JP2006280735A - Biomedical electrode - Google Patents

Biomedical electrode Download PDF

Info

Publication number
JP2006280735A
JP2006280735A JP2005106341A JP2005106341A JP2006280735A JP 2006280735 A JP2006280735 A JP 2006280735A JP 2005106341 A JP2005106341 A JP 2005106341A JP 2005106341 A JP2005106341 A JP 2005106341A JP 2006280735 A JP2006280735 A JP 2006280735A
Authority
JP
Japan
Prior art keywords
silver
electrode
powder
mol
silver chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005106341A
Other languages
Japanese (ja)
Other versions
JP4624160B2 (en
Inventor
Yuji Saeki
祐二 佐伯
Yoichi Kamegaya
洋一 亀ケ谷
Toshiyuki Yoshimura
利幸 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Denshi Co Ltd
Ishifuku Metal Industry Co Ltd
Original Assignee
Fukuda Denshi Co Ltd
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Denshi Co Ltd, Ishifuku Metal Industry Co Ltd filed Critical Fukuda Denshi Co Ltd
Priority to JP2005106341A priority Critical patent/JP4624160B2/en
Publication of JP2006280735A publication Critical patent/JP2006280735A/en
Application granted granted Critical
Publication of JP4624160B2 publication Critical patent/JP4624160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biomedical electrode used for devices such as an electrocardiograph, an electromyograph, and an electroencephalograph, with high sensitivity of detection to bioelectric signals and high speed of detection, and excellent in the reversibility of the electrode potential. <P>SOLUTION: The biomedical electrode is characterized by a conductive electrode substrate, silver carried on the electrode substrate, and a mixture of silver chloride and boron oxide. The mixture further includes at least one of platinum, indium oxide, ruthenium oxide, silver oxide and silver sulfide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、医療診断等で屡々使用される心電計、筋電計、脳波計等の機器において、生体から発生する微弱な電気信号例えば電位を検出するための生体用電極に関する。   The present invention relates to a living body electrode for detecting a weak electric signal generated from a living body, such as a potential, in devices such as an electrocardiograph, an electromyograph, and an electroencephalograph which are frequently used in medical diagnosis and the like.

現在医療分野で使用されている生体電気信号検出用電極としては、金属洋白からなる再利用可能な電極と、銀粉末と塩化銀粉末をペースト状にした後、導電性電極基体上に印刷により設けてなる使い捨て用電極がある。心電図や脳波図を測定する場合、生体からの電気信号は数mV程度の極めて微弱なものであり、生体からのかかる微弱な電気信号を検出するためには、電極電位が安定であり且つ電極インピーダンスが小さく、さらに、雑音電圧を発生しないこと等が要求される。具体的には、アメリカ規格協会(ANSI: American National Standards Institute)で制定されている、使い捨て用心電図検査用電極の規格(AAMI―EC12:Association for the Advancement of Medical Instrumentation EC−12)では、電極面と電極面との間に電解質ゲル又は電解質クリームを貼り又は塗り電極対とし、一対の電極が、(1)直流100μAを1分間印加し、遮断後1分後の電圧値が100mV以上のオフセット電圧を示さないこと(DCO:Direct Current Offset voltage)、(2)10Hz、100μAp−p(Ap−p:交流の(最大電流値−最小電流値))を超えない印加でのインピーダンスの平均値が、2KΩを超えないこと(ACZ:Alternating Current impedance、impedanceはZと記す)、(3)一対の電極の分極電圧の絶対値が4回の2 00Vの充放電のそれぞれの5秒後で100mVを越えないことが要求されている。これら3項目の特性を満たすためには、電極が可逆性の良い電極反応を示すことが重要であり、可逆性の良い電極反応を示す生体用電極としては、銀−塩化銀電極が最適なものとして知られている。   The bioelectric signal detection electrode currently used in the medical field includes a reusable electrode made of a metal powder, a paste of silver powder and silver chloride powder, and printing on a conductive electrode substrate. There is a disposable electrode provided. When measuring an electrocardiogram or an electroencephalogram, the electrical signal from the living body is extremely weak, about several mV, and in order to detect such a weak electrical signal from the living body, the electrode potential is stable and the electrode impedance Is required to be small and no noise voltage is generated. Specifically, the standard for disposable electrocardiogram examination electrodes (AAMI-EC12: Association for the Advancement of Medical Instrumentation EC-12) established by the American National Standards Institute (ANSI) Electrode gel or electrolyte cream is applied between the electrode and the electrode surface, or a pair of electrodes is applied. (1) A 100 μA direct current is applied for 1 minute, and a voltage value 1 minute after shutting off is an offset voltage of 100 mV or more. (DCO: Direct Current Offset voltage), (2) 10 Hz, 100 μAp-p (Ap-p: (maximum current value−minimum current value) of AC) The average value of the impedance when applied does not exceed 2 KΩ (ACZ: Alternate Current impedance, impedance is denoted as Z), (3) Charge / discharge of 200 V of the absolute value of the polarization voltage of the pair of electrodes is four times. It is required not to exceed 100 mV after each 5 seconds. In order to satisfy the characteristics of these three items, it is important that the electrode exhibits an electrode reaction with a good reversibility, and a silver-silver chloride electrode is the most suitable as a biological electrode showing an electrode reaction with a good reversibility. Known as.

銀−塩化銀電極の製造方法としては、例えば、(1)銀箔を電気化学的に処理して銀箔上に塩化銀の薄い表面層を形成させる方法(陽極酸化法)、(2)銀粒子及び塩化銀粒子の混合粉を圧縮した後、加熱焼結することによってペレット型電極を形成させる方法(焼結法)、(3)導電性基体上に銀−塩化銀ペーストを印刷又は塗布する方法(ペースト法)などが挙げられる(例えば、特許文献1参照)。   As a method for producing a silver-silver chloride electrode, for example, (1) a method of electrochemically treating silver foil to form a thin surface layer of silver chloride on the silver foil (anodic oxidation method), (2) silver particles and After compressing the mixed powder of silver chloride particles, a method of forming a pellet-type electrode by heating and sintering (sintering method), (3) a method of printing or applying a silver-silver chloride paste on a conductive substrate ( Paste method) (see, for example, Patent Document 1).

しかしながら、上記の如き方法で製造される銀−塩化銀電極は、塩化銀の電気抵抗が極めて高く、塩化銀含有層を厚くすると銀−塩化銀電極のインピーダンスが大きくなるため、塩化銀及び塩化銀と接する回路箇所で生体電気信号の減衰が生じ、生体電気信号の検出感度が低下したりするという欠点がある。一方、銀−塩化銀電極のインピーダンスを低くするために塩化銀含有層を薄くすると、銀−塩化銀電極電位が不安定となり、銀−塩化銀電極電位の可逆性が悪くなったり、生体電気信号の検出速度が低下するなどの問題が生ずる。
特開平5−176903号公報
However, the silver-silver chloride electrode produced by the method as described above has an extremely high electrical resistance of silver chloride, and the thick silver chloride-containing layer increases the impedance of the silver-silver chloride electrode. In other words, the bioelectric signal is attenuated at a circuit portion in contact with the signal line, and the detection sensitivity of the bioelectric signal is lowered. On the other hand, if the silver chloride-containing layer is made thin in order to reduce the impedance of the silver-silver chloride electrode, the silver-silver chloride electrode potential becomes unstable and the reversibility of the silver-silver chloride electrode potential becomes worse. This causes problems such as a decrease in detection speed.
JP-A-5-176903

本発明の目的は、生体電気信号の検出感度が高く、検出速度が速く、且つ電極電位の可逆性に優れた生体用電極を提供することである。   An object of the present invention is to provide a biomedical electrode that has high bioelectric signal detection sensitivity, high detection speed, and excellent reversibility of electrode potential.

本発明によれば、導電性を有する電極基体と、該電極基体上に担持された銀、塩化銀及び酸化ホウ素の混合物とからなる生体用電極が提供される。   According to the present invention, there is provided a biological electrode comprising a conductive electrode substrate and a mixture of silver, silver chloride and boron oxide supported on the electrode substrate.

以下、本発明の生体用電極についてさらに詳細に説明する。   Hereinafter, the biological electrode of the present invention will be described in more detail.

本発明における電極基体としては、例えば、銀、チタン、銅、ニッケル、コバルト、すず等及びこれらの金属を主成分とした合金、ステンレススチール、炭素繊維、導電性樹脂等の導電性支持体、または非導電性支持体(プラスチック等)上に該導電性支持体の薄層を設けたものなどを使用することができる。また、該電極基体は表面が予め粗面化されていてもよい。   Examples of the electrode substrate in the present invention include silver, titanium, copper, nickel, cobalt, tin, and the like, alloys based on these metals, stainless steel, carbon fibers, conductive resins such as conductive resins, or What provided the thin layer of this electroconductive support body etc. on the nonelectroconductive support body (plastic etc.) can be used. The surface of the electrode substrate may be roughened in advance.

例えば、チタン又はチタン合金からなる電極基体(以下、チタン基体という)の場合、以下に述べる方法で前処理することにより表面を粗面化することができる。   For example, in the case of an electrode substrate made of titanium or a titanium alloy (hereinafter referred to as a titanium substrate), the surface can be roughened by pretreatment by the method described below.

先ず、チタン基体の表面を常法に従い、例えばアルコール等による洗浄及び/又はアルカリ水溶液中での電解により脱脂した後、フッ化水素濃度が1〜20重量%、特に5〜10重量%の範囲内にあるフッ化水素酸又はフッ化水素と硝酸、硫酸などの他の酸との混酸で処理することにより、チタン基体表面の酸化膜を除去するとともにチタン結晶粒界単位の粗面化を行う。該酸処理は、チタン基体の表面状態に応じて常温ないし約40℃の温度において数分間ないし十数分間行うことができる。なお、粗面化を十分に行うためにブラスト処理を併用してもよい。   First, after degreasing the surface of the titanium substrate according to a conventional method, for example, washing with alcohol and / or electrolysis in an alkaline aqueous solution, the hydrogen fluoride concentration is in the range of 1 to 20% by weight, particularly 5 to 10% by weight. By treating with hydrofluoric acid or a mixed acid of hydrogen fluoride and other acids such as nitric acid or sulfuric acid, the oxide film on the surface of the titanium substrate is removed and the grain boundaries of the titanium grain boundaries are roughened. The acid treatment can be performed at a temperature of from room temperature to about 40 ° C. for a few minutes to a dozen minutes depending on the surface condition of the titanium substrate. A blasting process may be used in combination in order to sufficiently roughen the surface.

このように酸処理されたチタン基体表面を濃硫酸と接触させて、該チタン結晶粒界内部表面を突起状に細かく粗面化するとともに該チタン基体表面に水素化チタンの薄い膜を形成する。使用する濃硫酸は一般に40〜80重量%、好ましくは50〜60重量%程度の濃度のものが適当であり、この濃硫酸には必要により、処理の安定化を図る目的で少量の硫酸ナトリウムその他の硫酸塩などを添加してもよい。   The surface of the titanium substrate treated in this way is brought into contact with concentrated sulfuric acid to roughen the inner surface of the titanium crystal grain boundary in a protruding manner and to form a thin film of titanium hydride on the surface of the titanium substrate. Concentrated sulfuric acid to be used generally has a concentration of about 40 to 80% by weight, preferably about 50 to 60% by weight, and this concentrated sulfuric acid has a small amount of sodium sulfate or the like for the purpose of stabilizing the treatment if necessary. Or a sulfate thereof may be added.

電極基体の形状は、生体と接触し、微弱な生体電気信号を安定的にキャッチすることができるものであれば特に制約はなく、例えば、平板状、湾曲板状、有孔板状、棒状、板網状などの形状であることができる。   The shape of the electrode substrate is not particularly limited as long as it can contact a living body and stably catch a weak bioelectric signal. For example, a flat plate shape, a curved plate shape, a perforated plate shape, a rod shape, It can have a shape such as a plate net.

本発明に従えば、上記の如き電極基体の表面に、銀、塩化銀及び酸化ホウ素の混合物が担持せしめられる。その担持の方法としては、例えば、銀粉末、塩化銀粉末及びホウ素含有粉末の混合物をペースト化し、電極基体上に印刷又は塗布する方法(ペースト化法)、銀粉末、塩化銀粉末及びホウ素含有粉末の混合物を圧縮した後、加熱焼結することによってペレット型電極を形成させる方法(ペレット化法)などが挙げられる。   According to the present invention, a mixture of silver, silver chloride and boron oxide is supported on the surface of the electrode substrate as described above. Examples of the supporting method include a method of pasting a mixture of silver powder, silver chloride powder and boron-containing powder and printing or applying the mixture on an electrode substrate (pasting method), silver powder, silver chloride powder and boron-containing powder. A method of forming a pellet-type electrode by compressing the mixture and then sintering by heating (pelletizing method) can be used.

ペースト化法は、例えば、銀粉末、塩化銀粉末及びホウ素含有粉末と有機溶媒とを混合してペーストを作製し、このペーストを電極基体上にスクリーン印刷又はローラーコーティングした後、酸素含有雰囲気中、例えば空気中で熱処理することにより行うことができる。その際の熱処理温度は通常約300〜約600℃、特に約350〜約450℃の範囲内が好適である。上記有機溶媒としては、酸素含有雰囲気中で銀粉末、塩化銀粉末及びホウ素含有粉末を一様に分散させることができるものであれば特に制約なく使用することができ、具体的には、例えば、ターピネオール、エチレングリコール、流動パラフィンなどが挙げられ、中でも、ターピネオールが好適である。なお、本明細書において、「ペースト」とは、液状の低粘度のものから粘土状の高粘度のものまでを包含するものである。   In the pasting method, for example, silver powder, silver chloride powder and boron-containing powder are mixed with an organic solvent to prepare a paste, and this paste is screen-printed or roller-coated on an electrode substrate, and then in an oxygen-containing atmosphere. For example, it can be performed by heat treatment in air. The heat treatment temperature is preferably about 300 to about 600 ° C., particularly about 350 to about 450 ° C. The organic solvent can be used without any particular limitation as long as it can uniformly disperse silver powder, silver chloride powder and boron-containing powder in an oxygen-containing atmosphere. Specifically, for example, Examples include terpineol, ethylene glycol, and liquid paraffin. Among these, terpineol is preferable. In the present specification, the “paste” includes a liquid from a low viscosity to a clay-like high viscosity.

また、ペレット化法は、例えば、銀粉末、塩化銀粉末及びホウ素含有粉末の混合物を、例えばペレット形成機を用い1〜1.5MPaの荷重下で加圧してペレットを形成した後、そのペレットを電極基体上にのせて、酸素含有雰囲気中で熱処理することにより行うことができる。その際の熱処理温度は通常約300〜約600℃、特に約350〜約450℃の範囲内が好適である。   Moreover, the pelletizing method is, for example, forming a pellet by pressing a mixture of silver powder, silver chloride powder and boron-containing powder under a load of 1 to 1.5 MPa using a pellet forming machine, for example, It can be carried out by placing on an electrode substrate and heat-treating in an oxygen-containing atmosphere. The heat treatment temperature is preferably about 300 to about 600 ° C., particularly about 350 to about 450 ° C.

上記ペースト化法及びペレット化法で使用される該ホウ素含有粉末としては、酸素含有雰囲気中での熱処理により分解して酸化ホウ素を生成し且つ酸化ホウ素以外に固体の分解生成物を実質的に形成しないものが好ましく、具体的には、例えば、ホウ酸、ホウ酸アンモニウムなどが挙げられ、中でも、ホウ酸が好適である。   The boron-containing powder used in the pasting method and pelletizing method is decomposed by heat treatment in an oxygen-containing atmosphere to generate boron oxide, and substantially forms a solid decomposition product other than boron oxide. What is not performed is preferable, and specific examples include boric acid and ammonium borate. Among these, boric acid is preferable.

また、ペースト化法及びペレット化法に使用される銀粉末、塩化銀粉末及びホウ素含有粉末の粒径は厳密に制限されるものではないが、通常1μm〜500μm、特に10μm〜100μmの範囲内の平均粒子径を有するものが好適である。   The particle size of the silver powder, silver chloride powder and boron-containing powder used in the pasting method and pelletizing method is not strictly limited, but is usually in the range of 1 μm to 500 μm, particularly 10 μm to 100 μm. Those having an average particle size are preferred.

かくして、導電性を有する電極基体上に銀、塩化銀及び酸化ホウ素の混合物を担持させた生体用電極が得られる。該電極における電極基体上に担持される銀と塩化銀と酸化ホウ素の相対的割合は、厳密に制限されるものではなく広い範囲にわたって変えることができるが、銀、塩化銀及び酸化ホウ素の合計量を基準にして、一般に、銀は30〜50mol%、特に35〜46mol%、塩化銀は40〜59mol%、特に45〜56mol%、そして酸化ホウ素(BOとして)は1〜50mol%、特に2〜20mol%の範囲内が好適である。 Thus, a biomedical electrode in which a mixture of silver, silver chloride and boron oxide is supported on a conductive electrode substrate is obtained. The relative proportions of silver, silver chloride and boron oxide supported on the electrode substrate in the electrode are not strictly limited and can vary over a wide range, but the total amount of silver, silver chloride and boron oxide In general, silver is 30-50 mol%, especially 35-46 mol%, silver chloride is 40-59 mol%, especially 45-56 mol%, and boron oxide (as BO x ) is 1-50 mol%, especially 2 A range of ˜20 mol% is preferable.

さらに、必要に応じて、銀、塩化銀及び酸化ホウ素の混合物に、炭素、白金、酸化イリジウム、酸化ルテニウム、酸化銀及び硫化銀の少なくとも1種の導電性粉末を含ませるとができ、それによって、電極特性の安定性を向上させることができる。   Further, if necessary, the mixture of silver, silver chloride and boron oxide can include at least one conductive powder of carbon, platinum, iridium oxide, ruthenium oxide, silver oxide and silver sulfide, thereby The stability of the electrode characteristics can be improved.

かかる導電性粉末は、前記のペーストの作製の段階又は加圧形成の前のペレット化用混合物中に混合することができる。その配合量は、銀、塩化銀及び酸化ホウ素の合計量を基準にして、通常0.1〜0.5mg、特に0.2〜0.3mgの範囲内が好適であり、また、導電性粉末は、通常1〜500μm、好ましくは10〜100μmの範囲内の平均粒子径を有することができる。   Such a conductive powder can be mixed in the pelletizing mixture prior to the paste preparation stage or pressure forming. The blending amount is usually 0.1 to 0.5 mg, particularly preferably 0.2 to 0.3 mg, based on the total amount of silver, silver chloride and boron oxide. May have an average particle size in the range of usually 1 to 500 μm, preferably 10 to 100 μm.

なお、白金、酸化イリジウム及び酸化ルテニウムは、酸素含有雰囲気中での熱処理により分解してこれらの物質を生成し且つこれらの物質以外は固体の分解生成物を形成しない前駆物質の形態、例えば、塩化白金酸、塩化イリジウム酸、塩化ルテニウムなどの形態でペースト又はペレット化用混合物中に混入することができる。   Platinum, iridium oxide, and ruthenium oxide are decomposed by heat treatment in an oxygen-containing atmosphere to produce these substances, and other than these substances, precursor forms that do not form solid decomposition products, for example, chloride It can be mixed in the paste or pelletizing mixture in the form of platinic acid, iridium chloride, ruthenium chloride or the like.

本発明により提供される生体用電極は、生体電気信号の検出感度が高く、検出速度が速く且つ電極電位の可逆性に優れており、医療診断分野において使用される心電計、筋電計、脳波計等の機器の生体用電極として極めて有用である。   The biomedical electrode provided by the present invention has high bioelectric signal detection sensitivity, high detection speed, and excellent reversibility of the electrode potential. An electrocardiograph, electromyograph, It is extremely useful as a biological electrode for devices such as electroencephalographs.

以下、実施例により本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1
t=0.5mm、L=20mm及びW=10mmのチタン基体をエタノールによる洗浄により脱脂した後、フッ化水素酸(10重量%)に30秒浸漬後十分に洗浄し、次いで熱硫酸(120℃、50重量%)に60秒浸漬後十分に洗浄する工程を2回繰り返して行い、チタン基体表面の酸化膜を除去するとともにチタン結晶粒界単位の粗面化を行い、電極基体Aを作製した。
Example 1
A titanium substrate having t = 0.5 mm, L = 20 mm and W = 10 mm was degreased by washing with ethanol, immersed in hydrofluoric acid (10% by weight) for 30 seconds, washed thoroughly, and then heated with sulfuric acid (120 ° C. , 50 wt.%) For 60 seconds and then thoroughly washed twice to remove the oxide film on the surface of the titanium substrate and roughen the titanium crystal grain boundary unit to produce an electrode substrate A. .

一方、銀粉末、塩化銀粉末及びホウ酸粉末をそれぞれ5.0g、9.0g、0.5g秤取り、Ag:AgCl:BOとして40mol%:53mol%:7mol%の割合の混合物を作製した。さらに2.0gのターピネオールを加え十分に混練しペーストAを作製した。 On the other hand, silver powder, silver chloride powder, and boric acid powder were weighed 5.0 g, 9.0 g, and 0.5 g, respectively, and a mixture of 40 mol%: 53 mol%: 7 mol% was prepared as Ag: AgCl: BO x . . Further, 2.0 g of terpineol was added and sufficiently kneaded to prepare paste A.

電極基体A上に、t=0.5mm L=10mm及びW=10mmのスクリーンを用いてペーストAをスクリーン印刷し、大気中で30分乾燥後、大気中400℃で30分熱処理を行い、電極基体表面に銀、塩化銀及び酸化ホウ素の混合物層が形成された実施例電極1を作製した。   A paste A is screen-printed on the electrode substrate A using a screen of t = 0.5 mm L = 10 mm and W = 10 mm, dried in the air for 30 minutes, and then heat-treated at 400 ° C. in the air for 30 minutes. Example electrode 1 was prepared in which a mixture layer of silver, silver chloride and boron oxide was formed on the surface of the substrate.

実施例2
銀粉末、塩化銀粉末及びホウ酸粉末をそれぞれ4.7g、9.0g、0.2g秤取り、Ag:AgCl:BOとして40mol%:57mol%:3mol%の割合の混合物を作製し、さらに2.0gのターピネオールを加え十分に混練しペーストBを作製した。
Example 2
Silver powder, silver chloride powder, and boric acid powder were weighed 4.7 g, 9.0 g, and 0.2 g, respectively, and a mixture of 40 mol%: 57 mol%: 3 mol% as Ag: AgCl: BO x was prepared. 2.0 g of terpineol was added and sufficiently kneaded to prepare paste B.

ペーストAの代わりにペーストBを用いる以外は実施例1と同様にして、電極基体表面に、銀、塩化銀及び酸化ホウ素の混合物層が形成された実施例電極2を作製した。   Example electrode 2 in which a mixture layer of silver, silver chloride and boron oxide was formed on the surface of the electrode substrate was produced in the same manner as in Example 1 except that paste B was used instead of paste A.

実施例3
銀粉末、塩化銀粉末及びホウ酸粉末をそれぞれ4.0g、6.0g、0.8g秤取り、Ag:AgCl:BOとして40mol%:46mol%:14mol%の割合の混合物を作製し、さらに2.0gのターピネオールを加えて十分に混練してペーストCを作製した。
Example 3
4.0 g, 6.0 g, and 0.8 g of silver powder, silver chloride powder, and boric acid powder were weighed, and a mixture of 40 mol%: 46 mol%: 14 mol% was prepared as Ag: AgCl: BO x , and 2.0 g of terpineol was added and sufficiently kneaded to prepare paste C.

ペーストAの代わりにペーストCを用いる以外は実施例1と同様にして、電極基体表面に銀、塩化銀及び酸化ホウ素の混合物層が形成された実施例電極3を作製した。   Example electrode 3 in which a mixture layer of silver, silver chloride and boron oxide was formed on the surface of the electrode substrate was produced in the same manner as in Example 1 except that paste C was used instead of paste A.

実施例4
カーボンシート(東レ社製、TGP−H−060F、0.2mm、20mm、10mm、空隙率83%)を電極基体Bとして準備し、電極基体Aの代わりに電極基体Bを用いる以外は実施例1と同様にして、電極基体表面に銀、塩化銀及び酸化ホウ素の混合物層が形成された実施例電極4を作製した。
Example 4
A carbon sheet (manufactured by Toray Industries, Inc., TGP-H-060F, t 0.2 mm, L 20 mm, W 10 mm, porosity 83%) is prepared as an electrode substrate B, and the electrode substrate B is used in place of the electrode substrate A Example electrode 4 in which a mixture layer of silver, silver chloride and boron oxide was formed on the surface of the electrode substrate was produced in the same manner as Example 1.

実施例5
92.5wt%銀−7.5wt%銅からなる銀合金を用いてt=0.5mm、L=20mm及びW=10mmの電極基体Cを作製し、電極基体Aの代わりに電極基体Cを用いる以外は実施例1と同様にして、電極基体表面に銀、塩化銀及び酸化ホウ素の混合物層が形成された実施例電極5を作製した。
Example 5
An electrode base C having t = 0.5 mm, L = 20 mm, and W = 10 mm is prepared using a silver alloy composed of 92.5 wt% silver-7.5 wt% copper, and the electrode base C is used instead of the electrode base A. Example electrode 5 in which a mixture layer of silver, silver chloride and boron oxide was formed on the surface of the electrode substrate was produced in the same manner as Example 1 except for the above.

実施例6
銀粉末、塩化銀粉末、ホウ酸粉末及びカーボン粉末(Cabot社製、バルカンXC−72R)をそれぞれ4.3g、7.5g、0.4g、0.01g秤取り、Ag:AgCl:HBO:Cとして40mol%:53mol%:6mol%:1mol%の割合の混合物を作製した。さらに、2.0gのターピネオールを加え十分に混練して、ペーストBを作製した。
Example 6
Silver powder, silver chloride powder, boric acid powder and carbon powder (manufactured by Cabot, Vulcan XC-72R) were weighed 4.3 g, 7.5 g, 0.4 g and 0.01 g, respectively, Ag: AgCl: H 3 BO 3 : A mixture having a ratio of 40 mol%: 53 mol%: 6 mol%: 1 mol% as C was prepared. Furthermore, 2.0 g of terpineol was added and sufficiently kneaded to prepare paste B.

ペーストAの代わりにペーストBを用いる以外は実施例1と同様にして、電極基体表面に銀、塩化銀、酸化ホウ素及び炭素の混合物層が形成された実施例電極6を作製した。   Example electrode 6 in which a mixture layer of silver, silver chloride, boron oxide and carbon was formed on the surface of the electrode substrate was produced in the same manner as in Example 1 except that paste B was used instead of paste A.

実施例7
銀粉末、塩化銀粉末、ホウ酸粉末及び塩化白金酸六水和物をそれぞれ4.3g、7.5g、0.4g、0.6gを秤取り、さらにブタノール12.0gを加えて十分に混合し、Ag:AgCl:BO:Ptとして40mol%:53mol%:6mol%:1mol%の割合の混合物を作製し、さらに2.0gのターピネオールを加え十分に混練してペーストCを作製した。
Example 7
Weigh 4.3g, 7.5g, 0.4g and 0.6g of silver powder, silver chloride powder, boric acid powder and chloroplatinic acid hexahydrate, respectively, add 12.0g of butanol and mix well Then, a mixture of Ag: AgCl: BO x : Pt in a ratio of 40 mol%: 53 mol%: 6 mol%: 1 mol% was prepared, and further 2.0 g of terpineol was added and sufficiently kneaded to prepare paste C.

ペーストAの代わりにペーストCを用いる以外は実施例1と同様にして、電極基体表面に銀、塩化銀、酸化ホウ素及び白金の混合物層が形成された実施例電極7を作製した。   Example electrode 7 in which a mixture layer of silver, silver chloride, boron oxide and platinum was formed on the surface of the electrode substrate was produced in the same manner as in Example 1 except that paste C was used instead of paste A.

実施例8
銀粉末、塩化銀粉末、ホウ酸粉末及び塩化イリジウム酸六水和物をそれぞれ4.3g、7.5g、0.4g、0.6gを秤取り、さらにブタノール12.0gを加えて十分に混合し、Ag:AgCl:BO:IrOとして40mol%:53mol%:6mol%:1mol%の割合の混合物を作製し、さらに2.0gのターピネオールを加え十分に混練してペーストDを作製した。
Example 8
Weigh 4.3g, 7.5g, 0.4g and 0.6g of silver powder, silver chloride powder, boric acid powder and chloroiridate hexahydrate, respectively, and add 12.0g of butanol and mix well Then, a mixture of Ag: AgCl: BO x : IrO x in a ratio of 40 mol%: 53 mol%: 6 mol%: 1 mol% was prepared, and further 2.0 g of terpineol was added and sufficiently kneaded to prepare paste D.

ペーストAの代わりにペーストDを用いる以外は実施例1と同様にして、電極基体表面に銀、塩化銀、酸化ホウ素及び酸化イリジウムの混合物層が形成された実施例電極8を作製した。   Example electrode 8 in which a mixture layer of silver, silver chloride, boron oxide and iridium oxide was formed on the surface of the electrode substrate was produced in the same manner as in Example 1 except that paste D was used instead of paste A.

実施例9
銀粉末、塩化銀粉末、ホウ酸粉末及び塩化ルテニウムをそれぞれ4.3g、7.5g、0.4g、0.3gを秤取り、さらにブタノール12.0gを加えて十分に混合し、Ag:AgCl:BO:RuOとして40mol%:53mol%:6mol%:1mol%の割合の混合物を作製し、さらに2.0gのターピネオールを加え十分に混練してペーストEを作製した。
Example 9
Silver powder, silver chloride powder, boric acid powder, and ruthenium chloride were weighed 4.3 g, 7.5 g, 0.4 g, and 0.3 g, respectively, but 12.0 g of butanol was added and mixed well, and Ag: AgCl A mixture of 40 mol%: 53 mol%: 6 mol%: 1 mol% in the ratio of: BO x : RuO x was prepared, and 2.0 g of terpineol was further added and sufficiently kneaded to prepare paste E.

ペーストAの代わりにペーストEを用いる以外は実施例1と同様にして、電極基体表面に銀、塩化銀、酸化ホウ素及び酸化ルテニウムの混合物層が形成された実施例電極9を作製した。   Example electrode 9 in which a mixture layer of silver, silver chloride, boron oxide and ruthenium oxide was formed on the surface of the electrode substrate was produced in the same manner as in Example 1 except that paste E was used instead of paste A.

実施例10
銀板(0.5mm×10mm×20mm)をエタノールで脱脂し、電極基体Dを準備した。
Example 10
A silver plate ( t 0.5 mm × W 10 mm × L 20 mm) was degreased with ethanol to prepare an electrode substrate D.

銀粉末、塩化銀粉末、ホウ酸粉末及び酸化銀粉末をそれぞれ4.3g、7.5g、0.4g、0.1gを秤取り、さらにブタノール12.0gを加えて十分に混合し、Ag:AgCl:BO:AgOとして40mol%:53mol%:6mol%:1mol%の割合の混合物を作製し、さらに2.0gのターピネオールを加え十分に混練してペーストFを作製した。 Silver powder, silver chloride powder, boric acid powder, and silver oxide powder were weighed 4.3 g, 7.5 g, 0.4 g, and 0.1 g, respectively, and 12.0 g of butanol was added and mixed well. Ag: A mixture of AgCl: BO x : AgO x in a ratio of 40 mol%: 53 mol%: 6 mol%: 1 mol% was prepared, and 2.0 g of terpineol was further added and sufficiently kneaded to prepare paste F.

ペーストAの代わりにペーストFを用い且つ電極基体Aの代わりに電極基体Dを用いる以外は実施例1と同様にして、電極基体表面に銀、塩化銀、酸化ホウ素及び酸化銀の混合物層が形成された実施例電極10を作製した。   A mixture layer of silver, silver chloride, boron oxide and silver oxide is formed on the surface of the electrode substrate in the same manner as in Example 1 except that paste F is used instead of paste A and electrode substrate D is used instead of electrode substrate A. Example electrode 10 was prepared.

実施例11
銀粉末、塩化銀粉末、ホウ酸粉末及び硫化銀粉末をそれぞれ4.3g、7.5g、0.4g、0.1g秤取り、さらにブタノール12.0gを加えて十分に混合し、Ag:AgCl:BO:AgSとして40mol%:53mol%:6mol%:1mol%の割合の混合物を作製し、さらに2.0gのターピネオールを加え十分に混練してペーストGを作製した。
Example 11
Silver powder, silver chloride powder, boric acid powder and silver sulfide powder were weighed 4.3 g, 7.5 g, 0.4 g, and 0.1 g, respectively, and 12.0 g of butanol was added and mixed well. Ag: AgCl : BO x: 40mol% as AgS x: 53mol%: 6mol% : to produce a mixture of ratio of 1 mol%, further to prepare a paste G was sufficiently kneaded added terpineol 2.0 g.

ペーストAの代わりにペーストGを用い且つ電極基体Aの代わりに電極基体Dを用いる以外は実施例1と同様にして実施例電極11を作製した。   Example electrode 11 was produced in the same manner as in Example 1 except that paste G was used instead of paste A and electrode base D was used instead of electrode base A.

実施例12
銀粉末、塩化銀粉末及びホウ酸粉末を、それぞれ4.3g、7.5g、0.4g秤取り、十分に混合して、Ag:AgCl:BOとして40mol%:53mol%:7mol%の割合の混合物Aを得た。
Example 12
Silver powder, silver chloride powder, and boric acid powder were weighed 4.3 g, 7.5 g, and 0.4 g, respectively, and mixed well to obtain a ratio of 40 mol%: 53 mol%: 7 mol% as Ag: AgCl: BO x. Of mixture A was obtained.

得られた混合物Aを0.3mg秤取り、ペレット成形機を用い荷重1.2MPaで1分間プレス成形し、t=0.5mm φ=0.8mmのペレットを得た。   0.3 mg of the obtained mixture A was weighed and press-molded for 1 minute at a load of 1.2 MPa using a pellet molding machine to obtain pellets of t = 0.5 mm φ = 0.8 mm.

得られたペレット0.3gを実施例5で作製した電極基体C上にのせ、大気中500℃で30分熱処理し、電極基体表面に銀、塩化銀及び酸化ホウ素の混合物層が形成された実施例電極12を作製した。   The resulting pellet 0.3 g was placed on the electrode substrate C produced in Example 5 and heat-treated at 500 ° C. for 30 minutes in the atmosphere to form a mixture layer of silver, silver chloride and boron oxide on the surface of the electrode substrate. Example electrode 12 was produced.

比較例1
銀粉末及び塩化銀粉末をそれぞれ4.3g、7.5g秤取り十分に混合し、Ag:AgClとして43mol%:57mol%の割合の混合物を作製し、さらに2.0gのターピネオールを加え十分に混練してペーストHを作製した。
Comparative Example 1
Silver powder and silver chloride powder were weighed and mixed thoroughly with 4.3 g and 7.5 g, respectively, to prepare a mixture of 43 mol%: 57 mol% as Ag: AgCl, and further 2.0 g of terpineol was added and kneaded thoroughly Thus, paste H was produced.

ペーストAの代わりにペーストHを用いる以外は実施例8と同様にして、電極基体表面に銀及び塩化銀の混合物層が形成された比較例電極1を作製した。   A comparative electrode 1 in which a mixture layer of silver and silver chloride was formed on the surface of the electrode substrate was produced in the same manner as in Example 8 except that paste H was used instead of paste A.

比較例2
銀粉末及び塩化銀粉末をそれぞれ4.3g、7.5g秤取り十分に混合し、Ag:AgClとして43mol%:57mol%の割合の混合物Bを作製した。
Comparative Example 2
Silver powder and silver chloride powder were each weighed 4.3 g and 7.5 g and mixed well to prepare a mixture B of 43 mol%: 57 mol% as Ag: AgCl.

混合物Aの代わりに混合物Bを用いる以外は実施例12と同様にして、電極基体表面に銀及び塩化銀の混合物層が形成された比較例電極2を作製した。   A comparative example electrode 2 in which a mixture layer of silver and silver chloride was formed on the electrode substrate surface was produced in the same manner as in Example 12 except that the mixture B was used in place of the mixture A.

上記実施例及び比較例で作製した実施例電極1〜12ならびに比較例電極1及び比較例電極2を各2枚用い、それぞれの電極の担持表面にケラチンクリーム(フクダ電子社製)約0.4gを一様に塗り、ケラチンクリームが内側になるように2枚の電極を貼り合わせ、電極対特性:(1)直流100μAを1分間印加し、遮断後1分後の電圧値(以下、DCOと記す)、(2)10Hzで100μAp―p印加した時のインピーダンス値(以下、ACZと記す)を測定した。その結果を表1に示す。また、実施例電極1、実施例電極7、実施例電極8、実施例電極11及び比較例電極1について、100回の心電波形測定後の電極対特性を測定し、その結果を表2に示す。   Two each of Example electrodes 1 to 12 and Comparative Example electrode 1 and Comparative Example electrode 2 prepared in the above Examples and Comparative Examples were used, and about 0.4 g of keratin cream (manufactured by Fukuda Denshi Co., Ltd.) was carried on the surface of each electrode. Are applied uniformly, and the two electrodes are bonded so that the keratin cream is on the inside. Electrode pair characteristics: (1) DC 100 μA is applied for 1 minute, and the voltage value 1 minute after shutting down (hereinafter referred to as DCO) (2) Impedance value (hereinafter referred to as ACZ) when 100 μAp-p was applied at 10 Hz was measured. The results are shown in Table 1. In addition, the electrode pair characteristics after 100 electrocardiographic waveform measurements were measured for Example electrode 1, Example electrode 7, Example electrode 8, Example electrode 11 and Comparative example electrode 1, and the results are shown in Table 2. Show.

電極対特性のDCO値が低いことは、繰り返し発生する生体電気信号の検出速度が速くなること及び電極電位の可逆性に優れていることを表し、ACZ値が低いことは、検出感度が高いことを意味する。   The low DCO value of the electrode pair characteristic means that the detection speed of the repetitively generated bioelectric signal is high and the reversibility of the electrode potential is excellent, and the low ACZ value means that the detection sensitivity is high. Means.

表1の結果より、本発明の実施例電極は、DCO及びACZが共に低く、生体電気信号の検出感度が高く、検出速度が速く且つ電極電位の可逆性に優れた生体用電極であることがわかる。また、表2の結果より、銀、塩化銀及び酸化ホウ素の混合物に、さらに白金、酸化イリジウム又は硫化銀を加えることにより、生体用電極の電極特性の安定性が向上することがわかる。   From the results of Table 1, it can be seen that the example electrode of the present invention is a biological electrode with low DCO and ACZ, high bioelectric signal detection sensitivity, high detection speed, and excellent reversibility of electrode potential. Recognize. Moreover, from the results in Table 2, it can be seen that the stability of the electrode characteristics of the biological electrode is improved by further adding platinum, iridium oxide or silver sulfide to the mixture of silver, silver chloride and boron oxide.

Figure 2006280735
Figure 2006280735

Figure 2006280735
Figure 2006280735

Claims (2)

導電性を有する電極基体と、該電極基体上に担持された銀、塩化銀及び酸化ホウ素の混合物とからなることを特徴とする生体用電極。   A biological electrode comprising an electrode base having conductivity and a mixture of silver, silver chloride and boron oxide supported on the electrode base. 該混合物が炭素、白金、酸化イリジウム、酸化ルテニウム、酸化銀及び硫化銀の少なくとも1種をさらに含有する請求項1に記載の生体用電極。   The biological electrode according to claim 1, wherein the mixture further contains at least one of carbon, platinum, iridium oxide, ruthenium oxide, silver oxide, and silver sulfide.
JP2005106341A 2005-04-01 2005-04-01 Biological electrode Active JP4624160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106341A JP4624160B2 (en) 2005-04-01 2005-04-01 Biological electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106341A JP4624160B2 (en) 2005-04-01 2005-04-01 Biological electrode

Publications (2)

Publication Number Publication Date
JP2006280735A true JP2006280735A (en) 2006-10-19
JP4624160B2 JP4624160B2 (en) 2011-02-02

Family

ID=37403237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106341A Active JP4624160B2 (en) 2005-04-01 2005-04-01 Biological electrode

Country Status (1)

Country Link
JP (1) JP4624160B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280736A (en) * 2005-04-01 2006-10-19 Ishifuku Metal Ind Co Ltd Silver substrate biomedical electrode and method of manufacturing the same
JP2010174328A (en) * 2009-01-29 2010-08-12 Nikka Micron Kk Ozone water generator
JP2014514944A (en) * 2011-04-21 2014-06-26 エービー メディカ エス.ピー.エー. Transplant device capable of acquiring and monitoring bioelectric signals in the brain and performing skull simulation
WO2015076444A1 (en) * 2013-11-25 2015-05-28 (주)와이브레인 Brain wave measurement and brain stimulation system
JP2018155603A (en) * 2017-03-17 2018-10-04 株式会社Sgkシステム技研 Manufacturing method of silver/silver chloride electrode
CN115279268A (en) * 2020-03-13 2022-11-01 拓自达电线株式会社 Electrode for living body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550342A (en) * 1978-10-05 1980-04-12 Tdk Electronics Co Ltd Silverrsilver chloride electrode
JPH05176903A (en) * 1991-12-27 1993-07-20 Tokuriki Honten Co Ltd Silver-silver chloride electrode and its production
JP2006280736A (en) * 2005-04-01 2006-10-19 Ishifuku Metal Ind Co Ltd Silver substrate biomedical electrode and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550342A (en) * 1978-10-05 1980-04-12 Tdk Electronics Co Ltd Silverrsilver chloride electrode
JPH05176903A (en) * 1991-12-27 1993-07-20 Tokuriki Honten Co Ltd Silver-silver chloride electrode and its production
JP2006280736A (en) * 2005-04-01 2006-10-19 Ishifuku Metal Ind Co Ltd Silver substrate biomedical electrode and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280736A (en) * 2005-04-01 2006-10-19 Ishifuku Metal Ind Co Ltd Silver substrate biomedical electrode and method of manufacturing the same
JP4596957B2 (en) * 2005-04-01 2010-12-15 石福金属興業株式会社 Silver-based biological electrode and method for producing the same
JP2010174328A (en) * 2009-01-29 2010-08-12 Nikka Micron Kk Ozone water generator
JP2014514944A (en) * 2011-04-21 2014-06-26 エービー メディカ エス.ピー.エー. Transplant device capable of acquiring and monitoring bioelectric signals in the brain and performing skull simulation
WO2015076444A1 (en) * 2013-11-25 2015-05-28 (주)와이브레인 Brain wave measurement and brain stimulation system
JP2018155603A (en) * 2017-03-17 2018-10-04 株式会社Sgkシステム技研 Manufacturing method of silver/silver chloride electrode
CN115279268A (en) * 2020-03-13 2022-11-01 拓自达电线株式会社 Electrode for living body

Also Published As

Publication number Publication date
JP4624160B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP4624160B2 (en) Biological electrode
Karimi-Maleh et al. A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples
Fang et al. Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors
Li et al. Nitrogen doped carbon dots derived from natural seeds and their application for electrochemical sensing
Tehrani et al. MWCNT-ruthenium oxide composite paste electrode as non-enzymatic glucose sensor
Ozoemena et al. Electrochemical sensing of dopamine using onion-like carbons and their carbon nanofiber composites
Hosseini et al. Investigation of the porous nanostructured Cu/Ni/AuNi electrode for sodium borohydride electrooxidation
CN107924732A (en) Silver-colored silver-silver chloride composite and the electric device for including the silver silver-silver chloride composite
Li et al. 3D self-supported FeOP film on nickel foam as a highly active bifunctional electrocatalyst for urea-assisted overall water splitting
Ghadimi et al. A sensitive dopamine biosensor based on ultra-thin polypyrrole nanosheets decorated with Pt nanoparticles
Mallesha et al. Direct electrochemical non-enzymatic assay of glucose using functionalized graphene
CN110057880A (en) A kind of preparation method of the flexible enzyme-free glucose electrochemical sensor based on copper-silver bimetallic
JPWO2018163881A1 (en) Electrode for measuring biological information and method of manufacturing electrode for measuring biological information
JP2018168445A (en) Silver chloride-coated particle
Wang et al. A Bifunctional Electrocatalyst Containing Tris (2, 2′‐bipyridine) Ruthenium (II) and 12‐Molybdophosphate Bulk‐Modified Carbon Paste Electrode
Zhu et al. Enzymeless electrochemical determination of hydrogen peroxide at a heteropolyanion-based composite film electrode
Yang et al. Pd-based nanoporous metals for enzyme-free electrochemical glucose sensors
Duraisamy et al. Novel ruthenium-doped vanadium carbide/polymeric nanohybrid sensor for acetaminophen drug detection in human blood
Yu et al. An ionic liquid-Fe3O4 nanoparticles-graphite composite electrode used for nonenzymatic electrochemical determination of hydrogen peroxide
CN111122676B (en) Preparation of electrochemical sensor based on platinum-gold-biomass carbon nanocomposite and application of electrochemical sensor in quercetin detection
JP4596957B2 (en) Silver-based biological electrode and method for producing the same
Joseph et al. Electrocatalytic activity enhancement using graphene-metal oxide nanocomposites for the ultra low level detection of biomolecules
Luo et al. Electrochemical behavior of ascorbic acid and rutin on poly (L-arginine)-graphene oxide modified electrode
Ren et al. Seamless integration of a nickel-based metal–organic framework with three-dimensional substrates for nonenzymatic glucose sensing
Yuan et al. In situ preparation of hierarchical CuO@ NiCo LDH core–shell nanosheet arrays on Cu foam for highly sensitive electrochemical glucose sensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Ref document number: 4624160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250