated for 2 hours, and the reaction gas CO / H 2 or C 2 H 4 / H The carbon nanofibers were synthesized by switching to two mixed gases.

実施例1〜実施例7は、実施例4を除き、本発明に従う金属微粒子担持炭素ナノ繊維から成る構造体の調製例である。実施例4は、比較のために、担持媒体として活性炭を用いて同様の操作で合成した場合の結果を示すものである。
実施例8〜実施例23は、本発明によって得られる金属微粒子担持炭素ナノ繊維から成る構造体の有用性を示す1例として、実施例1で調製した構造体を不飽和化合物の水素化反応用触媒に適用した場合の結果を示すものである。
Tanaka A,Yoon S-H, Mochida I. Preparation of highly crystalline nanofibers on Fe andFe-Ni catalysts with a variety of graphene plane alignments. Carbon 2004; 42 (3):591-597. Best RJ,Russell WW. Nickel, copper and some of their alloys as catalysts for ethylenehydrogenation. J Am Chem Soc 1954; 76: 838-842. Sinfelt JH,Carter JL, Yates DJC. Catalytic hydrogenolysis and dehydrogenation overcopper-nickel alloys. J Catal 1972; 24: 283-296.
Examples 1 to 7 are preparation examples of structures composed of metal nanoparticle-supported carbon nanofibers according to the present invention, except for Example 4. For comparison, Example 4 shows the results when synthesized in the same manner using activated carbon as the carrier medium.
In Examples 8 to 23, the structure prepared in Example 1 was used for hydrogenation reaction of unsaturated compounds as an example showing the usefulness of the structure composed of carbon nanofibers supporting metal fine particles obtained by the present invention. The result at the time of applying to a catalyst is shown.
Tanaka A, Yoon SH, Mochida I. Preparation of highly crystalline nanofibers on Fe and Fe-Ni catalysts with a variety of graphene plane alignments.Carbon 2004; 42 (3): 591-597. Best RJ, Russell WW.Nickel, copper and some of their alloys as catalysts for ethylenehydrogenation.J Am Chem Soc 1954; 76: 838-842. Sinfelt JH, Carter JL, Yates DJC. Catalytic hydrogenolysis and dehydrogenation overcopper-nickel alloys. J Catal 1972; 24: 283-296.

〔実施例1〕
ルテニウム担持平板積層炭素ナノ繊維構造体(Ru/CNF−P)の合成
30mLの2口フラスコの片方に上部に三方コックをつけた冷却管、もう一方に活栓を付け、磁気撹拌子を加えて9Torrで減圧乾燥した後、フラスコ内をアルゴン雰囲気に置換した。平板積層炭素ナノ繊維(100mg)とRu3(CO)12(31.9mg、0.05mmol)をフラスコに加え、0.04Torrで約10分減圧乾燥した後、再びアルゴン雰囲気に置換した。トルエン(17mL)をシリンジで加えて錯体を溶解した。この炭素繊維が懸濁した錯体溶液を24時間加熱還流した。反応物を室温まで冷却した後、メンブランろ紙を用いてろ取し、そのままトルエン(50mL)と引き続きエーテル(50mL)で洗浄した。得られた炭素繊維を30mLナスフラスコに移し、その上部に三方コックをつけた後、0.04Torrの減圧下、室温で乾燥することにより、ルテニウム担持平板積層炭素ナノ繊維構造体(Ru/CNF−P)(102mg)を得た。
以上の操作により得られたRu/CNF−Pのルテニウム担持量をICP−MS(ICP質量分析)により測定したところ、約1.6〜1.7重量%であった。
また、以上の操作により得られた炭素ナノ繊維構造体について、透過型電子顕微鏡(TEM)によりルテニウム金属微粒子の担持状態を確認した結果を図2に示す。図2から金属微粒子が炭素繊維表面のヘキサゴン平面の末端に担持されているのがわかる。さらに平均粒子径を計測したところ、約2.5nmであった。
[Example 1]
Synthesis of Ruthenium-Supported Flat Laminated Carbon Nanofiber Structure (Ru / CNF-P)
A cooling tube with a three-way cock attached to the top of one side of a 30 mL two-necked flask and a stopcock on the other side, a magnetic stirrer was added and dried under reduced pressure at 9 Torr, and then the atmosphere in the flask was replaced with an argon atmosphere. Flat laminated carbon nanofibers (100 mg) and Ru 3 (CO) 12 (31.9 mg, 0.05 mmol) were added to the flask, dried under reduced pressure at 0.04 Torr for about 10 minutes, and then replaced with an argon atmosphere again. Toluene (17 mL) was added with a syringe to dissolve the complex. The complex solution in which the carbon fibers were suspended was heated to reflux for 24 hours. After the reaction product was cooled to room temperature, it was filtered using a membrane filter paper, and washed as it was with toluene (50 mL) and then with ether (50 mL). The obtained carbon fiber was transferred to a 30 mL eggplant flask, a three-way cock was attached to the top, and then dried at room temperature under a reduced pressure of 0.04 Torr to obtain a ruthenium-supported flat-plate laminated carbon nanofiber structure (Ru / CNF-P ) (102 mg) was obtained.
The ruthenium loading of Ru / CNF-P obtained by the above operation was measured by ICP-MS (ICP mass spectrometry) and found to be about 1.6 to 1.7% by weight.
Moreover, about the carbon nanofiber structure obtained by the above operation, the result of having confirmed the supporting state of the ruthenium metal fine particle with the transmission electron microscope (TEM) is shown in FIG. It can be seen from FIG. 2 that the metal fine particles are supported at the end of the hexagon plane on the carbon fiber surface. Furthermore, when the average particle diameter was measured, it was about 2.5 nm.

〔実施例2〕
ルテニウム担持魚骨型積層炭素ナノ繊維構造体(Ru/CNF−H)の合成
30mLの2口フラスコの片方に上部に三方コックをつけた冷却管、もう一方に活栓を付け、磁気撹拌子を加えて9Torrで減圧乾燥した後、フラスコ内をアルゴン雰囲気に置換した。魚骨型積層炭素ナノ繊維(100mg)とRu3(CO)12(31.9mg、0.05mmol)をフラスコに加え、0.04Torrで約10分減圧乾燥した後、再びアルゴン雰囲気に置換した。トルエン(17mL)をシリンジで加えて錯体を溶解した。この炭素繊維が懸濁した錯体溶液を24時間加熱還流した。反応物を室温まで冷却した後、メンブランろ紙を用いてろ取し、そのままトルエン(50mL)と引き続きエーテル(50mL)で洗浄した。得られた炭素繊維を30mLナスフラスコに移し、その上部に三方コックをつけた後、0.04Torrの減圧下、室温で乾燥することにより、ルテニウム担持魚骨型積層炭素ナノ繊維構造体(Ru/CNF−H)(104mg)を得た。
以上の操作により得られたRu/CNF−Hのルテニウム担持量をICP−MSにより測定したところ、約1.1〜1.6重量%であった。
また、得られた炭素ナノ繊維構造体について、透過型電子顕微鏡(TEM)によりルテニウム金属微粒子の担持状態を確認した結果を図3に示す。図3から、実施例1の構造体に比べて炭素繊維表面に担持されている金属微粒子は少なくなっており、欠陥格子部および炭素繊維のグラファイト層間にも担持されているのがわかる。平均粒子径を計測したところ約3.0 nmであった。
[Example 2]
Synthesis of ruthenium-carrying fishbone-type laminated carbon nanofiber structure (Ru / CNF-H)
A cooling tube with a three-way cock attached to the top of one side of a 30 mL two-necked flask and a stopcock on the other side, a magnetic stirrer was added and dried under reduced pressure at 9 Torr, and then the atmosphere in the flask was replaced with an argon atmosphere. Fish bone-type laminated carbon nanofiber (100 mg) and Ru 3 (CO) 12 (31.9 mg, 0.05 mmol) were added to the flask, dried under reduced pressure at 0.04 Torr for about 10 minutes, and then replaced with an argon atmosphere again. Toluene (17 mL) was added with a syringe to dissolve the complex. The complex solution in which the carbon fibers were suspended was heated to reflux for 24 hours. After the reaction product was cooled to room temperature, it was filtered using a membrane filter paper, and washed as it was with toluene (50 mL) and then with ether (50 mL). The obtained carbon fiber was transferred to a 30 mL eggplant flask, and a three-way cock was attached to the top, followed by drying at room temperature under a reduced pressure of 0.04 Torr to obtain a ruthenium-carrying fishbone-type laminated carbon nanofiber structure (Ru / CNF). -H) (104 mg) was obtained.
When the ruthenium loading of Ru / CNF-H obtained by the above operation was measured by ICP-MS, it was about 1.1 to 1.6% by weight.
Moreover, about the obtained carbon nanofiber structure, the result of having confirmed the supporting state of the ruthenium metal fine particle with the transmission electron microscope (TEM) is shown in FIG. FIG. 3 shows that the number of metal fine particles supported on the carbon fiber surface is smaller than that of the structure of Example 1, and is also supported between the defect lattice portion and the graphite layer of the carbon fiber. The average particle size was measured and found to be about 3.0 nm.

〔実施例3〕
ルテニウム担持円筒型積層炭素ナノ繊維構造体(Ru/CNF−T)の合成
30mLの2口フラスコの片方に上部に三方コックをつけた冷却管、もう一方に活栓を付け、磁気撹拌子を加えて9Torrで減圧乾燥した後、フラスコ内をアルゴン雰囲気に置換した。円筒型積層炭素ナノ繊維(100mg)とRu3(CO)12(31.9mg、0.05mmol)をフラスコに加え、0.04Torrで約10分減圧乾燥した後、再びアルゴン雰囲気に置換した。トルエン(17mL)をシリンジで加えて錯体を溶解した。この炭素繊維が懸濁した錯体溶液を24時間加熱還流した。反応物を室温まで冷却した後、メンブランろ紙を用いてろ取し、そのままトルエン(50mL)と引き続きエーテル(50mL)で洗浄した。得られた炭素繊維を30MLナスフラスコに移し、その上部に三方コックをつけた後、0.04Torrの減圧下、室温で乾燥することにより、ルテニウム担持円筒型積層炭素ナノ繊維(Ru/CNF−T)(122mg)を得た。
以上のようにして得られたRu/CNF−Tのルテニウム担持量をICP−MSにより測定したところ、約1.1〜3.8重量%であった。
また、得られた炭素ナノ繊維構造体について、透過型電子顕微鏡(TEM)によりルテニウム金属微粒子の担持状態を確認した結果を図4に示す。図4から、炭素繊維表面に担持されている金属微粒子は少なく、一部2-3nmの微粒子も見られるが、凝集のため大きな金属微粒子も確認できる。凝集したものを除いた微粒子の平均粒子径を計測したところ、約2.7nmであった。
Example 3
Synthesis of ruthenium-supported cylindrical laminated carbon nanofiber structure (Ru / CNF-T)
A cooling tube with a three-way cock attached to the top of one side of a 30 mL two-necked flask and a stopcock on the other side, a magnetic stirrer was added and dried under reduced pressure at 9 Torr, and then the atmosphere in the flask was replaced with an argon atmosphere. Cylindrical laminated carbon nanofibers (100 mg) and Ru 3 (CO) 12 (31.9 mg, 0.05 mmol) were added to the flask, dried under reduced pressure at 0.04 Torr for about 10 minutes, and then replaced with an argon atmosphere again. Toluene (17 mL) was added with a syringe to dissolve the complex. The complex solution in which the carbon fibers were suspended was heated to reflux for 24 hours. After the reaction product was cooled to room temperature, it was filtered using a membrane filter paper, and washed as it was with toluene (50 mL) and then with ether (50 mL). The obtained carbon fiber was transferred to a 30 ML eggplant flask, and a three-way cock was attached to the top thereof, followed by drying at room temperature under a reduced pressure of 0.04 Torr, thereby ruthenium-supported cylindrical laminated carbon nanofiber (Ru / CNF-T) (122 mg) was obtained.
The amount of Ru / CNF-T obtained as described above was supported by ICP-MS and was about 1.1 to 3.8% by weight.
Moreover, about the obtained carbon nanofiber structure, the result of having confirmed the supporting state of the ruthenium metal microparticles | fine-particles with the transmission electron microscope (TEM) is shown in FIG. From FIG. 4, few metal fine particles are supported on the carbon fiber surface, and some of the fine particles have a size of 2-3 nm, but large metal fine particles can also be confirmed due to aggregation. When the average particle diameter of the fine particles excluding the aggregated particles was measured, it was about 2.7 nm.

〔実施例4〕
ルテニウム担持活性炭(Ru/AC)の合成
100mLの2口フラスコの片方に上部に三方コックをつけた冷却管、もう一方に活栓を付け、磁気撹拌子を加えて9Torrで減圧乾燥した後、フラスコ内をアルゴン雰囲気に置換した。活性炭(関東化学Cat.No. 01085-02)(300mg)とRu3(CO)12(95.8mg、0.15mmol)をフラスコに加え、0.04Torrで約10分減圧乾燥した後、再びアルゴン雰囲気に置換した。トルエン(50mL)をシリンジで加えて錯体を溶解した。この活性炭が懸濁した錯体溶液を24時間加熱還流した。反応物を室温まで冷却した後、メンブランろ紙を用いてろ取し、そのままトルエン(60mL)と引き続きエーテル(80mL)で洗浄した。得られた活性炭を30MLナスフラスコに移し、その上部に三方コックをつけた後、0.04Torrの減圧下、室温で乾燥することにより、ルテニウム担持活性炭(Ru/AC)(349.4mg)を得た。
以上のようにして得られたRu/ACのルテニウム担持量をICP−MSにより測定したところ、約1.3〜1.4重量%であった。
また、得られたRu担持活性炭について、透過型電子顕微鏡(TEM)によりルテニウム金属微粒子の担持状態を確認した結果を図5に示す。図5から金属微粒子は活性炭表面にはあまり担持されておらず、活性炭特有の孔の中に入り込んでいるのが確認できる。平均粒子径を計測したところ約2.9 nmであった。
Example 4
Synthesis of ruthenium-supported activated carbon (Ru / AC)
A cooling tube with a three-way cock attached to the top of one side of a 100 mL two-necked flask and a stopcock on the other side, a magnetic stirrer was added and dried under reduced pressure at 9 Torr, and then the atmosphere in the flask was replaced with an argon atmosphere. Activated charcoal (Kanto Chemical Cat. No. 01085-02) (300 mg) and Ru 3 (CO) 12 (95.8 mg, 0.15 mmol) are added to the flask, dried under reduced pressure at 0.04 Torr for about 10 minutes, and then replaced with an argon atmosphere again. did. Toluene (50 mL) was added with a syringe to dissolve the complex. The complex solution in which the activated carbon was suspended was heated to reflux for 24 hours. After the reaction product was cooled to room temperature, it was filtered using a membrane filter paper, and washed as it was with toluene (60 mL) and then with ether (80 mL). The obtained activated carbon was transferred to a 30 ML eggplant flask, and a three-way cock was attached to the upper portion thereof, followed by drying at room temperature under a reduced pressure of 0.04 Torr to obtain ruthenium-supported activated carbon (Ru / AC) (349.4 mg).
The ruthenium loading of Ru / AC obtained as described above was measured by ICP-MS and found to be about 1.3 to 1.4% by weight.
Moreover, about the obtained Ru carrying | support activated carbon, the result of having confirmed the carrying | support state of the ruthenium metal fine particle with the transmission electron microscope (TEM) is shown in FIG. From FIG. 5, it can be confirmed that the metal fine particles are not supported so much on the surface of the activated carbon and have entered the pores specific to the activated carbon. The average particle size was measured and found to be about 2.9 nm.

〔実施例5〕
コバルト担持平板積層炭素ナノ繊維構造体(Co/CNF−P)の合成
100mLの2口フラスコの片方に上部に三方コックをつけた冷却管、もう一方に活栓を付け、磁気撹拌子を加えて9Torrで減圧乾燥した後、フラスコ内をアルゴン雰囲気に置換した。平板積層炭素ナノ繊維(300mg)とCo2(CO)8(51.3mg、0.15mmol)をフラスコに加え、0.04Torrで約10分減圧乾燥した後、再びアルゴン雰囲気に置換した。トルエン(50mL)をシリンジで加えて錯体を溶解した。この活性炭が懸濁した錯体溶液を24時間加熱還流した。反応物を室温まで冷却した後、メンブランろ紙を用いてろ取し、そのままトルエン(60mL)と引き続きエーテル(80mL)で洗浄した。得られた活性炭を30mLナスフラスコに移し、その上部に三方コックをつけた後、0.04Torrの減圧下、室温で乾燥することにより、コバルト担持平板積層炭素ナノ繊維構造体(Co/CNF−P)(317mg)を得た。
Example 5
Synthesis of Cobalt-Supported Flat Plate Carbon Nanofiber Structure (Co / CNF-P)
A cooling tube with a three-way cock attached to the top of one side of a 100 mL two-necked flask and a stopcock on the other side, a magnetic stirrer was added and dried under reduced pressure at 9 Torr, and then the atmosphere in the flask was replaced with an argon atmosphere. Flat laminated carbon nanofibers (300 mg) and Co 2 (CO) 8 (51.3 mg, 0.15 mmol) were added to the flask, dried under reduced pressure at 0.04 Torr for about 10 minutes, and then replaced with an argon atmosphere again. Toluene (50 mL) was added with a syringe to dissolve the complex. The complex solution in which the activated carbon was suspended was heated to reflux for 24 hours. After the reaction product was cooled to room temperature, it was filtered using a membrane filter paper, and washed as it was with toluene (60 mL) and then with ether (80 mL). The obtained activated carbon was transferred to a 30 mL eggplant flask, a three-way cock was attached to the upper part, and then dried at room temperature under a reduced pressure of 0.04 Torr, whereby a cobalt-supported flat-plate laminated carbon nanofiber structure (Co / CNF-P) (317 mg) was obtained.

〔実施例6〕
超音波発生機を用いたルテニウム担持平板積層炭素ナノ繊維構造体(Ru/CNF−P−US)の合成
100mLの2方コック付き2口フラスコの片方に上部に三方コックをつけた冷却管、2方コックに真空ラインを繋げ、超音波発生機(トミー精工社製:UD-201)をフラスコ上部に連結し、磁気撹拌子を加えて9Torrで減圧乾燥した後、フラスコ内をアルゴン雰囲気に置換した。平板積層炭素ナノ繊維(300mg)とRu(CO)12(95.8mg、0.15mmol)をフラスコに加え、0.04Torrで約10分減圧乾燥した後、再びアルゴン雰囲気に置換した。トルエン(50mL)をシリンジで加えて錯体を溶解した。この炭素繊維が懸濁した錯体溶液に超音波(OUTPUT=5、DUTY=30)を発生し続けて、24時間加熱還流した。反応物を室温まで冷却した後、メンブランろ紙を用いてろ取し、そのままトルエン(60mL)と引き続きエーテル(80mL)で洗浄した。得られた炭素繊維を30mLナスフラスコに移し、の上部に三方コックをつけた後、0.04Torrの減圧下、室温で乾燥することにより、ルテニウム担持板積層炭素ナノ繊維構造体(Ru/CNF−P−US)(325mg)を得た。
Example 6
Synthesis of Ruthenium-Supported Flat Laminated Carbon Nanofiber Structure (Ru / CNF-P-US) Using Ultrasonic Generator
A cooling tube with a three-way cock at the top of one side of a 100 mL two-necked flask, a vacuum line connected to the two-way cock, and an ultrasonic generator (Tomy Seiko Co., Ltd .: UD-201) connected to the top of the flask After adding a magnetic stir bar and drying under reduced pressure at 9 Torr, the inside of the flask was replaced with an argon atmosphere. Flat laminated carbon nanofibers (300 mg) and Ru 3 (CO) 12 (95.8 mg, 0.15 mmol) were added to the flask, dried under reduced pressure at 0.04 Torr for about 10 minutes, and then replaced with an argon atmosphere again. Toluene (50 mL) was added with a syringe to dissolve the complex. Ultrasonic waves (OUTPUT = 5, DUTY = 30) were continuously generated in the complex solution in which the carbon fibers were suspended, and the mixture was heated to reflux for 24 hours. After the reaction product was cooled to room temperature, it was filtered using a membrane filter paper, and washed as it was with toluene (60 mL) and then with ether (80 mL). The obtained carbon fiber was transferred to a 30 mL eggplant flask, and a three-way cock was attached to the top, and then dried at room temperature under a reduced pressure of 0.04 Torr to obtain a ruthenium-supported laminated carbon nanofiber structure (Ru / CNF-P). -US) (325 mg) was obtained.

〔実施例7〕
超音波発生機を用いた鉄担持平板積層炭素ナノ繊維構造体(Fe/CNF−P−US)の合成
30mLの2方コック付きフラスコの2方コックに真空ラインを繋げ、超音波発生機(トミー精工社製:UD-201)をフラスコ上部に連結し、磁気撹拌子を加えて9Torrで減圧乾燥した後、フラスコ内をアルゴン雰囲気に置換した。平板積層炭素ナノ繊維(100mg)と、トルエン(17mL)をシリンジで加えてた。その後、この炭素繊維が懸濁した錯体溶液に超音波(OUTPUT=5、DUTY=30)を30分照射して炭素ナノ繊維を溶媒中に分散させた後、一旦超音波の照射を止め、アルゴン気流下でFe(CO)5(7μl、0.05mmol)をマイクロシリンジでフラスコに加えた。再び超音波(OUTPUT=5、DUTY=30)を照射しながら24時間反応させた。その後、メンブランろ紙を用いて炭素ナノ繊維をろ取し、そのままトルエン(50mL)と引き続きエーテル(50mL)を用いて洗浄した。得られた炭素繊維を30mLナスフラスコに移し、上部に三方コックをつけた後、0.04Torrの減圧下、室温で乾燥することにより、ルテニウム担持板積層炭素ナノ繊維構造体(Fe/CNF−P−US)(74mg)を得た。
Example 7
Synthesis of iron-supported flat-plate laminated carbon nanofiber structure (Fe / CNF-P-US) using an ultrasonic generator
Connect a vacuum line to the two-way cock of a 30 mL flask with a two-way cock, connect an ultrasonic generator (Tomy Seiko Co., Ltd .: UD-201) to the top of the flask, add a magnetic stir bar and dry under reduced pressure at 9 Torr The inside of the flask was replaced with an argon atmosphere. Flat laminated carbon nanofiber (100 mg) and toluene (17 mL) were added by syringe. After that, the complex solution in which the carbon fiber is suspended is irradiated with ultrasonic waves (OUTPUT = 5, DUTY = 30) for 30 minutes to disperse the carbon nanofibers in the solvent. Fe (CO) 5 (7 μl, 0.05 mmol) was added to the flask with a microsyringe under a stream of air. The reaction was continued for 24 hours while irradiating again with ultrasonic waves (OUTPUT = 5, DUTY = 30). Thereafter, carbon nanofibers were collected by filtration using a membrane filter paper, and washed as it was with toluene (50 mL) and subsequently with ether (50 mL). The obtained carbon fiber was transferred to a 30 mL eggplant flask, and a three-way cock was attached to the top, followed by drying at room temperature under a reduced pressure of 0.04 Torr, whereby a ruthenium-supported laminated carbon nanofiber structure (Fe / CNF-P- US) (74 mg) was obtained.

〔実施例8〕
トルエンの核水素化反応
100mLオートクレーブ用ガラス内管に、実施例1で得られたナノ炭素繊維構造体(5mg)とトルエン(3mL、2.61g、28.3mmol)を加え、オートクレーブに設置した後、30気圧の水素を充填した。このオートクレーブを100℃の油浴につけ、加熱撹拌した。加熱直後、水素圧は35気圧まで上昇するが、約30分後には20気圧まで減少し、引き続き2時間反応させると13気圧で一定になった。反応容器を室温まで冷却した後、オートクレーブのコックを徐々に開放して常圧に戻した。反応物に内部標準物質としてn−オクタンを加え、ガスクロマトグラフによりトルエンの転化率(>99%)ならびにメチルシクロヘキサンの収率(>99%)を決定した。GLC(カラム:TC-17;0.25mm x 30m、カラム温度:70℃、入力圧:60kPa、保持時間:4.3min(n−オクタン);4.6min(メチルシクロヘキサン);5.8min(トルエン)。
Example 8
Nuclear hydrogenation of toluene
To a 100 mL autoclave glass inner tube, the nanocarbon fiber structure (5 mg) obtained in Example 1 and toluene (3 mL, 2.61 g, 28.3 mmol) were added, and the autoclave was filled with hydrogen at 30 atm. . The autoclave was placed in a 100 ° C. oil bath and heated and stirred. Immediately after heating, the hydrogen pressure rose to 35 atmospheres, but after about 30 minutes it decreased to 20 atmospheres, and when the reaction was continued for 2 hours, it became constant at 13 atmospheres. After cooling the reaction vessel to room temperature, the autoclave cock was gradually opened to return to normal pressure. N-octane was added to the reaction product as an internal standard substance, and the conversion of toluene (> 99%) and the yield of methylcyclohexane (> 99%) were determined by gas chromatography. GLC (column: TC-17; 0.25 mm × 30 m, column temperature: 70 ° C., input pressure: 60 kPa, retention time: 4.3 min (n-octane); 4.6 min (methylcyclohexane); 5.8 min (toluene).

〔実施例9〜11〕
圧力効果
100mLオートクレーブ用ガラス内管に、実施例1で得られたナノ炭素繊維構造体(5mg)とトルエン(1mL、0.87g、9.43mmol)を加え、オートクレーブに設置した後、10〜30気圧の水素を充填した。このオートクレーブを100℃の油浴につけ、加熱撹拌した。反応容器を室温まで冷却した後、オートクレーブのコックを徐々に開放して常圧に戻した。反応物に内部標準物質としてn−オクタンを加え、ガスクロマトグラフによりトルエンの転化率ならびにメチルシクロヘキサンの収率を決定した。GLC(カラム:TC-17;0.25mm x 30m、カラム温度:70℃、入力圧:60kPa、保持時間:4.3min(n−オクタン);4.6min(メチルシクロヘキサン);5.8min(トルエン)。
[Examples 9 to 11]
Pressure effect
To the 100 mL autoclave glass inner tube, add the nanocarbon fiber structure (5 mg) obtained in Example 1 and toluene (1 mL, 0.87 g, 9.43 mmol), and place in an autoclave. Filled. The autoclave was placed in a 100 ° C. oil bath and heated and stirred. After cooling the reaction vessel to room temperature, the autoclave cock was gradually opened to return to normal pressure. N-octane was added as an internal standard substance to the reaction product, and the conversion of toluene and the yield of methylcyclohexane were determined by gas chromatography. GLC (column: TC-17; 0.25 mm × 30 m, column temperature: 70 ° C., input pressure: 60 kPa, retention time: 4.3 min (n-octane); 4.6 min (methylcyclohexane); 5.8 min (toluene).

表1から、初期水素圧が高いほど反応が早いことが理解できる。水素圧10気圧でも約2時間で反応が完結していることがわかる。   From Table 1, it can be understood that the higher the initial hydrogen pressure, the faster the reaction. It can be seen that the reaction is completed in about 2 hours even at a hydrogen pressure of 10 atm.

〔実施例12〜16〕
トルエンの核水素化反応における炭素担持媒体の効果
100mLオートクレーブ用ガラス内管に実施例1から4、ならびに市販の5%ルテニウム炭素触媒(Ru/C)(エヌエーケムキャット社製)(5mg)とトルエン(3mL、2.61 g、28.3mmol)を加え、オートクレーブに設置した後、20〜30気圧の水素を充填した。このオートクレーブを100℃の油浴につけ、5時間加熱撹拌した。反応容器を室温まで冷却した後、オートクレーブのコックを徐々に開放して常圧に戻した。反応物に内部標準物質としてn−オクタンを加え、ガスクロマトグラフによりトルエンの転化率ならびにメチルシクロヘキサンの収率を決定した。
[Examples 12 to 16]
Effect of carbon support medium in the nuclear hydrogenation of toluene
Examples 1 to 4 and a commercially available 5% ruthenium carbon catalyst (Ru / C) (manufactured by NU Chemcat) (5 mg) and toluene (3 mL, 2.61 g, 28.3 mmol) were added to a 100 mL autoclave glass inner tube. Then, it was charged with hydrogen at 20 to 30 atm. The autoclave was placed in a 100 ° C. oil bath and heated and stirred for 5 hours. After cooling the reaction vessel to room temperature, the autoclave cock was gradually opened to return to normal pressure. N-octane was added as an internal standard substance to the reaction product, and the conversion of toluene and the yield of methylcyclohexane were determined by gas chromatography.

表2から、市販の5%ルテニウム炭素触媒は活性が低く、活性炭や魚骨型、円筒型積層炭素ナノ繊維担持のルテニウム触媒では、反応に再現性が見られないことがわかる。それに対し、平板積層炭素ナノ繊維担持のルテニウム触媒は、再現性良く、反応が完結することがわかる。
上記の反応で得られた生成物であるメチルシクロヘキサン中に含まれるルテニウム金属量をICP−MSで測定した結果、本発明の構造体においてはいずれの場合にもルテニウムは検出限界以下(< 1ppm)であったことから本発明の構造体は、反応中に炭素ナノ繊維から金属の溶出のない耐久性を有していることがわかる。
From Table 2, it can be seen that commercially available 5% ruthenium carbon catalyst has low activity, and the reaction is not reproducible with activated carbon, fishbone-type, or cylindrical laminated carbon nanofiber-supported ruthenium catalyst. On the other hand, it can be seen that the ruthenium catalyst supported by flat-plate laminated carbon nanofibers has a good reproducibility and completes the reaction.
As a result of measuring the amount of ruthenium metal contained in methylcyclohexane, which is a product obtained by the above reaction, by ICP-MS, ruthenium was below the detection limit in each case in the structure of the present invention (<1 ppm) Therefore, it can be seen that the structure of the present invention has durability without elution of metal from the carbon nanofibers during the reaction.

〔実施例17〕
アニソールの核水素化反応
100mLオートクレーブ用ガラス内管に、実施例1で得られたナノ炭素繊維構造体(5mg)とアニソール(3mL、2.98g、27.6mmol)を加え、オートクレーブに設置した後、30気圧の水素を充填した。このオートクレーブを100℃の油浴につけ、加熱撹拌した。5時間後、反応容器を室温まで冷却し、オートクレーブのコックを徐々に開放して常圧に戻した。反応物をH NMRよりアニソールの転化率(71%)ならびにシクロヘキシルメチルエーテルの収率(71%)を決定した。
[Example 17]
Nuclear hydrogenation of anisole
The nanocarbon fiber structure (5 mg) obtained in Example 1 and anisole (3 mL, 2.98 g, 27.6 mmol) were added to a 100 mL autoclave glass inner tube, and after placing in the autoclave, it was filled with 30 atm of hydrogen. . The autoclave was placed in a 100 ° C. oil bath and heated and stirred. After 5 hours, the reaction vessel was cooled to room temperature, and the autoclave cock was gradually opened to return to normal pressure. From the 1 H NMR of the reaction product, the conversion rate of anisole (71%) and the yield of cyclohexyl methyl ether (71%) were determined.

〔実施例18〕
安息香酸エチルの核水素化反応
100mLオートクレーブ用ガラス内管に、実施例1で得られたナノ炭素繊維構造体(5mg)と安息香酸エチル(3mL、3.15g、20.9mmol)、溶媒としてn‐オクタン(1mL、0.7g、6.1mmol)を加え、オートクレーブに設置した後、30気圧の水素を充填した。このオートクレーブを100℃の油浴につけ、加熱撹拌した。5時間後、反応容器を室温まで冷却し、オートクレーブのコックを徐々に開放して常圧に戻した。反応物をH NMRより安息香酸エチルの転化率(>99%)ならびにシクロヘキサンカルボン酸エチルの収率(>99%)を決定した。
Example 18
Nuclear hydrogenation of ethyl benzoate.
In a 100 mL autoclave glass inner tube, the nanocarbon fiber structure (5 mg) obtained in Example 1, ethyl benzoate (3 mL, 3.15 g, 20.9 mmol), and n-octane (1 mL, 0.7 g, 6.1 mmol) as a solvent. ), And placed in an autoclave, and then charged with 30 atm of hydrogen. The autoclave was placed in a 100 ° C. oil bath and heated and stirred. After 5 hours, the reaction vessel was cooled to room temperature, and the autoclave cock was gradually opened to return to normal pressure. The reaction product was determined by 1 H NMR to determine the conversion of ethyl benzoate (> 99%) and the yield of ethyl cyclohexanecarboxylate (> 99%).

〔実施例19〕
アニリンの核水素化反応
100mLオートクレーブ用ガラス内管に、実施例1で得られたナノ炭素繊維構造体(5mg)とアニリン(1mL、1.02g、10.9mmol)を加え、オートクレーブに設置した後、30気圧の水素を充填した。このオートクレーブを100℃の油浴につけ、加熱撹拌した。24時間後、反応容器を室温まで冷却し、オートクレーブのコックを徐々に開放して常圧に戻した。反応物をH NMRよりアニリンの転化率(>99%)ならびにシクロヘキシルアミンの収率(>99%)を決定した。
Example 19
Nuclear hydrogenation of aniline.
The nanocarbon fiber structure (5 mg) obtained in Example 1 and aniline (1 mL, 1.02 g, 10.9 mmol) were added to a 100 mL autoclave glass inner tube, placed in an autoclave, and then filled with 30 atm of hydrogen. . The autoclave was placed in a 100 ° C. oil bath and heated and stirred. After 24 hours, the reaction vessel was cooled to room temperature, and the autoclave cock was gradually opened to return to normal pressure. The reaction product was determined by 1 H NMR to determine the conversion of aniline (> 99%) and the yield of cyclohexylamine (> 99%).

〔実施例20〕
ニトロベンゼンの核水素化反応
100mLオートクレーブ用ガラス内管に、実施例1で得られたナノ炭素繊維構造体(5mg)とニトロベンゼン(1mL、1.20g、9.7mmol)を加え、オートクレーブに設置した後、30気圧の水素を充填した。このオートクレーブを100℃の油浴につけ、加熱撹拌した。24時間後、反応容器を室温まで冷却し、オートクレーブのコックを徐々に開放して常圧に戻した。反応物をH NMRよりニトロベンゼンの転化率(>99%)ならびにアニリン(90%)とシクロヘキシルアミン(10%)の収率を決定した。
Example 20
Nuclear hydrogenation of nitrobenzene.
To the 100 mL autoclave glass inner tube, the nanocarbon fiber structure (5 mg) obtained in Example 1 and nitrobenzene (1 mL, 1.20 g, 9.7 mmol) were added, and the autoclave was filled with hydrogen at 30 atm. . The autoclave was placed in a 100 ° C. oil bath and heated and stirred. After 24 hours, the reaction vessel was cooled to room temperature, and the autoclave cock was gradually opened to return to normal pressure. The reaction product was determined by 1 H NMR to determine the conversion of nitrobenzene (> 99%) and the yields of aniline (90%) and cyclohexylamine (10%).

[実施例21]
ポリエチレングリコール200(PEG200)を用いた触媒の回収・再利用
100mLオートクレーブ用ガラス内管に、実施例1で得られたナノ炭素繊維構造体(5mg)とトルエン(1mL、0.87g、9.43mmol)、PEG200 (Aldrich社製:1 mL)を加え、オートクレーブに設置した後、30気圧の水素を充填した。このオートクレーブを100°Cの油浴につけ、5時間加熱撹拌した。反応容器を室温まで冷却した後、オートクレーブのコックを徐々に開放して常圧に戻した。オートクレーブ内管を取り出すと、PEG200と生成物のメチルシクロヘキサンの液−液2相を形成しており、ナノ炭素繊維構造体は下相のPEG200相に分散されていた。上相のメチルシクロヘキサンをピペットで採取し、0.65gの生成物が得られた。
オートクレーブ内管に残ったPEG200とナノ炭素繊維構造体をヘキサン3mLで洗浄後、再びオートクレーブに設置し、トルエン(1mL、0.87g、9.43mmol)を加えた後、30気圧の水素を充填し、繰り返し100°Cで5時間反応を行なった。その結果、5回の繰り返し実験でも、触媒活性の低下は観測されなかった。
[Example 21]
Recovery and reuse of catalyst using polyethylene glycol 200 (PEG200)
Add the nanocarbon fiber structure (5 mg) obtained in Example 1, toluene (1 mL, 0.87 g, 9.43 mmol) and PEG200 (Aldrich: 1 mL) to the glass inner tube for 100 mL autoclave, and place in the autoclave. And then filled with 30 atm hydrogen. The autoclave was placed in a 100 ° C oil bath and heated and stirred for 5 hours. After cooling the reaction vessel to room temperature, the autoclave cock was gradually opened to return to normal pressure. When the inner tube of the autoclave was taken out, a liquid-liquid two phase of PEG200 and the product methylcyclohexane was formed, and the nanocarbon fiber structure was dispersed in the lower PEG200 phase. The upper phase methylcyclohexane was pipetted to give 0.65 g of product.
After washing the PEG200 and nanocarbon fiber structure remaining in the autoclave inner tube with 3 mL of hexane, it was placed in the autoclave again, and toluene (1 mL, 0.87 g, 9.43 mmol) was added, followed by filling with 30 atm of hydrogen and repeated. The reaction was carried out at 100 ° C for 5 hours. As a result, no decrease in catalytic activity was observed even in five repeated experiments.

[実施例22]
ポリエチレングリコール300(PEG300)を用いた触媒の回収・再利用
100mLオートクレーブ用ガラス内管に、実施例1で得られたナノ炭素繊維構造体(5mg)とトルエン(1mL、0.87g、9.43mmol)、PEG300(関東化学社製:1 mL)を加え、オートクレーブに設置した後、30気圧の水素を充填した。このオートクレーブを100°Cの油浴につけ、5時間加熱撹拌した。反応容器を室温まで冷却した後、オートクレーブのコックを徐々に開放して常圧に戻した。オートクレーブ内管を取り出すと、PEG300と生成物のメチルシクロヘキサンの液−液2相を形成しており、ナノ炭素繊維構造体は下相のPEG300相に分散されていた。上相のメチルシクロヘキサンをピペットで採取し、0.63gの生成物が得られた。
オートクレーブ内管に残ったPEG300とナノ炭素繊維構造体をヘキサン3mLで洗浄後、再びオートクレーブに設置し、トルエン(1mL、0.87g、9.43mmol)を加えた後、30気圧の水素を充填し、繰り返し100°Cで5時間反応を行なった。その結果、5回の繰り返し実験でも、触媒活性の低下は観測されなかった。
[Example 22]
Recovery and reuse of catalyst using polyethylene glycol 300 (PEG300)
To the 100 mL autoclave glass inner tube, add the nanocarbon fiber structure (5 mg) obtained in Example 1, toluene (1 mL, 0.87 g, 9.43 mmol), PEG300 (manufactured by Kanto Chemical Co., Inc .: 1 mL), and add to the autoclave. After installation, it was filled with 30 atmospheres of hydrogen. The autoclave was placed in a 100 ° C oil bath and heated and stirred for 5 hours. After cooling the reaction vessel to room temperature, the autoclave cock was gradually opened to return to normal pressure. When the inner tube of the autoclave was taken out, a liquid-liquid two phase of PEG300 and the product methylcyclohexane was formed, and the nanocarbon fiber structure was dispersed in the lower PEG300 phase. The upper phase methylcyclohexane was pipetted to give 0.63 g of product.
After washing the PEG300 and nanocarbon fiber structure remaining in the autoclave inner tube with 3 mL of hexane, it was placed in the autoclave again, and toluene (1 mL, 0.87 g, 9.43 mmol) was added, followed by filling with 30 atm of hydrogen and repeated. The reaction was carried out at 100 ° C for 5 hours. As a result, no decrease in catalytic activity was observed even in five repeated experiments.

[実施例23]
ポリエチレングリコール300(PEG1000)を用いた触媒の回収・再利用
100mLオートクレーブ用ガラス内管に、実施例1で得られたナノ炭素繊維構造体(5mg)とトルエン(1mL、0.87g、9.43mmol)、PEG1000 (Aldrich 社製:1 g)を加え、オートクレーブに設置した後、30気圧の水素を充填した。このオートクレーブを100°Cの油浴につけ、5時間加熱撹拌した。反応容器を室温まで冷却した後、オートクレーブのコックを徐々に開放して常圧に戻した。オートクレーブ内管を取り出すと、PEG1000と生成物のメチルシクロヘキサンの固−液2相を形成しており、ナノ炭素繊維構造体は下相であるPEG1000の固相に分散されていた。上相のメチルシクロヘキサンをピペットで採取し、0.63gの生成物が得られた。
オートクレーブ内管に残ったPEG300とナノ炭素繊維構造体をヘキサン3mLで洗浄後、再びオートクレーブに設置し、トルエン(1mL、0.87g、9.43mmol)を加えた後、30気圧の水素を充填し、繰り返し100°Cで5時間反応を行なった。その結果、5回の繰り返し実験でも、触媒活性の低下は観測されなかった。
[Example 23]
Recovery and reuse of catalyst using polyethylene glycol 300 (PEG1000)
Add the nanocarbon fiber structure (5 mg) obtained in Example 1, toluene (1 mL, 0.87 g, 9.43 mmol) and PEG1000 (Aldrich: 1 g) to the glass inner tube for 100 mL autoclave, and set in the autoclave. And then filled with 30 atm hydrogen. The autoclave was placed in a 100 ° C oil bath and heated and stirred for 5 hours. After cooling the reaction vessel to room temperature, the autoclave cock was gradually opened to return to normal pressure. When the inner tube of the autoclave was taken out, a solid-liquid two phase of PEG1000 and the product methylcyclohexane was formed, and the nanocarbon fiber structure was dispersed in the solid phase of PEG1000, which is the lower phase. The upper phase methylcyclohexane was pipetted to give 0.63 g of product.
After washing the PEG300 and nanocarbon fiber structure remaining in the autoclave inner tube with 3 mL of hexane, it was placed in the autoclave again, and toluene (1 mL, 0.87 g, 9.43 mmol) was added, followed by filling with 30 atm of hydrogen and repeated. The reaction was carried out at 100 ° C for 5 hours. As a result, no decrease in catalytic activity was observed even in five repeated experiments.

本発明は、担体(炭素ナノ繊維)の表面にナノメートルサイズの金属微粒子を均一且つ安定して担持することのできるきわめて簡便な技術を提供するものであり、それぞれの金属に応じた反応用の触媒の他、各種の有用な材料の開発に利用され得るものと期待される。   The present invention provides a very simple technique capable of uniformly and stably supporting nanometer-sized metal fine particles on the surface of a support (carbon nanofiber), and for the reaction according to each metal. In addition to catalysts, it is expected to be used for the development of various useful materials.

従来より知られた3種類の炭素ナノ繊維の構造を概示するものであり、図中の線は炭素ヘキサゴン平面を表わす。The structure of three types of conventionally known carbon nanofibers is schematically shown, and the line in the figure represents a carbon hexagon plane. 本発明に従って調製された構造体Ru/CNF-Pの平均粒子径分布とTEM(透過型電子顕微鏡)像。The average particle diameter distribution and TEM (transmission electron microscope) image of the structure Ru / CNF-P prepared according to the present invention. 本発明に従って調製された構造体Ru/CNF-Hの平均粒子径分布とTEM像。The average particle diameter distribution and TEM image of the structure Ru / CNF-H prepared according to the present invention. 本発明に従って調製された構造体Ru/CNF-Tの平均粒子径分布とTEM像。The average particle diameter distribution and TEM image of the structure Ru / CNF-T prepared according to the present invention. 比較のために調製されたRu担持活性炭の平均粒子径分布とTEM像。Average particle size distribution and TEM image of Ru-supported activated carbon prepared for comparison.

Claims (10)

ナノメートルサイズの金属微粒子が炭素ナノ繊維に担持されたナノ金属微粒子/炭素ナノ繊維構造体を製造する方法であって、
目的の金属のカルボニル錯体を溶かした有機溶媒中に炭素ナノ繊維を懸濁させて、前記金属カルボニル錯体をナノ微粒子化する工程を含むことを特徴とする方法。
A method of producing a nanometal fine particle / carbon nanofiber structure in which nanometer-sized metal fine particles are supported on carbon nanofibers,
A method comprising suspending carbon nanofibers in an organic solvent in which a target metal carbonyl complex is dissolved to form nanoparticles of the metal carbonyl complex.
有機溶媒の沸点以下の温度で懸濁液を加熱還流することにより金属カルボニル錯体をナノ微粒子化することを特徴とする請求項1の方法。   The method according to claim 1, wherein the metal carbonyl complex is formed into nanoparticles by heating and refluxing the suspension at a temperature not higher than the boiling point of the organic solvent. 超音波を照射することにより金属カルボニル錯体をナノ微粒子化することを特徴とする請求項1または請求項2の方法。   The method according to claim 1 or 2, wherein the metal carbonyl complex is made into fine particles by irradiating with ultrasonic waves. 炭素ナノ繊維として平板積層炭素ナノ繊維を用いることを特徴とする請求項2の方法。   3. The method according to claim 2, wherein flat carbon nanofibers are used as the carbon nanofibers. 炭素ナノ繊維として平板積層炭素ナノ繊維を用いることを特徴とする請求項3の方法。   The method according to claim 3, wherein flat carbon nanofibers are used as the carbon nanofibers. 金属カルボニル錯体として、Ru3(CO)12、Co2(CO)8、Fe(CO)5、Os3(CO)12、Rh4(CO)12、Rh6(CO)16、Ir4(CO)12、Cr(CO)6、W(CO)6、またはMn2(CO)10を用いることを特徴とする請求項1〜請求項5のいずれかの方法。 As metal carbonyl complexes, Ru 3 (CO) 12 , Co 2 (CO) 8 , Fe (CO) 5 , Os 3 (CO) 12 , Rh 4 (CO) 12 , Rh 6 (CO) 16 , Ir 4 (CO ) 12 , Cr (CO) 6 , W (CO) 6 , or Mn 2 (CO) 10 is used. 請求項1〜請求項6のいずれかの方法で製造された構造体から成ることを特徴とするナノ金属微粒子担持触媒。   A nanometal fine particle-supported catalyst comprising the structure produced by the method according to any one of claims 1 to 6. 請求項4の方法で製造された構造体から成ることを特徴とする請求項7のナノ金属微粒子担持触媒   The catalyst according to claim 7, comprising a structure produced by the method of claim 4. 芳香族の核水素化に活性を有することを特徴とする請求項8のナノ金属微粒子担持触媒。   9. The nanometal fine particle-supported catalyst according to claim 8, which has an activity for aromatic nuclear hydrogenation. ナノ金属微粒子がルテニウム微粒子であることを特徴とする請求項9のナノ金属微粒子担持触媒。
The nanometal fine particle-supported catalyst according to claim 9, wherein the nanometal fine particles are ruthenium fine particles.
JP2006063617A 2005-03-10 2006-03-09 Manufacturing method of nano metal fine particle / carbon nano fiber structure Expired - Fee Related JP5013722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006063617A JP5013722B2 (en) 2005-03-10 2006-03-09 Manufacturing method of nano metal fine particle / carbon nano fiber structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005066682 2005-03-10
JP2005066682 2005-03-10
JP2006063617A JP5013722B2 (en) 2005-03-10 2006-03-09 Manufacturing method of nano metal fine particle / carbon nano fiber structure

Publications (2)

Publication Number Publication Date
JP2006281201A true JP2006281201A (en) 2006-10-19
JP5013722B2 JP5013722B2 (en) 2012-08-29

Family

ID=37403652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063617A Expired - Fee Related JP5013722B2 (en) 2005-03-10 2006-03-09 Manufacturing method of nano metal fine particle / carbon nano fiber structure

Country Status (1)

Country Link
JP (1) JP5013722B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115051A (en) * 2006-11-07 2008-05-22 Japan Science & Technology Agency Method for producing metal nanoparticles-carrying carbon nanofiber
JP2009046471A (en) * 2007-07-24 2009-03-05 Taisho Pharmaceutical Co Ltd Sleep-improving agent
JP2009046430A (en) * 2007-08-20 2009-03-05 Kyushu Univ Method for synthesizing h8-binaphthyl derivative by reduction of binaphthyl compound
CN101850249B (en) * 2009-03-31 2011-12-28 华东理工大学 Structured ruthenium catalyst and preparation method thereof
JP2014529494A (en) * 2011-08-24 2014-11-13 ブルー−オーテクノロジーインコーポレイテッド Plate-type catalyst product and production method thereof
JP2019076862A (en) * 2017-10-26 2019-05-23 株式会社豊田中央研究所 Methanation catalyst, manufacturing method therefor, and manufacturing method of methane using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198469A (en) * 1999-11-05 2001-07-24 Sekisui Chem Co Ltd Metal carrying catalyst for storing/supplying hydrogen and hydrogen storage/supply system using the catalyst
JP2004059409A (en) * 2002-07-31 2004-02-26 Junji Nakamura Carbon nano material, its manufacturing method and hydrogen storage material
JP2004082007A (en) * 2002-08-27 2004-03-18 Honda Motor Co Ltd Catalyst particle and alcohol dehydrogenation catalyst particle
JP2005007281A (en) * 2003-06-18 2005-01-13 Japan Science & Technology Agency Single layer carbon nanohorn adsorbent and manufacturing method therefor
JP2006052115A (en) * 2004-08-13 2006-02-23 Japan Science & Technology Agency Method for manufacturing metal-supporting carbon material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198469A (en) * 1999-11-05 2001-07-24 Sekisui Chem Co Ltd Metal carrying catalyst for storing/supplying hydrogen and hydrogen storage/supply system using the catalyst
JP2004059409A (en) * 2002-07-31 2004-02-26 Junji Nakamura Carbon nano material, its manufacturing method and hydrogen storage material
JP2004082007A (en) * 2002-08-27 2004-03-18 Honda Motor Co Ltd Catalyst particle and alcohol dehydrogenation catalyst particle
JP2005007281A (en) * 2003-06-18 2005-01-13 Japan Science & Technology Agency Single layer carbon nanohorn adsorbent and manufacturing method therefor
JP2006052115A (en) * 2004-08-13 2006-02-23 Japan Science & Technology Agency Method for manufacturing metal-supporting carbon material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115051A (en) * 2006-11-07 2008-05-22 Japan Science & Technology Agency Method for producing metal nanoparticles-carrying carbon nanofiber
JP2009046471A (en) * 2007-07-24 2009-03-05 Taisho Pharmaceutical Co Ltd Sleep-improving agent
JP2009046430A (en) * 2007-08-20 2009-03-05 Kyushu Univ Method for synthesizing h8-binaphthyl derivative by reduction of binaphthyl compound
CN101850249B (en) * 2009-03-31 2011-12-28 华东理工大学 Structured ruthenium catalyst and preparation method thereof
JP2014529494A (en) * 2011-08-24 2014-11-13 ブルー−オーテクノロジーインコーポレイテッド Plate-type catalyst product and production method thereof
KR101900535B1 (en) * 2011-08-24 2018-11-05 블루-오 테크놀로지 인크. Plate-shaped catalyst product and method for manufacturing same
JP2019076862A (en) * 2017-10-26 2019-05-23 株式会社豊田中央研究所 Methanation catalyst, manufacturing method therefor, and manufacturing method of methane using the same

Also Published As

Publication number Publication date
JP5013722B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
Zhu et al. Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications
Julkapli et al. Graphene supported heterogeneous catalysts: An overview
Fang et al. Synthesis of Pd/Au bimetallic nanoparticle-loaded ultrathin graphitic carbon nitride nanosheets for highly efficient catalytic reduction of p-nitrophenol
Zhong et al. Deep eutectic solvent-assisted synthesis of highly efficient PtCu alloy nanoclusters on carbon nanotubes for methanol oxidation reaction
Oosthuizen et al. Carbon nanotubes as supports for palladium and bimetallic catalysts for use in hydrogenation reactions
Labulo et al. Advances in carbon nanotubes as efficacious supports for palladium-catalysed carbon–carbon cross-coupling reactions
KR101024798B1 (en) Method for producing compositions of nanoparticles on solid surfaces
MamathaKumari et al. Nanohybrid of titania/carbon nanotubes–nanohorns: a promising photocatalyst for enhanced hydrogen production under solar irradiation
US20110312490A1 (en) Methods for preparing catalyst supports and supported catalysts from carbon nanotubes
Liu et al. Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water
JP5013722B2 (en) Manufacturing method of nano metal fine particle / carbon nano fiber structure
Zhao et al. Magnetically induced synthesis of mesoporous amorphous CoB nanochains for efficient selective hydrogenation of cinnamaldehyde to cinnamyl alcohol
CN102821846A (en) Nitrogen doped carbon nanotubes with metal nanoparticles
JP2015533638A (en) Method for producing metal catalyst for producing carbon nanotubes and method for producing carbon nanotubes using the same
JP5715726B2 (en) Ruthenium fine particles having substantially face-centered cubic structure and method for producing the same
JP2005314223A (en) Porous carbon material and method for producing the same
Zhao et al. Synthesis of surface controlled nickel/palladium hydride nanodendrites with high performance in benzyl alcohol oxidation
Zhu et al. Ultrafine Pd nanoparticles immobilized on N-doped hollow carbon nanospheres with superior catalytic performance for the selective oxidation of 5-hydroxymethylfurfural and hydrogenation of nitroarenes
Hu et al. Three‐Dimensionally Hierarchical Pt/C Nanocomposite with Ultra‐High Dispersion of Pt Nanoparticles as a Highly Efficient Catalyst for Chemoselective Cinnamaldehyde Hydrogenation
Ribeiro et al. Palladium decoration of hybrid carbon nanotubes/charcoal composite and its catalytic behavior in the hydrogenation of trans-cinnamaldehyde
Qiu et al. Photocatalytic conversion of sodium lignosulfonate into vanillin using mesoporous TiO2 derived from MIL-125
Zhang et al. N-Doped porous carbon supported palladium nanoparticles as a highly efficient and recyclable catalyst for the Suzuki coupling reaction
Abedi et al. Improved activity of palladium nanoparticles using a sulfur-containing metal–organic framework as an efficient catalyst for selective aerobic oxidation in water
Termvidchakorn et al. A novel catalyst of Ni hybridized with single-walled carbon nanohorns for converting methyl levulinate to γ-valerolactone
JP5072200B2 (en) Methane steam reforming catalyst, method for producing the same, and method for producing hydrogen using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5013722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees